TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>1.1 The Guideline</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Methodology</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Publication history</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Level of evidence and grade of guideline recommendations*</td>
<td>6</td>
</tr>
<tr>
<td>1.5 References</td>
<td>7</td>
</tr>
<tr>
<td>2. PAIN MANAGEMENT IN UROLOGICAL CANCERS</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Pain management in prostate cancer patients</td>
<td>11</td>
</tr>
<tr>
<td>2.1.1 Clinical presentation</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2 Pain due to local impairment</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2.1 Bladder outlet obstruction</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2.2 Ureteric obstruction</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2.3 Lymphoedema</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2.4 Ileus</td>
<td>12</td>
</tr>
<tr>
<td>2.1.3 Pain due to metastases</td>
<td>12</td>
</tr>
<tr>
<td>2.1.3.1 Bone metastases</td>
<td>12</td>
</tr>
<tr>
<td>2.1.3.2 Systemic analgesic pharmacotherapy (the analgesic ladder)</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3.3 Hormone therapy</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3.4 Radiotherapy</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3.5 Orthopaedic surgery</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3.6 Radioisotopes</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3.7 Bisphosphonates</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3.8 Denosumab</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3.9 Chemotherapy</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4 Spinal cord compression</td>
<td>14</td>
</tr>
<tr>
<td>2.1.5 Hepatic invasion</td>
<td>15</td>
</tr>
<tr>
<td>2.1.6 Pain due to cancer treatment</td>
<td>15</td>
</tr>
<tr>
<td>2.1.6.1 Acute pain associated with hormonal therapy</td>
<td>15</td>
</tr>
<tr>
<td>2.1.6.2 Chronic pain associated with hormonal therapy</td>
<td>15</td>
</tr>
<tr>
<td>2.1.7 Recommendations on prostate cancer pain management</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Pain management in transitional cell carcinoma patients</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1 Clinical presentation</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2 Origin of tumour-related pain</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2.1 Bladder TCC</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2.2 Upper urinary tract TCC</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3 Pain due to local impairment</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3.1 Bladder TCC</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3.2 Upper urinary tract TCC</td>
<td>17</td>
</tr>
<tr>
<td>2.2.4 Pain due to metastases</td>
<td>18</td>
</tr>
<tr>
<td>2.2.5 Recommendations on transitional cell carcinoma pain management</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Pain management in renal cell carcinoma patients</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Clinical presentation</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2 Pain due to local impairment</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Pain due to metastases</td>
<td>19</td>
</tr>
<tr>
<td>2.3.4 Recommendations for renal cell carcinoma pain management</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Pain management in patients with adrenal carcinoma</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Malignant pheochromocytoma</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1.1 Treatment of pain</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2 Adrenocortical carcinomas</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2.1 Treatment of the pain depending on its origin</td>
<td>21</td>
</tr>
<tr>
<td>2.4.3 Recommendations pain management adrenal carcinoma</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Pain management in penile cancer patients</td>
<td>21</td>
</tr>
<tr>
<td>2.5.1 Clinical presentation</td>
<td>22</td>
</tr>
<tr>
<td>2.5.2 Pain due to local impairment</td>
<td>22</td>
</tr>
<tr>
<td>2.5.3 Lymphoedema</td>
<td>22</td>
</tr>
<tr>
<td>2.5.4 Pain due to metastases</td>
<td>22</td>
</tr>
<tr>
<td>2.5.5 Recommendations on penile cancer pain management</td>
<td>23</td>
</tr>
</tbody>
</table>
2.6 Pain management in testicular cancer patients
2.6.1 Clinical presentation
2.6.2 Pain due to local impairment
2.6.3 Pain due to metastases
2.6.4 Recommendations for testicular cancer pain management
2.7 References

3. PAIN MANAGEMENT AFTER UROLOGICAL OPERATIONS
3.1 Specific pain treatment after different urological operations
3.1.1 Extracorporeal shock wave lithotripsy
3.1.2 Endoscopic procedures
3.1.2.1 Transurethral procedures
3.1.2.2 Percutaneous endoscopic procedures
3.1.2.3 Laparoscopic and robotic procedures
3.1.3 Recommendations pain treatment after different urological operations
3.1.4 Open surgery
3.1.4.1 Minor operations of the scrotum/penis and the inguinal approach
3.1.4.2 Transvaginal surgery
3.1.4.3 Perineal open surgery
3.1.4.4 Transperitoneal laparotomy
3.1.4.5 Suprapubic/retropubic extraperitoneal laparotomy
3.1.4.6 Retroperitoneal approach - flank incision - thoracoabdominal approach
3.1.5 Recommendations for pain management after open surgery
3.2 Dosage and method of delivery of some important analgesics
3.2.1 NSAIDs
3.2.2 Opioids
3.2.3 Summary of recommendations for postoperative pain management in adults
3.3 Special populations
3.3.1 Ambulatory surgical patients
3.3.2 Geriatric patients
3.3.3 Obese patients
3.3.4 Drug- or alcohol-dependent patients
3.3.5 Other groups
3.3.6 Perioperative problems in children
3.3.7 Postoperative analgesia in children
3.3.8 Recommendations special populations
3.4 References

4. NON-TRAUMATIC ACUTE FLANK PAIN
4.1 Background
4.2 Initial diagnostic approach
4.2.1 Symptomatology
4.2.2 Laboratory evaluation
4.2.3 Diagnostic imaging
4.2.3.1 Computed tomography (CT)
4.2.3.2 Ultrasound imaging (US)
4.2.3.3 Intravenous urography and unenhanced helical CT
4.3 Initial emergency treatment
4.3.1 Systemic analgesia
4.3.2 Local analgesia
4.3.3 Supportive therapy
4.3.4 Upper urinary tract decompression
4.3.5 Recommendations non-traumatic acute flank pain
4.4 References

5. PALLIATIVE CARE
5.1 Introduction
5.2 Supportive care
5.3 Definition and aim of palliative care
5.4 General principles
5.4.1 Communication 45
5.4.2 Patient-centered treatment 46
5.4.3 Cultural and spiritual approach 47
5.4.4 Setting for the provision of terminal care 47
5.4.5 Multidisciplinary approach 47
5.4.6 Can anyone provide palliative care? Health care staff and advanced urological diseases 47

5.5 Treatment of physical symptoms 47
5.5.1 Pain 47
5.5.2 Dyspnoea and respiratory symptoms 47
5.5.3 Cancer anorexia-cachexia syndrome 48
5.5.4 Vomiting 48
5.5.5 Other symptoms 48
5.5.5.1 Fatigue 48
5.5.5.2 Restlessness 48
5.5.5.3 Agitated delirium 49
5.5.5.4 Constipation 49
5.5.5.5 Anxiety 49
5.5.6 Recommendations treatment of physical symptoms 49

5.6 Terminal care 49
5.6.1 When and how to withdraw specific treatment 50
5.6.2 Parenteral hydration: should it be discontinued in the terminal phases? 50
5.6.3 Palliative sedation 51

5.7 Treatment of psychological aspects 51
5.7.1 Fear 51
5.7.2 Depression 52
5.7.3 Family care 52
5.7.4 Communication of bad news 53
5.7.5 Recommendations treatment of psychological aspects 53

5.8 References 53

ADDENDUM 59

A.1 PAIN MANAGEMENT (GENERAL) 59
A.1.1 Pain evaluation and measurement 59
A.1.1.1 Pain evaluation 59
A.1.1.2 Assessing pain intensity and quality of life (QoL) 59
A.1.2 References 60

A.2 CANCER PAIN MANAGEMENT (GENERAL) 61
A.2.1 Classification of cancer pain 61
A.2.2 General principles of cancer pain management 61
A.2.3 Non-pharmacological therapies 62
A.2.3.1 Surgery 62
A.2.3.2 Radionuclides 62
A.2.3.2.1 Clinical background 62
A.2.3.2.2 Radiopharmaceuticals 62
A.2.3.3 Radiotherapy for metastatic bone pain 63
A.2.3.3.1 Clinical background 63
A.2.3.3.2 Radiotherapy scheme 63
A.2.3.3.3 Spinal cord compression 64
A.2.3.3.4 Pathological fractures 64
A.2.3.3.5 Side effects 64
A.2.3.4 Psychological and adjunctive therapy 64
A.2.3.4.1 Psychological therapies 64
A.2.3.4.2 Adjunctive therapy 65
A.2.4 Pharmacotherapy 65
A.2.4.1 Chemotherapy 66
A.2.4.2 Bisphosphonates 66
A.2.4.3 Denosumab 66
A.2.4.4 Systemic analgesic pharmacotherapy - the analgesic ladder 66
A.2.4.4.1 Non-opioid analgesics 66
A.2.4.4.2 Opioid analgesics 67

A.2.4.5 Treatment of neuropathic pain 70
A.2.4.5.1 Antidepressants 70
A.2.4.5.2 Anticonvulsant medication 71
A.2.4.5.3 Local analgesics 71
A.2.4.5.4 NMDA receptor antagonists 71
A.2.4.5.5 Other drug treatments 72
A.2.4.5.6 Invasive analgesic techniques 72

A.2.4.6 Breakthrough cancer pain 73
A.2.4.7 Recommendations pharmacotherapy 74

A.2.5 Quality of life 74
A.2.6 Conclusions 75
A.2.7 References 75

A.3 POSTOPERATIVE PAIN MANAGEMENT 87
A.3.1 Background 87
A.3.2 Importance of effective postoperative pain management 87
A.3.2.1 Aims of effective postoperative pain management 87
A.3.3 Pre- and postoperative pain management methods 87
A.3.3.1 Preoperative patient preparation 87
A.3.3.2 Pain assessment 88
A.3.3.3 Pre-emptive analgesia 88
A.3.3.4 Systemic analgesic techniques 88
A.3.3.4.1 Non-steroidal anti-inflammatory drugs 88
A.3.3.4.2 Paracetamol 88
A.3.3.4.3 Metamizole (dipyrone) 89
A.3.3.4.4 Opioids 89
A.3.3.4.5 Patient-controlled analgesia 89
A.3.3.4.6 Adjuncts to postoperative analgesia 89
A.3.3.5 Regional analgesic techniques 90
A.3.3.5.1 Local anaesthetic agents 90
A.3.3.5.2 Epidural analgesia 90
A.3.3.5.3 Patient-controlled epidural analgesia 90
A.3.3.5.4 Neural blocks 90
A.3.3.5.5 Wound infiltration 91
A.3.3.5.6 Continuous wound instillation 91
A.3.3.6 Multimodal analgesia 91
A.3.3.7 Postoperative pain management teams 91
A.3.3.8 Recommendations postoperative pain management 91
A.3.4 References 92

6. ABBREVIATIONS USED IN THE TEXT 95
1. INTRODUCTION

1.1 The Guideline
The European Association of Urology (EAU) Guidelines expert panel for Pain Management and Palliative Care have prepared this guidelines document to assist medical professionals in appraising the evidence-based management of pain and palliation in urological practice. These guidelines include general advice on pain assessment and palliation, with a focus on treatment strategies relating to common medical conditions and painful procedures.

The multidisciplinary panel of experts responsible for this document include a urologist, a radiotherapist/oncologist, an anaesthesiologist and a nurse specialised in palliative care. The panel composition has not changed since the last version of the guideline.

1.2 Methodology
The recommendations provided in the current guidelines are based on systematic literature searches using Embase/Medline and the Cochrane Central Register of Controlled Trials. PsychInfo and Eur-Lex were also used to obtain evidence related to psychological therapies and legal regulations on palliative care in the EU, respectively.

1.3 Publication history
The Pain Management Guidelines were first published in 2003, with a partial update in 2007, followed by a full text update in 2009. In 2010 two new topics were added, Section 5.6 “Perioperative pain management in children” and Chapter 6 “Non-traumatic acute flank pain”. The quick reference guide was completely reworked.

In the 2011 print all chapters were abridged. The 2013 edition contained partial updates based on the available literature. Section 3.5 on Palliative Care was moved and expanded to a new Chapter 7, which deals with the subject of Palliative Care.

The objective for 2014 was to restructure the entire guideline and to put the focus more on urological aspects and action based recommendations. Background and general information has been moved to Addenda A1, A2 and A3.

A quick reference document presenting the main findings of the former Pain Management guidelines is also available. All texts can be viewed and downloaded for personal use at the EAU website: http://www.uroweb.org/guidelines/online-guidelines/

1.4 Level of evidence and grade of guideline recommendations*
References used in the text have been assessed according to their level of scientific evidence (Table 1) and guideline recommendations have been graded (Table 2) according to the Oxford Centre for Evidence-based Medicine Levels of Evidence (1). The aim of grading recommendations is to provide transparency between the underlying evidence and the recommendation given.

Table 1: Level of evidence (LE)*

<table>
<thead>
<tr>
<th>LE</th>
<th>Type of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Evidence obtained from meta-analysis of randomised trials</td>
</tr>
<tr>
<td>1b</td>
<td>Evidence obtained from at least one randomised trial</td>
</tr>
<tr>
<td>2a</td>
<td>Evidence obtained from one well-designed controlled study without randomisation</td>
</tr>
<tr>
<td>2b</td>
<td>Evidence obtained from at least one other type of well-designed quasi-experimental study</td>
</tr>
<tr>
<td>3</td>
<td>Evidence obtained from well-designed non-experimental studies, such as comparative studies, correlation studies and case reports</td>
</tr>
<tr>
<td>4</td>
<td>Evidence obtained from expert committee reports or opinions or clinical experience of respected authorities</td>
</tr>
</tbody>
</table>

*Modified from Sackett et al. (1).

It should be noted that when recommendations are graded, the link between the level of evidence and grade of recommendation is not directly linear. Availability of randomised controlled trials (RCTs) may not necessarily translate into a grade A recommendation where there are methodological limitations or disparity in published results.

Alternatively, absence of high level evidence does not necessarily preclude a grade A recommendation, if there
is overwhelming clinical experience and consensus. In addition, there may be exceptional situations where corroborating studies cannot be performed, perhaps for ethical or other reasons and in this case unequivocal recommendations are considered helpful for the reader. The quality of the underlying scientific evidence - although a very important factor - has to be balanced against benefits and burdens, values and preferences and cost when a grade is assigned (2-4).

The EAU Guidelines Office does not perform cost assessments, nor can it address local/national preferences in a systematic fashion. However, whenever these data are available, the expert panels will include the information.

Table 2: Grade of recommendation (GR)*

<table>
<thead>
<tr>
<th>GR</th>
<th>Nature of recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Based on clinical studies of good quality and consistency addressing the specific recommendations and including at least one randomised trial</td>
</tr>
<tr>
<td>B</td>
<td>Based on well-conducted clinical studies, but without randomised clinical trials</td>
</tr>
<tr>
<td>C</td>
<td>Made despite the absence of directly applicable clinical studies of good quality</td>
</tr>
</tbody>
</table>

*Modified from Sackett et al. (1).

1.5 References

2. PAIN MANAGEMENT IN UROLOGICAL CANCERS

The prevalence of cancer pain is close to 25% for newly diagnosed cases (1) and > 75% for advanced disease (2,3). Half of the patients express neuropathic pain, which in 90% is caused by neurotoxic chemotherapy (4). A straightforward, comprehensive approach to treating cancer pain is mandatory.

General concepts on palliative surgery, radionuclides and adjunctive and psychological therapies can be considered common to every urological tumour. Basic concepts in this respect are presented in Table 3. Figure 1 presents a general approach to the patient with urological cancer and pain. Figure 2 represents a general approach to the patient with urological cancer and metastatic bone pain. Figure 3 gathers the therapeutic options for neuropathic pain.

For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer pain management (General).
Table 3: General concepts on palliative surgery, radionuclides and adjunctive and psychological therapies

<table>
<thead>
<tr>
<th>Surgery</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palliation is not equivalent to minimal invasion. Consider aggressive surgery under certain circumstances.</td>
<td>2b</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radionuclides</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiopharmaceuticals are an option for patients with multifocal pain bone metastases when other treatments have failed.</td>
<td>2b</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Psychological</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Always offer psychological support to cancer patients and their loved ones.</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjunctive therapy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate exercise can be an adjuvant and should be suggested in the treatment of cancer pain.</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>
Clinicians must be aware of the side-effects of opioids, if not confident, consulting a palliative care specialist is recommended.

NSAIDs = non-steroidal anti-inflammatory drugs; iv = intravenous; sc = subcutaneous; prn = pro re nata (as needed)
Pain assessment (OPQRSTUV approach, see Addendum A.1) is mandatory before treating metastatic bone pain. All patients should be offered opioids (see Figure 1). Localised metastases are best treated with limited field radiotherapy (consult radiotherapist for dosage). Alternatively, chemo-sensitive and/or hormone-sensitive tumours can be treated with systemic chemotherapy or hormone therapy. Radio-resistant and/or chemo/hormone-refractory tumours are then best treated with bisphosphonates or denosumab. Scattered bone metastases in chemo-sensitive and/or hormone-sensitive tumours can be treated initially with systemic chemotherapy or hormone therapy. Chemo/hormone-refractory tumours are then best treated with wide field radiotherapy or radioisotopes. Patients failing wide field radiotherapy or radioisotopes can then be offered bisphosphonates or denosumab.
Figure 3: Management of neuropathic pain

Note: there are no sufficient data relating to the kind of drug or dose administered according to neuropathic pain severity or type (e.g. throbbing, cramping, piercing etc.)

2.1 Pain management in prostate cancer patients
For a complementary approach please refer to the EAU Guidelines on Prostate Cancer (5).

Figure 4: Pain management in PCa patients
Only the main clinical scenarios are addressed in Figure 4. For a wider approach please refer to the EAU Guidelines on Prostate Cancer.

2.1.1 Clinical presentation
Pain in both early and advanced PCa can be caused directly by the cancer (77%), be related to the treatment (19%), or be unrelated to either (3%) (6). The overall incidence of chronic pain in PCa patients is about 30-50%, but as patients enter the terminal phase this rises to 90% (7).

2.1.2 Pain due to local impairment
2.1.2.1 Bladder outlet obstruction
Continuous growth of the prostate or local bleeding can lead to an outlet obstruction. Lower urinary tract symptoms (LUTS) can occur, especially stranguria and an inability to void. Acute pain requires prompt relief. If a bladder neoplasm can be reasonably excluded, the best method is to insert a suprapubic catheter and treat the tumour according to the stage (5). If the outlet obstruction persists, palliative transurethral resection of the prostate (TURP) is an option if no curative therapy can be offered. Palliative radiotherapy can relieve symptoms caused by bladder outlet obstruction in 63% of the patients (8).

2.1.2.2 Ureteric obstruction
Ureteric obstruction is most frequently caused by tumour compression or infiltration within the true pelvis (7-10). In most cases, obstruction is primarily asymmetrical. It is good practice to drain symptomatic hydronephrosis at once, and to drain only one kidney (the less dilated and better appearing kidney or the one with the better function, if known) in asymptomatic patients. A nephrostomy tube is superior to a double-J stent for drainage. Antegrade ureteral stenting through the nephrostomy site can also be attempted when the patient desires an internal diversion. Palliative radiotherapy can be offered as an alternative treatment for ureteric obstruction with a response rate of 62%.

2.1.2.3 Lymphoedema
Patients with a huge prostate mass and/or lymph node metastases frequently get lymphoedema of the legs. Physiatric techniques such as wraps, pressure stockings and pneumatic pumps can improve function and relieve pain and heaviness.

2.1.2.4 Ileus
Local obstruction of the rectum is a common occurrence in advanced PCa, and can lead to abdominal pain caused by obstructive ileus. Rarely, peritoneal involvement can also result in ileus. Surgery and/or rectal stenting must be performed for mechanical obstruction. Paralytic ileus due to tumour infiltration of a nerve plexus or secondary to analgesics may require laxatives for opioid-induced constipation to improve motility and reduce pain.

2.1.3 Pain due to metastases
2.1.3.1 Bone metastases
Bone metastases are the most common cause of chronic pain in patients with PCa (9,10). Widespread bony metastases frequently cause multifocal pain. Patients with multiple bony metastases typically report pain in only a few sites.
• More than 25% of patients with bony metastases are pain free (11).
• The factors that convert a painless lesion into a painful one are unknown.

The choice of treatment will depend on the site of the tumour, and on the patient’s physical and emotional condition. The pros and cons of the therapeutic options should be considered in each case; those with fewest side-effects being administered first.

The treatment options are:
• systemic analgesic pharmacotherapy (the analgesic ladder)
• hormone therapy
• radiotherapy
• orthopaedic surgery
• radioisotopes
• bisphosphonates
• denosumab
• chemotherapy
Other pain management tools such as nerve blocks are rarely used.

2.1.3.2 Systemic analgesic pharmacotherapy (the analgesic ladder)

Metastatic bone pain usually needs a straightforward approach. In most cases the drug selection scheme proposed by the WHO, the analgesic ladder, is recommended. Short-term studies have shown that NSAIDs alone are effective in managing cancer pain, with side-effects similar to those with placebo. In about 50% of studies, increasing the dose of NSAIDs increased efficacy but not the incidence of side-effects.

No large clinical difference has been demonstrated between combining an NSAID with an opioid vs. either medication alone (12). Tramadol and dihydrocodeine extended-release tablets were effective for the management of chronic tumour pain due to bone metastases, with tramadol giving slightly better pain management and fewer side-effects, particularly constipation (13). Morphine is the gold standard for moderate to severe cancer-related pain. Alternatives such as hydromorphone are available, but no clinically significant difference has been shown compared to other strong opioids such as morphine (14). Patients with inadequate pain control and intolerable opioid related toxicity/adverse effects may have to switch to an alternative opioid for symptomatic relief.

2.1.3.3 Hormone therapy

For more information on hormone therapy, refer to EAU Guidelines on Prostate Cancer (5). Hormone therapy can cause a temporary exacerbation of pain (pain flare), which is generally predictive of a subsequent response (15). In a collected series of protocols, pain relief has been estimated at 35% (16) and 70% (17). Well-differentiated prostatic carcinoma is more likely to respond to hormones than poorly differentiated tumours. Manipulations that include replacement corticosteroid therapy or have additional corticoid effects seem to give higher response rates.

2.1.3.4 Radiotherapy

- The role of radiotherapy in the management of pain due to bone metastases is pivotal (18).
- Radiotherapy techniques vary widely, from a large dose given as a single treatment to as many as 20 smaller treatments given over 4 weeks.
- The biological effect of the radiation depends not only on the total dose delivered, but also on the number of separate treatments and the total time over which the irradiation therapy is administered.
- Palliative doses are smaller than maximum tolerance doses.
- It should be noted that radiological evidence of a deposit may considerably underestimate the extent of disease.

In metastatic adenocarcinoma of the prostate, radiotherapy is associated with palliation of pain from bony metastases and improved QoL. Radiation therapy is effective at treating painful sites, and might also be effective at reducing the propensity for adjuvantly treated disease to become symptomatic in most patients (19). New organ limited approaches e.g. the stereotactic ablative radiation therapy (SABR) of vertebral metastases can result in excellent local control (20). This effect does not appear to be significantly influenced by dose-time relationships or histology. The proportion of patients achieving complete pain relief is close to 70% (21) (Section A.2.3.3).

2.1.3.5 Orthopaedic surgery

If more than 50% of the thickness of the cortex of a long bone is eroded by metastasis, prophylactic fixation rather than radiotherapy alone should be considered. Internal fixation should be followed by postoperative radiotherapy because there is a real danger of continued tumour growth and further structural weakness (22,23). Radiotherapy should not be withheld for fear of inhibiting bone healing and regrowth. There is good evidence that palliative doses of radiotherapy are associated with recalcification (24). The sequential combination of radiofrequency and cementoplasty seems promising for the treatment of painful osseous metastases (25).

2.1.3.6 Radioisotopes

Widespread axial skeletal involvement in PCa has been successfully treated with systemically administered bone-seeking radioisotopes (see also Section A.2.3.2). Commonly used radionuclides are 89Sr chloride and 153Sm-EDTMP. The addition of 89Sr as a single injection of 10.8 mCi (399.6 MBq) is an effective adjuvant therapy to local field radiotherapy, reducing disease progression, the requirement for further radiotherapy and analgesic support (26), and improving quality of life (QoL).

Some evidence suggests that radioisotopes could give complete relief from pain over 1-6 months, with no
increase in analgesia, although adverse effects, specifically leukocytopenia and thrombocytopenia, have been reported (26). \(\alpha \)-Particle therapy represents a new concept that has been successful in prolonging survival in phase III clinical trials (27). Unlike \(\beta \)-emitting radiopharmaceuticals, \(\alpha \)-pharmaceuticals, such as \(^{223}\)Ra, deliver an intense and highly localised radiation dose to bone surfaces (28). \(^{223}\)Ra thus has potentially better efficacy and tolerability when compared with \(\beta \)-emitters.

2.1.3.7 Bisphosphonates

Bisphosphonates can be part of the supportive care for patients with bone metastases and pain. Improvement in pain control has been demonstrated (29). They should be considered for the treatment of refractory bone pain in metastatic PCa (30). Zoledronic acid (4 mg intravenously over 15 min every 3-4 weeks) decreased the frequency of skeleton-related events, delayed the time to the first occurrence, and reduced pain (31). Studies are needed to determine the optimal timing, schedule and duration of treatment in men with bone metastases.

2.1.3.8 Denosumab

Compared to zoelodronic acid and placebo, denosumab delays or prevents skeletal related events in bone metastases from solid tumours and as such prevents progression of pain severity (32). With regard to QoL, pain management and overall survival and safety, denusomab shows no benefits over other bone-targeting therapies.

2.1.3.9 Chemotherapy

In about 80% of men with metastatic PCa, primary androgen ablation leads to symptomatic improvement. The disease eventually becomes refractory to hormone treatment. Systemic chemotherapy should be reserved for this patient group. Recent data have shown encouraging signs in overall survival, palliation of symptoms and improvements in QoL (33), particularly with docetaxel.

Trials using single-agent chemotherapy in advanced disease have shown poor results, but newer studies have confirmed that multigent chemotherapy are more effective. Other studies have confirmed the symptomatic effect of mitoxantrone plus low-dose prednisone, but none found improved survival. A PSA-response rate and a reduction of pain were also reported with other combined chemotherapies. No regimen showed a survival benefit.

A major proportion of the morbidity and mortality related to chemotherapy can be traced to the burden of bone metastases (34). Over the last decade, several new agents for metastatic castration-resistant prostate cancer (mCRPC) targeting different mechanisms of progression have been applied successfully: docetaxel, cabazitaxel, sipuleucel-T, denosumab, and abiraterone acetate, among others (35). Docetaxel is the standard first-line chemotherapeutic agent (36). Despite a net survival benefit, the prognosis remains poor. Results from recently completed trials show a statistically and clinically significant improvement in pain relief and overall survival with cabazitaxel compared with mitoxantrone. Cabazitaxel has been shown to be well tolerated and has been approved as second-line chemotherapy for mCRPC (36,37). Also, a significant reduction of tumor associated pain and a survival advantage of 4.6 months compared to placebo following docetaxel-based chemotherapy has already been shown for abiraterone (phase III study) (37) (LE: 1b).

Cabozantinib is a potent inhibitor of tyrosine kinase c-Met and vascular endothelial growth factor receptor (VEGFR2) and seems to reduce pain and opioid consumption in patients with mCRPC (38). Although most of these regimens are associated with side-effects such as fatigue, mild myelosuppression and gastrointestinal irritation, they are generally well tolerated in most patients (39).

2.1.4 Spinal cord compression

Spinal cord compression can occur due to the collapse of a vertebral body or to pressure from an extradural tumour within the spinal canal. Prodromal pain is a feature in 96% of these patients. The overall incidence in PCa patients is less than 10% (40). Thoracic cord compression is the most common area (70%), and the incidence of multiple extradural sites can be as high as 18% (41). Definitive treatment with surgery (anterior decompression with spinal stabilisation) or radiotherapy should be considered. The symptom of local back pain sometimes disappears, despite an increase in motor deficits, because of the evolving sensory component of the paraplegia.

Corticosteroids (dexamethasone, 16 mg daily) are of only temporary use in cord oedema. There is evidence that decompressive surgery is superior to radiotherapy alone. Patients most suited for surgery are patients with a single area of compression, paraplegia of < 48 h duration, non-radiosensitive tumours and predicted survival of > 3 months. There is a significant risk of serious adverse effects from high-dose corticosteroids (42).
2.1.5 **Hepatic invasion**

Hepatic invasion by secondary tumour is a common cause of severe hypochondrial pain, often radiating to the back and shoulder blades. Liver pain can often be controlled by conventional titration of appropriate analgesics or with corticosteroids.

Whole-liver palliative radiotherapy (30 Gy in 15 daily fractions) can also be useful in more than half of patients with refractory pain, giving far fewer side-effects than the alternatives of intra-arterial chemotherapy or hepatic artery embolisation (43).

2.1.6 **Pain due to cancer treatment**

2.1.6.1 **Acute pain associated with hormonal therapy**

Luteinising hormone-releasing hormone (LHRH) tumour flare in PCa

Initiation of LHRH therapy for PCa produces a transient symptom flare in 5-25% of patients (44,45), presumably caused by an initial stimulation of LH release before suppression is achieved (46,47). The syndrome typically presents as an exacerbation of bone pain or urinary retention. Spinal cord compression and sudden death have also been reported (45). Symptom flare is usually observed within the first week of therapy, and lasts 1-3 weeks. Co-administration of an androgen antagonist at the start of LHRH agonist therapy can prevent this (48).

2.1.6.2 **Chronic pain associated with hormonal therapy**

Gynaecomastia

Chronic gynaecomastia and breast tenderness are common complications of anti-androgen therapies for PCa. Frequently associated with diethylstilboestrol (49), it is less common with flutamide and cyproterone (50-52), and uncommon in patients receiving LHRH agonist therapy (53). In elderly patients, it must be distinguished from primary or secondary breast cancer (53). Tamoxifen and anastrozole (54-56), prophylactic radiotherapy (57,58) and mastectomy have been used to treat hormone-related gynaecomastia.

2.1.7 **Recommendations on prostate cancer pain management**

<table>
<thead>
<tr>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic pain management</td>
<td></td>
</tr>
<tr>
<td>WHO analgesic ladder step 1: NSAID or paracetamol</td>
<td>1a A</td>
</tr>
<tr>
<td>Opioid administration</td>
<td></td>
</tr>
<tr>
<td>Opioids use (for dosing and titration refer to Chapter 3)</td>
<td>1a A</td>
</tr>
<tr>
<td>Access to breakthrough analgesia</td>
<td>1b A</td>
</tr>
<tr>
<td>Tricyclic antidepressant and/or anticonvulsant in case of neuropathic pain</td>
<td>1a A</td>
</tr>
<tr>
<td>Pain due to painful or unstable bony metastases (single lesions)</td>
<td></td>
</tr>
<tr>
<td>External beam irradiation</td>
<td>1b A</td>
</tr>
<tr>
<td>Pain due to painful bony metastases (widespread, opioid refractory)</td>
<td></td>
</tr>
<tr>
<td>Radioisotopes (^{89}\text{Sr}) or (^{153}\text{Sm-EDTMP})</td>
<td>2 B</td>
</tr>
<tr>
<td>Bisphosphonates</td>
<td>1b A</td>
</tr>
<tr>
<td>Denosumab</td>
<td>1b A</td>
</tr>
</tbody>
</table>

2.2 **Pain management in transitional cell carcinoma patients**

Figure 5 represents a general approach to the patient with bladder cancer and pain. Figure 6 summarizes the therapeutic options for patients with UUTC and pain. For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer Pain Management (General).

For a complementary approach please refer to the EAU Guidelines on Renal Cell Carcinoma (59).
2.2.1 Clinical presentation

From the perspective of pain, there are no differences between transitional cell carcinoma (TCC) and other histotypes of urothelial malignant tumour. In bladder carcinoma, pain can be present at an early stage as a burning pain (dysuria), together with irritative symptoms (urgency and frequency), or late in advanced disease due to obstruction of the upper urinary tract, or local invasion of neighbouring tissues causing pelvic or metastatic organ invasion. In upper urinary tract TCC, pain is an initial symptom in 18-30% of cases (60,61).
2.2.2 Origin of tumour-related pain

2.2.2.1 Bladder TCC
The main causes of tumour-related pain in bladder TCC are:
• bladder outlet obstruction, mainly due to haematuria;
• obstruction of the upper urinary tract due to growth of bladder tumour close to the ureteral orifices;
• invasion of the surrounding areas by a locally advanced tumour (pelvic wall, nerve roots, other organs such as bowel, or rectum);
• bone metastases;
• soft tissue metastases (seldom painful).

2.2.2.2 Upper urinary tract TCC
The main causes of tumour-related pain in the upper urinary tract TCC are:
• obstruction of the upper urinary tract (presenting symptom in around 30% of cases);
• acute obstruction due to blood clots;
• invasion of the surrounding areas by a locally advanced tumour (posterior abdominal wall, nerve roots, paraspinal muscles, other organs such as bowel, spleen, or liver);
• bone metastases;
• soft tissue metastases (seldom painful).

2.2.3 Pain due to local impairment

2.2.3.1 Bladder TCC
Bladder outlet obstruction due to tumour growth and/or hematuria can be the main complaint for most patients. Obstruction of the ureteral orifices by tumour infiltration may lead to hydroureter and consecutive flank pain due to ureteral distension (visceral pain). Cystoscopy and/or transurethral resection of the tumour may be effective in eliminating clots and bladder outlet and/or ureteral obstruction, but in palliative situations, hydroureter is mainly treated by temporary or permanent ureteral stenting or percutaneous/open nephrostomy, similar to the treatment of obstruction caused by PCa (62).

Infiltration of the contiguous soft tissue and neighbouring organs can cause acute burning pain by infiltration of the pelvic nerves (neuropathic pain), sometimes associated with paraesthesia irradiating to the lower limb, or motor deficit. If the tumour invades adjacent organs (small bowel or rectum), there can be obstruction, and visceral pain due to distension of hollow organs. Growing bladder tumour can cause complete bladder outlet obstruction, with hypogastric abdominal pain from bladder distension. Obstruction of the lymphatic vessels by lymphadenopathy can cause lymphoedema of the lower limbs with pain due to distension of muscle fascia (somatic pain) (62).

In infiltrating and advanced bladder cancer, radical or debulking cystectomy and urinary diversion have a positive impact on pain, by removing the neoplastic mass invading the surrounding tissues (63). Extended operations, including excision of involved bowel, are sometimes indicated. Palliative surgery may be necessary in occlusive intestinal syndromes (64). In a small retrospective study of patients with tumour infiltration of the rectum by locally recurrent PCa, total exenteration resulted in significant pain reduction in all patients, and 79% were completely pain free (65). In a mixed group of cancer patients (colorectal, urinary or gynaecological) with different symptoms such as bleeding, fistula, or pelvic pain or obstruction, palliative pelvic exenteration improved QoL in 88% (66).

First-line chemotherapy strategies that are mainly based on platinum-containing regimens have some effect in 12-75% of patients with advanced disease (63). In a phase III trial, vinflunine, as a new second line chemotherapy agent, proved to be very effective in disease control (76%), but pain control was not an end point. Quality of life remained unchanged during chemotherapy despite drug toxicity (67).

Radiotherapy (21-35 Gy) can be effective in controlling pelvic pain and other symptoms such as frequency and haematuria due to local disease progression (68-70) (LE 1a). Acute bowel toxicity can be expected in one third of the patients.

2.2.3.2 Upper urinary tract TCC
Transitional cell carcinoma of the upper urinary tract often presents with microscopic or gross haematuria (70-80%), but flank pain can also occur due to obstruction or lumbar mass (61). Local symptoms do not confer worse prognosis compared to patients with incidentally detected upper urinary tract TCC (71). Locally advanced primary tumours are usually managed by radical nephroureterectomy. Extended operations including excision of involved bowel, spleen or abdominal wall muscle are sometimes indicated.
With regard to chemotherapy and radiotherapy, the same considerations are valid for upper urinary tract TCC as for bladder TCC.

2.2.4 Pain due to metastases
No data are currently available in the literature concerning the specific effect of chemotherapy on bone metastases alone.

Radiotherapy has a palliative analgesic role in bone metastases (Chapter 3.3.3) and pain reduction > 50% can be achieved in 50% of patients (72) (LE: 1b). There are no specific trials studying the effect of radiotherapy on painful bone metastases in bladder cancer. Single-fraction radiotherapy is as effective as multi-fraction radiotherapy in relieving metastatic bone pain (LE: 1a). However, the rates of retreatment and pathological fractures are higher after single-fraction radiotherapy (21,73) (LE: 1a).

Radioisotope treatment or hemi-body irradiation can be used in patients with multiple bone metastases (72). There are no specific studies of radioisotope therapy for bone metastasis in TCC. Orthopaedic surgery can stabilise pathological fractures (see section A.2.3.3.4 Pathological fractures)

2.2.5 Recommendations on transitional cell carcinoma pain management

<table>
<thead>
<tr>
<th>Transitional cell carcinoma pain management</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always disclose bladder outlet obstruction as source of local pain.</td>
<td>-</td>
<td>GCP</td>
</tr>
<tr>
<td>In locally advanced bladder cancer, palliative cystectomy or exenteration might be an option for symptom relief.</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>Use radiotherapy to reduce pain and symptoms of locally advanced bladder cancer.</td>
<td>1a</td>
<td>B</td>
</tr>
<tr>
<td>Use radiotherapy to reduce pain due to bone metastases.</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

GCP = good clinical practice

2.3 Pain management in renal cell carcinoma patients
Figure 7 represents a general approach to the patient with renal cancer and pain. For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer Pain Management (General). For a complementary approach please refer to the EAU Guidelines on Renal Cell Carcinoma (59).

Figure 7: Pain management in renal cell carcinoma patients
2.3.1 **Clinical presentation**
Renal cell carcinoma (RCC) is not painful unless the tumour invades adjacent areas or obstructs urine outflow. Some 20-30% of patients present with metastases, and 30% of patients, primarily presenting with a localised kidney tumour, develop them during follow-up. Renal cell carcinoma metastases mainly to lung, bone, brain, liver and ipsilateral or contralateral adrenergic glands. Overall, 50-60% of patients may need treatment for the symptoms of metastatic disease, mainly pain.

2.3.2 **Pain due to local impairment**
Extended operations that include excision of involved bowel, spleen or abdominal wall muscle are sometimes indicated.

Even in cases of metastatic disease, palliative nephrectomy is indicated for the control of severe symptoms such as haemorrhage, pain or paraneoplastic syndromes.

Standard pre-operative (30 Gy) or postoperative radiotherapy offers no survival benefit, and its role in delaying local progression is questionable (74). Low dose radiotherapy of soft tissue has no proven benefit for pain or tumour control. However, there are emerging data indicating that a complete palliative response is more likely when higher biologically effective doses of irradiation are delivered, especially to patients with a relatively high performance status (75).

In metastatic disease, the EORTC Genitourinary Group study 30947 demonstrated a significant increase in survival with palliative nephrectomy plus immunotherapy compared with immunotherapy (interferon-alpha) alone (median survival of 17 compared with 7 months) (76) (LE: 2b). There is no effect on pain relief from immunotherapy.

There are currently no data about the efficacy of other therapies such as angioinfarction of the tumour with regard to haemorrhage and pain relief in palliative situations.

2.3.3 **Pain due to metastases**
Patients with bone metastases have a significantly better life expectancy (30 months) than those with visceral metastases (11.6 months) (77). Surgery is indicated for solitary bone metastases that can be resected completely, intractable bone pain, and impending or demonstrable pathological fracture. Surgery for bone metastases achieves a significant decrease in pain in 89-91% of patients (78-80) (LE:3). Additionally, surgery prevents pathological fractures and spinal compression, and there is a significant impact on survival.

Preoperative embolisation of bone metastases or embolisation alone achieves good pain relief in hypervascular bone metastases (81,82) (LE: 3).

High-dose radiotherapy for palliation of painful bony metastases has been shown to be effective in 50-75% of all renal cancer patients (83-85) (LE: 3), and in 67% with general bone metastases (86) (LE: 2b). There is no impact on survival. Small studies of radionuclide therapy (e.g., 89Sr) have shown good pain relief in bony metastases from RCC (87) (LE: 3). Also, some minimally invasive attempts to control bone metastases seem promising (88).

Bone metastases show poor response to immunotherapy, and there is no proven benefit in pain relief. Hormonal therapy and chemotherapy are even less effective, and have no benefit in pain control. Pain due to soft tissue metastases probably behaves analogous to tumour response, but there are no data on immunotherapy for pain control. Hormonal therapy has no proven benefit for survival or pain relief.

New inhibitors of the VEGF/VEGFR and mammalian target of rapamycin (mTOR) pathways (sorafenib, sunitinib, temsirolimus, bevacizumab, everolimus and pazopanib) are changing the second-line therapy to advanced renal cancer. Nevertheless, it is not clear what the ideal therapeutic schedule should be (89).

2.3.4 **Recommendations for renal cell carcinoma pain management**

<table>
<thead>
<tr>
<th>Renal cell carcinoma pain management</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstruction of the upper urinary tract due to haemorrhage and subsequent formation of blood clots is effectively treated by radical nephrectomy in non-metastatic tumour.</td>
<td>GCP</td>
</tr>
<tr>
<td>If the patient is physically fit for surgery, this should be done to increase the quality of life, e.g., palliative nephrectomy in cases of metastatic tumour.</td>
<td>GCP</td>
</tr>
</tbody>
</table>

GCP = good clinical practice
2.4 Pain management in patients with adrenal carcinoma

Figure 8 represents a general approach to the patient with malignant pheochromocytoma and pain. For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer Pain Management (General).

For a complementary approach please refer to the EAU Guidelines on Renal Cell Carcinoma (59).

![Figure 8: Pain management in patients with malignant pheochromocytoma](image)

Malignant pheochromocytoma

Chemotherapy with cyclophosphamide, vincristine and dacarbazine has little effect on metastases (90) (LE: 2b), but therapeutic doses of 131I-MIBG (33 GBq = 900 mCi) may produce some results (91,92) (LE: 2b). The hormone response rate is 50%. There are no data on pain relief with 131I-MIBG in metastatic pheochromocytoma, but a response rate that is at least the same as for hormone levels should be expected.

Malignant pheochromocytomas are considered radioresistant, although there are some cases in which radiation therapy induced partial remission (93). There is no information about the efficacy of radiation concerning pain relief in cases of bone or soft tissue metastases.

2.4.1.1 Treatment of pain

- Soft tissue and/or bone pain due to metastases are best treated by therapeutic doses of 131I-MIBG, if the pheochromocytoma takes up this radionuclide (94). There is no literature concerning chemotherapy or radiotherapy and pain relief in metastatic pheochromocytoma.
- Treat the pain symptomatically following the recommendations made in Section A.2.4.

2.4.2 Adrenocortical carcinomas

Figure 9 represents a general approach to the patient with adrenocortical carcinoma and pain. For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer Pain Management (General). For a complementary approach please refer to the EAU Guidelines on adrenal carcinoma (59).
Carcinoma of the adrenal cortex is highly malignant, with local and haematogenous metastasis, and 5-year survival rates of 25-43% for all treatments. Patients with distant metastases have a mean survival of only 4 months (95). Chemotherapy is of low efficacy. The most effective drug is mitotane, an adrenolytic. The tumour-response rate is 25-35% (95,96) (LE: 2a). Radiotherapy has not been useful except for palliation and pain management (97) (LE: 2b).

2.4.2.1 Treatment of the pain depending on its origin
- Abdominal symptoms are typical at first presentation of the tumour. The treatment is surgical removal of the primary tumour as well as resection of local lymph nodes.
- Soft tissue and/or bone metastases causing local symptoms can be treated by radiotherapy (94,97). There are no data on chemotherapy or radiotherapy for pain relief in metastatic adrenocortical carcinomas.
- Treat the pain symptomatically following the recommendations given in Section A.2.4.

2.4.3 Recommendations pain management adrenal carcinoma

<table>
<thead>
<tr>
<th>Malignant pheochromocytoma</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>131I-MIBG may reduce pain.</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>Radiation therapy can induce partial remission.</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

Adrenocortical carcinoma

| Surgical removal of the primary tumour and local lymph nodes can decrease pain. | 3 | C |
| Radiation therapy can be effective for palliation and pain management. | 2b | B |

2.5 Pain management in penile cancer patients

Figure 10 represents a general approach to the patient with penile carcinoma and pain. For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer Pain Management (General).

For a complementary approach please refer to the EAU Guidelines on Penile Cancer (98).
2.5.1 **Clinical presentation**

Up to 60% of the patients at the time of presentation have palpable inguinal lymphadenopathy, and up to 85% of men will be found to have metastatic disease (99). Pain can occur in both early and advanced penile cancer. In the early stages, acute pain is expressed mainly by voiding dysfunction (infravesical obstruction) due to invasion of the corpus spongiosum. In advanced disease, pain is also caused by enlarged inguinal or pelvic node metastases and lymphoedema of the scrotum and lower limbs.

2.5.2 **Pain due to local impairment**

Bladder outlet and ureteric obstruction is managed in the same manner as that described in Section 2.1.2.2.

2.5.3 **Lymphoedema**

Patients with a huge inguinal tumour mass, or scarred inguinal tissue after lymph node dissection, often show lymphoedema of the lower limbs. This is more frequent in cases involving both inguinal and iliac nodes. Lymphoedema is treated with physiatric techniques (wraps, pressure stockings or pneumatic pumps), which can both improve function, and relieve pain and heaviness. Orthotics can immobilise and support painful or weakened structures, and assistive devices can benefit patients with pain on weight-bearing or ambulation.

2.5.4 **Pain due to metastases**

Pain management begins with antitumour treatment; usually surgery that includes partial/total penectomy, and inguinal and pelvic lymphadenectomy, depending on the clinical stage of the disease. Advanced penile cancer has a poor prognosis and must be approached with a multimodal treatment regimen that includes neoadjuvant chemotherapy and radiotherapy, followed by surgical resection (100).

The chemotherapy regimen that is so far most effective and well tolerated is paclitaxel, ifosfamide and cisplatin (TIP), although large randomised trials are lacking (101). The role of radiotherapy is mainly palliative. Radiotherapy can help in decreasing the pain from fixed inguinal nodes, bone metastases, spinal cord compression and paraplegia (102). When tumour erosion into femoral vessels is suspected, emergency intervention with endoluminal vascular stents or transobturator bypass graft should be undertaken (103,104).
2.6 Pain management in testicular cancer patients

Figure 11 represents a general approach to the patient with Testicular Cancer and pain. For a more detailed description, refer to addenda A. Pain Management (General) and B. Cancer Pain Management (General). For a complementary approach please refer to the EAU Guidelines on Testicular Cancer (105).

Figure 11: Pain management in testicular cancer patients

- **Testicular cancer**
 - Pain due to local impairment
 - Orchiectomy
 - Pain due to metastases
 - Chemotherapy regimes + analgesia
 - Consider ureteral stenting or percutaneous nephrostomy if hydronephrosis
 - Consider urgent spinal cord decompression if vertebral metastases and neurological symptoms

2.6.1 Clinical presentation

Approximately 20% of patients present with scrotal or inguinal pain. Only 11% of patients complain of back or flank pain at first presentation (106). Primary advanced tumour with pain due to bone metastases is very rare (maximum 3% at first presentation). It should be treated causally by primary chemotherapy and adjuvant analgesics.

2.6.2 Pain due to local impairment

Orchiectomy is an effective treatment for local pain due to scrotal masses.

2.6.3 Pain due to metastases

- Back or flank pain due to retroperitoneal lymphadenopathy slowly disappears as chemotherapy causes the mass to decrease (105). Retroperitoneal lymph node metastases can also cause obstruction of the ureter, leading to a symptomatic hydronephrosis with back or flank pain and perhaps additional fever. The therapy of choice is the immediate treatment of the hydronephrosis by ureteral stenting/percutaneous nephrostomy.
- Bone pain due to bony metastases is very rare and occurs mainly in patients with primary advanced disease and relapse after chemotherapy (107,108). Treatment with chemotherapy or second-line chemotherapy may be possible (105). There is no literature on radiotherapy in cases of relapse and limitation of further chemotherapy.
- Back pain and neurological symptoms due to spinal cord compression by vertebral metastases may require urgent surgery (109).
2.6.4 Recommendations for testicular cancer pain management

<table>
<thead>
<tr>
<th>Testicular cancer pain</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic chemotherapy is effective for the back or flank pain due to retroperitoneal</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>lymphadenopathy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back pain and neurological symptoms due to spinal cord compression may require urgent</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>surgery.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.7 References

38. Basch E, Bennett A, Scher H. Cabozantinib (XL184) reduces pain symptoms in patients (pts) with castration-resistant prostate cancer (CRPC) and bone metastases: Results from a phase 2 non randomized expansion cohort. Mol Cancer Ther, 2011. 10(11).

 http://www.ncbi.nlm.nih.gov/pubmed/18843728

3. **PAIN MANAGEMENT AFTER UROLOGICAL OPERATIONS**

A straightforward approach is provided to postoperative pain. Please note that opioid doses for opioid naïve patients should be lower than for cancer pain patients.

Figure 12: Postoperative pain management

SWL = extracorporeal shock wave lithotripsy; NSAIDs = non-steroidal anti-inflammatory drugs; iv = intravenous; sc = subcutaneous; im = intramuscular; prn = pro re nata (when needed)

3.1 Specific pain treatment after different urological operations

3.1.1 Extracorporeal shock wave lithotripsy

Many patients (33-59%) do not need any analgesia during or after extracorporeal shock wave lithotripsy (ESWL) (1-3) (LE: 2b). Post-treatment pain is unlikely to be severe, and oral analgesics are usually sufficient.

Analgesic plan

NSAIDs or midazolam given 30-45 min before treatment reduces the need for opioids during the procedure (LE: 2b). With diclofenac premedication (100 mg rectally), only 18% of patients needed pethidine during lithotripsy (4). After premedication with 5 mg midazolam orally, 70% of patients were completely free of pain during treatment, and if buprenorphine was added, this proportion rose to 87% (5). After premedication with midazolam (2 mg iv, 5 min before treatment), diclofenac or tramadol was safe and effective, with fewer side-effects than fentanyl (6) (LE: 1b).
• Postoperative: NSAIDs, metamizole, paracetamol, codeine and paracetamol combination or tramadol can all be used on an as needed or time-contingent basis. If pain is more severe or persistent, examination is generally necessary to exclude hydronephrosis or renal haematoma.

3.1.2 **Endoscopic procedures**
3.1.2.1 **Transurethral procedures**

Analgesic plan
- Intraoperative: spinal (intrathecal or epidural) anaesthesia provides intraoperative analgesia and for 4-6 hrs postoperatively.
- Postoperative: after 4-6 hrs, mild oral analgesics such as NSAIDs or paracetamol ± codeine, or stronger opioids; also orally. In case of bladder discomfort from the indwelling catheter, metamizole (orally or iv), pethidine (iv) or piritramide (iv) are also effective. Antimuscarinic drugs such as oxybutynin (5 mg orally three times daily) are useful and reduce the need for opioids (7) (LE: 1b).

3.1.2.2 **Percutaneous endoscopic procedures**
The analgesic plan is nearly the same as that for transurethral procedures. Local anaesthetic (e.g., 10 mL 0.5% bupivacaine) can be administered locally into the skin incision.

3.1.2.3 **Laparoscopic and robotic procedures**
A particular problem after laparoscopic procedures is the development of shoulder pain as a result of diaphragmatic irritation following pneumoperitoneum. This seems to be dependent on the intra-abdominal pressure used during the procedure, because reduced CO2 insufflation reduces postoperative shoulder pain (8-10) (LE: 1b). The same could apply for some transabdominal urological laparoscopic interventions.

Analgesic plan
- The administration of local anaesthetic into the port incisions reduces pain after laparoscopy (11).
- Postoperative: administration of systemic opioids iv (im or sc), is very effective in the immediate postoperative period.
- NSAIDs (e.g., paracetamol and/or metamizole) and incisional local anaesthetics (multimodal concept) can be given to reduce the need for opioids (11,12).

3.1.3 **Recommendations pain treatment after different urological operations**

<table>
<thead>
<tr>
<th>Extracorporeal shock wave lithotripsy</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administer NSAIDs or midazolam 30-45 min before SWL procedure to reduce the need for opioids</td>
<td>2b</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transurethral procedures</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative analgesics with spasmolytic effect or mild opioids are preferable.</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

| Antimuscarinic drugs could be helpful in reducing discomfort resulting from the indwelling catheter. | 3 | B |

| Antimuscarinic drugs may reduce the need for opioids. | 3 | B |

<table>
<thead>
<tr>
<th>Laparoscopic and robotic procedures</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low intra-abdominal pressure and good desufflation at the end of the procedure reduces postoperative pain.</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

| NSAIDs are often sufficient for postoperative pain control. | 2a | B |

| NSAIDs decrease the need for opioids. | 1b | B |

NSAIDs = non-steroidal anti-inflammatory drugs; **SWL** = extracorporeal shock wave lithotripsy.

3.1.4 **Open surgery**
3.1.4.1 **Minor operations of the scrotum/penis and the inguinal approach**
These two types of operations are relatively minor and nearly all patients can take oral analgesics afterwards.

3.1.4.2 **Transvaginal surgery**
Paracetamol ± NSAIDs are usually sufficient for this kind of operations.

3.1.4.3 **Perineal open surgery**

Analgesic plan
- Sometimes an intrathecal catheter (epidural) can be sited for intra- and postoperative pain control.
- Postoperative: continuous epidural infusion of a combination of opioids and local anaesthetic or PCA.
is usually used. When systemic opioids are required, it is advisable to use them in combination with NSAIDs so as to reduce their dose and side-effects. When the patient is able to take oral analgesics, metamizole or paracetamol ± codeine can be used.

3.1.4.4 Transperitoneal laparotomy

Analgesic plan

- Sometimes an intrapleural catheter can be inserted.
- Postoperative: continuous epidural infusion of a combination of opioids and local anaesthetic. Once the patient is able to take oral analgesics (depending on bowel motility) metamizole, paracetamol ± codeine or tramadol can be used. Multimodal concepts (combining NSAIDs with opioids, fast-track strategies, keeping abdominal and urinary drainage as short as possible) are useful in reducing the need for analgesia (13).

3.1.4.5 Suprapubic/retropubic extraperitoneal laparotomy

Analgesic plan

- Postoperative: continuous epidural infusion of a combination of opioids and local anaesthetic. Once the patient is able to take oral analgesics metamizole, paracetamol ± codeine, ± NSAIDs can be used.

3.1.4.6 Retroperitoneal approach - flank incision - thoracoabdominal approach

Analgesic plan

- Sometimes an intrapleural catheter can be inserted.
- Postoperative: continuous epidural infusion of a combination of opioids and local anaesthetic gives significantly better pain control compared with iv analgesics (14,15). Once the patient is able to take oral analgesics (depending on bowel motility) paracetamol ± codeine or metamizole can be administered (to reduce the need for opioids) or used alone.

3.1.5 **Recommendations for pain management after open surgery**

<table>
<thead>
<tr>
<th>Minor operations of the scrotum/penis and the inguinal approach</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>For postoperative pain control, multimodal analgesia with a combination of NSAIDs or paracetamol plus local anaesthetics should be used.</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>If possible, avoid opioids for outpatients.</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

Transvaginal surgery

NSAIDs are often sufficiently effective after minor or moderate surgery. NSAIDs decrease the need for opioids. 1b B

Transperitoneal laparotomy

Consider continuous epidural infusion of a combination of opioids and local anaesthetic. Once the patient is able to take oral analgesics use metamizole, paracetamol ± codeine or tramadol. 1b A

Retroperitoneal approach - flank incision - thoracoabdominal approach

Consider continuous epidural infusion of a combination of opioids and local anaesthetic. Once the patient is able to take oral analgesics use metamizole, paracetamol ± codeine or tramadol. 1b A

NSAIDs = non-steroidal anti-inflammatory drugs; PCA = patient-controlled analgesia; PCEA = patient-controlled epidural analgesia.

3.2 Dosage and method of delivery of some important analgesics

3.2.1 NSAIDs

Table 4: Dosage and delivery of NSAIDs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Daily dose</th>
<th>Route of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional NSAIDs (non-selective COX inhibitors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketorolac</td>
<td>10-30 mg four times daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>400 mg three times daily</td>
<td>Orally</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>50 mg four times daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>75 mg twice daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td></td>
<td>50 mg three times daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td></td>
<td>100 mg twice daily</td>
<td>Rectally</td>
</tr>
</tbody>
</table>
COX-2 selective inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Single dose (mg)</th>
<th>Maximal dose (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meloxicam</td>
<td>Oral</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lornoxicam</td>
<td>Oral or iv</td>
<td>4-8</td>
<td></td>
</tr>
<tr>
<td>Celecoxib</td>
<td>Oral</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Parecoxib</td>
<td>iv form only</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Etoricoxib</td>
<td>Oral</td>
<td>90-120</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Dosage and delivery of paracetamol, metamizole and its combinations with opioids

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Single dose (mg)</th>
<th>Maximal dose (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>Oral</td>
<td>500-1000</td>
<td>4000 (50 mg/kg)</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>iv</td>
<td>1000</td>
<td>4000 (50 mg/kg)</td>
</tr>
<tr>
<td>Metamizole</td>
<td>Oral</td>
<td>500-1000</td>
<td>4000</td>
</tr>
<tr>
<td>Metamizole</td>
<td>iv</td>
<td>1000-2500</td>
<td>5000</td>
</tr>
</tbody>
</table>

Table 6: Dose and delivery of opioids

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Common single dose (mg)</th>
<th>Maximal dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramadol</td>
<td>Oral</td>
<td>50</td>
<td>400-600</td>
</tr>
<tr>
<td>Tramadol</td>
<td>iv</td>
<td>50-100</td>
<td>400-600</td>
</tr>
<tr>
<td>Dihydrocodeine</td>
<td>Oral</td>
<td>60-120</td>
<td>240</td>
</tr>
<tr>
<td>Piritramid</td>
<td>sc/im</td>
<td>15-30</td>
<td>120</td>
</tr>
<tr>
<td>Pethidine</td>
<td>Oral</td>
<td>25-150</td>
<td>500</td>
</tr>
<tr>
<td>Pethidine</td>
<td>Rectally</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Pethidine</td>
<td>sc/im</td>
<td>25-150</td>
<td>500</td>
</tr>
<tr>
<td>Pethidine</td>
<td>iv</td>
<td>25-100</td>
<td>500</td>
</tr>
<tr>
<td>Morphine*</td>
<td>Orally</td>
<td>Starting with 10</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>Rectally</td>
<td>Starting with 10</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>sc/im</td>
<td>Starting with 5</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>iv</td>
<td>Starting with 2</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>iv (PCA)</td>
<td>0.5-2.5 mg bolus</td>
<td>No maximal dose</td>
</tr>
</tbody>
</table>

Strong opioids have no real upper dose limit (except buprenorphine). The dose must be titrated in correlation with pain relief and depending on the individual strength of unwanted effects such as respiratory depression.

A simple way of calculating the daily dose of morphine for adults (20-75 years) is: 100 - patient’s age = morphine per day in mg.
Table 7: Common equi-analgesic doses for parenteral and oral administration of opioids*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Parenteral (mg)</th>
<th>Oral (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Pethidine</td>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>15</td>
<td>20-30</td>
</tr>
<tr>
<td>Dextropropoxyphene</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Tramadol</td>
<td>37.5</td>
<td>150</td>
</tr>
<tr>
<td>Codeine</td>
<td>130</td>
<td>200</td>
</tr>
</tbody>
</table>

*All listed opioid doses are equivalent to parenteral morphine 10 mg. The intrathecal opioid dose is 1/100, and the epidural dose 1/10 of the dose required systemically.

3.2.3 Summary of recommendations for postoperative pain management in adults

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative assessment and preparation of patients allow more effective pain management.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Adequate postoperative pain assessment can lead to more effective pain control and fewer complications.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>NSAIDs are often effective after minor or moderate surgery.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>NSAIDs often decrease the need for opioids.</td>
<td>1b</td>
<td>B</td>
</tr>
<tr>
<td>Avoid long-term use of COX inhibitors in patients with atherosclerotic cardiovascular disease.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>The use of paracetamol is recommended for postoperative pain management because it reduces consumption of opioids.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>Administer paracetamol as a single therapy to alleviate mild postoperative pain without major adverse effects.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>The use of intravenous patient controlled analgesia is recommended because it provides superior postoperative analgesia, improving patient satisfaction and decreasing risk of respiratory complications.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>Administer adjuncts in appropriate doses and monitored care to improve analgesic efficacy and reduce opioid-related side-effects.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Administer clonidine preoperatively or epidurally postoperatively to reduce opioid requirements.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Gabapentin can be administered before as well as after surgery to decrease pain severity and need for analgesic supplementation.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Epidural analgesia, especially PCEA, provides superior postoperative analgesia, reducing complications and improving patient satisfaction, and is therefore preferable to systemic techniques.</td>
<td>A</td>
<td>1b</td>
</tr>
</tbody>
</table>

NSAIDs = non-steroidal anti-inflammatory drugs; PCEA = patient-controlled epidural analgesia.

3.3 Special populations

3.3.1 Ambulatory surgical patients

A multimodal analgesic plan uses a combination of NSAIDs or paracetamol plus local anaesthetics used as peripheral nerve blocks, tissue infiltration, or wound instillation so as to avoid the use of opioids, which can prolong hospital stay [(16,17), LE: 2a; (18), LE: 2b].

3.3.2 Geriatric patients

Pain perception appears to be reduced in geriatric patients, and requirement for analgesia generally decreases with increasing age (19,20). Geriatric patients can also suffer from emotional and cognitive impairment such as depression and dementia, which could affect adequate pain management (21). Postoperative delirium in elderly patients is a common complication and is often multifactorial. It may be associated with administration of pethidine (22). Multimodal postoperative analgesia may be the pain management technique of choice in elderly patients, as the drug doses required are lower. However, it is important to be vigilant for adverse reactions, because they tend to increase in number in the geriatric population (23) (LE: 2b). Epidural analgesia might diminish the risk of postoperative delirium and respiratory complications in elderly patients (24) (LE: 2b).

3.3.3 Obese patients

Obese patients appear to be at higher risk for certain postoperative complications, including respiratory,
cardiovascular and thromboembolic episodes, and wound infection (25, 26). Administration of opioids to obese patients is associated with sudden respiratory arrest, therefore, a combination of NSAIDs or paracetamol with an epidural local anaesthetic might be the safest analgesic solution (27, 28) (LE: 2b).

If absolutely necessary, opioids should be used with caution under careful titration to avoid depression of the respiratory drive (28). Oxygen therapy should also be applied postoperatively to increase oxygen saturation (29).

3.3.4 Drug- or alcohol-dependent patients

It has been proved that regional anaesthesia and analgesia are preferable to opioids in drug addicts. Moreover, clonidine is beneficial in those with withdrawal syndrome due to opioid or alcohol abstinence and postoperative delirium tremens (30) (LE: 1a).

3.3.5 Other groups

Critically ill or cognitively impaired patients present special difficulties. Regional or multimodal analgesia might be more effective in such patients because drug doses are reduced and behavioural interventions and patient-controlled methods are unsuitable (LE: 3).

3.3.6 Perioperative problems in children

The main preoperative problems in children are fear of surgery, anxiety about separation from their parents, and the pain of procedures such as venipuncture. Contrary to the popular belief, the presence of parents during anaesthesia induction does not alleviate children’s anxiety (31) (LE: 1a). The preoperative use of oral morphine sulphate, 0.1 mg/kg, can help to prevent crying in children and thereby reduce oxygen consumption and pulmonary vasoconstriction (Table 8). The prior application of EMLA (2.5% lidocaine and 2.5% prilocaine) cream helps to reduce the pain of venipuncture (32) (LE: 1a). Atropine, 0.01-0.02 mg/kg iv, im, orally or rectally, prevents bradycardia during anaesthesia induction.

Table 8: Premedication drugs in children

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosing</th>
<th>Route of administration</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamine</td>
<td>6 mg/kg</td>
<td>Oral, intranasal, im</td>
<td>NMDA antagonist</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0.5 mg/kg</td>
<td>Oral, intranasal, rectally</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td>Dexametomidine</td>
<td>4 μg/kg</td>
<td>Oral, intranasal</td>
<td>2-receptor agonist</td>
</tr>
<tr>
<td>Clonidine</td>
<td>4 μg/kg</td>
<td>Oral</td>
<td>2-receptor agonist</td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>4-6 mg/kg</td>
<td>im</td>
<td>Barbiturate</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>50-100 mg/kg</td>
<td>Oral</td>
<td>Barbiturate</td>
</tr>
<tr>
<td>Methohexital</td>
<td>25-30 mg/kg</td>
<td>Rectally</td>
<td>Barbiturate</td>
</tr>
</tbody>
</table>

3.3.7 Postoperative analgesia in children

Postoperatively, paracetamol, NSAIDs, opioids and their combinations are used according to the severity of the surgical procedure (Table 9).

Table 9: Dosage of analgesics in children for postoperative analgesia

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Route of administration</th>
<th>Severity of surgical procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>10-15 mg/kg every 4 h 20-30 mg/kg every 6 h</td>
<td>Oral, rectally</td>
<td>Minor Minor</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>10-15 mg/kg every 6 h</td>
<td>Oral, iv, rectally</td>
<td>Minor, medium</td>
</tr>
<tr>
<td>Naproxen</td>
<td>6-8 mg/kg every 8-12 h</td>
<td>Oral, iv, rectally</td>
<td>Minor, medium</td>
</tr>
<tr>
<td>Codeine</td>
<td>0.5-1 mg/kg every 3-4 h</td>
<td>Oral</td>
<td>Minor, medium</td>
</tr>
<tr>
<td>Morphine</td>
<td>0.1 mg/kg every 2-4 h Infusion: 0.03 mg/kg/h 0.3 mg/kg every 3-4 h</td>
<td>Oral, iv, sc</td>
<td>Medium, major</td>
</tr>
<tr>
<td>Oxycodeone</td>
<td>0.1-0.2 mg/kg every 3-4 h</td>
<td>Oral</td>
<td>Medium</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>0.04-0.08 mg/kg every 3-4 h</td>
<td>Oral</td>
<td>Medium</td>
</tr>
<tr>
<td>Tramadol</td>
<td>1 mg/kg every 4-6 h</td>
<td>iv</td>
<td>Medium, major</td>
</tr>
<tr>
<td>Pethidine</td>
<td>2-3 mg/kg every 3-4 h</td>
<td>iv</td>
<td>Medium, major</td>
</tr>
</tbody>
</table>
The postoperative use of COX-2 inhibitors in children is still controversial. Patient-controlled analgesia can be used safely in children older than 6 years. Nurse-controlled analgesia is effective in infants and children unable to use PCA (33).

Locoregional techniques such as wound infiltration, nerve blocks, and caudal and epidural analgesia are also successful (34,35). The most commonly used drugs are bupivacaine and ropivacaine (Table 10). Higher volumes of lower drug concentrations appear to be more effective than lower volumes of higher concentrations (36) (LE: 1a). The addition of opioids, ketamine or clonidine increases the duration of pain relief and reduces the need for rescue analgesia, thus providing more effective pain relief than local anaesthesia alone in caudal analgesia (37-39) (LE: 1a).

Table 10: Epidural dose of local anaesthesia

<table>
<thead>
<tr>
<th>Drug</th>
<th>Bolus 0-12 months</th>
<th>Bolus > 1 year</th>
<th>Infusion for 0-12 months</th>
<th>Infusion > 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine</td>
<td>2 mg/kg</td>
<td>2.5 mg/kg</td>
<td>0.2 mg/kg/h</td>
<td>0.4 mg/kg/h</td>
</tr>
<tr>
<td>Ropivacaine</td>
<td>2.5 mg/kg</td>
<td>3.5 mg/kg</td>
<td>0.3 mg/kg/h</td>
<td>0.6 mg/kg/h</td>
</tr>
</tbody>
</table>

3.3.8 Recommendations special populations

<table>
<thead>
<tr>
<th>Special populations</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulatory surgical patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For postoperative pain control in outpatients, multimodal analgesia with a combination of NSAIDs or paracetamol plus local anaesthetics should be used.</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>If possible, avoid opioids.</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>Geriatric patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multimodal and epidural analgesia are preferable for postoperative pain management in elderly patients because these techniques are associated with fewer complications.</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>Obese patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative use of opioids should be avoided in obese patients unless absolutely necessary.</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>An epidural local anaesthetic in combination with NSAIDs or paracetamol is preferable.</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>Perioperative pain management in children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply EMLA locally to alleviate venipuncture pain in children.</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

NSAIDs = non-steroidal anti-inflammatory drugs.

3.4 References

4. NON-TRAUMATIC ACUTE FLANK PAIN

4.1 Background
Acute flank pain is a frequently occurring and complex medical problem. Ureterolithiasis is the most common non-traumatic cause. However, half of all renal colics are not caused by urolithiasis (1-3) (Table 11).

Table 11: Main urological and non-urological causes of flank pain

<table>
<thead>
<tr>
<th>Urological causes</th>
<th>Non-urological causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal or ureteral stones</td>
<td>Aortic aneurysm</td>
</tr>
<tr>
<td>Urinary tract infection (pyelonephritis, pyonephrosis, renal abscess)</td>
<td>Gallbladder disorder</td>
</tr>
<tr>
<td>Uretero-pelvic junction obstruction</td>
<td>Gastrointestinal disorders</td>
</tr>
<tr>
<td>Renal vascular disorders (renal infarction, renal vein thrombosis)</td>
<td>Pancreatic disease</td>
</tr>
<tr>
<td>Papillary necrosis</td>
<td>Gynaecological disorders</td>
</tr>
</tbody>
</table>
4.2 Initial diagnostic approach

4.2.1 Symptomatology

History and physical examination, including body temperature, can be very helpful in the differential diagnosis of acute flank pain (4).

- Acute renal colic is indicated by pain of short duration (< 12 h), nausea, vomiting, loin tenderness and haematuria (erythrocytes > 10,000/mm³) (4).

- Because the signs and symptoms can be very similar, acute uncomplicated pyelonephritis should be immediately differentiated from complicated renal colic:
 - Concomitant fever (> 38°C) makes imaging obligatory (5). A radiological evaluation of the upper urinary tract should be offered to every patient presenting with flank pain and fever to rule out urinary tract obstruction irrespective of the accompanying symptoms, duration of the episode and urine macroscopic or microscopic findings.
 - Imaging is also imperative in patients with acute flank pain and a solitary kidney (5) (LE: 4).

- Acute flank pain in patients with an increased risk for thromboembolic events should raise the suspicion of renal infarction (6).

- Careful abdominal examination can reveal an abdominal aortic aneurysm (misdiagnosed in 30% of patients).

- Renal vein thrombosis (RVT) may often present with symptoms of acute flank pain, proteinuria, haematuria, hypotension and renal insufficiency.

- Obstruction of the ureteropelvic junction can result in acute flank or abdominal pain after a high fluid volume intake, especially in paediatric patients.

- Renal papillary necrosis is not uncommon in the course of systemic diseases such as diabetes mellitus or analgesic nephropathy; the passage of sloughed papillae down the ureter may cause flank pain and haematuria.

- Testicular torsion should always be excluded in children with acute abdominal/flank pain.

- Torsion of the appendix testis can also result in abdominal pain or radiate to the flank.

- Spontaneous bleeding either within the kidney or to the retroperitoneum can be caused by kidney tumours (including angiomyolipomas), bleeding disorders or anticoagulation; acute flank pain is sometimes the presenting symptom.

4.2.2 Laboratory evaluation

All patients with acute flank pain require a urine test (red and white cells, bacteria or urine nitrite), blood cell count, and serum creatinine measurement. In addition, febrile patients with flank pain require C-reactive protein and urine culture. Pyelonephritis ± obstructive uropathy should be suspected when the white blood count exceeds 15,000/mm³.

4.2.3 Diagnostic imaging

4.2.3.1 Computed tomography (CT)

Unenhanced helical computed tomography has high sensitivity and specificity for the evaluation of acute flank pain (7,8) (LE: 1a). Unenhanced helical computed tomography (UHCT) is superior because it detects ureteral stones with a sensitivity and specificity of 94-100%, regardless of stone size, location and chemical composition, and identifies extraurinary causes of flank pain in about one-third of all patients presenting with it. In addition, it does not need contrast agent, and is a time-saving technique (8,9) (LE: 1a).

4.2.3.2 Ultrasound imaging (US)

The use of US in the management of acute flank pain has been increasing. If the findings of pelvic and/or ureteral dilatation, stone visualisation and the absence of ureteral ejaculation are combined, sensitivity to ureteral dilatation can be 96% (7,10,11) (LE: 2a). Together with a plain abdominal radiograph, US can be accepted when computed tomography (CT) is not available (7,12-16) (LE: 1b). The disadvantages of US include inability to differentiate dilatation from true obstruction and the need for highly specialised personnel (12). Sensitivity varies from 58 to 96% in untrained staff in emergency rooms (14), but evidence suggests that, with even short training, non-specialists can be highly effective at excluding disorders such as abdominal aortic aneurysm, free abdominal fluids, gallstones and obstructive uropathy (14) (LE: 2b). US is the diagnostic imaging modality of choice during pregnancy.

4.2.3.3 Intravenous urography and unenhanced helical CT

Intravenous urography (IVU) reliably provides information on the anatomy of the urinary collecting system.
(ureteral and renal pelvic dilatation) in 80-90% of cases and can identify ureteral calculi in 40-60% of cases. Direct identification of ureteral calculi can be achieved in 40-60% of cases, whereas indirect signs (e.g. ureteral and renal pelvic dilatation) allow detection in 80-90% of cases. Drawback is that IVU results can be hampered by poor quality related to suboptimal bowel preparation, toxicity of contrast agents, allergic and anaphylactic reactions, and by significant radiation exposure. In emergency cases, IVU should be avoided due to the risk of fornix rupture.

Unenhanced helical CT or IVU should be considered in patients initially evaluated by other means who are still febrile after 72 h of treatment to rule out further complicating factors (renal, perinephric or prostatic abscesses) (8,9).

Table 12 shows comparative results of UHCT US and IVU in assessing acute flank pain and suspicion of ureterolithiasis (17-19). Figure 13 summarises the diagnostic approach to non-traumatic acute flank pain.

Figure 13: Diagnostic approach to non-traumatic acute flank pain

\[CT = \text{computed tomography}; \; UTI = \text{urinary tract infection}; \; UPJ = \text{uretero pelvic junction} \]
Table 12: Comparative results of UHCT, US and IVU in assessment of acute flank pain and suspected ureterolithiasis (12)

<table>
<thead>
<tr>
<th>Imaging modality</th>
<th>Performance</th>
<th>Ref. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHCT</td>
<td>Sensitivity 100%, specificity 96%, accuracy 98%</td>
<td>17</td>
</tr>
<tr>
<td>Abdominal radiograph + US versus UHCT</td>
<td>UHCT: sensitivity and specificity of 100% US: sensitivity 100%, specificity 90%</td>
<td>18</td>
</tr>
<tr>
<td>Low-dose UHCT versus IVU</td>
<td>UHCT: sensitivity 97%, specificity 96% Low-dose UHCT is superior to IVU</td>
<td>19</td>
</tr>
</tbody>
</table>

4.3 Initial emergency treatment

4.3.1 Systemic analgesia

Pain relief is usually the first, most urgent, therapeutic step (20,21):

- Intravenous NSAIDs are very effective in most cases, e.g., a bolus of diclofenac sodium, 75 mg (20) (LE: 1a); a slow iv injection of ketorolac, 30 mg, four times daily, is equivalent to diclofenac in the treatment of renal colic (22).
- Tests have shown a single dose of dipyrone to be less effective than diclofenac, 75 mg (23) (LE: 1a), but a slow iv infusion of dipyrone, 1 or 2 g, is just as effective as diclofenac (24).
- In cases of unresponsiveness to diclofenac (25) (LE: 1b), or contraindication of NSAIDs (24) (LE: 1b), iv papaverine hydrochloride (120 mg) is a safe and effective alternative.
- Large-scale studies have shown that NSAIDs and opioids are both effective analgesics, but vomiting is more prevalent with opioids (particularly pethidine) (20).
- The combination of iv morphine + ketorolac seems superior to either drug alone, and appears to be associated with a decrease in the need for rescue doses of analgesia (26).
- Antimuscarinics are often used in acute renal colic; there is no evidence that hyoscine butylbromide reduces opioid requirements in this condition (26) (LE: 1b).

The origin of the pain should be immediately clarified in febrile patients and those with a solitary kidney.

4.3.2 Local analgesia

A number of manipulations have been tested in the field of acute renal colic.

- Local warming of the abdomen and lower back region seems to decrease pain in patients with acute renal colic (27) (LE: 1a).
- Trigger-point injection of lidocaine can provide effective pain relief in 50% of patients with renal colic; it is significantly better than iv butylscopolamine bromide + sulpyrine (28) (LE: 1a). There are no comparative studies with NSAIDs.

4.3.3 Supportive therapy

Patients with acute flank pain often present with moderate to severe dehydration. If possible, iv fluids should be generous (60 mL/h normal saline and 60 mL/h 5% glucose solution), but maintenance iv fluids (20 mL/h normal saline) can be as effective as forced hydration with regard to pain perception and analgesic use (29) (LE: 1b). No clear evidence supports using diuretics to treat acute ureteral colic (30). Metoclopramide chloride (0.5 mg/ kg/24 h in three divided doses) can be effective in controlling nausea and vomiting irrespective of aetiology (infectious, obstructive, oncological).

4.3.4 Upper urinary tract decompression

If pain relief cannot be achieved using medical therapy and there are signs of infection and impaired renal function, upper urinary tract drainage should be undertaken. The main indications for stenting for urgent relief of obstruction include (21):

- urine infection with urinary tract obstruction;
- urosepsis;
- intractable pain and/or vomiting;
- obstruction of a solitary or transplanted kidney;
- bilateral obstructing stones;
- ureteral calculus obstruction in pregnancy.

Catheter-derived symptoms such as flank pain, pain during voiding, frequency, nocturia and urgency can be effectively treated with terazosin and tamsulosin (31-33). New technological advances such as the antireflux JJ ureteral stents seem to minimise catheter-related pain (34,35) (LE: 1b).
4.3.5 Recommendations non-traumatic acute flank pain

<table>
<thead>
<tr>
<th>Non-traumatic acute flank pain</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile patients (> 38°C) with acute flank pain and/or with a solitary kidney need urgent imaging.</td>
<td>4</td>
<td>B*</td>
</tr>
<tr>
<td>Unenhanced helical computed tomography is the diagnostic imaging modality with the highest sensitivity and specificity for evaluation of non-traumatic acute flank pain.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Ultrasound can be an alternative to unenhanced helical computed tomography in the initial approach to non-traumatic acute flank pain.</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>In patients presenting with acute flank pain NSAIDs such as diclofenac (75 mg bolus) and dipyrone (1-2 g slow iv injection) are the drugs of first choice.</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

*Recommendation based on expert opinion

4.4 References

42 PAIN MANAGEMENT & PALLIATIVE CARE - UPDATE MARCH 2013

5. PALLIATIVE CARE

5.1 Introduction
The inevitable progression of certain diseases frequently results in unbearable suffering. When cure is no longer possible, palliation and compassion are mandatory. In the following section the reader will find a straightforward approach to the treatment of many psychological and physical symptoms. Unfortunately, the level of evidence for the proposed interventions is poor. Nevertheless, a well-structured map should be applied to provide the most effective and compassionate care for patients and their loved ones. Also, healthcare providers deserve particular care because the extent of professional anxiety and frustration can be significant in this clinical scenario. An early collaboration between oncologist and palliative care team is recommended and supportive care (pain specialist, psychologist, nutritionist, physiotherapist) should be available throughout the patient’s pathway.

For a better understanding it is important to define the term supportive care.

5.2 Supportive care
According to the multinational association of supportive care, cancer supportive care can be defined as ‘… the prevention and management of the adverse effects of cancer and its treatment. This includes management of physical and psychological symptoms and side effects across the continuum of the cancer experience from diagnosis through anticancer treatment to post-treatment care. Enhancing rehabilitation, secondary cancer prevention, survivorship and end of life care are integral to Supportive Care…’

One of the pillars of supportive care is to establish good communication between patient and carer. Many initiatives provide patient guidance and education, from assessment to diagnosis and treatment planning. For example, at the Prostate Cancer Assessment Clinic, Ottawa Hospital, Canada, a nurse-led initiative has shown that effective communication between physicians, nurses, patients and families, and the interdisciplinary team and community partners is the key to improve the experience of PCa patients (1).
5.3 Definition and aim of palliative care

According to the WHO definition (2), palliative care is ‘…an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness, through the prevention and relief of suffering by means of early identification and impeccable assessment and treatment of pain and other problems, physical, psychosocial and spiritual…’. The goal of palliative care is to obtain the highest QoL for patients and their loved ones.

Palliative care:
- provides relief from pain and other distressing symptoms;
- affirms life and regards dying as a normal process;
- integrates the psychological and spiritual aspects of patient care;
- offers a support system to help patients live as actively as possible until death;
- offers a support system to help the family cope during the patient’s illness and in their own bereavement;
- uses a team approach to address the needs of patients and their families, including bereavement counselling, if indicated;
- enhances QoL, and may also positively influence the course of illness;
- is applicable early in the course of illness, in conjunction with other therapies that are intended to prolong life, such as chemotherapy or radiotherapy, and includes investigations needed to understand and manage better distressing clinical complications (2).

The readiness of patients to accept palliative care and a vision of palliative care shared by the patient and all caregivers involved are potentially important elements in this definition (3).

5.4 General principles

The panel assumes that the ethics of disease palliation are beyond doubt. Hence, a discussion on ethical principles is omitted from this document. Legislation on palliative and end-of-life care across Europe is variable. This panel considered it pointless to address that particular topic in depth. The panel also decided not to address physician-assisted suicide. Details about this and euthanasia can be found elsewhere (4,5).

Palliation involves:
1. communication;
2. placing the patient at the centre of treatment;
3. cultural and spiritual approaches;
4. decision about the setting for the provision of terminal care;
5. multidisciplinary approach.

5.4.1 Communication

Communication is one of the cornerstones in palliative care. Good communication skills are relevant not only in the relationship between caregivers and patient and families, but also with all professionals inside and outside the hospital. Communication skills include making eye contact with the patients, asking open-ended questions, responding to a patient’s emotions, and showing empathy (6). Figure 14 illustrates the principles for communicating with patients about major topics in palliative care.
Terminal patients deserve specific information about their condition. This kind of information increases the quality of terminal care (7,8). Moreover, it seems important to tailor information to the needs of the individual patient. Difficult discussions should be personalised to the individual patient. These can vary dramatically both in the area of disclosure of bad news about prognosis and end-of-life decision making. This also requires proper advanced care planning at an early stage in the management of patients with terminal cancer (9).

Communication is also part of the relationship between partners, when one member of the couple has a chronic illness such as cancer. When communication between the couple fails, it is more difficult to address the patient’s needs. The Couples’ Illness Communication Scale (CICS) is a simple tool for the clinical setting and can provide a springboard for addressing difficulties with illness-related communication between couples. It can be an aid for decision making in couple counselling. Relationship intimacy and how patients and partners communicate to achieve this intimacy is important for the psychological adjustment of early-stage PCa survivors and their partners (10,11).

5.4.2 Patient-centered treatment
There is evidence about the benefit of involving the patient in making any decisions. The patient must be at the heart of every decision and be provided with greater choice and control (12).
5.4.3 Cultural and spiritual approach
The profound influence of personal circumstances on patients' experiences of illness, expectations of medical interventions, communication styles, and ways of coping should be considered, because it can lead to misunderstanding, conflict, anger, resentment, and lower quality of care (13). Spirituality is also an important aspect that should be taken into account. Cancer patients do not expect spiritual solutions from oncology team members, but they wish to feel comfortable enough to raise spiritual issues and not be met with fear, judgmental attitudes, or dismissive comments. Spirituality can be a major resource for both patients and physicians, yet it can never be imposed but only shared (14). In addition, it may be of interest to assess spiritual outcomes in palliative care. Nine tools have been identified in a review that has been validated in cross-cultural palliative care populations, and subject to appraisal of their psychometric properties, they may be suitable for cross-cultural research (15).

5.4.4 Setting for the provision of terminal care
Many patients with advanced cancer prefer not to stay in hospital despite being symptomatic. There are evidences proving that dying in a familiar setting can result in a better dying experience. The European Legislation aims at providing specialised palliative care at the community level. Nevertheless, providing care tailored to the needs of patients can be a challenge since moves between home and institutions may be frequent. Nevertheless, dying at home is becoming increasingly frequent (16). Home-based end-of-life (EoL) care and dying at home represent now the paradigm of palliative care.

5.4.5 Multidisciplinary approach
One of the main principles of palliative care is a multidisciplinary approach. All professions are concerned and the treatment decision (either palliation or terminal disease management) should be taken on a multidisciplinary basis (physicians, nurses, social workers, dieticians and psychologists). This is not always easy but it is effective (17). Multidisciplinary care is based on strong collaboration between acute, hospice and home care. It has been shown that the problems of many palliative cancer patients would be more appropriately addressed by advanced home care instead of acute hospital care (18).

5.4.6 Can anyone provide palliative care? Health care staff and advanced urological diseases
Palliative care is practised everywhere and not only in palliative care units or hospices. For various reasons, people tend to delay facing questions associated with the end of life, and fear of the unknown often creates an environment of avoidance and an atmosphere of taboo (19). Healthcare professionals who are not used to working in palliative care often feel helpless. Often, there is a lack of communication with, and active listening to, patients and their families. This is not well received by patients who need communication with doctors and nurses (20).

Healthcare professionals caring for patients with advanced cancer are often exposed to burnout syndrome. It is important to detect signs of this condition at an early stage in order to prevent it from progressing (21,22). The tool mostly used is the Maslach Burnout Inventory (23).

The way that services are managed influences the occupational wellbeing of healthcare professionals. Also, services organised around an effective social support system enhance the quality of work life among caregivers, influencing their perceived stress and their coping strategies. Quality of life of the caregivers affects the quality of care (24).

Clear policies on place of care (hospital, hospice or home), urinary diversions, and resuscitation are needed. Before assuming professional responsibility for terminal care, practices for parenteral hydration and antibiotic use should be clarified.

5.5 Treatment of physical symptoms
5.5.1 Pain
All the details concerning pain treatment are addressed in Chapter 2 and Addenda A1 an A2.

5.5.2 Dyspnoea and respiratory symptoms
In this setting, the use of morphine and other opioids is not supported by research studies. Breathing training, walking, chest wall vibration, and electrical muscle stimulation, are effective non-pharmacological measures for relieving breathlessness (25).

Despite the lack of evidence from well-conducted RCTs, benzodiazepines can be considered when opioids and non-pharmacological support measures fail to control breathlessness (26). Oxygen provides no symptomatic relief of dyspnoea compared with room air (27) (LE:1b).
Noisy breathing (death rattles) occurs in most people who are dying. It can be treated physically or pharmacologically. Although distressing for some professionals and most families, there is no evidence to suggest that any pharmacological (anticholinergic drugs) or non-pharmacological intervention is superior to placebo. Nevertheless, atropine 0.5 mg, hyoscine butylbromide 20 mg, and scopolamine 0.25 mg (subcutaneous, followed by continuous administration) can be moderately effective for treatment of death rattles (28,29).

5.5.3 Cancer anorexia-cachexia syndrome

Cancer anorexia-cachexia syndrome (CACS) is frequent in patients with advanced cancer. Nutritional support in this setting seems to be ineffective (30) (LE: 1b), as does drug therapy. In a few selected cases, dexamethasone (4 mg/day) or progesterone analogues (megestrol acetate, 480-800 mg/day) can be considered, because it is thought that they have a significant effect on appetite and weight gain. The effect of orally administered cannabis extract (CE) on appetite and QoL in patients with CACS has been rigorously tested. Although CE is well tolerated, its effect on appetite did not clearly differ from that with placebo (31). More recently, a phase II RCT has shown that thalidomide (50 mg/day, orally, for 2 weeks) is effective against cancer-related anorexia (32).

5.5.4 Vomiting

Chronic nausea occurs in most patients with advanced cancer, and in many cases, it is refractory to metoclopramide. In this setting, dexamethasone does not seem superior to placebo (33). Droperidol is an antipsychotic drug that has been used as an antiemetic in the management of postoperative and chemotherapy-induced nausea and vomiting. Unfortunately, there is insufficient evidence to advise its use in the management of nausea and vomiting in palliative care (34).

At the earlier stage of disease during cancer treatment, patients with a high incidence of emesis -usually post-chemotherapy- should receive a serotonin 5-hydroxytryptamine (5-HT3) receptor antagonist (ondansetron, tropisetron, granisetron, dolasetron or palosetron), dexamethasone, and a neurokinin 1 receptor antagonist such as aprepitant or fosaprepitant.

Preferential use of palonosetron is recommended for moderate emetic risk regimens, combined with dexamethasone. Patients undergoing high emetic risk radiotherapy should receive a 5-HT3 receptor antagonist before each fraction and for 24 h after treatment, and may receive a 5-day course of dexamethasone during fractions 1 to 5 (35).

Self-administered acupressure appears to be protective against acute nausea and can readily be taught to patients, although this has not been subjected to placebo-controlled studies. Non-invasive electrostimulation appears unlikely to have a clinically relevant impact when patients are given state-of-the-art antiemetic drug therapy (36).

5.5.5 Other symptoms

5.5.5.1 Fatigue

Asthenia is an overwhelming, persistent feeling of tiredness in which normal activity becomes an effort. Trials of erythropoietin and darbopoetin (for anaemic patients) and psychostimulants have provided evidence for improvement in CRF. There are no data to support the use of paroxetine or progestational steroids for treatment of CRF. The amphetamine methylphenidate (standard treatment for attention deficit hyperactivity disorder) has been proposed for treatment of asthenia in patients with advanced cancer (37). There is evidence suggesting reduction in fatigue and depression when compared with placebo. Standard oral doses are 10-40 mg/day (38). Data from a phase III RCT suggest that modafinil -another psychostimulant- can be effective for the treatment of anorexia and depression in patients with advanced cancer (39).

Moreover, the use of IV Iron, in particular high molecular-weight iron dextran, added to erythropoiesis stimulating agent, results in an increase in haematopoietic response and reduction in the need of RBC transfusion (40,41). At the early stage of cancer treatment and of palliation, exercise is an effective intervention for patients with CRF (42). Like exercise, psychoeducational activity is a promising therapy for ameliorating CRF (43).

5.5.5.2 Restlessness

Most patients in the final stages of their lives experience restlessness. Although neuroleptics have been widely used in this setting, there is insufficient evidence to suggest that a single drug or class of medication is appropriate for terminal restlessness (44).
5.5.5.3 Agitated delirium
There is limited high quality evidence on the role of drug therapy for delirium in terminal patients. Although benzodiazepines have been widely used, it has not been possible to assess the effectiveness of treatment options (45,46). However, haloperidol (5-10 mg, intravenous) remains a useful drug for the treatment of many forms of delirium (47).

5.5.5.4 Constipation
Chronic constipation can be a serious problem for cancer patients taking opioids. Oral lactulose seems more effective than polyethylene glycol (48). Nevertheless, evidence on laxatives for management of constipation remains limited due to insufficient RCTs (48). Interestingly, subcutaneous methylnaltrexone seems effective in inducing laxation in patients with opioid-induced constipation when standard laxatives fail (49,50). Its safety, however, has to be proven in properly organised RCTs. No clear recommendations as to the use of a particular laxative can be made (LE: 1a).

5.5.5.5 Anxiety
Anxiety is a common symptom in patients near the end of life. A myriad of drugs has been used to calm anxiety in terminally ill patients (including anxiolytics, antidepressants, antipsychotics, benzodiazepines, butyrophenones, phenothiazines and thienobenzodiazepines). There is currently insufficient evidence on the role of this type of drug in patients with terminal illness, and it is therefore not possible to draw any conclusions about the effectiveness of pharmacotherapy in this setting (51).

5.5.6 Recommendations treatment of physical symptoms

<table>
<thead>
<tr>
<th>Dyspnoea and respiratory symptoms</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzodiazepines can be considered when opioids and non-pharmacological measures fail to control breathlessness.</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cancer anorexia-cachexia syndrome</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional support is ineffective</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>Oral thalidomide (50 mg/day, 2 weeks) seems effective.</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vomiting</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethasone is not effective in metoclopramide-refractory nausea.</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>Patients with a high risk of vomiting induced by chemotherapy are effectively treated with a combination of dexamethasone and 5-HT3 and neurokinin 1 receptor antagonists.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>In patients with moderate risk of vomiting induced by chemotherapy, palonosetron combined with dexamethasone is recommended.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Patients receiving radiotherapy and experiencing emesis can be effectively treated with combined 5-HT3 receptor antagonist and dexamethasone.</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatigue</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>For anaemic patients erythropoietin and darbopoetin have provided improvement.</td>
<td>1b</td>
<td>B</td>
</tr>
<tr>
<td>Methylphenidate 10-40 mg/day, can reduce fatigue and depression.</td>
<td>1b</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restlessness</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroleptics cannot be recommended for treatment of terminal restlessness.</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agitated delirium</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloperidol (5-10 mg, intravenous) can be useful.</td>
<td>2a</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constipation</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clear recommendations as to the use of a particular laxative can be made.</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anxiety</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is therefore not possible to draw conclusions about the effectiveness of pharmacotherapy in this setting.</td>
<td>4</td>
<td>A</td>
</tr>
</tbody>
</table>

5.6 Terminal care
For medical practitioners who are trained to save lives, the end of life represents a completely different professional scenario in which personal skills give way to multidisciplinary, compassionate intervention.

Relieving suffering requires well-trained teams and clearly established goals. It seems clear that early identification of patients needing palliative care can effectively improve QoL (52).

Recognition of intolerable refractory symptoms, standardised monitoring of disease progress, and availability of terminal care pathways are crucial for supporting patients and families with terminal disease. In addition to the
above-mentioned interventions, palliative sedation is one of the alternatives to keep in mind when dealing with terminally ill patients. Patients experiencing refractory symptoms (e.g., pain, vomiting, delirium and dyspnoea) can be considered for palliative sedation. It consists of the deliberate administration of drugs in minimum doses and combinations required not only to reduce the consciousness of the patients but also to achieve adequate alleviation of one or more refractory symptoms, and with the prior consent given by the patient explicitly, or implicitly, or delegated (53). The aim of palliative sedation is never to hasten death and there is evidence that it does not jeopardise survival (54,55). Figure 15 is an aid for the recognition of refractory symptoms.

Figure 15: Algorithm for treatment decisions for refractory symptoms

![Algorithm for treatment decisions for refractory symptoms](image)

Although physicians are responsible for the objective evaluation of symptoms, fully competent patients have the right to prompt interventions or to refuse any kind of treatment. For certain complicated cases, physicians might seek the help of their ethics committee or ask for a legal consultation. Nevertheless, it should always be kept in mind that doubt should not be expressed in front of a suffering patient.

The ethics of palliative treatment at the end of life seem beyond question. Nevertheless, a few countries in Europe (Netherlands, Belgium and Switzerland) and some states in the United States of America (Oregon and Washington) have clear regulations on the right to terminal sedation. Cultural and ethnic differences in the approach to the end of life are also prominent (56-63), thus making the approach to the final stages of life not always equitable.

5.6.1 When and how to withdraw specific treatment

With every single intervention, the ethical principles of beneficence, non-maleficence, autonomy and justice should be considered. Relieving suffering -rather than sustaining life at any cost- might be sensible in patients with advanced disease. Patients (or relatives when they are incompetent) have the right to ask for treatment cessation at any time. It will always be taken into account that proxies are supposed to interpret the patient’s wishes and not their own. Artificial ventilation, haemodialysis, parenteral nutrition, blood transfusion and chemotherapy can all be stopped at the patient’s request (64).

5.6.2 Parenteral hydration: should it be discontinued in the terminal phases?

There is an interesting controversy about forced hydration in terminally ill patients. At present, good quality studies on this topic are lacking, making recommendations for practice pointless (65).

There is scientific evidence to show that artificial hydration provides no clear benefit in relation to normalising
renal function and electrolyte levels compared with non-hydrated patients (66). Nevertheless, it seems that parenteral hydration can improve many of the symptoms experienced by terminally ill, dehydrated cancer patients (67).

The decision should be taken on an individual basis, but it is suggested that patients who cease drinking are close to death and will gain little from artificial hydration (4).

5.6.3 Palliative sedation
Considering the lack of randomised trials on palliative sedation, the panel decided to stick to the principles of the Royal Dutch Medical Association (KNMG) in this respect (4).

As mentioned earlier, palliative sedation is the deliberate lowering of the level of consciousness in the last stages of life. As such, it can only be considered in the context of a palliative care plan. The object of palliative sedation is to relieve suffering, and lowering consciousness is the means to that end. Palliative sedation never aims to hasten death. Deciding whether the indications for palliative sedation are met is always a medical task, but not necessarily a matter for specialised physicians. The untreatable nature of the symptoms must be demonstrated beyond reasonable doubt. Besides the presence of medical indications in the form of one or more refractory symptoms, another precondition is the expectation that death will ensue in the reasonably near future (that is, within 1-2 weeks (4,68)).

It is generally agreed that physicians and nurses should be present the moment palliative sedation begins (68). Subcutaneous administration is the preferred route and midazolam the drug of choice (2,69). Table 13 provides a suggestion for palliative sedation (4).

Table 13: Three steps approach to palliative sedation. In the hospital setting, Phase 3 can follow Phase 1 (2)

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Drug</th>
<th>Bolus</th>
<th>Continuous administration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Midazolam</td>
<td>Start with 10 mg s.c.</td>
<td>Initial dose 1.5-2.5 mg/h sc/iv. If the desired effect is not achieved, increase the dose by 50% after a minimum of 4 h, always in combination with a bolus of 5 mg sc. If risk factors are present (age > 60 years, weight < 60 kg, severe kidney or liver dysfunction, very low serum albumin, and/or co-medication that could exacerbate the effect of sedation): - lower initial dose (0.5-1.5 mg/h), and - lengthen interval (6-8 h) before increasing maintenance dose. In the case of doses > 20 mg/h, see Phase 2.</td>
</tr>
<tr>
<td>Phase 2</td>
<td>Levomepromazine</td>
<td>25 mg sc/iv, possibly 50 mg after 2 h</td>
<td>0.5-8 mg/h sc/iv in combination with midazolam. After 3 days, halve the dose to prevent drug accumulation. If the desired effect is not achieved, stop administering midazolam and levomepromazine; see Phase 3.</td>
</tr>
<tr>
<td>Phase 3</td>
<td>Propofol</td>
<td>20-50 mg iv</td>
<td>20 mg/h iv, increase by 10 mg/h every 15 min. Administration under supervision of an anaesthesiologist is advisable. In hospital, this may be considered for Phase 2.</td>
</tr>
</tbody>
</table>

5.7 Treatment of psychological aspects
5.7.1 Fear
While improvements in screening, prevention and treatment are encouraging, cancer is still related to very intensive treatment, and finally to death in many patients. It may cause deep fear and depression. The role of the healthcare giver is important in this process (70). Measuring distress should be a major part of assessing patient emotional disturbance. Different tools are available such as the Hospital Anxiety and Depression Scale and the Distress Thermometer. Successful implementation of a screening procedure depends on its acceptability to patients and clinicians, as well as the clinicians’ perception of the added value. Distress is
often related to the physical complications of cancer and its treatment, therefore, the approach should include psychological and physical well-being (71).

5.7.2 Depression
There is a strong correlation between physical disease and depression but there is no evidence that depression may cause cancer. Depression is associated with adverse outcomes such as increased pain, disability and poor prognosis (72). The effectiveness of pharmacological agents for anxiety has not yet been proved. Nevertheless, both psychosocial and pharmacological interventions have been shown to be efficacious in treating depression in cancer patients (73,74).

One study has shown that prescription prevalence among cancer patients in the last year of life is almost four times higher than in the general population. One out of 10 patients is prescribed with antidepressants so close to death that the clinical effects can be questioned (75).

Moreover, behavioural therapy, counselling, psychotherapy, education/information, relaxation and social support alleviate depression and anxiety (76). Centralised telecare management coupled with automated symptom monitoring can improve pain and depression outcomes in cancer patients receiving care in geographically dispersed urban and rural oncology practices (77).

Screening for depression in terminally ill patients can optimise their physical comfort at the end of life and provide them with the opportunity to confront and prepare for death (78).

5.7.3 Family care
Family and relatives have an important role to play in the care of patients with advanced disease and they should be involved in decision-making about where the patient should be cared for (e.g., home or hospice). Nevertheless, the patient’s views should always be kept in mind. In addition, the family is emotionally affected by the disease, and their emotional distress may influence the patient’s mood. It is important to screen for depressive symptoms and predictors of depression among family caregivers, especially in the dying process and after death (79).

Patients and families need to be prepared for death. The process can then take place under good, serene conditions (80,81). Otherwise, it can lead to dysfunctional family dynamics that can be disturbing to the staff members in their efforts to provide optimal palliative care, and to the patient (80). Family-focused grief therapy based on communication, cohesiveness, conflict resolution, and shared grief is effective in protecting family members against the drama of disease and death (82).

Table 14: Arresødal Hospice principles of management of intrafamilial conflicts (80)

Maintain the palliative perspective	Consider the possibility and implementation of palliative management perspective strategies in certain subtypes of family dysfunction and to extend beyond this (if favourable circumstances allow), incorporate a more long-term outlook for future rehabilitation of the surviving relatives.
Maintain flexibility	Take into account the strengths, psychological resources, level of intellect and emotional state of conflicting family members before deciding whether to use interpretive or supportive techniques. Be prepared to reflect over strategies that have not been optimal, and modify as necessary.
Maintain neutrality	Current information for all staff members involved through mono or multidisciplinary meetings is essential. It is important to handle conflicting family dynamics in an open, transparent and professional way, not to be unexpectedly absorbed as an active part of the conflict, and to avoid covert behaviour. The principle of neutrality applies to this strategy in that involvement in long-term prior conflicts is to be avoided.
Avoid splitting	Avoid, or at least identify and understand splitting between members of staff by recognizing that dysfunctional families with conflicting dynamics may display completely opposing attitudes within short periods of time, which can be challenging to staff. In the worst case scenarios, relatives in conflict may project their issues onto others as a way to control fragmented or distressed parts of themselves.
Avoid demonising	Encourage and enable staff to share awkward, challenging and/or negative feelings brought on by sudden or inadvertent involvement in conflicting family dynamics.
Set necessary limits | Limits need to be identified and maintained consistently if behaviour of a family member threatens the integrity or safety of the patient, other relatives, staff or the palliative-therapeutic relationship.
---|---
Intervention | Encourage staff members to maintain the professional/personal balance through multidisciplinary discussions, counselling and prompt debriefing.

5.7.4 **Communication of bad news**
Informing patients of bad news about malignancies is a difficult task; bad prognosis for some cancers and severe symptoms and treatment side effects make it painful for health professionals. It may be easier not to inform the patient. Nevertheless, disclosure will emphasise uncertainty and anxiety. In addition, patients have the right to be informed and the right to choose non-disclosure (83). Specific, patient-targeted information increases the quality of terminal care (8).

Patients’ families often experience anticipatory grief when learning of a diagnosis of advanced or terminal cancer. Anticipatory grief can be a response to threats of loss of ability to function independently, loss of identity, and changes in role definition, which underlie fear of death. When an oncologist delivers bad news, the patient and family members often hear the same discussion through different filters, which can lead to conflict and dysfunction. It is then important to provide a supportive and safe environment, and to help the patients reframe “hope” realistically so that they may have the opportunity for personal growth as well as reconciliation of primary relationships toward the end of life (84). In such situations, good communication skills are needed. There are methods to help health care professionals deliver information about bad news, such as using sociograms and psychodrama (85).

5.7.5 **Recommendations treatment of psychological aspects**

<table>
<thead>
<tr>
<th>Fear</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distress must be recognised, measured, treated and monitored at all stages of the disease.</td>
<td>2b</td>
<td>A</td>
</tr>
</tbody>
</table>

| Depression | | |
| Efforts should be made to detect hidden depression. | 2b | B* |

*Recommendation based on expert opinion.

5.8 **References**

ADDENDUM

A.1 PAIN MANAGEMENT (GENERAL)

Acute pain has a time-limited course during which treatment, if necessary, is aimed at correcting the underlying pathological process. In contrast, maladaptive (pathological) pain offers no biological advantage because it is uncoupled from a noxious stimulus or tissue healing, and is usually persistent or recurrent. It may occur in response to damage to the nervous system. It is known as neuropathic pain, and is pain as a disease (3-5).

A.1.1 Pain evaluation and measurement
A.1.1.1 Pain evaluation

Systematic evaluation of pain involves the following steps:

- Evaluate its severity.
- Take a detailed history of the pain, including an assessment of its intensity and character.
- Evaluate the psychological state of the patient, including an assessment of mood and coping responses.
- Perform a physical examination, emphasising the neurological examination.
- Perform an appropriate diagnostic work-up to determine the cause of the pain, which may include tumour markers.
- Perform radiological studies, scans.
- Re-evaluate therapy.

The initial evaluation of pain should include a description of the pain using the OPQRSTUV characteristics:

- **O** Onset: ‘When did it start? How long does it last? How often does it occur?’
- **P** Palliative or provocative factors: ‘What makes it less intense?’
- **Q** Quality: ‘What is it like?’
- **R** Radiation: ‘Does it spread anywhere else?’
- **S** Severity: ‘How severe is it?’
- **T** Temporal factors: ‘Is it there all the time, or does it come and go?’
- **U** Understanding/Impact on you
 - What do you believe is causing this symptom?
 - How is this symptom affecting you and/or your family?
- **V** Values
 - What is your goal for this symptom?
 - What is your comfort goal or acceptable level for this symptom (on a scale of 0 - 10 with 0 being none and 10 being the worst possible)?
 - Are there any other views or feelings about this symptom that are important to you or your family?

Pain in cancer patients could be caused by the cancer itself, be due to secondary muscular spasm, be secondary to cancer treatments, or have no relation to the cancer, e.g., arthritis. In general, cancer pain consists of two broad diagnostic types: nociceptive and neuropathic pain. When evaluating pain, it is useful to try to determine whether the pain is one of these types or a mixture of the two. Nociceptive pain includes bone pain and soft tissue pain. Typically, it is described as a dull, aching pain. This type of pain will be largely sensitive to non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. Neuropathic pain results from damage to the peripheral or CNS. It is usually described as a burning or sharp, shooting pain. Neuropathic pain is usually not particularly responsive to NSAIDs or opioids. Adjuvant analgesics such as anti-depressants and anticonvulsants should be used in the first instance.

A.1.1.2 Assessing pain intensity and quality of life (QoL)

There are several rating scales available to assess pain. Rating pain using a visual analogue scale (VAS) or collection of VAS scales (such as the brief pain inventory) is an essential part of pain assessment. Its ease of use and analysis has resulted in its widespread adoption. It is, however, limited for the assessment of chronic pain.
Other common ways of pain assessment are numerical scales (NRS rating 1-10, “Faces”- Wong Baker scale, mostly used in children and verbal scales (rating from absence to severe pain) (Figure 16). To study the effects of both physical and non-physical influences on patient wellbeing, an instrument must assess more dimensions than the intensity of pain or other physical symptoms. Several validated questionnaires to assess various QoL dimensions are available, including the Medical Outcomes Short-Form Health Survey Questionnaire 36 (SF-36), and the European Organisation for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) (6-10).

For cognitively impaired and elderly patients Doloplus-2 offers pain assessment by rating somatic, psychomotor and psychosocial behaviour. The tool consists of 10 items with four behavioural descriptions representing increasing severity of pain from 0 to 3. Individual item scores are summed to arrive at a total score ranging from 0 to 30 points. Five points is the threshold indicating pain.

For assessment, evaluation and measurement of neuropathic pain several questionnaires have been used. The most common and established one is the McGill Short Form Questionnaire (12).

References

A.2 CANCER PAIN MANAGEMENT (GENERAL)

A.2.1 Classification of cancer pain
Cancer pain is classified as mild (1-3), moderate (4-6) and severe (7-10) (1). The physical causes of pain are either nociceptive or neuropathic. In cancer patients, nociceptive pain tends to be caused by invasion of the bone, soft tissues or viscera (e.g. bowel, bladder), and neuropathic pain by nerve compression or infiltration.

Urogenital neoplasms frequently metastasise to bone (e.g., spine, pelvis, and skull). Bone metastases are associated with pathological fractures, hypercalcaemia and neurological deficits, leading to substantial impairment of QoL. The release of algogenic substances in the tissue, microfractures and periosteal tension are the main mechanism for pain sensation (2).

Pain caused by bone metastasis is nociceptive, but can become neuropathic if the tumour invades or compresses a nerve, neural plexus or spinal cord. One-third of patients with tumour-related pain are affected by neuropathic pain components (3). Nociceptive pain is well localised. Initially, it occurs on physical movement, but later might also occur at rest.

Neuropathic pain frequently has a constant ‘burning’ character. The efficacy of opioids may be diminished in neuropathic pain, making co-analgesia necessary (4). Patients with severe neuropathic pain are a special challenge. Psychological changes frequently occur, and specific therapeutic intervention may be necessary (5).

The World Health Organization (WHO) recommends a stepwise scheme for the treatment of cancer pain syndromes and neoplastic bone pain. Bisphosphonates and calcitonin are helpful for stabilising bone metabolism. Epidural and intrathecal opioids are sometimes useful in managing metastatic bone pain. Selected patients with neuropathic pain sometimes benefit from nerve destruction by intrathecal or epidural phenol (6).

A.2.2 General principles of cancer pain management
The four goals of care are:
• prolonging survival;
• optimising comfort;
• optimising function;
• relieving pain.

Pain leads to a vicious cycle of sleeplessness, worry, despair, isolation, hopelessness, depression, and escalation of pain. The following hierarchy of general treatment principles is useful in guiding the selection of pain management choices.
1. Individualised treatment for each patient.
2. Causal therapy to be preferred over symptomatic therapy.
3. Local therapy to be preferred over systemic therapy.
4. Systemic therapy with increasing invasiveness (the WHO ladder).
5. Conformance with palliative guidelines.
6. Both psychological counselling and physical therapy from the very beginning.
The fundamental principle is the individualisation of therapy. Repeated evaluations allow the selection and administration of therapy to be individualised in order to achieve and maintain a favourable balance between pain relief and adverse effects.

The next steps in the hierarchy, especially points 2-4, necessitate a continuing risk-to-benefit assessment between therapeutic outcome versus tolerability and willingness to accept adverse effects. The more invasive the therapy, the more difficult the decisions become. This is particularly true with palliative medicine, where the prospects of healing are limited and there is the problem of working against time.

If local therapy is not feasible or cannot be well tolerated, then symptomatic measures are appropriate, although local therapy is to be preferred over systemic treatment. In simple cases, measures such as drainage and stenting can make analgesic medication redundant, e.g., gastric probe, ureteral stent, percutaneous nephrostomy, and bladder catheter. Patients with recurrent subileus caused by peritoneal carcinomatosis are immediately relieved of their pain when they are given an artificial anus.

The indication is in direct relation to the severity of the disease and the operation, especially if the aim is palliative, although such cases sometimes require invasive measures, not only to relieve pain in the terminal phase, but also to improve QoL, although surgery can have a negative impact on patients’ wellbeing. Examples include evisceration to prevent cloaca in cervical carcinoma, or implanting a prosthetic hip due to a pathological fracture originating in metastasised bladder or kidney cancer.

When dose escalation of a systemically administered opioid proves unsatisfactory, the following gradual strategy can be considered:

- Switch to another opioid.
- Intervene with an appropriate primary therapy or other non-invasive analgesic approach.
- Pursue psychological, rehabilitative and neurostimulatory techniques (e.g. transcutaneous electrical nerve stimulation (TENS)).
- Use invasive analgesic techniques after careful evaluation of the likelihood and duration of the analgesic benefit, the immediate risks, and the morbidity of the procedure (epidural infusion).
- Use neurodestructive procedures (chemical or surgical neurolysis, coeliac plexus blockade).
- Some patients with advanced cancer and treatment refractory symptoms where comfort is the overriding goal can elect to be deeply sedated (see chapter 7, section 7.5.3 Palliative sedation).

The importance of physiotherapy and psychological counselling cannot be emphasised too strongly.

A.2.3 Non-pharmacological therapies

A.2.3.1 Surgery

Surgery may have a role in the relief of symptoms caused by specific problems, such as obstruction of a hollow viscus, unstable bony structures and compression of neural tissues or draining of symptomatic ascites (7-9). The potential benefits must be weighed against the risks of surgery, the anticipated length of hospitalisation and convalescence, and the predicted duration of benefit. Radical surgery to excise locally advanced disease in patients with no evidence of metastatic spread may be palliative, and potentially increase the survival of some patients (10-13).

A.2.3.2 Radionuclides

A.2.3.2.1 Clinical background

For patients presenting with multiple painful bone metastases, both β- and β+-emitting radionuclides can be used to obtain pain relief.

A.2.3.2.2 Radiopharmaceuticals

β-Emitting isotopes

The most important β-emitting radiopharmaceuticals are strontium-89 chloride (⁸⁹Sr) and samarium-153 lexidronam. They are indicated for the treatment of bone pain resulting from skeletal metastases with an osteoblastic response on bone scan but without spinal cord compression (14-22) (LE: 2) or pathological fracture (14,17,23) (LE: 2). These radiopharmaceuticals are delivered intravenously. The patient can pose a radiation exposure risk for 2-4 days after 153Sm, and 7-10 days after ⁸⁹Sr (17,19-21,23-30) (LE: 2). If the pain responds to the initial treatment, administration of ¹⁵³Sm can be repeated at intervals of 8-12 weeks in the presence of recurrent pain (14,30,31) (LE: 2). The response rate for second and subsequent treatments may be lower than for the first (14,18,23,30) (LE: 2).
Side-effects:
About 10% of patients experience a temporary increase in bone pain (pain flare) (32-35), generally 2-4 days after 153Sm, and 1-2 weeks after 89Sr (acute side effect) (17,18). Pain flare is associated with a good clinical response (LE: 2) (32-35), and sometimes requires a transient increase in analgesia. Pain reduction is unlikely to occur within the first week, and can occur as late as one month after injection. Late side effects include temporary myelosuppression (platelets and white blood cells). Recovery occurs 4-6 weeks later, depending on bone marrow reserve. There is generally no significant effect on haemoglobin.

Absolute contraindications:
- During or within 4 weeks of myelotoxic chemotherapy (all compounds except cisplatin), or within 12 weeks of hemi-body external radiotherapy in order to avoid severe haematopoietic toxicity.
- Known hypersensitivity to EDTMP or similar phosphonate compounds for 153Sm (14).
- Glomerular filtration rate (GFR) < 30 mL/min (14,31).
- Pregnancy; continued breastfeeding (31).

Relative contraindications:
- In acute or chronic severe renal failure (GFR 30-60 mL/min), the dose administered should be adapted.
- With a single painful lesion external limited field radiotherapy should be performed (36,37).

Caution must be used in the following circumstances:
- Urinary incontinence: special recommendations apply, including catheterisation before administration of the radionuclide (32).
- White blood cell count of < 2500/μL (31).
- Platelets < 80,000/μL (31).
- Haemoglobin < 90 g/L (31).

β-Emitting isotopes: radium-223

α-Particle therapy represents a new concept that has also been successful in prolonging survival in phase III clinical trials (38). Unlike β-emitting radiopharmaceuticals, α-pharmaceuticals, such as 223Ra, deliver an intense and highly localised radiation dose to bone surfaces (39). 223Ra thus has potentially better efficacy and tolerability when compared to β-emitters.

In clinical trials, treatment is administered by iv injection once monthly for 4-6 months (40-42). No imaging dose or premedication are required. No radiation protection procedures are required.

Pain response was seen in up to 71% of the patients with a dose response observed 2 weeks after administration (43). 223Ra has a favourable safety profile with little or no myelotoxic effect (44,45).

A recently completed phase III study has proven that 223Ra provides an overall survival benefit in patients with CRPC and bone metastases (38). 223Ra is expected to receive approval by various regulatory agencies in the near future.

A.2.3.3 Radiotherapy for metastatic bone pain

A.2.3.3.1 Clinical background
Radiotherapy alleviates metastatic bone pain in approximately 70% of patients, with complete pain relief at the treated site in up to 40% of patients (46-48) (LE: 1a). The onset of pain relief varies from a few days to 4 weeks (48) (LE: 2b). The median duration of pain relief reported by most studies is 3-6 months (48) (LE: 1a).

A.2.3.3.2 Radiotherapy scheme
Single-fraction radiotherapy is as effective as multifraction radiotherapy in relieving metastatic bone pain (47-53) (LE: 1a). However, the rates of retreatment and pathological fractures are significantly higher after single-fraction radiotherapy (47,48,54) (LE: 1a).

Single-fraction radiotherapy remains the treatment of choice for alleviating bone pain because of its greater convenience for patients (LE: 1a), faster patient turnover for the radiotherapy unit (55) and lower costs (53,56) (LE: 3). The recommended dose is 8 Gy (48-53,57,58) (LE: 1a). Pain relief can be achieved with lower doses (1) (LE: 1b). These lower doses should be borne in mind if a third retreatment is necessary, or if there is concern about radiation tolerance (48) (LE: 2b).

In cases of oligometastases (< 5), a case can be made for aggressive therapy, such as radiosurgery or highdose radiotherapy to postpone systemic treatments (LE: 3).
A.2.3.3.3 Spinal cord compression

Metastatic epidural spinal cord compression (MSCC) is a common, severe complication of malignancy. The most common symptom is back pain (83-95%), and weakness is present in 35-75%. When spinal cord compression is suspected, magnetic resonance imaging (MRI) is currently the gold standard for detection and therapeutic management (57-61) (LE: 2b), with sensitivity of 93% (62) (LE: 3) and specificity of 96% (62) (LE: 3). The level of neurological function at the start of treatment determines the functional outcome (63).

Corticosteroids reduce oedema and may have an oncolytic effect on certain tumours. However, the extent of the benefit and the optimal dosage are unclear. High-dose corticosteroids carry a significant risk of adverse effects. One RCT of patients with MSCC showed significantly better functional outcome when radiotherapy was combined with dexamethasone (64) (LE: 1b).

Radiotherapy is generally the treatment of choice. A multifraction regimen (10 × 3 Gy) is preferable in these patients because it allows for a higher dose and thus greater reduction in tumour size. For patients whose chances of survival are estimated to be poor, a short course of radiotherapy is advised (67) (LE: 1b).

Several uncontrolled surgical trials (57,59,61) and one meta-analysis (58) have indicated that direct decompressive surgery is superior to radiotherapy alone with regard to regaining ambulatory and sphincter function, and obtaining pain relief (LE: 1a). However, the decision to pursue surgery must be tempered by awareness of the attendant significant morbidity and mortality risks. Careful patient selection is of utmost importance; the criteria are shown in Table 15 (LE: 3).

Table 15: Criteria for selecting patients for primary therapy for spinal cord compression

<table>
<thead>
<tr>
<th>Absolute criteria</th>
<th>Surgery</th>
<th>Radiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operability</td>
<td>Medically operable</td>
<td>Medically inoperable</td>
</tr>
<tr>
<td>Duration of paraplegia</td>
<td>< 48 h</td>
<td>≥ 48 h</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>> 3 months</td>
<td>< 3 months</td>
</tr>
<tr>
<td>Radiosensitivity</td>
<td>-</td>
<td>Highly sensitive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative criteria</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis of primary tumour</td>
<td>Unknown</td>
<td>Known</td>
</tr>
<tr>
<td>Bone fragments with compression</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Number of foci of compression</td>
<td>1 focus</td>
<td>> 1 foci</td>
</tr>
</tbody>
</table>

A randomised prospective trial has demonstrated that patients treated with a combination of surgery followed by radiotherapy can remain ambulatory longer, and those who are not ambulatory at presentation have a better chance of regaining ambulatory function than those treated with radiotherapy alone (60) (LE: 1b).

A.2.3.3.4 Pathological fractures

In patients with impending pathological fractures (more than 50% of the thickness of the cortex of a long bone affected), a prophylactic orthopaedic procedure should be considered (62). If it is eroded by metastasis, prophylactic fixation rather than radiotherapy alone should be considered.

A.2.3.3.5 Side effects

Side effects are related to the total dose, fractionation size, and the localisation of the metastases. Acute grade 2-4 toxicity is more frequent after multifraction radiotherapy regimens. The incidence of late toxicity is low (54). The side effects are mostly transient, lasting a few days and include:

1. Pain flare (within 24 h and due to oedema). Patients should be counselled accordingly and given breakthrough opioids. Patients receiving single-fraction radiotherapy may be at higher risk than those receiving multifraction radiotherapy (65). A small phase II study has shown that 8 mg dexamethasone is effective for prophylaxis of radiotherapy-induced pain flare after palliative radiotherapy for bone metastases (66) (LE: 3).

2. Symptoms depending on the treatment field and location: nausea (especially with larger fields), vomiting, diarrhoea, irritation of the throat and oesophagus.

A.2.3.4 Psychological and adjunctive therapy

A.2.3.4.1 Psychological therapies

The perception of pain and the suffering it causes derive from a combination of physical, emotional, spiritual, and social constructs. Psychological assessment and support are an integral and beneficial part of treating...
pain in cancer patients (67-69). There is evidence that highly emotional cancer patients, as detected through their own narratives, experience less pain than their less emotional counterparts (70). Cultural differences also play a role in pain perception (71). Depression is the most prevalent psychiatric diagnosis in patients with cancer. In this setting, structured psychotherapy seems to be more effective than antidepressant medication (72).

Cognitive behavioural therapy (CBT), such as relaxation and distraction, can provide pain relief (73-75). The possibility of delivering CBT by home visits, telephone, or through the Internet seems promising (76-78). Virtual consultation and automated symptom monitoring for cancer patients with depression can exceed all expectations (79). It has also been suggested that CBT may be particularly helpful for younger cancer patients (80).

More recently, the effects of dignity therapy on distress and end-of-life experience have been formally tested. Dignity therapy is based on a formal written narrative of the patient’s life. Its benefits in terms of end-of-life experiences might support its clinical application (81). Family-focused grief therapy based on communication, cohesiveness, conflict resolution, and shared grief is effective in protecting family members against the drama of disease and death (82). Other psychological interventions that aim to minimise caregiver emotional distress have not been effective (83). Overall, educational programmes that aim to maximise family and patient satisfaction with pain treatment seem promising (84).

The impact of early detection of psychological distress may improve health outcomes (85). There is also a real need for screening the patient’s desire for psychological support, as well as patient distress. This may include psychological interventions according to the patient’s needs and desires (86). Different tools are available to better assess patients’ needs, such as Palliative Care Needs Assessment Guidelines and Needs Assessment Tool (87) and the short form of the Supportive Care Needs Survey (SCNS-SF34) (88).

A.2.3.4.2 Adjunctive therapy
To date, there is no conclusive evidence on the effect of reflexology and massage therapy (89-91). Nevertheless, certain manipulations (e.g., sciatic nerve press) seem to be effective for immediate pain relief in many oncological conditions (92). The notion that acupuncture may be effective for cancer patients is not supported by the currently available data (93,94). However, modest although significant improvements in depression and pain scales have been confirmed by well-conducted studies on acupuncture (95).

Evidence from robust studies is still lacking on the effect of traditional Chinese medicine and complementary alternative medicine (96,97). The effect of cupping therapy - an ancient form of medicine in which suction is created on the skin- on pain needs to be more rigorously tested (98). Physical exercise (short walks) can positively affect the pain experience of prostate cancer (PCa) patients (99). Similarly, moderate exercise positively affects cancer-related sleep disturbance (100). TENS might mitigate hyperalgesia in cancer patients. Unfortunately, reliable studies in this field are lacking (101).

Listening to music slightly reduces distress, pain intensity and opioid requirements in cancer patients (102,103). Music relaxation videos seem to positively affect pain severity, opioid consumption, and anxiety level in patients treated for some gynaecological tumours (104). It is likely that patients harbouring urological tumours could also benefit.

Strong evidence on the real potential of cannabis derivatives is lacking (105).

Evidence exists of the strong relationship between pain, anxiety and depression, and health-related QoL in cancer patients (106,107). Sexual dysfunction is a potential long-term complication of cancer treatment. Following treatment for PCa, transurethral alprostadil and vacuum constriction devices reduce sexual dysfunction, although negative effects are common. Vaginal lubricating creams are also effective, as are PDE5 inhibitors (PDE5Is) for sexual dysfunction secondary to prostate cancer treatment (108). Psychological interventions focused on sexual dysfunction following cancer can be considered as moderately effective (109).

A.2.4 Pharmacotherapy
The successful treatment of cancer pain depends on the clinician’s ability to assess the presenting problems, identify and evaluate pain syndromes, and formulate a plan for comprehensive continuing care. This requires familiarity with a range of therapeutic options and responsiveness to the changing needs of the patient. The treatment of pain must be part of the broader therapeutic agenda, in which tumour control, symptom palliation (physical and psychological), and functional rehabilitation are addressed concurrently.
A.2.4.1 **Chemotherapy**
A successful effect on pain is generally related to tumour response. There is a strong clinical impression that tumour shrinkage is generally associated with relief of pain, although there are some reports of analgesic benefit even in the absence of significant tumour shrinkage (110) (LE: 1a).

A.2.4.2 **Bisphosphonates**
The main effects are:
- decrease of the risk of skeleton-related events (111) (LE: 1b);
- pain relief in 60-85% of patients (111-113) (LE: 1b).

The main side effects are:
- flu-like symptoms (20-40%), bone pain, fever, fatigue, arthralgia and myalgia (all < 10%);
- hypocalcaemia (rapid infusion in older patients with vitamin D deficiency);
- acute renal failure (rapid infusion); always check renal function (GFR);
- osteonecrosis of the jaw bones (only after iv therapy);
- gastrointestinal symptoms can occur after oral administration (2-10%).

A.2.4.3 **Denosumab**
Improvement in bone-metastases-free-survival (4.3 months) and increased time to first bone metastasis (3.7 months) has been reported with denosumab in a phase III randomised placebo controlled trial (114).

Another recently published phase III study concluded that denosumab was better than zoledronic acid for prevention of skeletal-related events, and potentially represents a novel treatment option in men with bone metastases from CRPC (115).

A large randomised study (1432 patients) showed that denosumab significantly increased bone-metastasis-free survival by a median of 4.3 months compared to placebo (median 29.5 (95% CI 25.4-33.3) vs. 25.2 (22.2-29.5) months; hazard ratio (HR) 0.85, 95% CI 0.73-0.98, P=0.028). Denosumab also significantly delayed time to first bone metastasis (33.2 (95% CI 29.5-38.0) vs 29.5 (22.4-33.1) months; HR 0.84, 95% CI 0.71-0.98, P=0.032). Overall survival did not differ between groups (denosumab, 43.9 (95% CI 40.1-not estimable) months vs. placebo, 44.8 (40.1-not estimable) months; HR 1.01, 95% CI 0.85-1.20, P=0.91). Rates of adverse events and serious adverse events were similar in both groups (114).

A.2.4.4 **Systemic analgesic pharmacotherapy - the analgesic ladder**
Analgesic pharmacotherapy is the mainstay of cancer pain management (116-118). Although concurrent use of other interventions is valuable in many patients, and essential in some, analgesic drugs are needed in almost every case. Based on clinical convention, analgesic drugs can be separated into three groups:
- Non-opioid analgesics.
- Opioid analgesics.
- Adjuvant analgesics.

Emphasising that pain intensity should be the prime consideration, the WHO has proposed a three-step approach to analgesic selection for cancer pain (117,118) (LE: 1a). Known as the analgesic adder, when combined with appropriate dosing guidelines it can provide adequate relief in 70-90% of patients (119,120).
- **Step 1**: non-opioid analgesic: Patients with mild to moderate cancer-related pain should be treated with a non-opioid analgesic.
- **Step 2**: non-opioid analgesic + weak opioid: Patients who present with moderate to severe pain or who fail to achieve adequate relief after a trial of a non-opioid analgesia should be treated with a weak opioid (e.g. codeine or tramadol), typically by using a combination product containing a non-opioid (e.g. aspirin or paracetamol) and an opioid (e.g. codeine, tramadol or propoxyphene).
- **Step 3**: non-opioid analgesic + strong opioid: Patients who present with severe pain or who fail to achieve adequate relief with step 2 drugs, should receive a strong opioid (e.g. morphine, fentanyl, oxycodone, methadon, buprenorphine, or hydromorphone).

A.2.4.4.1 **Non-opioid analgesics**
- Non-opioid analgesics are paracetamol, metamizole (dipyrone) and non-steroidal anti-inflammatory drugs (NSAIDs).
- Can be useful alone for mild to moderate pain (step 1 of the analgesic ladder).
- May be combined with opioids.
- Have a ceiling effect of analgesic efficacy.
No tolerance or physical dependence.

Inhibit the enzyme cyclo-oxygenase and block the synthesis of prostaglandins.

Involvement of central mechanisms is also likely in paracetamol analgesia (121).

Potential adverse effects: bleeding diathesis due to inhibition of platelet aggregation, gastroduodenopathy (including peptic ulcer disease) and renal impairment are the most common; less common adverse effects include confusion, precipitation of cardiac failure and exacerbation of hypertension. Particular caution must be used in elderly patients and those with blood-clotting disorders, predisposition to peptic ulceration, impaired renal function and concurrent corticosteroid therapy (122).

Non-acetylated salicylates (choline magnesium trisalicylate and salsalate) are preferred in patients who have a predilection to bleeding; these drugs have less effect on platelet aggregation and no effect on bleeding time at the usual clinical doses.

Paracetamol rarely produces gastrointestinal toxicity, but, if this occurs, with no adverse effect on platelet function. Hepatic toxicity is possible, and patients with chronic alcoholism and liver disease can develop severe hepatotoxicity at the usual therapeutic doses (123).

A.2.4.4.2 Opioid analgesics

Cancer pain of moderate or severe intensity should generally be treated with a systemically administered opioid analgesic (124). Classification is based on interaction with the various receptor subtypes:

- Agonist: most commonly used in clinical pain management, no ceiling effect.
- Agonist-antagonist (pentazocine, nalbuphine and butorphanol): ceiling effect for analgesia.

By convention, the relative potency of each of the commonly used opioids is based on a comparison with 10 mg parenteral morphine. Equianalgesic dose information provides guidelines for dose selection when the drug or route of administration is changed (125).

A trial of systemic opioid therapy should be administered to all cancer patients with moderate or severe pain (125-127). Patients who present with severe pain should be treated with a strong opioid from the outset. Patients with moderate pain are commonly treated with a combination drug containing paracetamol or aspirin plus codeine, tramadol, or propoxyphene, the dose of which can be increased until the maximum dose of the non-opioid co-analgesia is attained (e.g. 4000 mg paracetamol).

Factors to consider when selecting an opioid include:

- pain intensity
- patient age
- response to previous trials of opioid therapy
- co-existing disease
- influence of underlying illness, characteristics of the opioid and concurrent medications.

Routes of administration

Opioids should be administered by the least invasive and safest route that can provide adequate analgesia. In a survey of patients with advanced cancer, more than half required two or more routes of administration prior to death, and almost a quarter required three or more.

Non-invasive routes

- Oral routes are the preferred approach in routine practice. Alternative routes are necessary for patients who have impaired swallowing, gastrointestinal dysfunction, require a very rapid onset of analgesia, or cannot tolerate the oral route.
- Rectal suppositories containing oxycodone, hydromorphone, oxycodone and morphine in combination are available, and controlled-release morphine tablets can also be administered per rectum. The potency of rectally administered opioids is believed to approximate to oral dosing (128).
- Transdermal routes: fentanyl and buprenorphine have been demonstrated to be effective in postoperative and cancer pain (129). There is some interindividual variability in fentanyl bioavailability by this route, which, combined with large differences in elimination pharmacokinetics, necessitates dose titration in most cases (130). The efficacy of transdermal fentanyl is equal to morphine. The incidence of side effects such as sedation and constipation are lower than for morphine (131, 132) (LE: 1b).
 - Transdermal patches able to deliver 12, 25, 50, 75 and 100 mg/h are available. Multiple patches can be used simultaneously for patients who require higher doses. Current limitations of the transdermal delivery system include costs, and the need for an alternative short-acting opioid for breakthrough pain.
Recently, buprenorphine has become available for transdermal administration. A high affinity partial μ-opioid agonist, it is in clinical use for the treatment of acute and chronic pain (133). Its analgesic effect is comparable with that of other opioids, and it shows no relevant analgesic ceiling effect throughout the therapeutic dose range (134). Unlike full μ-opioid agonists, buprenorphine’s physiological and subjective effects, including respiratory depression and euphoria, reach a plateau at higher doses. This ceiling may limit the abuse potential, and might result in a wider safety margin (135).

• **Sublingual** absorption of any opioid is potentially clinically beneficial, but bioavailability is very poor with drugs that are not highly lipophilic, so the chances of an adequate response are low (136). Sublingual buprenorphine, a relatively lipophilic partial agonist, can provide adequate relief for mild to moderate cancer pain. Overall, this route has limited value due to the lack of formulations, poor absorption of most drugs, and the inability to deliver high doses or prevent swallowing of the dose. An oral transmucosal formulation of fentanyl (incorporated into a sugar base) is useful for the rapid relief of breakthrough pain (137,138). Fentanyl delivered by this means is more effective than oral morphine at relieving pain (LE: 2).

Invasive routes

For patients undergoing a trial of systemic drug administration, a parenteral route must be considered when the oral route is not available. Repeated parenteral bolus injections, which can be administered iv, intramuscularly (im) or subcutaneously (sc), may be useful in some patients, but are often compromised by the occurrence of prominent bolus effects (toxicity at peak concentration and/or pain breakthrough at the trough). Repeated im injections are common, but are painful and offer no pharmacokinetic benefit; their use is not recommended (139).

• **Intravenous bolus** administration provides the most rapid onset and shortest duration of action. Time to peak effect correlates with the lipid solubility of the opioid, and ranges from 2-5 min for methadone, to 10-15 min for morphine (140). This approach is appropriate in two settings:
 - To provide parenteral opioids, usually transiently, to patients who already have venous access and are unable to tolerate oral opioids.
 - To treat very severe pain, for which iv doses can be repeated at an interval as brief as that determined by the time to peak effect until adequate relief is achieved.

• **Continuous parenteral infusions** is mainly used in patients who are unable to swallow, absorb opioids or otherwise tolerate the oral route, but is also employed in patients whose high opioid requirement renders oral treatment impractical (141). Long-term infusions can be administered iv or sc.
 - Ambulatory patients can easily receive a continuous sc infusion using a 27-gauge butterfly needle, which can be left in place for up to a week. A recent study demonstrated that the bioavailability of hydromorphone by this route is 78% (142), and clinical experience suggests that dosing can be identical to that for continuous iv infusion. A range of pumps is available to provide patient-controlled rescue doses (supplemental doses offered on an as-needed basis to treat pain that breaks through the regular schedule) as an adjunct to continuous basal infusion.
 - Opioids suitable for continuous sc infusion must be soluble, well absorbed and non-irritant. Extensive experience has been reported with hydromorphone, oxycodone and morphine (143). Methadone appears to be relatively irritating and is not preferred (144). To maintain the comfort of an infusion site, the sc infusion rate should not exceed 5 mL/h.
 - The infraclavicular and anterior chest sites provide the greatest freedom of movement for patients, but other sites can be used. A single infusion site can usually be maintained for 5-7 days.

Opioid switching

A systematic search was developed to include studies after 2004, with cancer patients switching between strong opioids and reporting pain control and adverse effects, usually from morphine or oxycodone to methadone. The search reviewed 288 papers, among which, only 11 (280 patients) met the inclusion criteria. Pain intensity was significantly reduced in the majority of studies, and there were fewer serious adverse effects (145).

Changing the route of administration

Switching between oral and parenteral routes should be guided by knowledge of relative potency to avoid subsequent over- or underdosing. In calculating the equi-analgesic dose, the potencies of the iv, sc and im routes are considered equivalent. Perform changes slowly in steps, e.g. gradually reducing the parenteral dose and increasing the oral dose over a 2-3 day period (LE: 3).
Dosing

- **A round-the-clock dosing.** Patients with continuous or frequent pain generally benefit from scheduled around-the-clock dosing, which provides continuous relief by preventing recurrence of the pain. This approach should be used only in patients with no previous opioid exposure. Patients should also be provided with a rescue dose. This combination offers gradual, safe and rational dose escalation that is applicable to all routes of opioid administration.

- **Controlled-release drug formulations.** These preparations of oral opioids can lessen the inconvenience of around-the-clock administration of drugs with a short duration of action. Numerous studies have demonstrated the safety and efficacy of these preparations in cancer patients with pain (146,147).

- **As-needed (prn) dosing.** This strategy is beneficial if rapid dose escalation is necessary or when beginning therapy with opioids with a long half-life (e.g., methadone or levorphanol). As-needed dosing may also be appropriate for patients who have rapidly decreasing analgesic requirements, or intermittent pains separated by pain-free intervals.

- **Patient-controlled analgesia (PCA).** This is a technique of parenteral drug administration in which the patient controls an infusion device that delivers a bolus of analgesic drug on demand according to parameters set by the physician. Long-term PCA in cancer patients is most commonly sc using an ambulatory infusion device. PCA is usually added to a basal infusion rate and acts, in effect, as a rescue dose.

Adverse effects and their management

- **Tolerance.** There is great variation in the opioid dose required to manage pain (400-2000 mg im morphine per 24 h) (148). The induction of true analgesic tolerance that could compromise the utility of treatment can only be said to occur if a patient manifests the need for increasing opioid doses in the absence of other factors (e.g., progressive disease) that would be capable of explaining the increase in pain. Extensive clinical experience suggests that most patients who require dose escalation to manage increasing pain do have demonstrable disease progression (149). This suggests that true pharmacological tolerance to the analgesic effects of opioids is not a common clinical problem, and has two important implications:
 - Concern about tolerance should not impede the use of opioids early in the course of the disease.
 - Worsening pain in patients receiving a stable dose of opioids should not be attributed to tolerance, but be assessed as evidence of disease progression or, less commonly, increasing psychological distress.

- **Adverse drug interactions.** There is potential for cumulative side effects and serious toxicity to arise from combinations of drugs. The sedative effect of an opioid may add to that of other centrally acting drugs, such as anxiolytics, neuroleptics and antidepressants. Likewise, constipation produced by opioids is probably worsened by anticholinergic drugs.

- **Respiratory depression.** This is the most serious adverse effect of opioid therapy, which can impair all phases of respiratory activity (rate, minute volume and tidal exchange). Clinically significant respiratory depression is always accompanied by other signs of central nervous system depression, including sedation and mental clouding. Repeated administration of opioid drugs appears to produce a rapid tolerance to their respiratory depressant effects, however, so these drugs can be used in the management of chronic cancer pain without significant risk of respiratory depression. When this does occur in patients on chronic opioid therapy, administration of the specific opioid antagonist naloxone usually improves ventilation.

- **Sedation.** Tolerance to this effect usually develops within a period of days to weeks. Patients should be warned about it, to reduce anxiety and discourage activities that could be dangerous if sedation occurs (e.g., driving). Some patients have a persistent problem with sedation, particularly if other sedating drugs are also being taken or if there is comorbidity such as dementia, metabolic encephalopathy, or brain metastases.

- **Confusion and delirium.** Confusion is a greatly feared effect of opioid drugs, and mild cognitive impairment is common (150). However, similar to sedation, pure opioid-induced encephalopathy appears to be transient in most patients, persisting from days to 1-2 weeks. Although persistent confusion attributable to opioids alone does occur, it is usually related to the combined effect of the opioid and other factors, including electrolyte disorders, neoplastic involvement of the central nervous system, sepsis, vital organ failure and hypoxaemia (151). A stepwise approach to management often culminates in a trial of a neuroleptic drug. Haloperidol in low doses (0.5-1.0 mg orally or 0.25-0.5 mg iv or im) is most commonly recommended because of its efficacy and low incidence of cardiovascular and anticholinergic effects.
• **Constipation.** This is the most common adverse effect of chronic opioid therapy (152-154), and laxative medication should be prescribed prophylactically. Combination therapy is frequently used, particularly co-administration of a softening agent (e.g., docusate) and a cathartic (e.g., senna, bisacodyl or phenolphthalein). The doses should be increased as necessary, and an osmotic laxative (e.g. magnesium sulphate) should be added if required. Chronic lactulose therapy is an alternative that some patients prefer, and the occasional patient is managed with intermittent colonic lavage using an oral bowel preparation.

• **Nausea and vomiting.** Opioids may produce nausea and vomiting via both central and peripheral mechanisms. These drugs stimulate the medullary chemoreceptor trigger zone, increase vestibular sensitivity, and affect the gastrointestinal tract (increased gastric antral tone, diminished motility, delayed gastric emptying). The incidence of nausea and vomiting in ambulatory patients is estimated to be 10-40% and 15-40%, respectively (155), with the effects greatest at the start of therapy. Metoclopramide is the most reasonable initial treatment. Tolerance typically develops within weeks. Routine prophylactic administration of an anti-emetic is not necessary. Serotonin antagonists (e.g., ondansetron) are not likely to be effective with opioid-induced symptoms as they do not eliminate apomorphine-induced vomiting and motion sickness, which appear to be appropriate models for opioid effects. Clinical trials are needed to confirm this.

• **Addiction and dependence.** Confusion about physical dependence and addiction augments the fear of opioids and contributes substantially to the undertreatment of pain (156). Patients with chronic cancer pain have a so-called therapeutic dependence on their analgesic pharmacotherapy, which may or may not be associated with the development of physical dependence, but is seldom associated with addiction. The medical use of opioids is rarely associated with the development of addiction (157). There are no prospective studies in patients with chronic cancer pain, but extensive clinical experience affirms the low risk of addiction in this population (LE: 3). Healthcare providers, patients and families often require vigorous and repeated reassurance that the risk of addiction is small.

Adjuvant analgesics

Defined as a drug that has a primary indication other than pain but is analgesic in some conditions. These drugs may be combined with primary analgesics on any of the three steps of the analgesic ladder to improve the outcome for patients who cannot otherwise attain an acceptable balance between relief and side effects. In the management of cancer pain, adjuvant analgesics are conventionally categorised as follows.

• **Corticosteroids.** Widely used as adjuvant analgesics (158,159), this group has been demonstrated to have analgesic effects, to improve QoL significantly (160), and to have beneficial effects on appetite, nausea, mood and malaise in patients with cancer (161). The mechanism of analgesia may involve anti-oedemic and anti-inflammatory effects, plus a direct influence on the electrical activity in damaged nerves. (i.e., reduction of neuropathic pain). Patients with advanced cancer who experience pain and other symptoms may respond favourably to a relatively small dose of corticosteroids (e.g. dexamethasone 1-2 mg twice daily) (LE: 2a).

• **Benzodiazepines.** These drugs have a small analgesic effect (162), and must be balanced by the potential for side effects, including sedation and confusion. Benzodiazepines are generally used only if another indication exists, such as anxiety or insomnia (LE: 2b).

A.2.4.5 Treatment of neuropathic pain

Numerous options are available for relieving neuropathic pain, including opioids, which give patients significant pain reduction with greater satisfaction than antidepressants (163,164). However, the potential complications of opioids mean that they are not always a satisfactory option (165). Beside opioids, effective therapies for managing neuropathic pain include antidepressants, anticonvulsants, topical treatments (lidocaine patch, capsaicin), N-methyl-D-aspartate (NMDA) receptor antagonists, baclofen, local anaesthetics, and clonidine (166,167).

A.2.4.5.1 Antidepressants

There is clear evidence for the effectiveness of antidepressants in the treatment of neuropathic pain (166). Antidepressants which work primarily via interaction with pathways running through the spinal cord from serotonergic and noradrenergic structures in the brain stem and mid-brain.

Tricyclic antidepressants (TCAs) such as amitriptyline, nortriptyline (metabolite of amitriptyline), imipramine, and desipramine (metabolite of imipramine) are often the first drugs selected to alleviate neuropathic pain (168,169) (LE: 1a). The mechanism of action is predominantly by blocking the reuptake of norepinephrine and serotonin (dual acting), together with a blockade of neuronal membrane ion channels (reducing neuronal influx of Ca2+ or Na+), and interaction with adenosine and NMDA receptors. However, treatment with these analgesics may be
compromised (and outweighed) by their side effects. TCAs must be used cautiously in patients with a history of cardiovascular disorders, glaucoma, and urine retention. In addition, combination therapy with monoamine-oxidase inhibitors could result in the development of serotonin syndrome.

Duloxetine enhances both serotonin and norepinephrine function in descending modulatory pathways. It has weak affinity for the dopamine transporter and insignificant affinity for several neurotransmitters, including muscarinic, histamine, glutamate, and gamma-aminobutyric acid (GABA) receptors. Duloxetine has demonstrated a significant pain-relieving effect with a generally favourable side-effect profile in painful diabetic neuropathy (168,169) (LE: 1b).

Selective serotonin reuptake inhibitors (SSRIs) - sertraline, paroxetine, fluoxetine and citalopram – selectively inhibit the reuptake of serotonin. These antidepressives have a more favourable side effect profile than TCAs, but their effectiveness in neuropathic pain is disputed in the literature (second-line pharmacological treatment).

A.2.4.5.2 Anticonvulsant medication
The rationale for the use of anticonvulsant drugs in treating neuropathic pain is the reduction of neuronal hyperexcitability, one of the key processes in the development and maintenance of neuropathic pain (170). Different anticonvulsants have demonstrated pain relief by a blockade of neuronal membrane ion channels (reducing neuronal influx of Ca2+ or Na+), and effects on neurotransmitters (enhancement of GABA, inhibition of glutamate release) and/or neuromodulation systems (blocking the NMDA receptor) (171,172). Carbamazepine and phenytoin were initially used for the treatment of trigeminal neuralgia. Although both drugs reduce neuropathic pain, their attendant side effects and complicated pharmacokinetic profile limit their use.

Despite the introduction of newer anticonvulsants with better side effect profiles, carbamazepine remains the drug of choice for treating trigeminal neuralgia (173) (LE: 1a). However, oxcarbazepine (10-keto analogue of carbamazepine), a new anticonvulsant with a similar mechanism of action to that of carbamazepine but with a better side effect profile, may replace carbamazepine for this purpose (174).

Gabapentin and pregabalin are first-line treatments for neuropathic pain (reducing elements of central sensitisation), especially in post-zoster neuralgia and diabetic polyneuropathy (175-177) (LE: 1a). The combination of gabapentin with opioids seems to display synergistic effects in relieving neuropathic pain (178,179). Gabapentin has a favourable safety profile with minimal concern for drug interactions and no interference with hepatic enzymes. However, renal failure results in higher gabapentin concentrations and a longer elimination half-life, making dose adjustments necessary. Pregabalin (3-isobutyl GABA) is a structural analogue of gabapentin, but shows greater analgesic activity in rodent models of neuropathic pain than did gabapentin (180). Recent studies confirm the effectiveness of pregabalin in peripheral (including post-herpetic neuralgia and diabetic polyneuropathy) and central neuropathic pain (181).

A.2.4.5.3 Local analgesics
Neuropathic pain syndromes are typically associated with touch-evoked allodynia and hyperalgesia that impair patients’ QoL. As well as treatment with anticonvulsants and antidepressants, a topical drug can be effective in treating ongoing pain and allodynia, supporting the idea that peripheral actions are of key importance in the initiation and maintenance of neuropathic pain.

Local treatments for neuropathic pain include the 5% lidocaine patch, and capsaicin. The 5% lidocaine patch, a targeted peripheral analgesic, is effective in the treatment of post-herpetic neuralgia and a variety of other focal peripheral neuropathies (182,183) (first-line pharmacological treatment; LE: 1b). Once a day, up to three patches are applied to the painful skin, covering as much of the affected area as possible.

Capsaicin causes pain due to release of substance P from the nociceptive terminals, initiating nociceptive firing. An analgesic response follows because prolonged exposure to capsaicin desensitises the nociceptive terminals and elevates the pain threshold. Capsaicin (third-line pharmacological treatment) reduces pain in a variety of neuropathic pain conditions (including post-herpetic neuralgia, diabetic neuropathy and painful polyneuropathy). It is applied in a 0.075% concentration (184) (LE: 3).

A.2.4.5.4 NMDA receptor antagonists
Within the dorsal horn, ionotropic glutamate receptors (NMDA, 2-amino-3-(3-hydroxy-5-methyl-4-isoxazole) propionate (AMPA), and kainate) and metabotropic glutamate receptors are all involved in neuropathic pain (156,185). However, the actions of excitatory amino acids (glutamate) on the NMDA receptor is considered a pivotal event in the phenomenon of wind-up and neuronal hyperexcitability (enhancement and prolongation of sensory transmission) that eventually leads to allodynia, and primary and secondary hyperalgesia.
Subanesthetic doses of ketamine, and its active enantiomer S(+)-ketamine, given parenterally, neuraxially, nasally, transdermally or orally, alleviate pain postoperatively and in a variety of neuropathic pain syndromes, including central pain (186) (LE: 2b). However, ketamine may result in unwanted changes in mood, conscious perception, and intellectual performance, as well as psychomimetic side effects (including visual and auditory hallucinations, dissociation and nightmares), limiting its use for neuropathic pain (185). It must therefore be reserved as a third-line option when other standard analgesic treatments are exhausted (187,188).

The primary role of low-dose systemic ketamine (bolus 0.25 mg/kg followed by continuous administration at 0.1-0.4 mg/kg/h) is as an antihyperalgesic, antiallodynic, or tolerance-protective compound in patients with severe acute pain, chronic or neuropathic pain, opioid tolerance, or those at risk for developing chronic postsurgical pain (following laparotomy, thoracotomy, breast surgery, and nephrectomy) (189,190). In the acute setting ketamine is effective as a rescue analgesic (0.25 mg/kg, iv) for acute pain that is not, or poorly, responsive to opioids (191).

Despite improved and prolonged analgesia following caudal administration of ketamine in paediatric anaesthesia, there remains a controversy in the preclinical (animal) and clinical literature as to the safety and justifiability of this compound for neuraxial administration. In a case report, as well as in an animal study, severe histological abnormalities indicating neurotoxicity were observed following neuraxial administration of ketamine (192,193).

A.2.4.5.5 Other drug treatments

Baclofen, a muscle relaxant, is analgesic due to its agonistic effect on the inhibitory GABAB receptors. Baclofen is efficacious in patients with trigeminal neuralgia, but not in those with other neuropathic pain conditions (192). However, this analgesic also has antispasticity properties and may induce analgesia by relieving muscle spasms, a frequent accompaniment of acute neuropathic pain. Baclofen can be considered a second-line agent for trigeminus neuralgia, or a third-line agent in neuropathic pain syndromes (LE: 3).

Clonidine, an α2-adrenergic agonist, is available as a patch for transdermal administration and has been used in neuropathic pain states. When used locally, it seems to enhance the release of endogenous encephalin-like substances, but its use in the treatment of neuropathic pain is focused on intrathecal or epidural administration in combination with opioids and/or local anaesthetics. This delivery improves pain control because of a possible supra-additive effect during neuropathic pain treatment (194) (LE: 2b).

Summary: treatment of neuropathic pain

- **First-line agent:**
 - nortriptyline, pregabalin, gabapentin
 - duloxetine (first-line treatment in diabetic polyneuropathy only)
 - lidocaine 5% patch (first-line treatment in post-herpetic neuralgia only).
- **Second-line agent:**
 - opioids/tramadol (first-line treatment in patients with neuropathic cancer pain only).
- **Third-line agent:**
 - baclofen
 - transdermal capsaicin 0.075%
 - ketamine (an anaesthetic).

A.2.4.5.6 Invasive analgesic techniques

Studies suggest that 10-30% of patients with cancer pain do not achieve a satisfactory balance between relief and side effects using systemic pharmacotherapy alone without unacceptable drug toxicity (3,120). Anaesthetic and neurosurgical techniques may reduce the need for systemically administered opioids, while achieving relief.

Peripheral nerve catheterisation in the management of cancer pain

Tumour infiltration or compression of a peripheral nerve or plexus can result in severe neuropathic pain resistant to pharmacological treatment. In these patients invasive analgesic techniques may be emphasised (195,196).

Neurolytic blocks to control visceral cancer pain

Visceral cancer pain is mainly treated with NSAIDs and opioids, but neurolytic blockade can be used to optimise palliative treatment for cancer in the viscera. Different neurolytic blockades have been described (197,198). A coeliac plexus block is indicated to treat pain secondary to malignancies of the retroperitoneum or upper abdomen (distal part of the stomach, pancreas,
liver, gall bladder) (199) (LE: 1b). A superior hypogastric plexus block has proven utility for pelvic pain (rectum, vaginal fundus, bladder, prostate, testes, seminal vesicles, uterus and ovaries) due to a neoplasm that is refractory to pharmacological treatment (200-202) (LE: 3).

Neuraxial administration of opioids
The delivery of low-dose opioids near the sites of action in the spinal cord may decrease supraspinally mediated adverse effects. Compared with neuroablative therapies, spinal opioids have the advantage of preserving sensation, strength and sympathetic function (203,204). Contraindications include bleeding diathesis, profound leukopenia and sepsis. A temporary trial of spinal opioid therapy should be performed to assess the potential benefits of this approach before implantation of a permanent catheter.

The addition of a low concentration of a local anaesthetic, such as 0.125-0.25% (levo)bupivacaine, to an epidural/intrathecal opioid increases the analgesic effect without increasing toxicity (205,206). The potential morbidity of these procedures requires well-trained clinicians and long-term monitoring (LE: 2).

A.2.4.6 Breakthrough cancer pain
Breakthrough cancer pain (BTCP) is a common and debilitating problem (207). It has been defined as an increase in pain intensity in patients on regularly administered analgesia. Due to their slow onset of action, oral opioids are not considered to be an efficient treatment for BTCP. Transmucosal, buccal, sublingual and intranasal fentanyl preparations have shown adequate rapid analgesia. Evidence suggests that oral transmucosal fentanyl citrate is effective for BTCP, giving more rapid relief than morphine (208).

All the studies performed have shown that these drugs should be administered to opioid-tolerant patients receiving at least 60 mg/day morphine or its equivalent (209). Proper assessment and classification of BTCP could improve care and support of patients with this syndrome (210) (LE: 1a).
A.2.4.7 Recommendations pharmacotherapy

Bisphosphonates

- Dehydration must be recognised and treated before administration.
 LE: B

- When using zoledronate, reduce the dose in the event of impaired renal function (119).
 LE: B

- Avoid simultaneous administration of aminoglycosides (120).
 LE: B

- Perform clinical examination of the patient’s mouth and jaws; avoid oral/dental surgery during administration of iv bisphosphonates (121-125).
 LE: B

Denosumab

- Denosumab use increases bone-metastasis-free survival and delays time to first bone metastasis in prostate cancer patients.
 LE: 1b

Opioids

- Transdermal fentanyl is equally effective to morphine. The incidence of side effects is lower than for morphine.
 LE: 1b

- Oral transmucosal administration of fentanyl should be used to provide rapid relief of breakthrough pain. The starting dose is 400 μg, or 200 μg in the elderly and those with a history of opioid sensitivity or underlying pulmonary disease.
 LE: 2a

- Inform the patient that the use of morphine has a small risk of addiction.
 LE: 3

Adjuvant analgesics

- Dexamethasone 1-2 mg twice daily can be a valuable adjuvant in the treatment of pain in advanced cancer.
 LE: 2a

Neuropathic pain

Antidepressants

- Offer amitriptyline and nortriptyline as a first line treatment for neuropathic pain, with nortriptyline associated with fewer side effects.
 LE: 1b

- TCAs must be used cautiously in patients with a history of cardiovascular disorders, glaucoma, and urine retention.
 LE: 1b

- Duloxetine is first-line treatment for neuropathic pain due to diabetic polyneuropathy.
 LE: 2a

- Duloxetine may be tried as an analgesic in other neuropathic pain syndromes.
 LE: 3

- Offer gabapentin and pregabalin as first-line treatment for neuropathic pain, especially if tricyclic antidepressants are contraindicated.
 LE: 1b

Local analgesics

- Topical lidocaine 5% should be used as an adjuvant in patients suffering from post-herpetic neuralgia.
 LE: 1b

- Transdermal capsaicin may be used as an adjuvant in patients with neuropathic pain.
 LE: 3

NMDA receptor antagonists

- Ketamine is effective as an analgesic in neuropathic pain, but may be responsible for severe life-threatening side effects and should be reserved for specialised pain clinics and as a last resort (third-line treatment).
 LE: 2b

Invasive analgesic techniques

- Reversible regional anaesthetic techniques must be considered for the management of neuropathic pain.
 LE: GCP

Neuraxial administration of opioids

- Continuous intrathecal or epidural administration of morphine may be considered in patients with inadequate pain relief despite escalating doses with sequential strong opioids, or the development of side effects (nausea, vomiting, constipation, drowsiness, sedation) limiting further dose increase.
 LE: B

GCP = good clinical practice; TCA = tricyclic antidepressants.

A.2.5 Quality of life)

Patients facing advanced stages of PCa frequently experience ‘total pain’, a mix of physical, psychological, spiritual and social suffering (226). Information about the illness and the process of care has proven to reduce distress (211,212). Treatment should include both psychological and somatic symptoms (213).

Physical activities adapted to the patient’s condition are beneficial in the treatment of fatigue (214-216). Family caregivers and support groups are crucial components of the patient support system. Members of PCa selfhelp groups provide each other with various types of assistance, usually non-professional and non-material, for a particular shared, usually burdensome, characteristic (212). Help may involve provision and evaluation of relevant information, relating personal experiences, listening to, and accepting the experiences of others,
providing sympathetic understanding, and establishing social networks. A supportive self-help group may also inform the public or engage in advocacy. All efforts should be aimed at improvement of QoL (212).

A.2.6 Conclusions
The goal of analgesic therapy in cancer patients is to optimise analgesia with the minimum of side effects. Current techniques can provide adequate relief for the large majority of patients. Most will need ongoing analgesic therapy, and requirements often change as the disease progresses. Patients with refractory pain should have access to specialists in pain management or palliative medicine who can provide an integrated multidisciplinary approach.

A.2.7 References

 http://www.redjournal.org/article/S0360-3016(11)01159-X/fulltext
 www.mdpi.com/1424-8247/5/5/529/pdf

176. Spina E, Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004 Jun;6(2);57-75.

207. Quigley C. Opioid switching to improve pain relief and drug tolerability. Cochrane Database of Systematic Reviews 2004, issue 3, art. no.: CD004847.

208. Zeppetella G, Ribeiro MDC. Opioids for the management of breakthrough (episodic) pain in cancer patients. Cochrane Database of Systematic Reviews 2006 Jan, issue 1, art. no.: CD004311.

A.3 POSTOPERATIVE PAIN MANAGEMENT

A.3.1 Background
Postoperative pain is inevitable in surgical patients, and is associated with tissue damage, the presence of drains and tubes, or postoperative complications, or a combination of these (1,2). Approximately 70% of surgical patients experience a certain degree (moderate, severe or extreme) of postoperative pain (3,4) (LE: 1a). This is usually underestimated and undertreated (1,4), leading to increased morbidity and mortality, mostly due to respiratory and thromboembolic complications, increased hospital stay, impaired QoL, and development of chronic pain (1,4-7) (LE: 1a).

A.3.2 Importance of effective postoperative pain management
The physiological consequences of postoperative pain are shown in Table 16. All of these can delay or impair postoperative recovery and increase the economic cost of surgery (longer hospitalisation) (8,9) (LE: 3). Inadequate postoperative pain control may also lead to development of chronic pain (6,10) (LE: 2b).

Table 16: Physiological consequences of postoperative pain

<table>
<thead>
<tr>
<th>Condition</th>
<th>Consequences</th>
<th>Ref.</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress response to surgery</td>
<td>Tissue trauma results in release of mediators of inflammation and stress hormones</td>
<td>(11)</td>
<td>2a</td>
</tr>
<tr>
<td></td>
<td>Activation of this stress response leads to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- retention of water and sodium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- increase in metabolic rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory complications</td>
<td>Shallow breathing</td>
<td>(12)</td>
<td>2b</td>
</tr>
<tr>
<td></td>
<td>Cough suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lobular collapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retention of pulmonary secretions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular complications</td>
<td>Hypertension</td>
<td>(13)</td>
<td>2b</td>
</tr>
<tr>
<td></td>
<td>Tachycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased myocardial work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- myocardial ischaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- angina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- infarction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolic complications</td>
<td>Reduced mobility due to inadequate pain management can lead to thromboembolic episodes</td>
<td>(14)</td>
<td>2a</td>
</tr>
<tr>
<td>Gastrointestinal complications</td>
<td>Gastric stasis</td>
<td>(15)</td>
<td>2b</td>
</tr>
<tr>
<td></td>
<td>Paralytic ileus mostly after open urological operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal complications</td>
<td>Prolonged confinement to bed:</td>
<td>(9)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- reduced mobility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- muscle atrophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological complications</td>
<td>Perioperative pain may provoke fear and anxiety, which can lead to:</td>
<td>(8,9)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- anger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- resentment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- hostility to medical and nursing personnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- insomnia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.3.2.1 Aims of effective postoperative pain management
• To improve patient comfort and satisfaction.
• To facilitate recovery and functional ability.
• To reduce morbidity.
• To promote rapid discharge from hospital (1,2,4) (LE: 1a).

A.3.3 Pre- and postoperative pain management methods
A.3.3.1 Preoperative patient preparation
• Patient evaluation.
• Adjustment or continuation of medication to avoid abstinence syndrome.
• Premedication as part of multimodal analgesia.
• Behavioural-cognitive interventions for patients and families to alleviate anxiety and fear of postoperative pain reduce postoperative analgesic requirements and result in better pain management (1) (LE: 1a).

A.3.3.2 Pain assessment
Careful pain assessment by the surgeon or the acute pain team before and after treatment can lead to more efficient pain control, and diminished morbidity and mortality (1,3) (LE: 2a). In the post-anaesthesia care unit, pain should be evaluated, treated and re-evaluated initially every 15 min and then every 1-2 h. After discharge to the surgical ward, pain should be assessed every 4-8 h before and after treatment (16,17). Various rating scales have been described to measure postoperative pain, but their major disadvantage is that they are all subjective, making their results difficult to evaluate, especially in patients with communication difficulties (16).

A.3.3.3 Pre-emptive analgesia
Pre-emptive or preventive analgesia is defined as the administration of analgesia before surgical incision to prevent central sensitisation from incision or inflammatory injury, to achieve optimal postoperative pain control (18). The results of clinical trials on its efficacy are controversial (18,19) (LE: 2b).

A.3.3.4 Systemic analgesic techniques
A.3.3.4.1 Non-steroidal anti-inflammatory drugs
NSAIDs act by inhibiting cyclo-oxygenase (COX) and the subsequent production of prostaglandins. The main advantages of NSAIDs are that they do not produce respiratory depression or sedation, and seem to decrease the need for opioids (20). However, their analgesic effect is not strong enough for the management of severe postoperative pain (21). For NSAID dosage and administration, see Table 4, section 3.2.

Intravenous administration of NSAIDs should start 30-60 min before the estimated end of surgery, and oral administration should start as soon as possible. Intramuscular administration of analgesic drugs for postoperative pain control is generally avoided because of variability of serum drug concentrations (22).

Their main adverse effects are (21):
• gastric irritation, ulcer formation, bleeding;
• renal impairment;
• bronchospasm, deterioration of asthma;
• platelet dysfunction, inhibition of thromboxane A2;
• perioperative bleeding;
• inhibition of bone healing and osteogenesis.

COX-2 selective inhibitors are associated with fewer gastrointestinal complications and better bone healing. In addition, they cause minimal platelet inhibition compared with non-selective COX inhibitors (23). However, COX-2 inhibitors are contraindicated for long-term use in patients with cardiovascular problems (24). The use of COX-2 inhibitors is approved only for short-term postoperative pain therapy.

A.3.3.4.2 Paracetamol
Paracetamol (acetaminophen) is a relatively safe and effective antipyretic and analgesic for mild to moderate postoperative pain, although a risk of rare but reactions skin reactions have been reported by the U.S. Food and Drug Administration (FDA) (.http://www.fda.gov/drugs/drugsafety/ucm363041.htm). In cases of severe postoperative pain, co-administration of paracetamol with strong opioids seems to reduce the consumption of opioids (25) (LE: 2). Its exact mode of action is unclear, although it may act by centrally inhibiting COX production (26).

Dosage and routes of administration
• 1 g four times daily (orally, iv or rectally). Dose should be reduced to 1 g three times daily in patients with hepatic impairment.
• iv administration of paracetamol should start 30 min before the end of surgery, and oral administration as soon as possible.

Adverse effects
No significant adverse effects have been observed in patients receiving paracetamol for acute postoperative pain. Caution should be taken when it is administered to patients with chronic alcoholism or hepatic failure. A dose > 6 g/day can cause acute renal failure.
Combinations of paracetamol with opioids
Paracetamol in combination with an opioid provides adequate postoperative analgesia for mild to moderate pain without the adverse effects of strong opioids. For dosage and administration of paracetamol/opioid combinations, see Table 5, Section 3.2.

A.3.3.4.3 Metamizole (dipyrone)
Metamizole is an effective antipyretic and analgesic drug used for mild to moderate postoperative pain and renal colic. Its use is prohibited in the USA and some European countries because of single reported cases of neutropenia and agranulocytosis. Elsewhere, it is considered to be a useful analgesic and antipyretic drug for moderate pain. Long-term use of metamizole is best avoided (27,28) (LE: 2b).

Dosage and route of administration
The dose is 500-1000 mg qds (orally, iv or rectally).

Adverse effects
Apart from single sporadic cases of neutropenia and agranulocytosis, metamizole can cause minor side-effects such as nausea, mild hypotension, and allergic reactions. Allergic reactions and the rare complication of agranulocytosis have been described only after direct iv administration, therefore, iv metamizole should be administered as a drip (1 g in 100 mL normal saline).

A.3.3.4.4 Opioids
Opioids are the first-line treatment for severe acute postoperative pain. Correct dose titration can minimise their unwanted effects (29). Opioid dosage and administration can be found in Tables 6 and 7, section 3.2.

A.3.3.4.5 Patient-controlled analgesia
Systemic administration of opioids may follow the “as needed” schedule or “around-the-clock” dosing. The most effective mode is PCA (30,31) (LE: 1a) (Table 17).

Table 17: Typical PCA dosing schedule

<table>
<thead>
<tr>
<th>Drug (concentration)</th>
<th>Bolus size</th>
<th>Lockout interval (min)</th>
<th>Continuous infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine (1 mg/mL)</td>
<td>0.5-2.5 mg</td>
<td>5-10</td>
<td>0.01-0.03 mg/kg/h</td>
</tr>
<tr>
<td>Fentanyl (0.01 mg/mL)</td>
<td>10-20 μg</td>
<td>5-10</td>
<td>0.5-0.1 μg/kg/h</td>
</tr>
<tr>
<td>Pethidine (10 mg/mL)</td>
<td>5-25 mg</td>
<td>5-10</td>
<td>-</td>
</tr>
</tbody>
</table>

Opioids adverse effects are:
- respiratory depression, apnoea;
- sedation;
- nausea, vomiting;
- pruritus;
- constipation;
- hypotension.

A.3.3.4.6 Adjuncts to postoperative analgesia
Adjuncts to postoperative analgesia in low doses, such as ketamine, α2 agonists (clonidine or dexmedetomidine), or gabapentinoids (gabapentin or pregabalin), in appropriate doses and monitored care are beneficial in improving analgesic efficacy and reducing opioid-related side-effects, with good safety and tolerability (32,33).

Low-dose ketamine is defined as a bolus dose < 2 mg/kg when given im or < 1 mg/kg when administered via the iv or epidural route. For continuous iv administration, low-dose ketamine is defined as a rate of < 20 g/kg/min (34). Its use is contraindicated in patients with coronary disease, uncontrolled hypertension, congestive heart failure and arterial aneurysms. There are insufficient data to confirm the neurotoxicity of ketamine, even though some animal studies have shown some degree of neurodegeneration after continuous use (35) (LE: 2b).

Clonidine when given preoperatively, or epidurally postoperatively (1 μg/kg) can reduce opioid requirements (36).

More clinical evidence on dexmedetomidine is necessary to confirm its definite role in acute postoperative pain control (37).
In 17 studies up to 2007, patients received a single preoperative dose of 300-1200 mg gabapentin, 30 min-2 h before surgery in the remaining studies, the drug was administered at a dose of 1200-1800 mg/day at 1-24 h before the procedure and continued for 10 days. Gabapentin, used before as well as after surgery, decreases pain severity and the need for analgesic supplementation (38).

Perioperative pregabalin (300 mg/day) reduces opioid consumption and opioid-related adverse effects after surgery, however postoperative pain intensity is not reduced by pregabalin (39).

Single-injection caudal blocks with clonidine or ketamine are beneficial in paediatric patients (40).

A.3.3.5 Regional analgesic techniques
A.3.3.5.1 Local anaesthetic agents
The most commonly used local anaesthetics are:
• bupivacaine;
• I-bupivacaine;
• ropivacaine.

Bupivacaine is considered to be cardiotoxic in high doses. I-Bupivacaine and ropivacaine appear to be safer, but the degree of motor blockage they provide is not as good as that of bupivacaine. Ropivacaine has the longest duration of action.

A.3.3.5.2 Epidural analgesia
Epidural analgesia provides excellent postoperative pain relief for extended periods after major surgery, and reduces postoperative complications and consumption of opioids (1,2) (LE: 1a) (Table 18).

Table 18: Typical epidural dosing schemes

<table>
<thead>
<tr>
<th>Drug</th>
<th>Single dose</th>
<th>Continuous infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>1-5 mg</td>
<td>0.1-1 mg/h</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>50-100 μg</td>
<td>25-100 μg/h</td>
</tr>
<tr>
<td>Sufentanil</td>
<td>10-50 μg</td>
<td>10-20 μg/h</td>
</tr>
<tr>
<td>Pethidine</td>
<td>10-30 mg</td>
<td>10-60 mg/h</td>
</tr>
<tr>
<td>Bupivacaine 0.125% or ropivacaine 0.2% + fentanyl 2 μg/mL</td>
<td>10-15 mL</td>
<td>2-6 mL/h</td>
</tr>
</tbody>
</table>

*I-bupivacaine doses are equivalent to those of bupivacaine.

A.3.3.5.3 Patient-controlled epidural analgesia
Patient-controlled epidural analgesia (PCEA) has become very common because it allows individualisation of dosage, decreased drug use, and greater patient satisfaction. It also seems to provide better analgesia than intravenous PCA (41,42) (LE: 1a) (Table 19).

Table 19: Typical PCEA dosing schemes

<table>
<thead>
<tr>
<th>Drug</th>
<th>Demand dose</th>
<th>Lockout interval (min)</th>
<th>Continuous rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>100-200 μg</td>
<td>10-15</td>
<td>300-600 μg/h</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>10-15 μg</td>
<td>6</td>
<td>80-120 μg/h</td>
</tr>
<tr>
<td>Pethidine</td>
<td>30 mg</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Bupivacaine 0.125% + fentanyl 4 g/mL</td>
<td>2 mL</td>
<td>10</td>
<td>4 mL/h</td>
</tr>
<tr>
<td>Ropivacaine 0.2% + fentanyl 5 μg/mL</td>
<td>2 mL</td>
<td>20</td>
<td>5 mL/h</td>
</tr>
</tbody>
</table>

A.3.3.5.4 Neural blocks
Local anaesthetic blocks (intermittent and continuous) can be used after urological surgical operations to supplement postoperative analgesia (43) (LE: 2a) (Table 20).
Table 20: Examples of neural blocks

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Drug/dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iliohypogastric or ilioinguinal nerve infiltration after hernia repair</td>
<td>10-20 mL bupivacaine or 0.25-0.5% ropivacaine</td>
</tr>
<tr>
<td>Intercostal nerve infiltration</td>
<td>5-10 mL bupivacaine or 0.25-0.5% ropivacaine</td>
</tr>
<tr>
<td>Continuous intrapleural infusion</td>
<td>10 mL/h bupivacaine or 0.1-0.2% ropivacaine</td>
</tr>
</tbody>
</table>

A.3.3.5.5 Wound infiltration
Intraoperative wound infiltration with local anaesthetic (usually 10-20 mL ropivacaine or 0.25-0.5% bupivacaine) can provide some postoperative analgesia and may reduce the requirement for systemic analgesia (44) (LE: 2b).

A.3.3.5.6 Continuous wound instillation
Continuous postoperative wound instillation of a local anaesthetic via a multi-hole catheter placed intraoperatively by the surgeon has been shown to provide satisfactory analgesia for moderate to severe postoperative pain, reducing consumption of systemic analgesics (45-47) (LE: 2b).

A.3.3.6 Multimodal analgesia
The concept of multimodal (balanced) analgesia is that combining different doses and routes of administration of analgesics improves the effectiveness of pain relief after surgery and reduces the maximal dosage and adverse effects (48) (LE: 2b). It seems to be more effective when different drugs are administered via different routes than when different drugs are administered via a single route (1) (LE: 2b).

A.3.3.7 Postoperative pain management teams
The importance of efficient postoperative pain management has led to the development of acute postoperative pain management teams, which generally consist of nursing and pharmacy personnel led by an anaesthesiologist. They have been shown to improve pain relief, decrease analgesic side-effects, improve patient satisfaction, and decrease overall costs and morbidity rates (49-51) (LE: 2b). Improved pain control can lead to shorter hospitalisation and fewer unscheduled readmissions after day surgery (52) (LE: 3).

A.3.3.8 Recommendations postoperative pain management

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative assessment and preparation of patients allow more effective pain management.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Adequate postoperative pain assessment can lead to more effective pain control and fewer complications.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>NSAIDs are often effective after minor or moderate surgery.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>NSAIDs often decrease the need for opioids.</td>
<td>1b</td>
<td>B</td>
</tr>
<tr>
<td>Avoid long-term use of COX inhibitors in patients with atherosclerotic cardiovascular disease.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>The use of paracetamol is recommended for postoperative pain management because it reduces consumption of opioids.</td>
<td>1b</td>
<td>B</td>
</tr>
<tr>
<td>Administer paracetamol as a single therapy to alleviate mild postoperative pain without major adverse effects.</td>
<td>2a</td>
<td>B</td>
</tr>
<tr>
<td>The use of intravenous patient controlled analgesia is recommended because it provides superior postoperative analgesia, improving patient satisfaction and decreasing risk of respiratory complications.</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>Administer adjuncts in appropriate doses and monitored care to improve analgesic efficacy and reduce opioid-related side-effects.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Administer clonidine preoperatively or epidurally postoperatively to reduce opioid Requirements.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Gabapentin can be administered before as well as after surgery to decrease pain severity and need for analgesic supplementation.</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Epidural analgesia, especially PCEA, provides superior postoperative analgesia, reducing complications and improving patient satisfaction, and is therefore preferable to systemic techniques (41).</td>
<td>A</td>
<td>1b</td>
</tr>
</tbody>
</table>
A.3.4 References

44. Mulroy MF, Burgess FW, Emanuelsson BM. Ropivacaine 0.25% and 0.5%, but not 0.125% provide effective wound infiltration analgesia after outpatient hernia repair, but with sustained plasma drug levels. Reg Anesth Pain Med 1999 Mar-Apr;24(2):136-41.
47. Gupta S, Maheshwari R, Dulara SC. Wound instillation with 0.25% bupivacaine as continuous infusion following hysterectomy. Middle East J Anaesthesiol 2005 Oct;18(3):595-610.
6. **ABBREVIATIONS USED IN THE TEXT**

This list is not comprehensive for the most common abbreviations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate</td>
</tr>
<tr>
<td>ATC</td>
<td>around-the-clock</td>
</tr>
<tr>
<td>CBT</td>
<td>cognitive behavioural therapy</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COX</td>
<td>cyclo-oxygenase</td>
</tr>
<tr>
<td>CRPC</td>
<td>castration-resistant prostate cancer</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>EDTMP</td>
<td>ethylenediaminetetramethylenephosphonate</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organisation for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GCP</td>
<td>good clinical practice</td>
</tr>
<tr>
<td>IASP</td>
<td>International Association for the Study of Pain</td>
</tr>
<tr>
<td>im</td>
<td>intramuscular</td>
</tr>
<tr>
<td>iv</td>
<td>intravenous</td>
</tr>
<tr>
<td>IVU</td>
<td>intravenous urography</td>
</tr>
<tr>
<td>131J-MIBG</td>
<td>131J-metaiodobenzylguanidine</td>
</tr>
<tr>
<td>mCRPC</td>
<td>metastatic castration-resistant prostate cancer</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MSCE</td>
<td>metastatic epidural spinal cord compression</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NRS</td>
<td>numerical rating scale</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>PACU</td>
<td>post-anaesthesia care unit</td>
</tr>
<tr>
<td>PCa</td>
<td>prostate cancer</td>
</tr>
<tr>
<td>PCA</td>
<td>patient-controlled analgesia</td>
</tr>
<tr>
<td>PCEA</td>
<td>patient-controlled epidural analgesia</td>
</tr>
<tr>
<td>prn</td>
<td>as needed</td>
</tr>
<tr>
<td>PRPE</td>
<td>perineal radical prostatectomy</td>
</tr>
<tr>
<td>QoL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RCC</td>
<td>renal cell carcinoma</td>
</tr>
<tr>
<td>RLND</td>
<td>retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>RVT</td>
<td>renal vein thrombosis</td>
</tr>
<tr>
<td>sc</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>153Sm</td>
<td>samarium-153</td>
</tr>
<tr>
<td>89Sr</td>
<td>strontium-89</td>
</tr>
<tr>
<td>SRI</td>
<td>selective serotonin reuptake inhibitors</td>
</tr>
<tr>
<td>SPECT</td>
<td>single photon emission computed tomography</td>
</tr>
<tr>
<td>SWL</td>
<td>extracorporeal shock wave lithotripsy</td>
</tr>
<tr>
<td>TCA</td>
<td>tricyclic antidepressants</td>
</tr>
<tr>
<td>TCC</td>
<td>transitional cell carcinoma</td>
</tr>
<tr>
<td>TENS</td>
<td>transcutaneous electrical nerve stimulation</td>
</tr>
<tr>
<td>TURB</td>
<td>transurethral resection of bladder tumour</td>
</tr>
<tr>
<td>TURP</td>
<td>transurethral resection of prostate</td>
</tr>
<tr>
<td>UHCT</td>
<td>unenhanced helical CT</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
<tr>
<td>VRS</td>
<td>verbal rating scale</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>

Conflict of interest

All members of the General Pain and Palliative Care Guidelines expert panel have provided disclosure statements on all relationships that they have and that might be perceived to be a potential source of conflict of interest. This information is publically accessible through the European Association of Urology website. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.