Guidelines on Male Infertility

© European Association of Urology 2014
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>1. METHODOLOGY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Data identification</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Level of evidence and grade of recommendation</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Publication history</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Potential conflict of interest statement</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Definition</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Epidemiology and aetiology</td>
<td>8</td>
</tr>
<tr>
<td>1.8 Prognostic factors</td>
<td>8</td>
</tr>
<tr>
<td>1.9 Recommendations on epidemiology and aetiology</td>
<td>8</td>
</tr>
<tr>
<td>1.10 References</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. INVESTIGATIONS</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Semen analysis</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 Frequency of semen analysis</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Recommendations for investigations in male infertility</td>
<td>10</td>
</tr>
<tr>
<td>2.3 References</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. TESTICULAR DEFICIENCY (PRIMARY SPERMATOGENIC FAILURE)</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Definition</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Aetiology</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Medical history and physical examination</td>
<td>11</td>
</tr>
<tr>
<td>3.4 Investigations</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1 Semen analysis</td>
<td>11</td>
</tr>
<tr>
<td>3.4.2 Hormonal determinations</td>
<td>11</td>
</tr>
<tr>
<td>3.4.3 Testicular biopsy</td>
<td>12</td>
</tr>
<tr>
<td>3.5 Conclusions and recommendations for testicular deficiency</td>
<td>12</td>
</tr>
<tr>
<td>3.6 References</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. GENETIC DISORDERS IN INFERTILITY</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Chromosomal abnormalities</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1 Sex chromosome abnormalities (Klinefelter’s syndrome and variants [47,XXY; 46,XY/47, XXY mosaicism])</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2 Autosomal abnormalities</td>
<td>15</td>
</tr>
<tr>
<td>4.2.3 Sperm chromosomal abnormalities</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Genetic defects</td>
<td>15</td>
</tr>
<tr>
<td>4.3.1 X-linked genetic disorders and male fertility</td>
<td>15</td>
</tr>
<tr>
<td>4.3.2 Kallmann syndrome</td>
<td>16</td>
</tr>
<tr>
<td>4.3.3 Mild androgen insensitivity syndrome</td>
<td>16</td>
</tr>
<tr>
<td>4.3.4 Other X-disorders</td>
<td>16</td>
</tr>
<tr>
<td>4.4 Y-chromosome and male infertility</td>
<td>16</td>
</tr>
<tr>
<td>4.4.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>4.4.2 Clinical implications of Y microdeletions</td>
<td>16</td>
</tr>
<tr>
<td>4.4.2.1 Testing for Y microdeletions</td>
<td>17</td>
</tr>
<tr>
<td>4.4.2.2 Genetic counselling for AZF deletions</td>
<td>17</td>
</tr>
<tr>
<td>4.4.2.3 Y-chromosome: ‘gr/gr’ deletion</td>
<td>17</td>
</tr>
<tr>
<td>4.4.2.4 Conclusions and recommendations on clinical implications of Y microdeletions</td>
<td>18</td>
</tr>
<tr>
<td>4.4.3 Autosomal defects with severe phenotypic abnormalities and infertility</td>
<td>18</td>
</tr>
<tr>
<td>4.5 Cystic fibrosis mutations and male infertility</td>
<td>18</td>
</tr>
<tr>
<td>4.6 Unilateral or bilateral absence/abnormality of the vas and renal anomalies</td>
<td>19</td>
</tr>
<tr>
<td>4.7 Unknown genetic disorders</td>
<td>19</td>
</tr>
<tr>
<td>4.8 DNA fragmentation in spermatozoa</td>
<td>19</td>
</tr>
<tr>
<td>4.9 Genetic counselling and ICSI</td>
<td>19</td>
</tr>
<tr>
<td>4.10 Conclusions and recommendations for genetic disorders in male infertility</td>
<td>20</td>
</tr>
<tr>
<td>4.11 References</td>
<td>20</td>
</tr>
</tbody>
</table>
5. **OBSTRUCTIVE AZOOSPERMIA**

5.1 Definition

5.2 Classification
 - 5.2.1 Intratesticular obstruction
 - 5.2.2 Epididymal obstruction
 - 5.2.3 Vas deferens obstruction
 - 5.2.4 Ejaculatory duct obstruction
 - 5.2.5 Functional obstruction of the distal seminal ducts

5.3 Diagnosis
 - 5.3.1 Clinical history
 - 5.3.2 Clinical examination
 - 5.3.3 Semen analysis
 - 5.3.4 Hormone levels
 - 5.3.5 Ultrasonography
 - 5.3.6 Testicular biopsy

5.4 Treatment
 - 5.4.1 Intratesticular obstruction
 - 5.4.2 Epididymal obstruction
 - 5.4.3 Proximal vas obstruction
 - 5.4.4 Distal vas deferens obstruction
 - 5.4.5 Ejaculatory duct obstruction

5.5 Conclusions and recommendation for obstructive azoospermia

5.6 References

6. **VARICOCELE**

6.1 Introduction

6.2 Classification

6.3 Diagnosis

6.4 Basic considerations
 - 6.4.1 Varicocele and fertility
 - 6.4.2 Varicocelectomy

6.5 Treatment

6.6 Conclusions and recommendations for varicocele

6.7 References

7. **HYPOGONADISM**

7.1 Introduction

7.2 Hypogonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management

7.3 Hypergonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management

7.4 Conclusion and recommendation for hypogonadism

7.5 References

8. **CRYPTORCHIDISM**

8.1 Introduction

8.2 Incidence of cryptorchidism

8.3 Testicular descent and maldescent

8.4 Hormonal control of testicular descent

8.5 Pathophysiological effects in maldescended testes
 - 8.5.1 Degeneration of germ cells
 - 8.5.2 Relationship with fertility
 - 8.5.3 Germ cell tumours

8.6 Treatment of undescended testes
 - 8.6.1 Hormonal treatment
 - 8.6.2 Surgical treatment

8.7 Conclusions and recommendations for cryptorchidism

8.8 References

9. **IDIOPATHIC MALE INFERTILITY**

9.1 Introduction

9.2 Empirical treatments
9.3 References 40

10. MALE CONTRACEPTION 40
10.1 Introduction 40
10.2 Vasectomy 41
 10.2.1 Surgical techniques 41
 10.2.2 Complications 41
 10.2.3 Vasectomy failure 41
 10.2.4 Counselling 41
10.3 Vasectomy reversal 42
 10.3.1 Length of time since vasectomy 42
 10.3.2 Tubulovasostomy 42
 10.3.3 Microsurgical vasectomy reversal versus epididymal or testicular sperm retrieval and ICSI 42
10.4 Conclusions and recommendations for male contraception 42
10.5 References 42

11. MALE ACCESSORY GLAND INFECTIONS AND INFERTILITY 44
11.1 Introduction 44
11.2 Ejaculate analysis 44
 11.2.1 Introduction 44
 11.2.2 Microbiological findings 44
 11.2.3 White blood cells 44
 11.2.4 Sperm quality 44
 11.2.5 Seminal plasma alterations 44
 11.2.6 Glandular secretory dysfunction 45
 11.2.7 Sperm antibodies 45
 11.2.8 Reactive oxygen species 45
 11.2.9 Therapy 45
11.3 Epididymitis 45
 11.3.1 Introduction 45
 11.3.2 Ejaculate analysis 45
 11.3.3 Treatment 46
11.4 Conclusions and recommendations for male accessory gland infections 46
11.5 References 46

12. GERM CELL MALIGNANCY AND TESTICULAR MICROCALCIFICATION 49
12.1 Germ cell malignancy and male infertility 49
12.2 Testicular germ cell cancer and reproductive function 49
12.3 Testicular microlithiasis 49
12.4 Recommendations for germ cell malignancy and testicular microcalcification 50
12.5 References 50

13. DISORDERS OF EJACULATION 51
13.1 Definition 51
13.2 Classification and aetiology 51
 13.2.1 Anejaculation 51
 13.2.2 Anorgasmia 51
 13.2.3 Delayed ejaculation 51
 13.2.4 Retrograde ejaculation 52
 13.2.5 Asthenic ejaculation 52
 13.2.6 Premature ejaculation 52
 13.2.7 Painful ejaculation 52
13.3 Diagnosis 52
 13.3.1 Clinical history 52
 13.3.2 Physical examination 53
 13.3.3 Post-ejaculatory urinalysis 53
 13.3.4 Microbiological examination 53
 13.3.5 Optional diagnostic work-up 53
13.4 Treatment 53
13.5 Aetiological treatment 53
13.6 Symptomatic treatment 53
 13.6.1 Premature ejaculation 53
 13.6.2 Retrograde ejaculation 53
 13.6.3 Anejaculation 54
13.7 Conclusion and recommendations for disorders of ejaculation 54
13.8 References 55

14. SEMEN CRYOPRESERVATION 56
 14.1 Definition 56
 14.2 Introduction 56
 14.3 Indications for storage 56
 14.4 Precautions and techniques 56
 14.4.1 Freezing and thawing process 56
 14.4.2 Cryopreservation of small numbers of sperm 57
 14.4.3 Testing for infections and preventing cross-contamination 57
 14.4.4 Fail-safe precautions to prevent loss of stored materials 57
 14.4.5 Orphan samples 57
 14.5 Biological aspects 57
 14.6 Cryopreservation of testicular stem cells 58
 14.7 Conclusions and recommendations for semen cryopreservation 58
 14.8 References 58

15. ABBREVIATIONS USED IN THE TEXT 60
1. METHODOLOGY

1.1 Introduction
The European Association of Urology (EAU) Guidelines Panel on Male Infertility has prepared these guidelines to assist urologists and healthcare professionals from related specialties in the treatment of male infertility. Urologists are usually the specialists who are initially responsible for assessing the male partner when male infertility is suspected. However, infertility can be a multifactorial condition requiring multidisciplinary involvement. The Male Infertility Guidelines Panel consists of urologists, endocrinologists and gynaecologists with special training in andrology and experience in the diagnosis and treatment of male infertility.

1.2 Data identification
The recommendations provided in the current guidelines are based on a systemic literature search performed by the panel members. MedLine, Embase, and Cochrane databases were searched to identify original and review articles. The controlled vocabulary of the MeSH database was used alongside a free-text protocol, combining “male infertility” with the terms “diagnosis”, “epidemiology”, “investigations”, “treatment”, “spermatogenic failure”, “genetic abnormalities”, “obstruction”, “hypogonadism”, “varicocele”, “cryptorchidism”, “testicular cancer”, “male accessory gland infection”, “idiopathic”, “contraception”, “ejaculatory dysfunction”, and “cryopreservation”.

All articles published between January 2011 (previous update) and October 2012 were considered for review. The expert panel reviewed these records and selected articles with the highest evidence.

1.3 Level of evidence and grade of recommendation
References in the text have been assessed according to their level of scientific evidence (Table 1), and guideline recommendations have been graded (Table 2) according to the Oxford Centre for Evidence-based Medicine Levels of Evidence (1). Grading aims to provide transparency between the underlying evidence and the recommendation given.

Table 1: Level of evidence*

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Evidence obtained from meta-analysis of randomised trials.</td>
</tr>
<tr>
<td>1b</td>
<td>Evidence obtained from at least one randomised trial.</td>
</tr>
<tr>
<td>2a</td>
<td>Evidence obtained from one well-designed controlled study without randomisation.</td>
</tr>
<tr>
<td>2b</td>
<td>Evidence obtained from at least one other type of well-designed quasi-experimental study.</td>
</tr>
<tr>
<td>3</td>
<td>Evidence obtained from well-designed non-experimental studies, such as comparative studies, correlation studies and case reports.</td>
</tr>
<tr>
<td>4</td>
<td>Evidence obtained from expert committee reports or opinions or clinical experience of respected authorities.</td>
</tr>
</tbody>
</table>

*Modified from (1).

It should be noted that when recommendations are graded, the link between the level of evidence (LE) and grade of recommendation (GR) is not directly linear. Availability of randomised controlled trials (RCTs) may not necessarily translate into a grade A recommendation where there are methodological limitations or disparity in published results.

Alternatively, absence of high level of evidence does not necessarily preclude a grade A recommendation, if there is overwhelming clinical experience and consensus. There may be exceptional situations where corroborating studies cannot be performed, perhaps for ethical or other reasons and in this case unequivocal recommendations are considered helpful. Whenever this occurs, it is indicated in the text as “upgraded based on panel consensus”. The quality of the underlying scientific evidence - although a very important factor - has to be balanced against benefits and burdens, values and preferences, and costs when a grade is assigned (2–4).

The EAU Guidelines Office does not perform structured cost assessments, nor can they address local/national preferences in a systematic fashion. But whenever these data are available, the expert panel will include the information.
Table 2: Grade of recommendation*

<table>
<thead>
<tr>
<th>Grade</th>
<th>Nature of recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Based on clinical studies of good quality and consistency that addressed the specific recommendations, including at least one randomised trial.</td>
</tr>
<tr>
<td>B</td>
<td>Based on well-conducted clinical studies, but without randomised clinical trials.</td>
</tr>
<tr>
<td>C</td>
<td>Made despite the absence of directly applicable clinical studies of good quality.</td>
</tr>
</tbody>
</table>

*Modified from (1).

1.4 Publication history

The EAU Male Infertility Guidelines were first published in 2001, followed by full-text updates in 2004, 2007, 2010 and 2013. For this 2014 print a scoping search was done covering 2012 and 2013, with a cut off date of September 2013. Embase, Medline and the Cochrane Central Register of Controlled Trails were searched, with a limitation to reviews, meta-analysis or meta-analysis of RCTs. After de-duplication 447 unique records were identified, of which 5 publications were selected for inclusion. A quick reference guide presenting the main findings of the Male Infertility Guidelines is also available (Pocket Guidelines), as well as a number of scientific publications in the EAU journal European Urology (5-7). The Male Infertility panel published a separate scientific paper on Vasectomy in 2012 (7). All texts can be viewed and downloaded for personal use at the society website: http://www.uroweb.org/guidelines/online-guidelines/.

1.5 Potential conflict of interest statement

The expert panel have submitted potential conflict of interest statements which can be viewed on the EAU website: http://www.uroweb.org/guidelines/.

1.6 Definition

“Infertility is the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy in one year”, World Health Organization (WHO) (8).

1.7 Epidemiology and aetiology

About 15% of couples do not achieve pregnancy within one year and seek medical treatment for infertility. One in eight couples encounter problems when attempting to conceive a first child and one in six when attempting to conceive a subsequent child. Three percent of women remain involuntarily childless, while 6% of parous women are not able to have as many children as they would wish (9). Infertility affects both men and women. In 50% of involuntarily childless couples, a male-infertility-associated factor is found together with abnormal semen parameters. A fertile partner may compensate for the fertility problem of the man and thus infertility usually becomes manifest if both partners have reduced fertility (8). Male fertility can be reduced as a result of (8):

- congenital or acquired urogenital abnormalities;
- malignancies;
- urogenital tract infections;
- increased scrotal temperature (e.g. as a consequence of varicocele);
- endocrine disturbances;
- genetic abnormalities;
- immunological factors.

In 30-40% of cases, no male-infertility-associated factor is found (idiopathic male infertility). These men present with no previous history of diseases affecting fertility and have normal findings on physical examination and endocrine laboratory testing. However, semen analysis reveals a decreased number of spermatozoa (oligozoospermia), decreased sperm motility (asthenozoospermia), and many abnormal forms of sperm (teratozoospermia). These sperm abnormalities usually occur together and are called oligo-astheno-teratozoospermia (OAT) syndrome.

Table 3 summarises the main male-infertility-associated factors. Idiopathic male infertility is assumed to be caused by several factors, including endocrine disruption as a result of environmental pollution, reactive oxygen species, or genetic and epigenetic abnormalities.
Table 3: Male infertility causes and associated factors and percentage of distribution in 10,469 patients (10)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Unselected patients (n = 12,945)</th>
<th>Azoospermic patients (n = 1,446)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>100%</td>
<td>11.2%</td>
</tr>
<tr>
<td>Infertility of known (possible) cause</td>
<td>42.6%</td>
<td>42.6%</td>
</tr>
<tr>
<td>Maldescended testes</td>
<td>8.4</td>
<td>17.2</td>
</tr>
<tr>
<td>Varicocele</td>
<td>14.8</td>
<td>10.9</td>
</tr>
<tr>
<td>Sperm autoantibodies</td>
<td>3.9</td>
<td>-</td>
</tr>
<tr>
<td>Testicular tumour</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Others</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Idiopathic infertility</td>
<td>30.0</td>
<td>13.3</td>
</tr>
<tr>
<td>Hypogonadism</td>
<td>10.1</td>
<td>16.4</td>
</tr>
<tr>
<td>Klinefelter syndrome (47, XXY)</td>
<td>2.6</td>
<td>13.7</td>
</tr>
<tr>
<td>XX male</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Primary hypogonadism of unknown cause</td>
<td>2.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Secondary (hypogonadotropic) hypogonadism</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Kallmann syndrome</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Idiopathic hypogonadotrophic hypogonadism</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Residual after pituitary surgery</td>
<td><0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Others</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Late-onset hypogonadism</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>Constitutional delay of puberty</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>General/systemic disease</td>
<td>2.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Cryopreservation due to malignant disease</td>
<td>7.8</td>
<td>12.5</td>
</tr>
<tr>
<td>Testicular tumour</td>
<td>5.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>1.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Leukaemia</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Disturbance of erection/ejaculation</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>Obstruction</td>
<td>2.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Vasectomy</td>
<td>0.9</td>
<td>5.3</td>
</tr>
<tr>
<td>Cystic fibrosis (CBAVD)</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Others</td>
<td>0.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

1.8 Prognostic factors

Prognostic factors for male infertility are:
- duration of infertility;
- primary or secondary infertility;
- results of semen analysis and
- age and fertility status of female partner.

The cumulative pregnancy rate is 27% in infertile couples with 2 years of follow-up and oligozoospermia as the primary cause of infertility (11). Female age is the most important single variable influencing outcome in assisted reproduction (12). Compared to a woman aged 25 years, the fertility potential of a woman aged 35 years is reduced to 50%, to 25% at 38 years, and less than 5% at over 40 years. In many Western countries, women postpone their first pregnancy until after their education and starting a career.

1.9 Recommendations on epidemiology and aetiology

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>To categorise infertility, both partners should be investigated simultaneously.</td>
<td>C</td>
</tr>
<tr>
<td>In the diagnosis and management of male subfertility, the fertility status of the female partner must also be considered, because this might determine the final outcome (9).</td>
<td>B</td>
</tr>
<tr>
<td>The urologist/andrologist should examine any man with fertility problems for urogenital abnormalities. This applies to all men diagnosed with reduced semen quality. A diagnosis is mandatory to start appropriate therapy (drugs, surgery, or assisted reproduction).</td>
<td>C</td>
</tr>
</tbody>
</table>
1.10 References

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376019/?tool=pubmed

http://www.who.int/reproductivehealth/publications/infertility/978924156361/en/

2. INVESTIGATIONS

2.1 Semen analysis

A medical history and physical examination are standard assessments in all men, including semen analysis. A comprehensive andrological examination is indicated if semen analysis shows abnormalities compared with reference values (Table 4). Important treatment decisions are based on the results of semen analysis, therefore, it is essential that the complete laboratory work-up is standardised. Ejaculate analysis has been standardised by the WHO and disseminated by publication of the WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edn.) (1). It is the consensus that modern spermatology must follow these guidelines.
Table 4: Lower reference limits (5th centiles and their 95% CIs) for semen characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower reference limit (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semen volume (mL)</td>
<td>1.5 (1.4-1.7)</td>
</tr>
<tr>
<td>Total sperm number (10^6/ejaculate)</td>
<td>39 (33-46)</td>
</tr>
<tr>
<td>Sperm concentration (10^6/mL)</td>
<td>15 (12-16)</td>
</tr>
<tr>
<td>Total motility (PR + NP)</td>
<td>40 (38-42)</td>
</tr>
<tr>
<td>Progressive motility (PR, %)</td>
<td>32 (31-34)</td>
</tr>
<tr>
<td>Vitality (live spermatozoa, %)</td>
<td>58 (55-63)</td>
</tr>
<tr>
<td>Sperm morphology (normal forms, %)</td>
<td>4 (3.0-4.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other consensus threshold values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH > 7.2</td>
</tr>
<tr>
<td>Peroxidase-positive leukocytes (10^6/mL) < 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR test (motile spermatozoa with bound particles, %) < 50</td>
</tr>
<tr>
<td>Immunobead test (motile spermatozoa with bound beads, %) < 50</td>
</tr>
<tr>
<td>Seminal zinc (μmol/ejaculate) ≥ 2.4</td>
</tr>
<tr>
<td>Seminal fructose (μmol/ejaculate) ≥ 13</td>
</tr>
<tr>
<td>Seminal neutral glucosidase (mU/ejaculate) ≤ 20</td>
</tr>
</tbody>
</table>

CIs = confidence intervals; MAR = mixed antiglobulin reaction NP = non-progressive; PR = progressive.

2.1.1 Frequency of semen analysis

If the results of semen analysis are normal according to WHO criteria, one test is sufficient. If the results are abnormal in at least two tests, further andrological investigation is indicated. It is important to differentiate between the following:

- oligozoospermia: spermatozoa < 15 million/mL;
- asthenozoospermia: < 32% motile spermatozoa;
- teratozoospermia: < 4% normal forms.

Often, all three anomalies occur simultaneously, which is defined as OAT syndrome. As in azoospermia, in extreme cases of oligozoospermia (spermatozoa < 1 million/mL), there is an increased incidence of obstruction of the male genital tract and genetic abnormalities.

2.2 Recommendations for investigations in male infertility

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>According to WHO criteria, andrological investigations are indicated if semen analysis is abnormal in at least two tests.</td>
<td>A</td>
</tr>
<tr>
<td>Assessment of andrological status must consider the suggestions made by WHO for the standardised investigation, diagnosis, and management of the infertile couple; this will result in implementation of evidence-based medicine in this interdisciplinary field of reproductive medicine (2).</td>
<td>C</td>
</tr>
<tr>
<td>Semen analysis must follow the guidelines of the WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edn.) (1).</td>
<td>A*</td>
</tr>
</tbody>
</table>

*Upgraded following panel consensus

2.3 References

3. TESTICULAR DEFICIENCY (PRIMARY SPERMATOGENIC FAILURE)

3.1 Definition
Testicular deficiency as a consequence of primary spermatogenic failure is caused by conditions other than hypothalamic-pituitary disease and obstruction of the male genital tract. It is the commonest form of reduced male fertility. Testicular deficiency may have different aetiologies and present clinically as severe OAT or non-obstructive azoospermia (NOA) (1).

3.2 Aetiology
The causes of testicular deficiency are summarised in Table 5.

Table 5: Causes of testicular deficiency

<table>
<thead>
<tr>
<th>Factors</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
<td>Anorchia</td>
</tr>
<tr>
<td></td>
<td>Testicular dysgenesis/cryptorchidism</td>
</tr>
<tr>
<td></td>
<td>Genetic abnormalities (karyotype, Y-chromosome deletions)</td>
</tr>
<tr>
<td>Acquired</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Testicular torsion</td>
</tr>
<tr>
<td></td>
<td>Post-inflammatory forms, particularly mumps orchitis</td>
</tr>
<tr>
<td></td>
<td>Exogenous factors (medications, cytotoxic or anabolic drugs, irradiation, heat)</td>
</tr>
<tr>
<td></td>
<td>Systemic diseases (liver cirrhosis, renal failure)</td>
</tr>
<tr>
<td></td>
<td>Testicular tumour</td>
</tr>
<tr>
<td></td>
<td>Varicocele</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>Surgery that may compromise vascularisation of the testes and lead to testicular atrophy</td>
</tr>
<tr>
<td></td>
<td>Unknown aetiology</td>
</tr>
<tr>
<td></td>
<td>Unknown pathogenesis</td>
</tr>
</tbody>
</table>

3.3 Medical history and physical examination
Typical findings from the history and physical examination of a patient with testicular deficiency are:
- cryptorchidism;
- testicular torsion;
- genitourinary infection;
- testicular trauma;
- exposure to environmental toxins;
- gonadotoxic medication including anabolic drugs;
- exposure to radiation or cytotoxic agents;
- testicular cancer;
- absence of testes;
- abnormal secondary sexual characteristics;
- gynaecomastia;
- abnormal testicular volume and/or consistency;
- varicocele.

3.4 Investigations
Routine investigations include semen analysis and hormonal determinations. Other investigations may be required depending on the individual situation.

3.4.1 Semen analysis
In NOA, semen analysis shows normal ejaculate volume and azoospermia after centrifugation. A recommended method is semen centrifugation at 3000 g for 15 min and a thorough microscopic examination by phase contrast optics at ×200 magnification of the pellet. All samples can be stained and re-examined microscopically (2).

3.4.2 Hormonal determinations
In men with testicular deficiency, hypergonadotrophic hypogonadism is usually present, with high levels of follicle-stimulating hormone (FSH) and luteinising hormone (LH), and sometimes low levels of testosterone.
Generally, the levels of FSH correlate with the number of spermatogonia:

- when spermatogonia are absent or markedly diminished, FSH values are usually elevated;
- when the number of spermatogonia is normal, but maturation arrest exists at the spermatocyte or spermatid level, FSH values are within the normal range.

However, for an individual patient, FSH levels do not accurately predict the spermatogenesis status (3-5).

3.4.3 Testicular biopsy

Testicular biopsy can be part of intracytoplasmic sperm injection (ICSI) treatment in patients with clinical evidence of NOA. Testicular sperm extraction (TESE) is the technique of choice and shows excellent repeatability (6-8). Spermatogenesis may be focal, which means that in about 50% of men with NOA, spermatozoa can be found and used for ICSI. Most authors therefore recommend taking several testicular samples (9,10). There is a good correlation between the histology found upon diagnostic biopsy and the likelihood of finding mature sperm cells during testicular sperm retrieval and ICSI (7,11,12). However, no threshold value has been found for FSH, inhibin B, or testicular volume and successful sperm harvesting. When there are complete AZFa and AZFb microdeletions, the likelihood of sperm retrieval is almost zero.

Microsurgical TESE increases retrieval rates versus conventional TESE, and should be preferred in severe cases of non-obstructive azoospermia (13-16). After opening the testis, an enlarged tubule is excised using micro-scissors or forceps. Then, tubules are minced using mechanical or enzymatic digestion to facilitate sperm search (16). Positive retrievals are reported even in conditions such as Sertoli cell only syndrome type II (1). Percutaneous epididymal sperm aspiration (PESA) results in lower retrieval rates than microsurgical TESE and does not allow histological examination to detect carcinoma in situ (CIS) and testicular malignancies (17,18). PESA may also result in more tubular and vascular damage than TESE (19).

The results of ICSI are worse when using sperm retrieved from men with NOA compared to sperm from ejaculated semen and from men with obstructive azoospermia (OA) (20-24). Birth rates are lower in NOA versus OA (19% vs 28%) (25).

- ICSI results in significantly lower fertilisation and implantation rates (26).
- Miscarriage rates are higher in NOA versus OA (11.5% vs 2.5%) (27).
- Neonatal health in terms of birth parameters, major anomalies and chromosomal aberrations in a large cohort of children born after use of non- ejaculated sperm is comparable to the outcome of children born after use of ejaculated sperm (28).

In OA, there were no significant differences in ICSI results between testicular and epididymal sperm (23). Also, no significant differences have been reported in ICSI results between the use of fresh and frozen-thawed sperm (23,25,26).

3.5 Conclusions and recommendations for testicular deficiency

Conclusions

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired spermatogenesis is often associated with elevated FSH concentration.</td>
<td>3</td>
</tr>
<tr>
<td>Spermatozoa are found in about 50% of patients with NOA.</td>
<td>2a</td>
</tr>
<tr>
<td>Pregnancies and live births are eventually obtained in 30-50% of couples with NOA, when spermatozoa have been found in the testicular biopsy.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men who are candidates for sperm retrieval must receive appropriate genetic counselling.</td>
<td>A</td>
</tr>
<tr>
<td>Testicular biopsy is the best procedure to define the histological diagnosis and possibility of finding sperm. Spermatozoa should be cryopreserved for use in ICSI.</td>
<td>A</td>
</tr>
<tr>
<td>For patients with NOA who have spermatozoa in their testicular biopsy, ICSI with fresh or cryopreserved spermatozoa is the only therapeutic option.</td>
<td>A</td>
</tr>
<tr>
<td>Men with NOA can be offered TESE with cryopreservation of the spermatozoa to be used for ICSI (28).</td>
<td>A</td>
</tr>
<tr>
<td>To increase the chances of positive sperm retrieval in men with NOA, TESE (microsurgical or multiple) should be used.</td>
<td>A</td>
</tr>
</tbody>
</table>

3.6 References

4. GENETIC DISORDERS IN INFERTILITY

4.1 Introduction
All urologists working in andrology must have an understanding of genetic abnormalities associated with infertility, so that they can provide correct advice to couples seeking fertility treatment. Men with very low sperm counts can be offered a reasonable chance of paternity, using in vitro fertilisation (IVF), ICSI, and sperm harvesting from the epididymis or the testes in case of azoospermia. However, the spermatozoa of infertile men show an increased rate of aneuploidy, structural chromosomal abnormalities, and DNA damage, carrying the risk of passing genetic abnormalities to the next generation. Current routine clinical practice is based on the screening of genomic DNA from peripheral blood samples, however, screening of chromosomal anomalies in spermatozoa is also feasible and can be performed in selected cases (1,2).

4.2 Chromosomal abnormalities
Chromosome abnormalities can be numerical (e.g. trisomy) or structural (e.g. inversions or translocations) (3). In a survey of pooled data from 11 publications, including 9,766 infertile men, the incidence of chromosomal abnormalities was 5.8% (3). Of these, sex chromosome abnormalities accounted for 4.2% and autosomal abnormalities for 1.5%. In comparison, the incidence of abnormalities was 0.38% in pooled data from three series, with a total of 94,465 newborn male infants, of which 131 (0.14%) were sex chromosome abnormalities and 232 (0.25%) autosomal abnormalities (3). The frequency of chromosomal abnormalities increases as testicular deficiency becomes more severe. Patients with a spermatozoa count < 5 million/mL already show
a 10-fold higher incidence (4%) of mainly autosomal structural abnormalities compared with the general population (5). Men with NOA are at highest risk (6).

Based on the frequencies of chromosomal aberrations in patients with different sperm concentration, karyotype analysis is indicated in men with azoospermia or oligozoospermia (spermatozoon < 10 million/mL) (5,7). If there is a family history of recurrent spontaneous abortions, malformations or mental retardation, karyotype analysis should be requested, regardless of the sperm concentration.

4.2.1 **Sex chromosome abnormalities (Klinefelter’s syndrome and variants [47,XXY; 46,XY/47,XXY mosaicism])**

Klinefelter’s syndrome is the most common sex chromosome abnormality (3,8). Adult men with Klinefelter’s syndrome have small firm testicles, devoid of germ cells. The phenotype varies from a normally virilised man to one with the stigmata of androgen deficiency, including female hair distribution, scant body hair, and long arms and legs due to late epiphyseal closure. Leydig cell function is commonly impaired in men with Klinefelter’s syndrome (9). Testosterone levels may be normal or low, oestradiol levels normal or elevated, and FSH levels increased. Libido is often normal despite low testosterone levels, but androgen replacement may be needed as the patient ages.

Germ cell presence and sperm production are variable in men with Klinefelter’s mosaicism, 46,XY/47,XXY. There is one case report of declining spermatogenesis in a man with Klinefelter’s syndrome, with the recommendation that early sperm retrieval should be considered (10). Based on sperm fluorescence in situ hybridisation (FISH) studies showing an increased frequency of sex chromosomal abnormalities and increased incidence of autosomal aneuploidy (disomy for chromosomes 13, 18 and 21), concerns have been raised about the chromosomal normality of the embryos generated through ICSI (11).

The production of 24,XY sperm has been reported in 0.9% and 7.0% of men with Klinefelter’s mosaicism (12,13) and in 1.36-25% of men with somatic karyotype 47,XXY (14-17). In patients with azoospermia, TESE or (micro-TESE) can be proposed as a therapeutic option since spermatozoa can be recovered in about 30% of cases. To date, 49 healthy children have been born using ICSI without preimplantation genetic diagnosis (PGD) and the conception of one 47,XXY foetus has been reported (8). However, a study of ICSI combined with PGD in 113 embryos reported a significant fall in the rate of normal embryos for couples with Klinefelter’s syndrome with respect to controls (54% vs 77.2%) (15). Due to the significant increase of sex chromosomal and autosomal abnormalities in the embryos of Klinefelter’s patients, PGD or amniocentesis analysis should be considered.

Follow-up (possibly every year) of men with Klinefelter’s syndrome is required and androgen replacement therapy should be started when testosterone level is in the range of hypoandrogenism.

4.2.2 **Autosomal abnormalities**

Genetic counselling should be offered to all couples seeking fertility treatment (including IVF/ICSI) when the male partner is known or found to have an autosomal karyotype abnormality.

The most common autosomal karyotype abnormalities are Robertsonian translocations, reciprocal translocations, paracentric inversions, and marker chromosomes. It is important to look for these structural chromosomal anomalies because there is an increased associated risk of aneuploidy or unbalanced chromosomal complements in the foetus. As with Klinefelter’s syndrome, sperm FISH analysis provide a more accurate risk estimation of affected offspring, however, the diffusion of this genetic test is largely limited by the availability of laboratories able to perform this analysis.

When IVF/ICSI is carried out for men with translocations, PGD or amniocentesis should be performed. Embryos with known unbalanced translocation should not be implanted.

4.2.3 **Sperm chromosomal abnormalities**

Sperm can be examined for their chromosomal constitution using multicolour FISH both in men with normal karyotype and with anomalies. Aneuploidy in sperm, particularly sex chromosome aneuploidy, is associated with severe damage to spermatogenesis (3,18-20) and with translocations (21).

Florescence in situ hybridisation analysis of spermatozoa remains a research investigation, although it has been proposed for clinical use to assess spermatozoa from men with defined andrological conditions (18). Techniques are needed to separate populations of genetically abnormal sperm from normal sperm or to safely screen individual spermatozoa before IVF and ICSI.

4.3 Genetic defects

4.3.1 **X-linked genetic disorders and male fertility**

Each man has only one X-chromosome. An X-linked recessive disorder manifests in males. The defect will be transmitted to daughters, but not to sons.
4.3.2 **Kallmann syndrome**
The most common X-linked disorder in infertility practice is Kallmann syndrome due to mutation in the KALIG-1 gene on Xp22.3 (22). Several newly identified autosomal gene mutations can also cause Kallmann syndrome (23). Patients with Kallmann syndrome have hypogonadotrophic hypogonadism and anosmia, but may also have other clinical features, including facial asymmetry, cleft palate, colour blindness, deafness, maldescended testes, and unilateral renal aplasia.

Spermatogenesis can be relatively easily induced by hormonal treatment (24), therefore, genetic screening prior to therapy is advisable although it is limited by the rarity of specialised genetic laboratories that can offer this genetic test. Treatment with gonadotropins allows natural conception in most cases, even for men with a relatively low sperm count. Thus, identification of the involved gene (X-linked, autosomal dominant or recessive) can help to provide more accurate genetic counselling, that is, risk estimation for transmission to the offspring.

4.3.3 **Mild androgen insensitivity syndrome**
The AR gene is located on the long arm of the X-chromosome. Mutations in the AR gene may result in mild to complete androgen insensitivity (25). The phenotypic features of complete androgen insensitivity syndrome are female external genitalia and absence of pubic hair (Morris syndrome). In partial androgen insensitivity syndrome, several different phenotypes are evident, ranging from predominantly female phenotype through ambiguous genitalia, to predominantly male phenotype with micropenis, perineal hypospadias, and cryptorchidism. The latter phenotype is also termed Reifenstein syndrome. In the above-mentioned severe forms of androgen resistance, there is no risk of transmission because affected men cannot generate their own biological children using the current technologies. Patients with mild androgen insensitivity syndrome have male infertility as their primary or even sole symptom. Disorders of the androgen receptor causing infertility in the absence of any genital abnormality are rare, and only a few mutations have been reported in infertile (26-29) or fertile (30) men.

4.3.4 **Other X-disorders**
An unexpectedly high number of genes with a testis-specific or enriched expression pattern have been identified on the X-chromosome, and in particular, premeiotic genes are over-represented on the X-chromosome compared with autosomal chromosomes (31,32). Nevertheless, to date only a few genes have been screened in relatively small populations and none of them appear relevant for male infertility (33,34). Two recent independent studies showed a significantly higher deletion load on the X-chromosome in men with spermatogenic failure with respect to normozoospermic controls (35,36).

4.4 **Y-chromosome and male infertility**
4.4.1 **Introduction**
The first association between azoospermia and microscopically detectable deletions of the long arm of the Y-chromosome was demonstrated in 1976 (37). With the advent of molecular genetic tools, microdeletions have been defined in three non-overlapping regions termed AZFa, AZFb and AZFc (38). With knowledge of the precise structure of the Y-chromosome in Yq11, it subsequently became clear that the AZFb and AZFc regions overlap and that there is no AZFd region (39). Clinically relevant deletions remove partially, or in most cases completely, one or more of the AZF regions, and are the most frequent molecular genetic cause of severe oligozoospermia and azoospermia (40). In each AFZ region, there are several spermatogenesis candidate genes (41). Deletions occur en bloc (i.e. removing more than one gene), thus, it is not possible to determine the role of a single AZF gene from the AZF deletion phenotype and it is unclear if they all participate in spermatogenesis. Gene-specific deletions, which remove a single gene, have been reported only in the AZFa region and concern the USP9Y gene. These studies have suggested that USP9Y is most likely to be a “fine tuner” of sperm production, and its specific screening is not advised (42).

4.4.2 **Clinical implications of Y microdeletions**
The clinical significance of Yq microdeletions can be summarised as follows:
- They are not found in normozoospermic men, proving there is a clear cut cause-and-effect relationship between Y-deletions and spermatogenic failure (43).
- The highest frequency of Y-deletions is found in azoospermic men (8-12%), followed by oligozoospermic (3-7%) men.
- Deletions are extremely rare with a sperm concentration > 5 million/mL (~0.7%).
- AZFc deletions are most common (65-70%), followed by Y-deletions of the AZFb and AZFb+c or AZFa+b+c regions (25-30%). AZFa region deletions are rare (5%).
- Complete removal of the AZFa region is associated with severe testicular phenotype (Sertoli cell only syndrome), while complete removal of the AZFb region is associated with spermatogenic rest.
Complete removal of the AZFc region causes a variable phenotype ranging from azoospermia to oligozoospermia.

- Classical (complete) AZF deletions do not confer a risk for cryptorchidism or testicular cancer (40).

The specificity and genotype/phenotype correlation reported above means that Y deletion analysis has both a diagnostic and prognostic value for testicular sperm retrieval (40).

4.4.2.1 Testing for Y microdeletions

Indications for AZF deletion screening are based on sperm count and include azoospermia and severe oligozoospermia (spermatozoa count < 5 million/mL). Thanks to the European Academy of Andrology (EAA) guidelines (44) and EAA/EMQN (European Molecular Genetics Quality Network) external quality control programme (http://www.emqn.org/emqn/), Yq testing has become more homogeneous and reliable in different routine genetic laboratories. The EAA guidelines provide a set of primers capable of detecting > 95% of clinically relevant deletions (44). The primers consist of two markers for each region and control markers from the Yp and X-chromosomes. The initial reports of large variability of deletion frequencies are more likely to have been caused by technical problems and unreliable markers rather than be an expression of true ethnic differences.

4.4.2.2 Genetic counselling for AZF deletions

After conception, any Y-deletions are transmitted obligatorily to the male offspring, and genetic counselling is therefore mandatory. In most cases, father and son have the same microdeletion (45-48), but occasionally the son has a larger one (49). The extent of spermatogenic failure (still in the range of azoo-/oligozoospermia) cannot be predicted entirely in the son, due to the different genetic background and the presence or absence of environmental factors with potential toxicity for reproductive function. A significant proportion of spermatozoa from men with complete AZFc deletion are nullisomic for sex chromosomes (50,51), indicating a potential risk for any offspring to develop 45,X0 Turner’s syndrome and other phenotypic anomalies associated with sex chromosome mosaicism, including ambiguous genitalia. The screening for Y-chromosome microdeletions in patients bearing a mosaic 46,XY/45,X0 karyotype with sexual ambiguity and/or Turner stigmata has shown a relatively high incidence of AZFc deletions (33%) (52). There are data to support the association of Yq microdeletions with an overall Y-chromosomal instability, which leads to the formation of 45,X0 cell lines (53,54). Despite this theoretical risk, babies born from fathers affected by Yq microdeletions are phenotypically normal (40,44). This could be due to the reduced implantation rate and a likely higher risk of spontaneous abortion of embryos bearing a 45,X0 karyotype.

When ICSI is used in the presence of a Y microdeletion, long-term follow up of any male children is needed with respect to their fertility status and cryopreservation of spermatozoa at a young age can be considered.

4.4.2.3 Y-chromosome: ‘gr/gr’ deletion

A new type of Yq deletion, known as the gr/gr deletion, has been described in the AZFc region (55). This deletion removes half of the gene content of the AZFc region, affecting the dosage of multicopy genes mapping inside this region. There was an almost eightfold higher risk of developing oligozoospermia [odds ratio (OR) = 7.9, 95% confidence interval (CI): 1.8-33.8; \(P < 0.001 \)] in gr/gr deletion carriers in the largest Caucasian study population published to date (56). The frequency of gr/gr deletion in oligozoospermic patients is ~4%. According to four meta-analyses, gr/gr deletion is a significant risk factor for impaired sperm production (57,58).

However, it is worth noticing that both the frequency of gr/gr deletion and its phenotypic expression vary between different ethnic groups, depending on the Y-chromosome background. For example, in some Y haplogroups, the deletion is fixed and appears to have no negative effect on spermatogenesis. Consequently, the routine screening for gr/gr deletion is a still a debated issue, especially in those laboratories serving diverse ethnic and geographic populations. A large multicentre study has shown that gr/gr deletion is a potential risk factor for testicular germ cell tumours (59). However, these data need further confirmation in an ethnically and geographically matched case-control study setting. For genetic counselling it is worth noticing that partial AZFc deletions (gr/gr and b2/b3) may predispose to complete AZFc deletion in the next generation (60).
4.4.2.4 Conclusions and recommendations on clinical implications of Y microdeletions

Conclusions

<table>
<thead>
<tr>
<th>Gr/gr deletion has been confirmed as a significant risk factor for impaired sperm production, whereas further evidence of the prognostic significance of gr/gr and development of a testicular germ cell tumour is needed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A son who inherits a complete AZF deletion will have abnormal spermatogenesis because these deletions have not been reported in normozoospermic men.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Testing for microdeletions is not necessary in men with OA (with normal FSH) when ICSI is used because spermatogenesis should be normal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Men with severely damaged spermatogenesis (spermatozoa < 5 million/mL) should be advised to undergo Yq microdeletion testing for both diagnostic and prognostic purposes. Yq microdeletion also has important implications for genetic counselling (see below).</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If complete AZFa or AZFb microdeletions are detected, micro-TESE is not necessary because it is extremely unlikely that any sperm will be found.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If a man with Yq microdeletion and his partner wish to proceed with ICSI, they should be advised that microdeletions will be passed to sons, but not to daughters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

4.4.3 Autosomal defects with severe phenotypic abnormalities and infertility

Several inherited disorders are associated with severe or considerable generalised abnormalities and infertility (Table 6). Patients with these defects will be well known to doctors, often from childhood. A fertility problem must be managed in the context of the care of the man as a whole and considering the couple's ability to care for a child.

Table 6: Less common inherited disorders associated with infertility and other alterations to phenotype

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Phenotype</th>
<th>Genetic basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prader-Willi syndrome</td>
<td>Obesity, mental retardation</td>
<td>Deletion of 15q12 on paternally inherited chromosome</td>
</tr>
<tr>
<td>Bardet-Biedie syndrome</td>
<td>Obesity, mental retardation, retinitis pigmentosa, polydactyly</td>
<td>Autosomal recessive 16q21</td>
</tr>
<tr>
<td>Cerebellar ataxia and hyogonadotrophic hypogonadism</td>
<td>Eunuchoidism, disturbances of gait and speech</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>Noonan’s syndrome</td>
<td>Short stature, webbed neck, cardiac and pulmonary abnormalities, cryptorchidism</td>
<td>Autosomal dominant</td>
</tr>
<tr>
<td>Myotonic dystrophy</td>
<td>Muscle wasting, cataract, testicular atrophy</td>
<td>Autosomal dominant 19q13.3</td>
</tr>
<tr>
<td>Dominant polycystic kidney disease</td>
<td>Renal cysts, obstruction from epididymal cysts</td>
<td>Autosomal dominant 16p13.3 and 4q</td>
</tr>
<tr>
<td>5α-reductase deficiency</td>
<td>Perineal or scrotal hypospadias, vaginal pouch, immature female phenotype</td>
<td>Autosomal recessive</td>
</tr>
</tbody>
</table>

4.5 Cystic fibrosis mutations and male infertility

Cystic fibrosis (CF) is a fatal autosomal-recessive disorder. It is the most common genetic disease of Caucasians; 4% are carriers of gene mutations involving the CF transmembrane conductance regulator (CFTR) gene located on chromosome 7p. It encodes a membrane protein that functions as an ion channel and influences the formation of the ejaculatory duct, seminal vesicle, vas deferens and distal two-thirds of the epididymis.

Congenital bilateral absence of the vas deferens (CBAVD) is associated with CFTR gene mutations and was found in ~2% of men with OA attending a clinic in Edinburgh, UK (61). The incidence in men with OA varies between different countries. The clinical diagnosis of absent vasa is easy to miss and all men with azoospermia should be very carefully examined to exclude CBAVD; particularly those with a semen volume < 1.5 mL and pH < 7.0. Approximately 1,500 mutations are listed on the CFTR database (http://www.genet.sickkids.on.ca/cftr/). Many studies have been published of men with CBAVD tested for varying numbers of
mutations. The most frequently found mutations are the ΔF508, R117H and W1282X but their frequency and the presence of other mutations largely depend on the ethnicity of the patient (62,63). Given the functional relevance of a DNA variant (the 5T allele) in a non-coding region of CFTR (63), it is now considered a mild CFTR mutation rather than a polymorphism and it should be analysed in each CAVD patient.

As more mutations are defined and tested for, almost all men with CBAVD will probably be found to have mutations. It is not practical to test for all known mutations, because many have a very low prevalence in a particular population. Routine testing is usually restricted to the most common mutations in a particular community.

Given that this is a recessive disease, mutations should be found on both alleles of the CFTR gene; however, with the routine panel, in most men with CBAVD, mutation is found in only one copy. In these cases a second step analysis is advised which comprises the direct sequencing of the entire gene. Men with CBAVD often have mild clinical stigmata of CF (e.g., history of chest infections).

When a man has CBAVD, it is important to test him and his partner for CF mutations. If the female partner is found to be a carrier of CFTR mutations, the couple must consider very carefully whether to proceed with ICSI using the husband’s sperm, as the risk of a having a child with CF or CBAVD will be 50%, depending on the type of mutations carried by the parents. If the female partner is negative for known mutations, the risk of being a carrier of unknown mutations is ~0.4%.

4.6 Unilateral or bilateral absence/abnormality of the vas and renal anomalies
Unilateral absence of the vas deferens is usually associated with ipsilateral absence of the kidney and probably has a different genetic causation (64). Consequently, in these subjects CFTR mutation screening is not indicated. Men with unilateral absence of the vas deferens are usually fertile, and the condition is most commonly encountered as an incidental finding in the vasectomy clinic. CFTR gene mutation screening is indicated in men with unilateral absence of the vas deferens with normal kidneys.

An abdominal ultrasound should be undertaken both in unilateral and bilateral absence of vas deferens. Findings may range from unilateral absence of the vas with ipsilateral absence of the kidney, to bilateral vessel abnormalities and renal abnormalities, such as pelvic kidney (65).

4.7 Unknown genetic disorders
Considering the high predicted number of genes involved in male gametogenesis, it is likely that most idiopathic forms of spermatogenic disturbances are caused by mutations or polymorphisms in spermatogenesis candidate genes (34). However, despite an intensive search for new genetic factors, no clinically relevant gene mutations or polymorphisms (except those related to the Y-chromosome) have so far been identified (34, 66, 67, and references therein). The introduction of new analytical approaches is likely to provide major advances in this field (68,69).

Intracytoplasmic sperm injection is used to enable men with severely damaged spermatogenesis to father children in situations formerly considered hopeless and where very few spermatozoa can be obtained. This has led to concern that children may be born with a foetal abnormality, because ICSI may enable defective sperm to bypass the selective processes of the female genital tract and egg covering. Alternatively, eggs may be fertilised that would otherwise not be.

Intracytoplasmic sperm injection babies have a higher risk of de novo sex chromosomal aberrations (about a threefold increase compared with natural conceptions) and paternally inherited structural abnormalities. Treatment with assisted reproductive technology was associated with increased risks of cardiovascular, musculoskeletal, urogenital, and gastrointestinal defects and cerebral palsy (70-72).

4.8 DNA fragmentation in spermatozoa
There is increased DNA damage in spermatozoa from men with oligozoospermia. This increase is associated with reduced chances of natural conception and an increase of early pregnancy loss (73,74). DNA damage may improve after varicocele ligation (75,76).

4.9 Genetic counselling and ICSI
The best management is to agree treatment with the couple and provide them with full information on the genetic risks. Initially, the couple should be given full information about the risks to the child to help them decide whether to proceed with ICSI. Where there is conflict between the wishes of the couple and the interests of the future child, it may be ethically correct to withhold therapy.

When both partners are known to carry defects (e.g., CFTR mutations), there is up to a 50% chance of the child developing a clinical condition. Many clinicians and infertility clinic personnel may consider it unethical to proceed because their duty of care to the future child and the interests of society outweigh the wishes of the individual couple. If there is a conflict that cannot be resolved by agreement, the interests of a future child probably take precedence over the interests of a couple. The couple also need to give
consideration to preimplantation diagnosis and replacement only of normal embryos.

4.10 Conclusions and recommendations for genetic disorders in male infertility

Conclusions

New insights into the genetic basis of infertility and the advent of ICSI require a good understanding of genetics by clinicians and the general public.

Diagnostic advances will allow us to identify the genetic basis of more disorders and diagnose known disorders at a lower cost. For some of these disorders, gene therapy might be practical in the future.

Recommendations

Standard karyotype analysis should be offered to all men with damaged spermatogenesis (spermatozoa < 10 million/mL) who are seeking fertility treatment by IVF.

Genetic counselling is mandatory in couples with a genetic abnormality found in clinical or genetic investigation and in patients who carry a (potential) inheritable disease.

All men with Klinefelter's syndrome need long-term endocrine follow-up and may require androgen replacement therapy.

For men with severely damaged spermatogenesis (spermatozoa < 5 million/mL), testing for Yq microdeletions is strongly advised.

When a man has structural abnormalities of the vas deferens (unilateral or bilateral absence), he and his partner should be tested for CF gene mutations.

References

5. OBSTRUCTIVE AZOOSPERMIA

5.1 Definition
Obstructive azoospermia OA is the absence of spermatozoa and spermatogenetic cells in semen and post-ejaculate urine due to bilateral obstruction of the seminal ducts. OA is less common than NOA and occurs in 15-20% of men with azoospermia. Common causes of OA are summarised in Table 7.

Men with OA present with normal FSH, normal size testes, and epididymal enlargement. Sometimes, the vas deferens is absent due to congenital factors or previous inguinal or scrotal surgery. Obstruction in primary infertile men is often present at the epididymal level; other sites of obstruction are the ejaculatory ducts and the vas deferens. In 25% of men with a suspected obstruction, no spermatozoa are found in the epididymis during scrotal exploration, indicating an intratesticular obstruction or non-obstructive cause.

Table 7: Classification of OA, on the basis of ductal obstruction due to congenital and acquired causes

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Congenital</th>
<th>Acquired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epididymal obstruction</td>
<td>Idiopathic epididymal obstruction Epididymis detached from the testis (e.g., in some maldescended testes)</td>
<td>Post-infective (epididymitis) Post-surgical (epididymal cysts)</td>
</tr>
<tr>
<td>Vas deferens obstruction</td>
<td>Congenital absence of vas deferens</td>
<td>Post-vasectomy Post-surgical (hernia, scrotal surgery)</td>
</tr>
<tr>
<td>Ejaculatory duct obstruction</td>
<td>Prostatic cysts (Mullerian cysts)</td>
<td>Post-surgical (bladder neck surgery) Post-infective</td>
</tr>
</tbody>
</table>
5.2 Classification

5.2.1 Intratesticular obstruction
Intratesticular obstruction occurs in 15% of men with OA (1). Congenital forms (dysjunction between rete testis and efferent ductules) are less common than acquired forms, that is, post-inflammatory or post-traumatic obstructions. Acquired forms are often associated with an obstruction of the epididymis and vas deferens.

5.2.2 Epididymal obstruction
Epididymal obstruction or disjunction is the most common cause of OA, affecting 30-67% of azoospermic men with serum FSH level less than twice the upper limit of normal (1-4). Congenital epididymal obstruction usually manifests as CBAVD, which is associated with at least one mutation of the CF gene in 82% of cases (5). This form is often accompanied by absence of the distal part of the epididymis and seminal vesicle agenesis (see Chapter 4). Other congenital forms of obstruction are rare, for example, disjunction between efferent ductules and the corpus epididymis; agenesis/ataresia of a short part of the epididymis.

Congenital forms of epididymal obstruction include chronic sinopulmonary infections (Young’s syndrome) (6), in which obstruction results from a mechanical blockage due to debris within the proximal epididymal lumen. Acquired forms secondary to acute (e.g., gonococcal) and subclinical (e.g., chlamydial) epididymitis are most common (7,8) (see Chapter 11). Acute or chronic traumas can result in epididymal damage (9). Azoospermia caused by surgery may occur after epididymal surgery, for example, cyst removal. Epididymal obstruction secondary to long-lasting distal obstruction must be considered when repairing seminal ducts (10).

5.2.3 Vas deferens obstruction
Vas deferens obstruction is the most common cause of acquired obstruction following vasectomy for sterilisation, with possible subsequent germ cell impairment and fibrosis (11,12). Approximately 2-6% of these men request vasectomy reversal. Of those undergoing vasovasostomy, 5-10% have epididymal blockage as a result of tubule rupture, making epididymovasostomy mandatory (see Chapter 10). Vasal obstruction may also occur after herniotomy (13). Polypropylene mesh herniorrhaphy appears to be able to induce a fibroblastic response that can entrap or obliterate the vas deferens (14). The most common congenital vasal obstruction is CBAVD, often accompanied by CF. Unilateral agenesis or a partial defect is associated with contralateral seminal duct anomalies or renal agenesis in 80% and 26% of cases, respectively (15) (see Chapter 4). Distal vas deferens obstruction includes CBAVD and accidental injury to the vas deferens during hernia surgery (16).

5.2.4 Ejaculatory duct obstruction
Ejaculatory duct obstruction is found in 1-3% of cases of OA (1) and is classified as either cystic or post-inflammatory.

Cystic obstructions are usually congenital (i.e., Mullerian duct cyst or urogenital sinus/ejaculatory duct cysts) and are medially located in the prostate between the ejaculatory ducts. In urogenital sinus abnormalities, one or both ejaculatory ducts empty into the cyst (17), while in Mullerian duct anomalies, the ejaculatory ducts are laterally displaced and compressed by the cyst (18).

Paramedian or lateral intraprostatic cysts are Wolffian in origin and rare in clinical practice (19). Post-inflammatory obstructions of the ejaculatory duct are usually secondary to acute, non-acute, or chronic urethroprostatitis (20).

Congenital or acquired complete obstructions of the ejaculatory ducts are commonly associated with low semen volume, decreased or absent seminal fructose, and acid pH. The seminal vesicles are usually dilated (anterior-posterior diameter > 15 mm) (20,21).

5.2.5 Functional obstruction of the distal seminal ducts
Functional obstruction of the distal seminal ducts might be attributed to local neuropathy (22). This abnormality is often associated with urodynamic dysfunction because of the vasographic patterns of ampullo-vesicular atony or ejaculatory duct hypertony. Functional obstruction of the distal seminal ducts has been reported in juvenile diabetes and polycystic kidney disease (23); however, no relevant pathology has been found in most cases. Results of semen analysis vary between azoospermia, cryptozoospermia and severe OAT syndrome.

5.3 Diagnosis

5.3.1 Clinical history
Clinical history taking should follow the suggestions for investigation of infertile men (see Chapter 2).
Patients should be asked about:

- haematospermia;
- post-ejaculatory pain;
- previous or present urethritis or prostatitis;
- obstructive or irritative urinary symptoms;
- previous scrotal enlargement or pain or surgery;
- previous inguinal herniorrhaphy or trauma;
- chronic sinopulmonary infection.

5.3.2 Clinical examination
Clinical examination should follow suggestions for investigation of infertile men. The following findings indicate OA:

- at least one testis with a volume > 15 mL, although a smaller volume may be found in some patients with OA and concomitant partial testicular failure;
- enlarged and hardened epididymis;
- nodules in the epididymis or vas deferens;
- absence or partial atresia of the vas;
- signs of urethritis;
- prostatic abnormalities.

5.3.3 Semen analysis
At least two examinations must be carried out at an interval of 2-3 months, according to the WHO (see Chapter 2). Azooospermia means the inability to detect spermatozoa after centrifugation at ×400 magnification. Careful repeat observation of several smears after semen liquefaction is needed. If no spermatozoa are found in a wet preparation, then aliquots or the whole semen sample should be centrifuged at 3,000 g for 15 min. The pellet must be examined for spermatozoon.

Ejaculatory duct obstruction or CBAVD is suggested by a semen volume < 1.5 mL, acid pH, and low fructose level. When semen volume is low, a search must be made for spermatozoon in urine after ejaculation, because their presence confirms an ejaculatory disorder. Absence of spermatozoon and immature germ cells in semen smears suggest complete proximal or distal seminal duct obstruction.

5.3.4 Hormone levels
Serum FSH levels may be normal, but do not exclude a testicular cause of azoospermia (e.g., spermatogenic arrest). FSH level is normal in 40% of men with primary spermatogenic failure. Inhibin B seems to have a higher predictive value for normal spermatogenesis (4).

5.3.5 Ultrasonography
Scrotal ultrasound is helpful in finding signs of obstruction (e.g., dilatation of rete testis, enlarged epididymis with cystic lesions, or absent vas deferens) and may demonstrate signs of testicular dysgenesis (e.g., non-homogeneous testicular architecture and microcalcifications) and associated CIS of the testis. For patients with a low seminal volume and in whom distal obstruction is suspected, transrectal ultrasound (TRUS) is essential. If possible, TRUS should be performed at high resolution and with high-frequency (> 7 MHz) biplane transducers. Seminal vesicle enlargement (anterior-posterior diameter 15 mm) (21) and round, anechoic areas in the seminal vesicle (24) are TRUS anomalies more often associated with ejaculatory duct obstruction; especially when semen volume is < 1.5 mL. Mullerian duct or urogenital sinus/ejaculatory duct cysts (20) and ejaculatory duct calcifications (25) are other known anomalies in OA. TRUS may also be used to aspirate seminal vesicle fluid (26).

Invasive diagnosis, including testicular biopsy, scrotal exploration, and distal seminal duct evaluation, are indicated in patients with OA in whom an acquired obstruction of the seminal ducts is suspected. Explorative and recanalisation surgery should be carried out simultaneously.

5.3.6 Testicular biopsy
In selected cases, testicular biopsy may be indicated to exclude spermatogenic failure. Testicular biopsy should be combined with extraction of testicular spermatozoon (i.e., TESE) for cryopreservation and subsequent ICSI, when surgical recanalisation cannot be carried out or has failed. A scoring system for testicular biopsies is provided (e.g., Johnsen Score) (27).

5.4 Treatment
5.4.1 Intratesticular obstruction
Intratesticularly, seminal duct recanalisation is impossible. TESE allows sperm retrieval in nearly all OA patients.
and is therefore recommended. The spermatozoa retrieved may be used immediately for ICSI or should be cryopreserved.

5.4.2 Epididymal obstruction
Microsurgical epididymal sperm aspiration (MESA) (28) is indicated in men with CBAVD. TESE and PESA are also viable options for retrieving epididymal sperm from men with OA (29). Retrieved spermatozoa are used for ICSI. Usually, one MESA procedure provides sufficient material for several ICSI cycles (30) and it produces high pregnancy and fertilisation rates (31). In patients with azoospermia due to acquired epididymal obstruction, end-to-end or end-to-side microsurgical epididymovasostomy is recommended, with the preferred technique being microsurgical intussusception epididymovasostomy (32).

Reconstruction may be carried out unilaterally or bilaterally; patency and pregnancy rates are usually higher with bilateral reconstruction. Before microsurgery, it is important to check for full patency downstream of the epididymis. Anatomical recanalisation following surgery may require 3-18 months. Before microsurgery (and in all cases where recanalisation is impossible), epididymal spermatozoa should be aspirated and cryopreserved for use in ICSI in case of surgical failure (30).

Patency rates range between 60% and 87% (33-35) and cumulative pregnancy rates between 10% and 43%. Recanalisation success rates may be adversely affected by preoperative and intra-operative findings (e.g., concomitant abnormal testicular histology, absence of sperm in the spermatic fluid on sectioning the small epididymal tubules, or extensive fibrosis of the epididymis).

5.4.3 Proximal vas obstruction
Proximal vas obstruction after vasectomy requires microsurgical vasectomy reversal (see Chapter 10). Vasovasostomy is also required in rare cases of proximal vasal obstructions (e.g., iatrogenic, post-traumatic, or post-inflammatory). The absence of spermatozoa in the intraoperative vas deferens fluid suggests the presence of a secondary epididymal obstruction; especially if the seminal fluid of the proximal vas has a thick “toothpaste” appearance. Microsurgical tubulovasostomy is then indicated.

5.4.4 Distal vas deferens obstruction
It is usually impossible to correct large bilateral vas deferens defects, resulting from involuntary excision of the vasa deferentia during hernia surgery in early childhood or previous orchidopexy (16). In these cases, proximal vas deferens sperm aspiration (37) or TESE/MESA can be used for cryopreservation for future ICSI. In large unilateral vas deferens defects associated with contralateral testicular atrophy, the vas deferens of the atrophic testis can be used for a crossover vasovasostomy or tubulovasostomy.

5.4.5 Ejaculatory duct obstruction
The treatment of ejaculatory duct obstruction depends on its aetiology. Transurethral resection of the ejaculatory ducts (TURED) (20,38) can be used in large post-inflammatory obstruction and when one or both ejaculatory ducts empty into an intraprostatic midline cyst. Resection may remove part of the verumontanum.

In cases of obstruction due to a midline intraprostatic cyst, incision or unroofing of the cyst is required (20). Intraoperative TRUS makes this procedure safer. If distal seminal tract evaluation is carried out at the time of the procedure, installation of methylene blue dye into the vas deferens can help to document opening of the ducts. The limited success rate of surgical treatment of ejaculatory duct obstruction in terms of spontaneous pregnancies should be weighed against sperm aspiration and ICSI.

Complications following TURED include retrograde ejaculation due to bladder neck injury and urine reflux into the ejaculatory ducts, seminal vesicles, and vasa (causing poor sperm motility, semen acid pH, and epididymitis). The alternatives to TURED are MESA, TESE, proximal vas deferens sperm aspiration, seminal vesicle ultrasonically guided aspiration, and direct cyst aspiration.

In cases of functional obstruction of the distal seminal ducts, TURED often fails to improve sperm output. Spermatozoa can then be retrieved by antegrade seminal tract washout (38). Spermatozoa retrieved by any of the aforementioned surgical techniques should always be cryopreserved for assisted reproductive procedures.
5.5 Conclusions and recommendation for obstructive azoospermia

Conclusions

Obstructive lesions of the seminal tract should be suspected in azoospermic or severely oligozoospermic patients with normal-sized testes and normal endocrine parameters.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In azoospermia caused by epididymal obstruction, standard procedures include vasovasostomy and tubulovasostomy.</td>
<td>B</td>
</tr>
<tr>
<td>Sperm retrieval techniques, such as MESA, TESE, and PESA, can be used additionally. These methods should be used only when cryostorage of the material obtained is available.</td>
<td>B</td>
</tr>
<tr>
<td>In azoospermia caused by epididymal obstruction, scrotal exploration with microsurgical epididymal sperm aspiration and cryopreservation of spermatozoa should be performed. Microsurgical reconstruction should be performed, if applicable. Results of reconstructive microsurgery depend on the cause and location of the obstruction, and the surgeon’s expertise.</td>
<td>B</td>
</tr>
</tbody>
</table>

5.6 References

6. **VARICOCELE**

6.1 **Introduction**
Varicocele is a common abnormality (see Chapter 2) with the following andrological implications:
- failure of ipsilateral testicular growth and development;
- symptoms of pain and discomfort;
- male infertility.

6.2 **Classification**
The following classification of varicocele (1,2) is useful in clinical practice:
- subclinical: not palpable or visible at rest or during Valsava manoeuvre, but can be shown by special tests (Doppler ultrasound studies) (3);
- grade 1: palpable during Valsava manoeuvre, but not otherwise;
- grade 2: palpable at rest, but not visible;
- grade 3: visible and palpable at rest.

6.3 **Diagnosis**
The diagnosis of varicocele is made by clinical examination and should be confirmed by colour Doppler analysis (2). In centres where treatment is carried out by antegrade or retrograde sclerotherapy or embolisation, diagnosis is additionally confirmed by X-ray.

6.4 **Basic considerations**
6.4.1 **Varicocele and fertility**
Varicocele is a physical abnormality present in 11.7% of adult men and in 25.4% of men with abnormal semen analysis (4). The exact association between reduced male fertility and varicocele is unknown, but a recent meta-analysis showed that semen improvement is usually observed after surgical correction (5). Current information fits with the hypothesis that in some men the presence of varicocele is associated with progressive testicular damage from adolescence onwards due to germ cell dysfunction, testicular hypoxia, retrograde flow of metabolites, increased temperature and/or decreased secretion of gonadotropins and androgens, and consequent reduction in fertility. However, the pathophysiology of varicocele still remains unsolved. Varicocele is associated with increased sperm DNA damage, and this sperm pathology may be secondary to varicocele-mediated oxidative stress. Varicocelectomy can reverse this sperm DNA damage, as shown in several studies (6).

6.4.2 **Varicocelectomy**
Varicocele repair has been a subject of debate for several decades: controversy exists as to whether varicocele repair results in more spontaneous pregnancies as compared to observation. The 2009 Cochrane Database review concluded that there is no evidence that treatment of varicocele improves a couples’ chance of conception (7). This meta-analysis was criticised for including several heterogeneous studies, men with normal semen analysis, and men with a subclinical varicocele (8). In three RCTs repair of a subclinical varicocele was found to be ineffective (9-11). Also, studies of men with a varicocele and normal semen analysis have shown no clear benefit of treatment over observation (12,13).

The duration of infertility also seems to be important. In a recent study it was shown that couples with infertility of > 2 years duration had a significantly higher pregnancy rate after varicocelectomy compared to...
couples with an uncorrected varicocele. In couples with a shorter duration of infertility, such a difference was not observed (14).

In a recent meta-analysis of four RCTs of varicocelectomy in men with a clinical varicocele, oligospermia and otherwise unexplained infertility, there was a trend in favour of surgical correction (15). The combined OR was 2.23 (95% CI, 0.86-5.78; \(P = 0.091 \)), indicating that varicocelectomy was moderately superior to observation, but the effect was not statistically significant.

There is a need for a large, properly conducted RCT of varicocele treatment in men with abnormal semen from couples with otherwise unexplained subfertility (16). Although treatment of varicocele in infertile men may be effective, in adolescents there is a significant risk of overtreatment: most adolescents with a varicocele will have no problem achieving pregnancy later in life (17).

6.5 Treatment

Several treatments are available for varicocele (Table 9). The type of intervention chosen depends mainly on the experience of the therapist. Although laparoscopic varicocelectomy is feasible, it must be justified in terms of cost-effectiveness. Current evidence indicates that microsurgical varicocelectomy is the most effective and least morbid method among the varicocelectomy techniques (17).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ref.</th>
<th>Recurrence/ persistence %</th>
<th>Complication rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antegrade sclerotherapy</td>
<td>18</td>
<td>9</td>
<td>Complication rate 0.3-2.2%: testicular atrophy, scrotal haematoma, epididymitis, left-flank erythema</td>
</tr>
<tr>
<td>Retrograde sclerotherapy</td>
<td>19</td>
<td>9.8</td>
<td>Adverse reaction to contrast medium, flank pain, persistent thrombophlebitis, vascular perforation</td>
</tr>
<tr>
<td>Retrograde embolisation</td>
<td>20,21</td>
<td>3.8-10</td>
<td>Pain due to thrombophlebitis, bleeding haematoma, infection, venous perforation, hydrocele, radiological complication (e.g., reaction to contrast media), misplacement or migration of coils, retroperitoneal haemorrhage, fibrosis, ureteric obstruction</td>
</tr>
<tr>
<td>Open operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrotal operation</td>
<td></td>
<td></td>
<td>Testicular atrophy, arterial damage with risk of devascularisation and testicular gangrene, scrotal haematoma, postoperative hydrocele</td>
</tr>
<tr>
<td>Inguinal approach</td>
<td>22</td>
<td>13.3</td>
<td>Possibility of missing out a branch of testicular vein</td>
</tr>
<tr>
<td>High ligation</td>
<td>23</td>
<td>29</td>
<td>5-10% incidence of hydrocele (< 1%)</td>
</tr>
<tr>
<td>Microsurgical inguinal or subinguinal</td>
<td>24,25</td>
<td>0.8-4</td>
<td>Postoperative hydrocele arterial injury, scrotal haematoma</td>
</tr>
<tr>
<td>Laparoscopy</td>
<td>26,27</td>
<td>3-7</td>
<td>Injury to testicular artery and lymph vessels; intestinal, vascular and nerve damage; pulmonary embolism; peritonitis; bleeding; postoperative pain in right shoulder (due to diaphragmatic stretching during pneumoperitoneum); pneumoscrotum: wound infection</td>
</tr>
</tbody>
</table>

6.6 Conclusions and recommendations for varicocele

- **Conclusions**
 - Current information supports the hypothesis that the presence of varicocele in some men is associated with progressive testicular damage from adolescence onwards and a consequent reduction in fertility.
 - Although the treatment of varicocele in adolescents may be effective, there is a significant risk of overtreatment.
 - Varicocele repair may be effective in men with subnormal semen analysis, a clinical varicocele and otherwise unexplained infertility.

- **LE**
 - Current information supports the hypothesis that the presence of varicocele in some men is associated with progressive testicular damage from adolescence onwards and a consequent reduction in fertility.
 - 2a
 - Although the treatment of varicocele in adolescents may be effective, there is a significant risk of overtreatment.
 - 3
 - Varicocele repair may be effective in men with subnormal semen analysis, a clinical varicocele and otherwise unexplained infertility.
 - 1a
Recommendations

Varicocele treatment is recommended for adolescents with progressive failure of testicular development documented by serial clinical examination.

No evidence indicates benefit from varicocele treatment in infertile men who have normal semen analysis or in men with subclinical varicocele. In this situation, varicocele treatment cannot be recommended (15-17).

Varicocele repair should be considered in case of a clinical varicocele, oligospermia, infertility duration of ≥ 2 years and otherwise unexplained infertility in the couple.

6.7 References

 http://www.who.int/reproductivehealth/publications/infertility/0521774748/en/

7. HYPOGONADISM

7.1 Introduction
Hypogonadism is characterised by impaired testicular function, which may affect spermatogenesis and/or testosterone synthesis. The symptoms of hypogonadism depend on the degree of androgen deficiency and if the condition develops before or after pubertal development of the secondary sex characteristics. The symptoms and signs of hypoandrogenism presenting before and after completion of puberty are provided in Table 10.

Table 10: Symptoms and signs of hypogonadism appearing before and after completion of puberty

<table>
<thead>
<tr>
<th>Affected organ/function</th>
<th>Before completed puberty</th>
<th>After completed puberty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larynx</td>
<td>No voice mutation</td>
<td>No voice mutation</td>
</tr>
<tr>
<td>Hair</td>
<td>Horizontal pubic hairline</td>
<td>Diminished secondary body hair</td>
</tr>
<tr>
<td></td>
<td>Straight frontal hairline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diminished beard growth</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>Absent sebum production</td>
<td>Decreased sebum production</td>
</tr>
<tr>
<td></td>
<td>Lack of acne</td>
<td>Lack of acne</td>
</tr>
<tr>
<td></td>
<td>Pallor</td>
<td>Pallor</td>
</tr>
<tr>
<td></td>
<td>Skin wrinkling</td>
<td>Skin wrinkling</td>
</tr>
<tr>
<td>Bones</td>
<td>Eunuchoid tall stature</td>
<td>Osteoporosis</td>
</tr>
<tr>
<td></td>
<td>Osteoporosis</td>
<td></td>
</tr>
</tbody>
</table>
Bone marrow | Mild anaemia | Mild anaemia
Muscles | Underdeveloped | Hypotrophy
Prostate | Underdeveloped | Hypotrophy
Penis | Infantile | No change of size
Testes | Possibly maldescended testes | Decrease of testicular volume
Spermatogenesis | Not initiated | Involuted
Libido and potency | Not developed | Loss

*Modified from Nieschlag et al. (1).

The aetiological and pathogenetic mechanisms of male hypogonadism can be divided into three main categories:
1. Primary (hypergonadotrophic) hypogonadism due to testicular failure.
2. Secondary (hypogonadotrophic) hypogonadism caused by insufficient gonadotropin-releasing hormone (GnRH) and/or gonadotropin (FSH, LH) secretion.
3. Androgen insensitivity (end-organ resistance).

The most common conditions within these three categories are given in Table 11 (see also Chapter 4).

Table 11: Disorders associated with male hypogonadism*

<table>
<thead>
<tr>
<th>Primary (hypergonadotrophic) hypogonadism (testicular failure)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorchia</td>
</tr>
<tr>
<td>Maldescended testes</td>
</tr>
<tr>
<td>Klinefelter’s syndrome</td>
</tr>
<tr>
<td>Y-chromosome microdeletions</td>
</tr>
<tr>
<td>Numerical and structural chromosomal anomalies</td>
</tr>
<tr>
<td>Trauma, testicular torsion, orchitis</td>
</tr>
<tr>
<td>Iatrogenic (surgery, medications, irradiation, or cytostatic drugs)</td>
</tr>
<tr>
<td>Exogenous factors (toxins, heat, or occupational hazards)</td>
</tr>
<tr>
<td>Systemic diseases (liver cirrhosis, or renal failure)</td>
</tr>
<tr>
<td>Testicular tumour</td>
</tr>
<tr>
<td>Varicocele</td>
</tr>
<tr>
<td>Idiopathic (e.g., late-onset hypogonadism)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary (hypogonadotrophic) hypogonadism (secondary testicular failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
</tr>
<tr>
<td>• Idiopathic hypogonadotrophic hypogonadism</td>
</tr>
<tr>
<td>• Normosmic</td>
</tr>
<tr>
<td>• Hiposmic/anosmic (Kallmann syndrome)</td>
</tr>
<tr>
<td>Acquired (tumours in the following regions)</td>
</tr>
<tr>
<td>• Diencephalon (craniopharyngioma or meningioma)</td>
</tr>
<tr>
<td>• Hypothalamus or pituitary</td>
</tr>
<tr>
<td>Empty sella</td>
</tr>
<tr>
<td>Granulomatous illnesses</td>
</tr>
<tr>
<td>Fractures of the skull base</td>
</tr>
<tr>
<td>Ischaemic or haemorrhagic lesions in hypothalamic area</td>
</tr>
<tr>
<td>Hyperprolactinaemia</td>
</tr>
<tr>
<td>Drugs/anabolic steroids, radiotherapy</td>
</tr>
<tr>
<td>Target organ resistance to androgens</td>
</tr>
<tr>
<td>Testicular feminisation</td>
</tr>
<tr>
<td>Reifenstein syndrome</td>
</tr>
</tbody>
</table>

*Modified from Nieschlag et al. (1).

7.2 Hypogonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management

Idiopathic hypogonadotrophic hypogonadism (IHH) is characterised by low levels of gonadotropins and sex steroid in the absence of anatomical or functional abnormalities of the hypothalamic-pituitary-gonadal axis (2). IHH may be an isolated condition or may be associated with anosmia/hyposmia (Kallmann syndrome). Genetic factors causing a deficit of gonadotropins may act at the hypothalamic or pituitary level.

Mutations in candidate genes (X-linked or autosomal) can be found in ~30% of congenital cases (2)
Acquired hypogonadotrophic hypogonadism can be caused by some drugs, hormones, anabolic steroids, or tumours. A suspected tumour requires imaging [computed tomography (CT) or magnetic resonance imaging (MRT)] of the sella region and a complete endocrine work-up.

Failure of hormonal regulation can easily be determined (4). Endocrine deficiency leads to a lack of spermatogenesis and testosterone secretion as a result of decreased secretion of FSH and LH. After having excluded secondary forms (drugs, hormones, or tumours), the therapy of choice depends on whether the goal is to achieve normal androgen levels or fertility.

Normal androgen levels and subsequent development of secondary sex characteristics (in cases of onset of hypogonadism before puberty) and a eugonadal state can be achieved by androgen replacement alone. However, stimulation of sperm production requires treatment with human chorionic gonadotropin (hCG) combined with recombinant FSH or urinary FSH or human menopausal gonadotropins (HMGs). In the rare case of “fertile eunuchs”, who have sufficient production of FSH but not LH, treatment with hCG alone may be sufficient to stimulate sperm production and achieve normal testosterone levels (5).

If hypogonadotrophic hypogonadism is hypothalamic in origin, an alternative to hCG treatment is pulsatile GnRH (6). In patients who have developed hypogonadism before puberty and have not been treated with gonadotropins or GnRH, 1-2 years of therapy may be needed to achieve sperm production. Once pregnancy has been established, patients can return to testosterone substitution.

7.3 Hypergonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management

Many conditions in men are associated with hypergonadotrophic hypogonadism (Table 11, see also Chapter 4). Most conditions listed in Table 11 only affect the reproductive function of the testes so that only FSH level is elevated. However, it has been reported that men with infertility are at higher risk for developing impaired Leydig cell function (7), while men with Klinefelter’s syndrome often show high LH values and develop hypoandrogenism with ageing (8). A decrease in testosterone blood concentrations after extensive testicular biopsy in the context of TESE/ICSI has been observed, raising questions about the need for long-term endocrine follow-up of these patients (9).

Hypogonadism affecting both reproductive and endocrine functions of the testes occurs after treatment with GnRH analogues or surgical castration for prostatic cancer (10).

Laboratory diagnosis of hypergonadotrophic hypogonadism is based on a high level of FSH, decreased serum testosterone, and increased LH levels (3). Testosterone levels should be evaluated in view of the serum concentration of sex hormone binding globulin (SHBG). Based on levels of total testosterone, albumin and SHBG, free and bioavailable testosterone can be calculated (http://www.issam.ch/freetesto.htm).

Due to diurnal variation, blood samples for testosterone assessment should be taken before 10.00 h. The existing guidelines for androgen replacement are based on presence of symptoms of hypogonadism and total testosterone levels. There is general agreement that a total testosterone level > 12 nmol/L (350 ng/dL) does not require substitution. Similarly, based on the data of younger men, there is consensus that patients with serum total testosterone levels < 8 nmol/L (230 ng/dL) will usually benefit from testosterone treatment. For the group with serum total testosterone level between 8 and 12 nmol/L (in repeated samples), a 3-6-month trial period with testosterone supplementation can be considered. Generally, androgen replacement should not be given to men not presenting with symptoms of hypogonadism.

Testosterone suppresses pituitary production of LH and FSH, therefore, replacement therapy should not be given for infertility.

In obese men, decision-making may be helped by measuring total testosterone with SHBG to calculate free testosterone or measurement of free testosterone by equilibrium dialysis (11). Injectable, oral and transdermal testosterone preparations are available for clinical use (3). The best preparation to use is one that maintains serum testosterone levels within the physiological concentration (11-13). See also EAU Guidelines on Hypogonadism (14).

7.4 Conclusion and recommendation for hypogonadism

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is generally agreed that patients with primary or secondary hypogonadism associated with hypoandrogenism should receive testosterone substitution therapy.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective drug therapy is available to achieve fertility in men with hypogonadotrophic hypogonadism (4).</td>
<td>A*</td>
</tr>
<tr>
<td>Testosterone replacement is strictly contraindicated for the treatment of male infertility (13).</td>
<td>A*</td>
</tr>
</tbody>
</table>

*Upgraded following panel consensus
7.5 References

8. CRYPTORCHIDISM

8.1 Introduction
Cryptorchidism is the most common congenital abnormality of the male genitalia and is found in 2-5% of newborn boys, depending on gestational age (cryptorchidism occurs more often in premature boys) and age after birth. At the age of 3 months, the incidence of cryptorchidism falls spontaneously to 1-2%. Approximately 20% of undescended testes are non-palpable and may be located within the abdominal cavity.

The aetiology of cryptorchidism is multifactorial, involving disrupted endocrine regulation and several gene defects. The normal descent of the testes requires a normal hypothalamic-pituitary-gonadal axis. Endocrine disruption in early pregnancy can potentially affect gonadal development and normal descent of the testes; however, most boys with maldescended testes show no endocrine abnormalities after birth. It has been postulated that cryptorchidism may be a part of the so-called testicular dysgenesis syndrome (TDS), which is a developmental disorder of the gonads caused by environmental and/or genetic influences early in pregnancy. Besides cryptorchidism, TDS includes hypospadias, reduced fertility, increased risk of malignancy, and Leydig cell dysfunction (1).
8.2 Incidence of cryptorchidism
The Caucasian population has a threefold higher incidence of cryptorchidism compared to African-Americans. Even between Caucasians, there are significant differences in the risk of cryptorchidism, for example, it is significantly more common among Danish than Finnish newborns (2). Premature babies have a much higher incidence of cryptorchidism than full-term babies. In a British study, the incidence of cryptorchidism was 2.7% in > 3,000 boys weighing > 2.5 kg and 21% in premature boys weighing < 2.5 kg. At the age of 3 months, spontaneous descent occurred in most boys, and the incidence of cryptorchidism fell to 0.9% and 1.7%, in the > 2.5 kg and < 2.5 kg group, respectively (3).

8.3 Testicular descent and maldescent
The process of testicular descent has two distinct phases: transabdominal and inguinal. During transabdominal descent, development of the gubernaculum and genitoinguinal ligament plays an important role. The anti-Mullerian hormone regulates transabdominal descent of the testes. Induction of the gubernaculum depends on a functional InsI3 gene in mice (4). This gene is expressed in Leydig cells and its targeted deletion causes bilateral cryptorchidism with free-moving testes and genital ducts (5). Androgens play an important role in both phases of testicular descent, whereas other gene families, for example, the homeobox (HOX) and GREAT/RXFP2 genes (G-protein-coupled receptor affecting testis descent), are important in the development of genital organs and may be associated with testicular maldescent (6,7).

8.4 Hormonal control of testicular descent
Maldescent can be caused by two hormonal factors: hypogonadism and androgen insensitivity. The increasing incidence of reproductive abnormalities in male humans can be explained by increased oestrogen exposure during gestation (8). Some pesticides and synthetic chemicals act as hormonal modulators, often possessing oestrogenic activity (xeno-oestrogens) (9). The oestrogenic and antiandrogenic properties of these chemicals may cause hypospadias, cryptorchidism, reduced sperm density, and an increased incidence of testicular tumours in animal models, via receptor-mediated mechanisms or direct toxic effects associated with Leydig cell dysfunction (10).

8.5 Pathophysiological effects in maldescended testes
8.5.1 Degeneration of germ cells
The degeneration of germ cells in maldescended testes is apparent after the first year of life. Degenerative changes vary, depending on the position of the testis (11). During the second year, the number of germ cells declines. In 10-45% of affected patients, the complete loss of germ cells can be detected. Early treatment is therefore recommended to conserve spermatogenesis; especially in bilateral cases. Surgical treatment is the most effective and reliable method of bringing testes into the scrotum. Hormone treatment with hCG has been used widely in the past, but it has now been abolished because of increased germ cell apoptosis after treatment (12).

8.5.2 Relationship with fertility
Semen parameters are often impaired in men with a history of cryptorchidism (13). Surgical treatment during the first or second year of life may have a positive effect on subsequent fertility (14). However, there is no definitive proof of the protective effect of early orchidopexy. In men with a history of unilateral cryptorchidism, paternity is almost equal (89.7%) to that in men without cryptorchidism (93.7%).

In men with unilateral cryptorchidism, paternity is independent of age at orchidopexy and preoperative testicular location and size (15). However, a history of unilateral cryptorchidism may result in reduced fertility potential and therefore a longer time to achieve pregnancy.

In men with bilateral cryptorchidism, oligozoospermia can be found in 31% and azoospermia in 42%. In cases of bilateral cryptorchidism, the rate of paternity is only 35-53%. In cases of bilateral cryptorchidism and azoospermia, orchidopexy performed even in adult life might lead to the appearance of spermatozoa in the ejaculate (16).

8.5.3 Germ cell tumours
Cryptorchidism is a risk factor for testicular cancer and is associated with testicular microcalcification and intratubular germ cell neoplasia of unclassified type (ITGCNU); formerly CIS of the testes. In 5-10% of testicular cancers, there is a history of cryptorchidism (17). The risk of a germ cell tumour (GCT) is 3.6-7.4 times higher than in the general population and 2-6% of men with a history of cryptorchidism will develop a testicular tumour (17). Orchidopexy performed before the age of puberty has been reported to decrease the risk of testicular cancer (18). However, this and other similar reports are based on retrospective data and do not exclude the possibility that boys undergoing early and late orchidopexy represent different pathogenetic groups of testicular maldescent.
8.6 Treatment of undescended testes

8.6.1 Hormonal treatment

Human chorionic gonadotropin or GnRH has been used widely in the past to treat cryptorchidism. Although 15-20% of retained testes descend during hormonal treatment, one-fifth of these reascend later. Also, treatment with hCG may be harmful to future spermatogenesis by increasing the apoptosis of germ cells (12), which is why hormonal treatment is no longer recommended.

8.6.2 Surgical treatment

The success rate of surgical treatment for undescended testes is 70-90% (19). If the spermatic cords or the spermatic vessels are too short to allow proper mobilisation of the testis into the scrotum, a staged orchidopexy (Fowler-Stephenson procedure) can be performed, using open surgery, laparoscopy, or microsurgery.

The optimal age for performing orchidopexy is still debated. Some retrospective studies have indicated that early treatment (during the first 2 years of life) has a beneficial effect on preserving future fertility (20), whereas a recent randomised study showed that surgery at 9 months resulted in a partial catch-up of testicular growth until at least age 4 years versus surgery at 3 years (21). The results clearly indicate that early surgery has a beneficial effect on testicular growth. Testicular volume is an approximate indirect measure of spermatogenic activity, therefore, it is possible that orchidopexy at an early age might improve future spermatogenesis.

A biopsy at the time of orchidopexy (see Section 8.5.3) can reveal (ITGCNU), which can be removed, thereby preventing development of a malignant tumour. If not corrected by adulthood, an undescended testis should not be removed because it still produces testosterone. Furthermore, as indicated above, correction of bilateral cryptorchidism, even in adulthood, can lead to sperm production in previously azoospermic men (16).

Vascular damage is the most severe complication of orchidopexy and can cause testicular atrophy in 1-2% of cases. In men with non-palpable testes, the postoperative atrophy rate was 12% in those cases with long vascular pedicles that enabled scrotal positioning. Postoperative atrophy in staged orchidopexy has been reported in up to 40% of patients (19).

8.7 Conclusions and recommendations for cryptorchidism

Conclusions

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptorchidism is multifactorial in origin and can be caused by genetic factors and endocrine disruption early in pregnancy.</td>
<td>3</td>
</tr>
<tr>
<td>Cryptorchidism is often associated with testicular dysgenesis and is a risk factor for infertility and GCT.</td>
<td>2b</td>
</tr>
<tr>
<td>Whether early surgical intervention can prevent germ cell loss is still debatable, but in a randomised study it improved testicular growth in boys treated at the age of 9 months compared to those aged 3 years at the time of orchidopexy.</td>
<td></td>
</tr>
<tr>
<td>Paternity in men with unilateral cryptorchidism is almost equal to that in men without cryptorchidism.</td>
<td>3</td>
</tr>
<tr>
<td>Bilateral cryptorchidism significantly reduces the likelihood of paternity.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal treatment of cryptorchidism in adults is not recommended.</td>
<td>A</td>
</tr>
<tr>
<td>Early orchidopexy (6-12 months of age) might be beneficial for testicular development in adulthood.</td>
<td>B</td>
</tr>
<tr>
<td>If undescended testes are corrected in adulthood, testicular biopsy for detection of ITGCNU (formerly CIS) is recommended at the time of orchidopexy.</td>
<td>B</td>
</tr>
</tbody>
</table>

8.8 References

9. IDIOPATHIC MALE INFERTILITY

9.1 Introduction
No demonstrable cause of infertility is found in at least 44% of infertile men (1).

9.2 Empirical treatments
A wide variety of empirical drug treatments of idiopathic male infertility have been used; however, there is little scientific evidence for an empirical approach (2). Clomiphen citrate and tamoxifen have been widely used in idiopathic OAT but there is no proven evidence for their benefit. A recent meta-analysis reported some improvement in sperm quality and spontaneous pregnancy rate (3). Androgens, hCG/HMG, bromocriptine, alpha-blockers, systemic corticosteroids and magnesium supplementation are not effective in the treatment of OAT syndrome. Follicle-stimulating hormone (FSH) might be beneficial in a selection of patients (3). A Cochrane analysis showed that men taking oral antioxidants had an associated significant increase in live birth rate (pooled OR = 4.85; 95% CI: 1.92-12.24; P = 0.0008; I²(2) = 0%) when compared with men taking the control treatment. No studies have reported harmful side effects from antioxidant therapy. The evidence suggests that antioxidant supplementation in subfertile men may improve the outcomes of live birth and pregnancy rate for subfertile couples undergoing assisted reproduction technique (ART) cycles. Further head-to-head comparisons are necessary to identify the superiority of one antioxidant over another (4).

Recommendation GR
Medical treatment of male infertility is recommended only for cases of hypogonadotrophic hypogonadism. A

9.3 References

10. MALE CONTRACEPTION

10.1 Introduction
“Male contribution to contraception” is a more accurate phrase than “male contraception”, because men do not conceive. Development of male contraceptive methods is important because up to 40% of women have an unmet need for family planning, with approximately 80 million women every year having unintended or unwanted pregnancies (1).

Three of the four methods of male contraception have been in use for hundreds of years (i.e., condoms, periodic abstinence, and withdrawal). The typical first-year failure rates of traditional male methods are high (withdrawal 19%, periodic abstinence 20%, and condoms 3-14%) compared to the failure rates of 0.1-3% for modern reversible female methods (2). For men to take more responsibility for family planning, male contraceptive methods must be acceptable, cheap, reversible, and effective.

Research is attempting to (3):
• Prevent sperm production by using exogenic androgens, progestogen, and GnRH formulations in various combinations.
Interfere with the ability of sperm to mature and fertilise, by using an epididymal approach to create a hostile environment for sperm.

Produce better barrier methods (e.g., polyurethane condoms can be used by those with latex allergy, although they have higher breakage rates) (4).

Produce an antisperm contraceptive vaccine (5).

Inhibit sperm-egg interactions.

These approaches remain experimental. The method nearest to being generally available clinically is hormonal male contraception, which is based on the suppression of gonadotropins and testosterone substitution to maintain male sexual function and bone mineralization, and to prevent muscle wasting (6). Various contraceptive regimens have been developed and tested, including testosterone monotherapy, androgen/progestin combinations, testosterone with GnRH analogues, and selective androgen- and progestin-receptor modulators. There are racial differences in the response to androgens alone. However, a combination of testosterone with progestin results in complete suppression of spermatogenesis in all races, and provides contraceptive efficacy equivalent to female hormonal methods (7). Phase III clinical trials of depot preparations of androgen/progestin combinations are in progress.

10.2 Vasectomy

Vasectomy is an effective method of permanent male surgical sterilisation (8). Extensive guidelines on vasectomy were published by the EAU in 2012 (9). Before vasectomy, the couple should be fully informed about the benefits and risks, especially as an Australian telephone survey found that 9.2% of respondents regretted having a vasectomy (10).

10.2.1 Surgical techniques

Various techniques are available for vasectomy. The least invasive approach is no-scalpel vasectomy (11), which is also associated with a low rate of complications (12). The most effective occlusion technique is cauterisation of the lumen of the vas deferens and fascial interposition (13-15). Most techniques can be carried out safely under local anaesthesia in an outpatient clinic.

10.2.2 Complications

Vasectomy does not significantly alter spermatogenesis and Leydig cell function. The volume of ejaculate remains unchanged. Potential systemic effects of vasectomy, including atherosclerosis, have not been proven, and there is no evidence of a significant increase in any systemic disease after vasectomy. An increased rate of prostate cancer in men who underwent vasectomy has not been detected (16,17). Acute local complications associated with vasectomy include haematoma, wound infection, and epididymitis in up to 5% of cases (17). The potential long-term complications (e.g., chronic testicular pain) (18) must be discussed with the patient before the procedure. Epididymal tubal damage is common, and is associated with consequent development of sperm granuloma and time-dependent secondary epididymal obstruction, which limits vasectomy reversal.

10.2.3 Vasectomy failure

If an effective occlusion technique is used, the risk of recanalisation after vasectomy should be < 1% (12). However, patients should be informed preoperatively that, although rare, long-term recanalisation might occur (19). No motile spermatozoa should be detected 3 months after vasectomy. Persistent motility is a sign of vasectomy failure, and the procedure will need to be repeated. A “special clearance” with non-motile spermatozoa < 10,000/mL is still under discussion (20).

10.2.4 Counselling

Counselling with regard to vasectomy must address the following aspects:

• Vasectomy should be considered irreversible.

• Vasectomy is associated with a low complication rate; however, because it is an elective operation, even small risks must be explained, because men (and their partners) might wish to consider these before giving consent.

• Vasectomy can fail, although the failure rate is low.

• Couples should be advised to continue with other effective contraception until clearance is confirmed.

• All available data indicate that vasectomy is not associated with any serious, long-term, side effects (15).

• Vasectomy involving cauterisation and fascial interposition appears to be the most effective technique (12-14).
10.3 **Vasectomy reversal**

A wide range of surgical success rates has been published for vasectomy reversal (up to 90%), depending on the time between vasectomy and re-fertilisation, type of vasectomy (e.g., open-ended or sealed), type of reversal (vasovasostomy or vasoepididymostomy), and whether reversal was unilateral or bilateral. However, there have been no RCTs comparing macrosurgery (loops) and microsurgery. Microsurgical techniques with the help of magnification and smaller suture materials should be used (21).

10.3.1 **Length of time since vasectomy**

Vasovasostomy results have shown patency rates up to 90%. The longer the interval is from vasectomy to reversal, the lower is the pregnancy rate. In a study of 1,469 men who had undergone microsurgical vasectomy reversal, patency and pregnancy rates were 97% and 76%, respectively, for an interval up to 3 years after vasectomy; 88% and 53% for 3-8 years, 79% and 44% for 9-14 years, and 71% and 30% for > 15 years (22).

10.3.2 **Tubulovasostomy**

The chance of secondary epididymal obstruction after vasectomy increases with time. After an interval of 10 years, 25% of men appear to have epididymal blockage. If secondary epididymal obstruction occurs, tubulovasostomy is needed to reverse the vasectomy (see Chapter 5) (23).

10.3.3 **Microsurgical vasectomy reversal versus epididymal or testicular sperm retrieval and ICSI**

According to the calculations of cost per delivery for vasectomy reversal versus sperm retrieval/ICSI, under a wide variety of initial assumptions, it is clear that vasectomy reversal is associated with a considerably lower cost per delivery and higher delivery rates (24,-27). Sperm retrieval and ICSI must yield an 81% pregnancy rate per cycle to achieve equal costs to vasectomy reversal.

10.4 **Conclusions and recommendations for male contraception**

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasectomy is considered the gold standard for the male contribution to contraception.</td>
<td>1</td>
</tr>
<tr>
<td>All available data indicate that vasectomy is not associated with any serious, long term side effects.</td>
<td>1b</td>
</tr>
<tr>
<td>Pregnancy is still achievable after successful vasectomy reversal.</td>
<td>2a</td>
</tr>
<tr>
<td>Methods of male contraception other than vasectomy are associated with high failure rates or are still experimental (e.g., hormonal approach).</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasectomy meets best the criteria for the male contribution to contraception, with regard to efficacy, safety and side effects. Cauterisation and fascial interposition are the most effective techniques.</td>
<td>A</td>
</tr>
<tr>
<td>Patients seeking consultation about vasectomy must be informed about the surgical method, risk of failure, irreversibility, the need for post-procedure contraception until clearance, and the risk of complications.</td>
<td>A*</td>
</tr>
<tr>
<td>Microsurgical vasectomy reversal is a low-risk and (cost-) effective method of restoring fertility.</td>
<td>B</td>
</tr>
<tr>
<td>MESA/TESE/PESA and ICSI should be reserved for failed vasectomy reversal surgery.</td>
<td>A</td>
</tr>
<tr>
<td>For couples wanting to achieve pregnancy, sperm aspiration together with ICSI is a second-line option for selected cases and in those with failed vasovasostomy.</td>
<td>B</td>
</tr>
</tbody>
</table>

*Upgraded following panel consensus

10.5 **References**

11. MALE ACCESSORY GLAND INFECTIONS AND INFERTILITY

11.1 Introduction
Infections of the male urogenital tract are potentially curable causes of male infertility (1-3). The WHO considers urethritis, prostatitis, orchitis and epididymitis to be male accessory gland infections (MAGIs) (2). However, specific data are not available to confirm that these diseases have a negative influence on sperm quality and male fertility in general.

In order to keep the guidelines as short as possible, the MAGI section is discussed in detail in the Guidelines for Urological Infections and Chronic Pelvic Pain (4,5).

11.2 Ejaculate analysis
11.2.1 Introduction
Ejaculate analysis (see Chapter 2) clarifies whether the prostate is involved as part of a generalised MAGI and provides information about sperm quality. In addition, leukocyte analysis allows differentiation between inflammatory and non-inflammatory chronic pelvic pain syndrome (CPPS) (NIH IIa vs NIH IIIb).

11.2.2 Microbiological findings
After exclusion of urethritis and bladder infection, > 10^6 peroxidase-positive white blood cells (WBCs) per millilitre of ejaculate indicate an inflammatory process. In this case, a culture should be performed for common urinary tract pathogens, particularly Gram-negative bacteria.

A concentration of > 10^3 cfu/mL urinary tract pathogens in the ejaculate is indicative of significant bacteriospermia. Various microorganisms are found in the genital tract of men seen in infertility clinics; usually with more than one strain of bacteria present (1). The sampling time can influence the positive rate of microorganisms in semen and the frequency of isolation of different strains (6). The ideal diagnostic test for Chlamydia trachomatis in semen has not yet been established (7). In contrast to serological findings in women, antibody tests for C. trachomatis in seminal plasma are not indicative if no type-specific methods are used (7).

Ureaplasma urealyticum is pathogenic only in high concentrations (> 10^3 cfu/mL ejaculate). No more than about 10% of samples analysed for ureaplasma exceed this concentration (8). Normal colonisation of the urethra hampers the clarification of mycoplasma-associated urogenital infections, using samples such as the ejaculate (9).

11.2.3 White blood cells
The clinical significance of an increased concentration of leukocytes in the ejaculate is controversial (10). Infection is indicated only by an increased level of leukocytes (particularly polymorphonuclear leukocytes) and their products (e.g., leukocyte elastase) secreted into the seminal fluid. Most leukocytes are neutrophilic granulocytes, as suggested by the specific staining of the peroxidase reaction (2). Although leukocytespermia is a sign of inflammation, it is not necessarily associated with bacterial or viral infections (11). Earlier findings have shown that elevated leukocyte numbers are not a natural cause of male infertility (12). According to WHO classification, leukocytespermia is defined as > 10^5 WBCs/mL. Only two studies have analysed alterations of WBCs in the ejaculate of patients with proven prostatitis (13,14). Both studies found more leukocytes in men with prostatitis compared to those without inflammation (CPPS, type NIH IIIb).

11.2.4 Sperm quality
The deleterious effects of chronic prostatitis on sperm density, motility and morphology are under debate (1). All investigations have given contradictory results, and have not confirmed that chronic prostatitis has a decisive role in altering conventional semen parameters (15-17).

11.2.5 Seminal plasma alterations
Seminal plasma elastase is a biochemical indicator of polymorphonuclear lymphocyte activity in the ejaculate (1,18,19), with a suggested cut-off level of approximately 600 ng/mL (1). Various cytokines are involved in
inflammation and can influence sperm function. Several studies have investigated the association between interleukin (IL) concentration, leukocytes, and sperm function (20-22), but no correlations have been found. The prostate is the main site of origin of IL-6 and IL-8 in the seminal plasma. Cytokines, especially IL-6, play an important role in the male accessory gland inflammatory process (23). However, elevated cytokine levels do not depend on the number of leukocytes in expressed prostatic secretion (EPS) (24).

11.2.6 Glandular secretory dysfunction
Infections of the sex glands can impair their excretory function. Decreased quantities of citric acid, phosphatase, fructose, zinc, and α-glutamyl-transferase activity are indicators of disturbed prostatic secretory parameters (1). Reduced fructose concentration indicates impaired vesicular function (8,25).

11.2.7 Sperm antibodies
Serum antibodies to sperm antigens are not useful in the diagnosis of immune infertility. Early studies found an association between increased levels of sperm antibodies in serum and non- or abacterial prostatitis (26,27). However, except for suspected chlamydial infections (28), only a history of vasectomy is predictive of sperm antibody formation (29).

11.2.8 Reactive oxygen species
Reactive oxygen species might be increased in chronic urogenital infections associated with increased leukocyte numbers (30). However, their biological significance in prostatitis remains unclear (1).

11.2.9 Therapy
Treatment of chronic prostatitis is usually targeted at relieving symptoms (31,32). Andrologically, the aims of therapy for altered semen composition in male adnexitis (acute and chronic infections of the male urogenital tract) are:
- reduction or eradication of microorganisms in prostatic secretions and semen;
- normalisation of inflammatory (e.g., leukocytes) and secretory parameters;
- improvement of sperm parameters to counteract fertility impairment (33).

Treatment includes antibiotics, anti-inflammatory drugs, surgical procedures, normalisation of urine flow, physical therapy, and alterations in general and sexual behaviour.

Only antibiotic therapy of chronic bacterial prostatitis (NIH II) has provided symptomatic relief, eradication of microorganisms, and a decrease in cellular and humoral inflammatory parameters in urogenital secretions. The use of α-blockers for symptom relief is controversial. Although antibiotics might improve sperm quality (33), there is no evidence that treatment of chronic prostatitis increases the probability of conception (1,34).

11.3 Epididymitis

11.3.1 Introduction
Inflammation of the epididymis causes unilateral pain and swelling, usually with acute onset. Among sexually active men < 35 years of age, epididymitis is most often caused by C. trachomatis or Neisseria gonorrhoea (35,36). Sexually transmitted epididymitis is usually accompanied by urethritis. Non-sexually transmitted epididymitis is associated with urinary tract infection and occurs more often in men aged > 35 years, those who have recently undergone urinary tract instrumentation or surgery, and those who have anatomical abnormalities (37).

11.3.2 Ejaculate analysis
Ejaculate analysis according to WHO criteria, including leukocyte analysis, might indicate persistent inflammatory activity. In many cases, transiently decreased sperm counts and forward motility are observed (36,38,39). Ipsilateral low-grade orchitis (40,41) might be the cause of this slight impairment in sperm quality (Table 14) (42).

Development of stenosis in the epididymal duct, reduction of sperm count, and azoospermia are more important in the follow-up of bilateral epididymitis (see Chapter 5). The extent of azoospermia after epididymitis is unclear.
Table 14: Acute epididymitis and impact on sperm parameters.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Negative influence</th>
<th>Density</th>
<th>Motility</th>
<th>Morphology</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ludwig & Haselberger (43)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Pyospermia in 19 of 22 cases</td>
</tr>
<tr>
<td>Berger et al. (36)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weidner et al. (44)</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Azoospermia in 3 of 70 men</td>
</tr>
<tr>
<td>Haidl (45)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>Chronic infections; macrophages Elevated</td>
</tr>
<tr>
<td>Cooper et al. (46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decrease in epididymal markers: α-glucosidase, L-carnitine</td>
</tr>
</tbody>
</table>

11.3.3 Treatment
Antibiotic therapy is indicated before culture results are available (Table 13). Treatment of epididymitis results in:
- microbiological cure of infection;
- improvement of clinical signs and symptoms;
- prevention of potential testicular damage;
- prevention of transmission;
- decrease of potential complications (e.g., infertility or chronic pain).

Patients with epididymitis known or suspected to be caused by N. gonorrhoeae or C. trachomatis must be told to refer their sexual partners for evaluation and treatment (47).

11.4 Conclusions and recommendations for male accessory gland infections

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethritis and prostatitis are not associated clearly with male infertility.</td>
<td>3</td>
</tr>
<tr>
<td>Antibiotic treatment often only eradicates microorganisms; it has no positive effect on inflammatory alterations, and cannot reverse functional deficits and anatomical dysfunction.</td>
<td>2a</td>
</tr>
<tr>
<td>Although antibiotic treatment for MAGI might provide improvement in sperm quality, it does not necessarily enhance the probability of conception.</td>
<td>2a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with epididymitis that is known or suspected to be caused by N. gonorrhoeae or C. trachomatis must be instructed to refer their sexual partners for evaluation and treatment.</td>
<td>B</td>
</tr>
</tbody>
</table>

11.5 References

12. GERM CELL MALIGNANCY AND TESTICULAR MICROCALCIFICATION

12.1 Germ cell malignancy and male infertility

Testicular germ cell tumour (TGCT) is the most common malignancy in Caucasian men aged 15-40 years and affects approximately 1% of subfertile men. The lifetime risk of TGCT varies between ethnic groups and countries. The highest annual incidence of TGCT occurs in Caucasians, and varies from 10/100,000 (e.g., in Denmark and Norway) to 2/100,000 (e.g., in Finland and the Baltic countries). Generally, seminomas and non-seminomas are preceded by CIS, and untreated ITGCNU will eventually progress to invasive cancer (1,2).

The most convincing evidence for a general decline in male reproductive health is the increase in testicular cancer seen in western countries (3). In almost all countries with reliable cancer registers, the incidence of testicular cancer has increased (4). Cryptorchidism and hypospadias are associated with an increased risk of testicular cancer; men with cryptorchidism and/or hypospadias are over-represented among patients with testicular cancer.

Men with dysgenic testes have an increased risk of developing testicular cancer in adulthood. These cancers arise from premalignant gonocytes or CIS cells (5). Testicular microlithiasis (TM), seen on ultrasound, can be associated with GCT and CIS of the testes.

12.2 Testicular germ cell cancer and reproductive function

Men with TGCT have decreased semen quality, even before cancer is diagnosed (6). Orchidectomy implies a risk of azoospermia in these men, with sperm found in the ejaculate before the tumour-bearing testis has been removed. Semen cryopreservation before orchidectomy should therefore be considered (see Chapter 14). Treatment of TGCT can result in additional impairment of semen quality (7).

In addition to spermatogenic failure, patients with TGCT have Leydig cell dysfunction, even in the contralateral testis (8). The risk of hypogonadism may therefore be increased in men treated for TGCT. The measurement of pretreatment levels of testosterone, SHBG, LH and oestradiol might help to anticipate post-treatment hypogonadism. Men who have had TGCT and have low normal androgen levels should receive long-term follow-up because they are at risk of developing hypogonadism as a result of an age-related decrease in testosterone production (9).

The risk of hypogonadism is most pronounced in TGCT patients treated with ≥ 3 cycles of chemotherapy or irradiation of retroperitoneal lymph nodes. However, this risk is greatest at 6-12 months post-treatment. This suggests there may be some improvement in Leydig cell function, and why it is reasonable to expect initiation of androgen replacement, until the patient shows continuous signs of testosterone deficiency, even at 2 years follow-up (10). The risk of low libido and erectile dysfunction is also increased in TGCT patients (11).

12.3 Testicular microlithiasis

Microcalcification inside the testicular parenchyma can be found in 0.6-9% of men referred for testicular ultrasound (12-14). Although the true incidence of microcalcification in the general population is unknown, it is probably rare. However, ultrasound findings of TM are common in men with TGCT, cryptorchidism, testicular dysgenesis, infertility, testicular torsion and atrophy, Klinefelter’s syndrome, hypogonadism, male pseudohermaphroditism, varicocele, epididymal cysts, pulmonary microlithiasis, and non-Hodgkin’s lymphoma. The incidence reported seems to be higher with high-frequency ultrasound machines (16). The relationship between TM and infertility is unclear, but probably relates to dysgenesis of the testes, with degenerate cells being sloughed inside an obstructed seminiferous tubule and failure of the Sertoli cells to phagocytose the debris. Subsequently, calcification occurs.

Testicular microlithiasis is found in testes at risk of malignant development. The reported incidence of TM in men with TGCT is 6-46% (17-19), and TM should therefore be considered premalignant. Testicular
biopsies from men with TM have found a higher prevalence of CIS, especially in those with bilateral microcalcification (20). However, TM is found most often in men with a benign testicular condition and the microcalcification itself is not malignant.

Further investigation of the association between TM and CIS will require testicular biopsies in large series of men without signs of TGCT. However, available data indicate that men in whom TM is found by ultrasound, and who have an increased risk of TGCT, should be offered testicular biopsy for detection of CIS. The list of high-risk patients includes men with infertility and bilateral TM, atrophic testes, undescended testes, a history of TGCT, and contralateral TM (21).

12.4 Recommendations for germ cell malignancy and testicular microcalcification

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>As for all men, patients with TM and without special risk factors (see below) should be encouraged to perform self-examination because this might result in early detection of TGCT.</td>
<td>B</td>
</tr>
<tr>
<td>Testicular biopsy should be offered to men with TM, who belong to one of the following high-risk groups: infertility and bilateral TM, atrophic testes, undescended testes, a history of TGCT, or contralateral TM.</td>
<td>B</td>
</tr>
<tr>
<td>If there are suspicious findings on physical examination or ultrasound in patients with TM and associated lesions, surgical exploration with testicular biopsy or orchidectomy should be considered.</td>
<td>B</td>
</tr>
<tr>
<td>Testicular biopsy, follow-up scrotal ultrasound, routine use of biochemical tumour markers, or abdominal or pelvic CT is not justified in men with isolated TM without associated risk factors (e.g., infertility, cryptorchidism, testicular cancer, and atrophic testis).</td>
<td>B</td>
</tr>
<tr>
<td>Men with TGCT are at increased risk of developing hypogonadism and sexual dysfunction and should therefore be followed up.</td>
<td>B</td>
</tr>
</tbody>
</table>

12.5 References

13. DISORDERS OF EJACULATION

13.1 Definition
Disorders of ejaculation are uncommon, but important, causes of male infertility. This group includes several heterogeneous dysfunctions, which can be either organic or functional.

13.2 Classification and aetiology
13.2.1 Anejaculation
Anejaculation involves complete absence of antegrade or retrograde ejaculation. It is caused by failure of semen emission from the seminal vesicles, prostate and ejaculatory ducts into the urethra (1). True anejaculation is usually associated with a normal orgasmic sensation. Occasionally (e.g., in incomplete spinal cord injuries), this sensation is altered or decreased. True anejaculation is always associated with central or peripheral nervous system dysfunction or with drugs (2) (Table 15).

13.2.2 Anorgasmia
Anorgasmia is the inability to reach orgasm and can give rise to anejaculation. Anorgasmia is often a primary condition and its cause is usually psychological. Some patients report sporadic events of nocturnal emission or of ejaculation during great emotional excitement unrelated to sexual activity (3).

13.2.3 Delayed ejaculation
In delayed ejaculation, abnormal stimulation of the erect penis is needed to achieve orgasm with ejaculation (1).
Delayed ejaculation can be considered a mild form of anorgasmia, and both conditions can be found alternately in the same patient. The causes of delayed ejaculation can be psychological, organic (e.g., incomplete spinal cord lesion (3) or iatrogenic penile nerve damage (4), or pharmacological [e.g., selective serotonin re-uptake inhibitors (SSRIs), antihypertensives, or antipsychotics] (5).

13.2.4 Retrograde ejaculation
Retrograde ejaculation is the total, or sometimes partial, absence of antegrade ejaculation as a result of semen passing backwards through the bladder neck into the bladder. Patients experience a normal or decreased orgasmic sensation, except in paraplegia. Partial antegrade ejaculation must not be confused with the secretion of bulbourethral glands. The causes of retrograde ejaculation can be divided into neurogenic, pharmacological, or urethral, or bladder neck incompetence (Table 15).

Table 15: Aetiology of anejaculation and retrograde ejaculation

<table>
<thead>
<tr>
<th>Neurogenic</th>
<th>Pharmacological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord injury</td>
<td>Antihypertensives</td>
</tr>
<tr>
<td>Cauda equina lesions</td>
<td>α1-adrenoceptor antagonists</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>Antipsychotics and antidepressants</td>
</tr>
<tr>
<td>Autonomic neuropathy (diabetes mellitus)</td>
<td>Alcohol</td>
</tr>
<tr>
<td>Retroperitoneal lymphadenectomy</td>
<td>Bladder neck incompetence</td>
</tr>
<tr>
<td>Sympathectomy or aortoiliac surgery</td>
<td>Congenital defects/dysfunction of hemitrigone</td>
</tr>
<tr>
<td>Colorectal and anal surgery</td>
<td>Bladder extrophy</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td>Bladder neck resection (transurethral resection of the prostate)</td>
</tr>
<tr>
<td>Urethral</td>
<td>Prostatectomy</td>
</tr>
<tr>
<td>Ectopic ureterocele</td>
<td></td>
</tr>
<tr>
<td>Urethral stricture</td>
<td></td>
</tr>
<tr>
<td>Urethral valves or verumontaneum hyperplasia</td>
<td></td>
</tr>
<tr>
<td>Congenital dopamine β-hydroxylase deficiency</td>
<td></td>
</tr>
</tbody>
</table>

13.2.5 Asthenic ejaculation
Asthenic ejaculation, also defined as partial ejaculatory incompetence or “ejaculation baveuse” (5), is characterised by an altered propulsive phase, with a normal emission phase. The orgasmic sensation is reduced and the typically rhythmical contractions associated with ejaculation are missing, whereas in asthenic ejaculation caused by urethral obstruction, these contractions are present. Asthenic ejaculation generally is caused by the neurogenic or urethral pathologies already listed in Table 16. Asthenic ejaculation does not usually affect semen quality.

13.2.6 Premature ejaculation
The International Society for Sexual Medicine (ISSM) has adopted the first evidence-based definition of lifelong premature ejaculation (PE): “Premature ejaculation is a male sexual dysfunction characterised by ejaculation which always or nearly always occurs prior to or within about one minute of vaginal penetration; and inability to delay ejaculation on all or nearly all vaginal penetrations; and negative personal consequences, such as distress, bother, frustration and/or the avoidance of sexual intimacy”.

Premature ejaculation may be strictly organic (e.g., prostatitis-related) or psychogenic, partner-related or non-selective, and can be associated with erectile dysfunction. It does not impair fertility, provided intravaginal ejaculation occurs.

13.2.7 Painful ejaculation
Painful ejaculation is usually an acquired condition that is often related to lower urinary tract symptoms (6). It sometimes causes moderate sexual dysfunction. The painful sensation might be felt in the perineum, or urethra and urethral meatus (7). It can be caused by ejaculatory duct obstruction, all types of chronic prostatitis/CPPS, urethritis, urethrocele, antidepressant drugs, and psychological problems.

13.3 Diagnosis
Diagnostic management includes the following recommended procedures.

13.3.1 Clinical history
The patient must be carefully checked for diabetes, neuropathy, trauma, urogenital infection, previous surgery,
and medication. Particular attention must be paid to the characteristics of micturition and ejaculation (presence of nocturnal emission, ejaculatory ability in given circumstances, and primary or acquired disorder), as well as to psychosexual aspects (education, features of affective relationship, pre-existent psychological trauma, and previous psychological therapy).

13.3.2 Physical examination
Genital and rectal examinations are conducted, including evaluation of the prostate, bulbocavernosus reflex, and anal sphincter tone. Minimal neurological tests include:
- sensitivity of scrotum, testes, and perineum;
- cremasteric and abdominal cutaneous reflex;
- leg osteotendinous and plantar reflexes.

13.3.3 Post-ejaculatory urinalysis
Post-ejaculatory urinalysis of centrifuged urine can be used to determine if there is total or partial retrograde ejaculation.

13.3.4 Microbiological examination
Initial, mid-stream urine, EPS, and/or urine after prostatic massage are cultured for evidence of prostatic infection. In cases of increased leukocytes in semen, semen culture or biochemical infection marker tests are also suggested (8).

13.3.5 Optional diagnostic work-up
This diagnostic work-up can include:
- neurophysiological tests (bulbocavernosus evoked response and dorsal nerve somatosensory evoked potentials);
- tests for autonomic neuropathy;
- psychosexual evaluation;
- videocystometry;
- cystoscopy;
- transrectal ultrasonography;
- uroflowmetry;
- vibratory stimulation of the penis.

13.4 Treatment
Infertility caused by disorders of ejaculation is seldom treated on the basis of aetiology. Treatment usually involves retrieval of spermatozoa for use in ARTs. The following aspects must be considered when selecting treatment:
- age of patient and his partner;
- psychological problems of the patient and his partner;
- couple’s willingness and acceptance of different fertility procedures;
- associated pathology;
- psychosexual counselling.

13.5 Aetiological treatment
If possible, any pharmacological treatment that is interfering with ejaculation should be stopped. In painful ejaculation, tamsulosin can be administered during antidepressant treatment (9). Treatment should be given for urogenital infections (i.e., in cases of painful ejaculation) (8). Dapoxetine is an SSRI that has been introduced for the therapy of PE (10), because it appears that PE is related to serotonin levels. If possible, any underlying urethral pathology or metabolic disorder (e.g., diabetes) should be corrected. Psychotherapy is usually not very effective.

13.6 Symptomatic treatment
13.6.1 Premature ejaculation
Primature ejaculation can be treated with the SSRI dapoxetine, topical anaesthetic agents to increase intravaginal ejaculation latency time, behavioural therapy, and/or psychotherapy. Off-label use of SSRIs (e.g., paroxetine and fluoxetine) should be applied with caution.

13.6.2 Retrograde ejaculation
In the absence of spinal cord injury, anatomical anomalies of the urethra, or pharmacological agents, drug treatment must be used to induce antegrade ejaculation (Table 16). Alternatively, the patient can be encouraged
to ejaculate when his bladder is full to increase bladder neck closure (11).

Table 16: Drug therapy for retrograde ejaculation

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage regimen</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedrine sulphate</td>
<td>10-15 mg four times daily</td>
<td>12</td>
</tr>
<tr>
<td>Midodrine</td>
<td>5 mg three times daily</td>
<td>13</td>
</tr>
<tr>
<td>Brompheniramine maleate</td>
<td>8 mg twice daily</td>
<td>14</td>
</tr>
<tr>
<td>Imipramine</td>
<td>25-75 mg three times daily</td>
<td>15</td>
</tr>
<tr>
<td>Desipramine</td>
<td>50 mg every second day</td>
<td>16</td>
</tr>
</tbody>
</table>

Sperm collection from post-orgasmic urine for use in ART is recommended if:
- drug treatment is ineffective or intolerable as a result of side effects;
- the patient has a spinal cord injury;
- drug therapy inducing retrograde ejaculation cannot be interrupted.

Sperm retrieval is timed to coincide with the partner’s ovulation. Urine must be alkalinised (pH 7.2-7.8) and osmolarity must be 200-300 mOsmol/kg. Alternatively, a catheter can be inserted into the bladder to allow instillation of 10-50 mL Tyrode’s or Ham’s F-10 medium. The patient must ejaculate, and a second catheterisation is carried out immediately to retrieve spermatozoa. The latter treatment minimises contact between spermatozoa and urine (17,18).

If the biological sperm preparation is not of sufficient quality for intrauterine insemination, the couple must undergo in vitro reproductive procedures (e.g., ICSI) with fresh or cryopreserved spermatozoa. In the case of insufficient drug therapy, testicular (TESE or PESA) or epididymal (MESA) sperm retrieval techniques can be used for assisted reproduction.

13.6.3 Anejaculation

Drug treatment for anejaculation caused by lymphadenectomy and neuropathy, or psychosexual therapy for anorgasmia is not very effective. In all these cases, and in men who have a spinal cord injury, vibrostimulation (i.e., application of a vibrator to the penis) is first-line therapy.

In anejaculation, vibrostimulation evokes the ejaculation reflex (19), which requires an intact lumbosacral spinal cord segment. Complete spinal injuries and injuries above T10 show a better response to vibrostimulation. Once the safety and efficacy of this procedure has been assessed, patients can manage the process in their own home. Intravaginal insemination using a 10-mL syringe during ovulation can be carried out. If the quality of semen is poor, or ejaculation is retrograde, the couple may enter an IVF programme.

If vibrostimulation has failed, electroejaculation is the therapy of choice (20). Electroejaculation involves electrical stimulation of the periprostatic nerves via a probe inserted into the rectum, which seems unaffected by reflex arc integrity. Anaesthesia is required except in cases of complete spinal cord injury. In 90% of patients, electrostimulation induces ejaculation, which is retrograde in one-third of cases. Semen quality is often poor and most couples will need to enter an IVF programme (21).

When electroejaculation fails or cannot be carried out, sperm can be retrieved from the seminal ducts by aspiration from the vas deferens (22) (see Chapter 5) or seminal tract washout (23). When sperm cannot be retrieved, epididymal obstruction or testicular failure must be suspected. If only immotile sperm can be retrieved, DNA damage is very likely and will yield poor IVF results. TESE can then be used (8,24). Anejaculation following either surgery for testicular cancer or total mesorectal excision can be prevented using monolateral lymphadenectomy or autonomic nerve preservation (24), respectively.

13.7 Conclusion and recommendations for disorders of ejaculation

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejaculation disorders can be treated using a wide range of drugs and physical stimulation, with a high level of efficacy.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aetiological treatments for ejaculatory disorders should be offered before sperm collection and ART is performed.</td>
<td>GR B</td>
</tr>
<tr>
<td>Premature ejaculation can be treated successfully with either topical anaesthetic creams or SSRIs.</td>
<td>A</td>
</tr>
<tr>
<td>In men with spinal cord injury, vibrostimulation and electroejaculation are effective methods of sperm retrieval.</td>
<td>B</td>
</tr>
</tbody>
</table>
13.8 References

14. SEMEN CRYOPRESERVATION

14.1 Definition
Cryopreservation is the storage of biological material at subzero temperatures [e.g., -80 or -196°C (the boiling point of liquid nitrogen)], at which biochemical processes of cell metabolism are slowed or interrupted. At -196°C, the biochemical reactions that lead to cell death are stopped.

14.2 Introduction
Cryopreservation was first developed in the 1940s by veterinarians and adapted for human sperm in the 1950s. The first pregnancy that used cryopreservation took place in 1954 (1). In fertility practice, clinical indications for cryopreservation include storage of sperm and testicular tissue.

14.3 Indications for storage
Storage of sperm is available in many clinics for the following indications:
• Before potentially sterilising chemotherapy or radiotherapy for cancer (2) or for non-malignant diseases.
• Before surgery that might interfere with fertility (e.g. bladder neck surgery in a younger man or removal of a testicle in a man with testicular malignancy, or before vasectomy or transgender surgery).
• For men with progressive decrease in semen quality as a result of diseases that have an associated risk of subsequent azoospermia (i.e., pituitary macroadenoma, craniopharyngioma, empty sella syndrome, chronic nephropathy, uncontrolled diabetes mellitus, and multiple sclerosis).
• For men with paraplegia when sperm have been obtained by electroejaculation or obtained by penile vibratory stimulation.
• For men with psychogenic anejaculation, after sperm have been obtained either by electroejaculation or a sperm retrieval procedure.
• After gonadotropin treatment has induced spermatogenesis in men with hypogonadotrophic hypogonadism.
• For men with NOA, the chance of finding sperm using micro-TESE is ~50%.

Cryopreservation can be used for sperm collected through TESE, avoiding repeated sperm retrieval procedures and unnecessary hyperstimulation of the female partner.
• In any situation in which sperm have been obtained by a sperm retrieval procedure (e.g., after failed vasectomy reversal, or in some cases of epididymal obstruction not amenable to surgery).
• For storage of donor sperm, because cryopreservation reduces the risk of transmission of infection from sperm donors. According to the European directives 2004/23 EC and 2006/17 EC fresh sperm are no longer to be used for non-partner donations.

14.4 Precautions and techniques
14.4.1 Freezing and thawing process
The cryopreservation techniques currently used are not yet optimal because damage occurs to cells during cryopreservation and prolonged storage. Most damage occurs during freezing and thawing. Major causes of damage during freezing are ice crystal formation and cell dehydration, which disrupt the cell wall and intracellular organelles. Sperm morphology, motility and vitality decrease significantly after thawing, and cryopreservation increases the damage done to sperm DNA (3-6). Further damage can be caused by contamination of samples with microorganisms and high levels of superoxide radicals (7,8). To reduce ice crystal formation, a cryopreservation solution is added before freezing. Various cryopreservation solutions are available commercially, most of which contain varying proportions of glycerol and albumin. After freezing, the
samples are immersed in liquid nitrogen.

Several techniques have been developed to try to reduce damage caused by freezing and thawing, including:

- **One-step freezing method** (9,10): sample is held in the vapour phase for 10 min before being plunged into liquid nitrogen.
- **Slow or multi-step method** (11): sample is gradually cooled in the vapour phase for approximately 40 min. A programmable automatic freezing machine, which is preset to cool at a rate of 1-10°C/min is used.

The method available depends on the resources of the laboratory. Whichever freezing technique is used, it should be tested using donor sperm and post-thaw examination, and should regularly undergo a quality-control programme.

The likelihood of sperm survival decreases with repeated freezing and thawing. The maximum viable storage time for human sperm is not known. Many laboratory or regulatory authorities apply a storage limit of up to 10 years (12). However, longer storage is sometimes needed (e.g., for a 17-year-old man who has had sperm stored before undergoing chemotherapy for testicular cancer).

14.4.2 Cryopreservation of small numbers of sperm

Standard cryopreservation in straws is an efficient way of storing large numbers of sperm (e.g., for a donor insemination programme). However, in micro-TESE, few sperm might be obtained, and the choice is either to freeze testicular tissue and find sperm after thawing the tissue, or to freeze small numbers of sperm. If sperm are frozen in straws, it can be difficult to find any sperm after thawing. Instead, the sperm should be frozen in a pellet (13) or in a container (14).

14.4.3 Testing for infections and preventing cross-contamination

Sperm storage in straws is used extensively. Large numbers of straws are stored in canisters, with the straws being bathed in a pool of liquid nitrogen. Microbial contamination of the pool of liquid nitrogen results in contamination of the outside of all the straws. The most widely used safeguard is to use so-called high security closed straws. According to the European directives 2004/23 and 2006/17, samples should be tested for hepatitis B and C and human immunodeficiency virus (HIV). In case of non-partner donation, samples are also tested for C. Trachomatis (by NAT) and syphilis, as well as genetics, that is, karyotype and most prevalent genetic disorders in the population to which the non-partner donor belongs.

Until the test results are known, samples must be stored in an individual quarantine vessel (separate storage). If open straws are used (e.g., for vitrification purposes) some laboratories use the additional safeguard of double-wrapping the straws before freezing, although this is more costly. Some centres carry out cytomegalovirus testing and store negative and positive samples separately.

Considerable ethical issues surround the storage of samples before cancer chemotherapy in men who are hepatitis-virus- or HIV-positive. Few clinics have separate storage facilities for HIV-positive samples. However, the success of antiretroviral treatment is increasing the number of HIV-positive men who may wish to store sperm. There is also concern about HIV transmission to children conceived using HIV-positive sperm, because sperm-washing techniques fail in ~5% of cases.

14.4.4 Fail-safe precautions to prevent loss of stored materials

Any laboratory that undertakes long-term storage of human biological materials should have procedures that guard against accidental loss of material caused by storage vessel failure. This is particularly important for sperm stored before potentially sterilising cancer chemotherapy because these patients may not be able to obtain further sperm.

14.4.5 Orphan samples

In malignancy and some other situations, several years might pass before stored samples are required. Inevitably, during this time, the owners of some samples might disappear or die, leaving behind orphan samples for which the owner is no longer contactable. The duty of the laboratory and the legal ownership of these samples can create considerable problems.

14.5 Biological aspects

Cryopreservation induces deterioration of semen quality. After the sample has been thawed, motility (16) and morphology (17,18) are worsened, including mitochondrial acrosomal and sperm tail damage (19). Sperm freezing decreases motility by 31% and mitochondrial activity by 36%, and causes morphological disruption in 37% of sperm (9). Motility is correlated best with IVF capacity of the thawed sample. Further improvement can be achieved by selecting the subpopulation of sperm with the best motility and DNA integrity and freezing these sperm in seminal plasma (13).
14.6 Cryopreservation of testicular stem cells
Spermatogonial stem cell (SSC) preservation and transplantation have been proposed as a promising strategy for fertility preservation in young boys facing SSC loss (20). Since the first publication of SSC transplantation in mice in 1994, remarkable progress has been made towards a clinical application. Cryopreservation protocols for testicular tissue have been developed in animal models, translated to humans, and are already used clinically. Transplantation methods are being used in human testes, and the efficiency and safety of the technique has been evaluated in a mouse model. The application of this technique in humans looks possible, therefore, banking testicular biopsies from prepubertal boys for future stem cell transplantation is being introduced in many centres.

14.7 Conclusions and recommendations for semen cryopreservation

Conclusions

The purpose of sperm cryopreservation is to enable future assisted reproduction techniques.

Cryopreservation techniques are not optimal, and future efforts are needed to improve the outcome of sperm banking.

Recommendations

Cryopreservation of semen should be offered to all men who are candidates for chemotherapy, radiation or surgical interventions that might interfere with spermatogenesis or cause ejaculatory disorders.

If testicular biopsies are indicated, sperm cryopreservation is strongly advised.

If cryopreservation is not available locally, patients should be advised about the possibility of visiting, or transferring to, the nearest cryopreservation unit before therapy starts.

Consent for cryopreservation should include a record of the man’s wishes for his samples if he dies or is otherwise untraceable.

Precautions should be taken to prevent transmission of viral, sexually transmitted or any other infection by cryostored materials from donor to recipient, and to prevent contamination of stored samples. These precautions include testing of the patient and the use of rapid testing and quarantine of samples until test results are known. Samples from men who are positive for hepatitis virus or HIV should not be stored in the same container as samples from men who have been tested and are free from infection.

References

15. Clarke GN. Sperm cryopreservation: is there a significant risk of cross-contamination? Hum Reprod 1999 Dec;14(12):2941-3. [No abstract available]

15. ABBREVIATIONS USED IN THE TEXT

This list is not comprehensive for the most common abbreviations

ABP acute bacterial prostatitis
ART assisted reproduction technique
CBAVD congenital bilateral absence of the vas deferens
CF cystic fibrosis
CFTR cystic fibrosis transmembrane conductance regulator
CIS carcinoma in situ
CPPS chronic pelvic pain syndrome
EAA European Academy of Andrology
EPS expressed prostatic excretion
FISH fluorescent in situ hybridisation
FSH follicle-stimulating hormone
GCT germ cell tumour
GCT gonadotrophin-releasing hormone
GR grade of recommendation
GREAT G-protein-coupled receptor affecting testis descent
hCG human chorionic gonadotrophin
HIV human immunodeficiency virus
HMG human menopausal gonadotropin
ICSI intracytoplasmic sperm injection
IHH idiopathic hypogonadotropic hypogonadism
IL-6 interleukin-6
ITGCNU intratubular germ cell neoplasia of unclassified type
IVF in vitro fertilisation
LE level of evidence
LH luteinising hormone
MAGI male accessory gland infection
MAR mixed antiglobulin reaction
MESA microsurgical epididymal sperm aspiration
NIDDK National Institute of Diabetes and Digestive and Kidney Diseases
NIH National Institutes of Health
NOA non-obstructive azoospermia
OA obstructive azoospermia
OAT oligo-astheno-teratozoospermia [syndrome]
PE premature ejaculation
PGD preimplantation genetic diagnosis
SHBG sex hormone binding globulin
SSRIs selective serotonin reuptake inhibitors
TDS testicular dysgenesis syndrome
TEFNA testicular fine-needle aspiration
TESE testicular sperm extraction
TGCT testicular germ cell tumour
TM testicular microlithiasis
TRUS transrectal ultrasound
TURED transurethral resection of the ejaculatory ducts
WBC white blood cell
VB1 first-voided urine
WHO World Health Organization

Conflict of interest
All members of the Male Infertility Guidelines working group have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publicly accessible through the European Association of Urology website. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.