TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Aims and scope</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Panel composition</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Available publications</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Publication history and summary of changes</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1 Publication history</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2 Summary of changes</td>
<td>5</td>
</tr>
<tr>
<td>2. METHODS</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Future goals</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Peer review</td>
<td>7</td>
</tr>
<tr>
<td>3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Epidemiology</td>
<td>8</td>
</tr>
<tr>
<td>3.1.1 Conclusion and recommendation</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Histological diagnosis</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1 Clear cell (ccRCC)</td>
<td>8</td>
</tr>
<tr>
<td>3.2.2 Papillary (pRCC)</td>
<td>8</td>
</tr>
<tr>
<td>3.2.3 Chromophobe (chRCC)</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Other renal tumours</td>
<td>9</td>
</tr>
<tr>
<td>3.3.1 Carcinoma associated with end-stage renal disease; acquired cystic disease-associated RCC</td>
<td>9</td>
</tr>
<tr>
<td>3.3.2 Papillary adenoma</td>
<td>9</td>
</tr>
<tr>
<td>3.3.3 Hereditary kidney tumours</td>
<td>9</td>
</tr>
<tr>
<td>3.3.4 Angiomyolipoma (AML)</td>
<td>9</td>
</tr>
<tr>
<td>3.3.4.1 Treatment</td>
<td>10</td>
</tr>
<tr>
<td>3.3.4.2 Summary</td>
<td>11</td>
</tr>
<tr>
<td>3.4 Conclusions and recommendations</td>
<td>11</td>
</tr>
<tr>
<td>4. STAGING AND CLASSIFICATION SYSTEMS</td>
<td>12</td>
</tr>
<tr>
<td>4.1 Staging</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Anatomic classification systems</td>
<td>12</td>
</tr>
<tr>
<td>5. DIAGNOSTIC EVALUATION</td>
<td>13</td>
</tr>
<tr>
<td>5.1 Symptoms</td>
<td>13</td>
</tr>
<tr>
<td>5.1.1 Physical examination</td>
<td>13</td>
</tr>
<tr>
<td>5.1.2 Laboratory findings</td>
<td>13</td>
</tr>
<tr>
<td>5.2 Imaging investigations</td>
<td>13</td>
</tr>
<tr>
<td>5.2.1 Presence of enhancement</td>
<td>13</td>
</tr>
<tr>
<td>5.2.2 CT or MRI</td>
<td>13</td>
</tr>
<tr>
<td>5.2.3 Other investigations</td>
<td>14</td>
</tr>
<tr>
<td>5.2.4 Radiographic investigations for metastatic RCC</td>
<td>14</td>
</tr>
<tr>
<td>5.2.5 Bosniak classification of renal cystic masses</td>
<td>14</td>
</tr>
<tr>
<td>5.3 Renal tumour biopsy</td>
<td>15</td>
</tr>
<tr>
<td>5.4 Recommendations for the diagnostic assessment of renal cell carcinoma</td>
<td>15</td>
</tr>
<tr>
<td>6. PROGNOSTIC FACTORS</td>
<td>16</td>
</tr>
<tr>
<td>6.1 Anatomical factors</td>
<td>16</td>
</tr>
<tr>
<td>6.2 Histological factors</td>
<td>16</td>
</tr>
<tr>
<td>6.3 Clinical factors</td>
<td>17</td>
</tr>
<tr>
<td>6.4 Molecular factors</td>
<td>17</td>
</tr>
<tr>
<td>6.5 Prognostic systems and nomograms</td>
<td>17</td>
</tr>
<tr>
<td>6.6 Conclusion and recommendations</td>
<td>17</td>
</tr>
<tr>
<td>7. DISEASE MANAGEMENT</td>
<td>19</td>
</tr>
<tr>
<td>7.1 Treatment of localised RCC</td>
<td>19</td>
</tr>
<tr>
<td>7.1.1 Introduction</td>
<td>19</td>
</tr>
</tbody>
</table>
7.1.2 Surgical treatment

7.1.2.1 Nephron-sparing surgery versus radical nephrectomy

7.1.2.2 Associated procedures

7.1.2.2.1 Adrenalectomy

7.1.2.2.2 Lymph node dissection for clinically negative lymph nodes (cN0)

7.1.2.2.3 Embolisation

7.1.2.2.4 Conclusions and recommendations

7.1.3 Radical and partial nephrectomy techniques

7.1.3.1 Radical nephrectomy techniques

7.1.3.2 Partial nephrectomy techniques

7.1.3.3 Conclusions and recommendations

7.1.4 Therapeutic approaches as alternatives to surgery

7.1.4.1 Surgical versus non-surgical treatment

7.1.4.2 Surveillance

7.1.4.3 Ablative therapies

7.1.4.3.1 Cryoablation

7.1.4.3.2 Cryoablation versus PN

7.1.4.3.3 Radiofrequency ablation

7.1.4.3.4 RFA versus PN

7.1.4.3.5 Cryoablation versus RFA

7.1.4.3.6 Other ablative techniques

7.1.4.3.7 Conclusions and recommendations

7.1.4.4 Therapeutic approaches as alternatives to surgery

7.1.4.4.1 Surgical versus non-surgical treatment

7.1.4.4.2 Surveillance

7.1.4.4.3 Ablative therapies

7.1.4.4.4 Thermotherapy

7.1.4.4.5 Conclusion and recommendation

7.2 Treatment of locally advanced RCC

7.2.1 Introduction

7.2.2 Management of clinically positive lymph nodes (cN+)

7.2.3 Management of locally advanced unresectable RCC

7.2.4 Management of RCC with venous thrombus

7.2.4.1 The evidence base for surgery in patients with VTT

7.2.4.2 The evidence base for different surgical strategies

7.2.4.3 Conclusions and recommendations

7.2.5 Adjuvant therapy

7.2.5.1 Conclusion and recommendation

7.3 Advanced/metastatic RCC

7.3.1 Local therapy of advanced/metastatic RCC

7.3.1.1 Cytoreductive nephrectomy

7.3.1.1.1 Embolisation of the primary tumour

7.3.1.1.2 Conclusions and recommendations

7.3.2 Local therapy of metastases in mRCC

7.3.2.1 Complete versus no/incomplete metastasectomy

7.3.2.2 Local therapies for RCC bone metastases

7.3.2.3 Local therapies for RCC brain metastases

7.3.2.4 Embolisation of metastases

7.3.2.5 Conclusions and recommendations

7.4 Systemic therapy for advanced/metastatic RCC

7.4.1 Chemotherapy

7.4.1.1 Conclusion and recommendation

7.4.2 Immunotherapy

7.4.2.1 IFN-α monotherapy and combined with bevacizumab

7.4.2.2 Interleukin-2

7.4.2.3 Vaccines and targeted immunotherapy

7.4.2.4 Conclusions and recommendations

7.4.3 Targeted therapies

7.4.3.1 Tyrosine kinase inhibitors

7.4.3.1.1 Sorafenib

7.4.3.1.2 Sunitinib

7.4.3.1.3 Pazopanib

7.4.3.1.4 Axitinib

7.4.4 Monoclonal antibody against circulating VEGF

7.4.4.1 Bevacizumab monotherapy and bevacizumab + IFN-α
7.4.5 mTOR inhibitors
 7.4.5.1 Temsirolimus
 7.4.5.2 Everolimus

7.4.6 Therapeutic strategies and recommendations
 7.4.6.1 Therapy for treatment-naïve patients with clear-cell mRCC
 7.4.6.1.1 Sequencing targeted therapy
 7.4.6.1.1.1 Following progression of disease with VEGF-targeted therapy
 7.4.6.1.1.2 Treatment after progression of disease with mTOR inhibition
 7.4.6.1.1.3 Treatment after progression of disease with cytokines
 7.4.6.1.1.4 Treatment after second-line targeted therapy
 7.4.6.1.1.5 Combination of targeted agents

7.4.6.2 Non-clear-cell renal cancer
 7.4.6.3 Conclusions and recommendations for systemic therapy in mRCC

7.5 Recurrent RCC
 7.5.1 Introduction
 7.5.2 Conclusions and recommendation for advanced/metastatic RCC

8. FOLLOW-UP AFTER RADICAL NEPHRECTOMY OR PARTIAL NEPHRECTOMY OR ABLATIVE THERAPIES FOR RCC
 8.1 Introduction
 8.2 Which investigations for which patients, and when?
 8.3 Conclusions and recommendations for surveillance following RN or PN or ablative therapies in RCC
 8.4 Research priorities

9. REFERENCES

10. CONFLICT OF INTEREST
1. INTRODUCTION

1.1 Aims and scope
The European Association of Urology (EAU) Renal Cell Cancer (RCC) Guidelines Panel has compiled these clinical guidelines to provide urologists with evidence-based information and recommendations for the management of RCC.

1.2 Panel composition
The RCC panel is an international group of clinicians consisting of urological surgeons, an oncologist, methodologists, a pathologist and a radiologist, with particular expertise in the field of urological care. For the 2015 guideline update, the panel incorporated a patient advocate to provide a consumer perspective for its guidelines.

All experts involved in the production of this document have submitted potential conflict of interest statements.

The panel is most grateful for the methodological and scientific support provided by the following individuals in specific parts of the guideline document:

- Prof. Dr. O. Hes, pathologist, Plzen (CZ) (Other renal tumours);
- Dr. T. Adewuyi, Aberdeen, UK: (systematic review - Systemic therapy for metastatic disease and providing general assistance for various aspects of the systematic review);
- Dr. H. Bekema, Groningen (NL): (systematic review - Lymph node dissection in localised and locally advanced RCC);
- Dr. F. Stewart, Aberdeen (UK): (systematic review - Tumour thrombus)
- Prof. Dr. A. Graser, radiologist, Munich (DE): (development of a systematic review for the diagnosis and follow-up chapters [in progress]).

1.3 Available publications
A quick reference document (Pocket guidelines) is available, both in print and in a number of versions for mobile devices. These are abridged versions which may require consultation together with the full text versions. Several scientific publications are available as are a number of translations of all versions of the EAU RCC Guidelines [1-3]. All documents are available free access through the EAU website Uroweb: http://www.uroweb.org/guidelines/online-guidelines/.

1.4 Publication history and summary of changes
1.4.1 Publication history
The EAU RCC Guidelines were first published in 2000. This 2015 RCC Guidelines document presents a limited update of the 2014 publication.

1.4.2 Summary of changes
All chapters of the 2015 RCC Guidelines have been updated, based on the 2014 update. The consistency of the data work-up will differ between sections. An overview is presented in Table 1.1.
Table 1.1: Description of update and summary of review methodology for the 2015 update

<table>
<thead>
<tr>
<th>Chapter Brief description of review methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Methods</td>
</tr>
<tr>
<td>3. Epidemiology, Aetiology and Pathology</td>
</tr>
<tr>
<td>4. Staging and grading classification systems</td>
</tr>
<tr>
<td>5. Diagnostic evaluation</td>
</tr>
<tr>
<td>6. Prognosis</td>
</tr>
<tr>
<td>7. Treatment (Disease management)</td>
</tr>
<tr>
<td>8. Surveillance following radical or partial nephrectomy or ablative therapies</td>
</tr>
</tbody>
</table>

Changed recommendations

Recommendations have been rephrased and added to throughout the current document, not resulting in a change in the grade of recommendation (GR). New recommendations have been included in Sections:

3.4 Recommendations for other renal tumours

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
</table>
| AMLs, active surveillance is the most appropriate option for most AMLs. Treatment with selective arterial embolisation (SAE) or NSS can be considered in:
 - large tumours (recommended threshold of intervention does not exist, the formerly recommended size of > 4 cm wide is disputed);
 - females of childbearing age;
 - patients in whom follow-up or access to emergency care may be inadequate. | C |

7.1.2.2.4 Conclusions and recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN should be favoured over RN in patients with T1b tumour, whenever feasible.</td>
<td>B</td>
</tr>
</tbody>
</table>

7.2.4.3 Conclusions and recommendations

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with locally advanced disease due to clinically enlarged LNs the survival benefit of LND is unclear. In these cases LND can be performed for staging purposes.</td>
<td>3</td>
</tr>
</tbody>
</table>

7.3.3.8 Conclusions and recommendations for systemic therapy in mRCC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib can be recommended as first-line therapy for non-clear-cell mRCC.</td>
<td>B</td>
</tr>
</tbody>
</table>
2. METHODS

2.1 Introduction

For sections of the guidelines that have been updated using a systematic review, the review methodology is outlined in detail elsewhere [8]. Briefly, a systematic review of the literature was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [9]. Important topics and questions were prioritised for the present update. Elements for inclusion and exclusion, including patient population, intervention, comparison, outcomes, study design, and search terms and restrictions were developed using an iterative process involving all members of the panel, to achieve consensus. Individual literature searches were conducted separately for each update question, and in most instances the search was conducted up to the end of November 2013. Two independent reviewers screened abstracts and full texts, carried out data abstraction and assessed risk of bias. The results were presented in tables showing baseline characteristics and summaries of findings. Meta-analyses were performed only for randomised controlled trials (RCTs) which demonstrated consistency and homogeneity of data. When this was not possible, a narrative synthesis of the evidence was provided.

The remaining sections of the guidelines were updated using a traditional narrative review strategy. Structured literature searches using an expert information specialist were designed. Searches of the Cochrane Database of Systematic Reviews, the Cochrane Library of Controlled Clinical Trials, and Medline and Embase on the Dialog-Datastar platform were performed. The controlled terminology of the respective databases was used, and both MeSH and Emtree were analysed for relevant entry terms. The search strategies covered the last 3 years (from 2011). An update was carried out before the publication of this document. Other data sources were also consulted, including the Database of Abstracts of Reviews of Effectiveness (DARE), and relevant reference lists from other guidelines producers such as the National Institute for Clinical Excellence (NICE) and the American Urological Association (AUA).

The majority of studies in this guideline update are retrospective analyses that include some larger multicentre studies and well-designed controlled studies. As only a few RCTs are available, most of the data are not based on high levels of evidence. Conversely, in the systemic treatment of metastatic RCC, a number of randomised studies have been performed, resulting in more reliable recommendations based on higher levels of evidence.

In this 2015 EAU Guidelines compilation, all standard information on levels of evidence (LE) and grading of recommendations (GR) has been taken out of the individual guidelines topics for the sake of brevity. This information is included in the introductory section of this print.

2.2 Future goals

In addition to further systematic data work-up, the RCC panel intend to focus on patient-reported outcomes.

The use of clinical quality indicators is an area of interest. A number of key quality indicators for this patient group have been selected:

1. Thorax CT for staging of pulmonary metastasis.
2. Proportion of patients with T1aN0M0 tumours undergoing nephron sparing surgery as first treatment.
3. The proportion of patients treated within 6 weeks after diagnosis.
4. The proportion of patients with metastatic RCC offered treatment with targeting agents.
5. Proportion of patients who undergo minimally invasive or operative treatment as first treatment who die within 30 days.

2.3 Peer review

This document was subjected to double-blind peer review prior to publication.
3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY

3.1 Epidemiology
Renal cell carcinoma (RCC) represents 2-3% of all cancers [10], with the highest incidence in Western countries. Over the last two decades until recently, the incidence of RCC increased by about 2% both worldwide and in Europe, although a continuing decrease has been observed in Denmark and Sweden [11]. In 2012, there were approximately 84,400 new cases of RCC and 34,700 kidney cancer-related deaths in the European Union [12]. In Europe, overall mortality rates for RCC increased up to the early 1990s, and stabilised or declined thereafter [13]. Mortality has decreased since the 1980s in Scandinavian countries and since the early 1990s in France, Germany, Austria, the Netherlands, and Italy. However, in some European countries (Croatia, Estonia, Greece, Ireland, Slovakia), mortality rates still show an upward trend [13].

Different RCC types have specific histopathological and genetic characteristics [14]. There is a 1.5:1 male predominance, with peak incidence between 60 and 70 years. Aetiological factors include smoking, obesity, and hypertension [15-18]. Having a first-degree relative with kidney cancer also increases the risk of RCC [19]. A number of other factors associated with higher or lower RCC risk include specific dietary habits and occupational exposure to specific carcinogens, however, literature results are inconclusive [20, 21]. Moderate alcohol consumption appears to have a protective effect for unknown reasons [22, 23]. Effective prophylaxis includes avoidance of cigarette smoking and obesity.

Due to increased detection of tumours by ultrasound (US) and computed tomography (CT), the number of incidentally diagnosed RCCs has increased. These tumours are usually smaller and of lower stage [24-26].

3.1.1 Conclusion and recommendation

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several verified risk factors have been identified including smoking, obesity and hypertension. These are considered definite risk factors for RCC.</td>
<td>2a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The most important primary prevention for RCC is elimination of cigarette smoking and obesity reduction.</td>
<td>B</td>
</tr>
</tbody>
</table>

3.2 Histological diagnosis
Renal cell carcinomas comprise a broad spectrum of histopathological entities described in 2004 WHO classification [4] and modified by ISUP Vancouver Classification [5]. There are three main RCC types: clear cell (ccRCC), papillary (pRCC - type I and II) and chromophobe (chRCC). RCC type classification has been confirmed by cytogenetic and genetic analyses [27-29] (LE: 2b). Collecting duct carcinoma and other infrequent renal tumours are discussed in Section 3.3.

Histological diagnosis includes, besides RCC type, evaluation of nuclear grade, sarcomatoid features, vascular invasion, tumour necrosis, and invasion of the collecting system and perirenal fat. Fuhrman nuclear grade has been the most widely accepted grading system [30]. At the ISUP conference, a simplified, nuclear grading system, based only on size and shape of nucleoli, has been proposed which will replace the Fuhrman grading system [5].

3.2.1 Clear cell (ccRCC)
Grossly, ccRCC is well circumscribed, capsule is usually absent. The cut surface is golden-yellow, often with haemorrhage and necrosis. The Fuhrman nuclear grading system is generally used [30]. Loss of chromosome 3p and mutation of the VHL (von Hippel-Lindau) gene at chromosome 3p25 are frequently found. ccRCC has a worse prognosis compared with pRCC and chRCC [31, 32] even after stratification for stage and grade [33]. The 5-year CSS rate was 91%, 74%, 67% and 32% for TNM stages I, II, III and IV (patients treated 1987-98) [34]. The indolent variant of ccRCC is multilocular cystic and accounts for approximately 4% of all ccRCC [5].

3.2.2 Papillary (pRCC)
Macroscopically, pRCC is well circumscribed with pseudocapsule, yellow or brown in colour, and a soft structure. Genetically, pRCC shows trisomies of chromosomes 7 and 17 and the loss of chromosome Y. Papillary RCCs are heterogeneous, with three different subtypes; two basic (1 and 2) and a third type,
oncocytic. Compared with ccRCC, pRCC has a significantly higher rate of organ confined tumour (pT1-2N0M0) and higher 5-year CSF [35]. Prognosis of pRCC type 2 is worse than for type 1 [36-38]. Exophytic growth, pseudonecrotic changes and pseudocapsule are typical signs of pRCC type 1. Pseudocapsules and extensive necrotic changes cause a spherical tumour in the extrarenal section. Tumours with massive necroses are fragile and vulnerable to spontaneous rupture or rupture resulting from minimal trauma followed by retroperitoneal bleeding. A well-developed pseudocapsule in pRCCs type 1 probably prevents these tumours from rupturing despite necroses. Necroses cohere with a hypodense central area of tumour on postcontrast CT. This area is surrounded by a vital tumour tissue, seen as a serpiginous contrast-enhancing margin on CT [39]. Some authors consider type 3; oncocytic pRCC, to have no pseudocapsule or massive necrosis, rare extrarenal growth and low malignant potential [38], although this type is not generally accepted [5].

3.2.3 Chromophobe (chRCC)

Grossly, chRCC is a pale tan, relatively homogenous and tough, well-demarcated mass without a capsule. Instead of the Fuhrman grading system, a special histopathological grading system by Paner et al. was proposed in 2010 [40, 41]. Loss of chromosomes 2, 10, 13, 17 and 21 are typical genetic changes [42]. The prognosis is relatively good, with high 5-year recurrence-free survival, CSS and 10-year CSS [43].

3.3 Other renal tumours

Other renal tumours constitute the remaining 10-15 % of renal cortical tumours. These include a variety of uncommon, sporadic, and familial carcinomas, some only recently described, and a group of unclassified carcinomas. A summary of these tumours are given in Table 3.1, but some clinically relevant tumours and extremely rare entities are mentioned below.

3.3.1 Carcinoma associated with end-stage renal disease; acquired cystic disease-associated RCC

Cystic degenerative changes (acquired cystic kidney disease [ACKD]) and a higher incidence of RCC are typical features of ESKD (end-stage kidney disease). RCCs of native end-stage kidneys are found in about 4% of patients. The lifetime risk of developing RCCs is at least 10 times higher than in the general population. Compared with sporadic RCCs, ACKDs generally are multicentric and bilateral, found in younger patients (mostly male), and are less aggressive [44, 45]. The relatively indolent outcome of tumours in ESKD is due to the mode of diagnosis and a specific ACKD related molecular pathway still to be determined [45]. Although the histological spectrum of ACKD tumours is similar to that in sporadic RCC, the predominant form is pRCC. The remaining tumours are mostly ccRCC [44-46]. A specific subtype of RCC occurring in end-stage kidneys only was described as Acquired Cystic Disease-associated RCC (ACD-RCC) [5].

3.3.2 Papillary adenoma

These tumours have papillary or tubular architecture of low nuclear grade and are 5 mm in diameter or smaller [4]. They are found incidentally in nephrectomy specimens.

3.3.3 Hereditary kidney tumours

Hereditary kidney tumours are found in the following entities: Von Hippel-Lindau syndrome, hereditary pRCC, Birt-Hogg-Dubé syndrome (see Hybrid oncocytoma-chromophobe carcinoma), hereditary leiomyomatosis and renal cell cancer (HLRCC), tuberous sclerosis complex, germline succinate dehydrogenase (SDH) mutation, nonpolyposis colorectal cancer syndrome, hyperparathyroidism-jaw tumour syndrome, PTEN hamartoma syndrome, constitutional chromosome 3 translocation, and familial nonsyndromic ccRCC. RMC can be included because of its association with hereditary haemoglobinopathies [4, 5, 36, 47].

3.3.4 Angiomyolipoma (AML)

Angiomyolipoma is a benign mesenchymal tumour, can occur sporadically, and is four times more likely in women. It also occurs in tuberous sclerosis (TS). It accounts for approximately 1% of surgically removed tumours. Ultrasound, CT, and MRI often lead to diagnosis due to the presence of adipose tissue. Biopsy is rarely useful. Pre-operatively, it may be difficult to differentiate between smooth muscle cell tumours and epithelial tumours. AML can be found in TS in LNs, but is not metastases, and has a multicentric genesis. AML can be due to angiotrophic-type growth in the renal vein or the IVC. AML with LN involvement and tumorous thrombus is benign. Only epithelioid AML is potentially malignant [4, 48]. AML has a slow and consistent growth rate, and minimal morbidity [49]. The main complications of renal AML are retroperitoneal bleeding or bleeding into the urinary collection system, which can be life-threatening [50]. The bleeding tendency is related to the angiogenic component of the tumour that includes irregular and aneurysmatic blood vessels [50]. The major risk factors for bleeding are tumour size, grade of the angiogenic component, and the presence of TS [50, 51]. Indications for intervention are pain, bleeding, or suspected malignancy.
Treatment

Active surveillance (AS) is the most appropriate option for most AMLs [49, 52] (LE: 3). Risk factors for delayed intervention include tumour size ≥ 4 cm and symptoms at diagnosis [52]. Selective arterial embolisation (SAE) seems to be the first-line option used for active treatment after AS was discontinued [52] (LE: 3). SAE is an efficient treatment for AML devascularisation but only volume reduction [53]. And although SAE controls haemorrhage in the acute setting, it has limited value in the longer-term [49, 50]. If surgery is selected, most cases of AML can be managed by conservative NSS, although some patients may require complete nephrectomy [51] (LE: 3). Radiofrequency ablation (RFA) can be option as well [49, 50, 54]. The volume of AML can be reduced by the m-Tor inhibitor everolimus [55] and sirolimus can be combined with deferred surgery [56].

Table 3.1: Other renal cortical tumours, and recommendations for treatment (GR: C)

<table>
<thead>
<tr>
<th>Entity [4, 5]</th>
<th>Clinical relevant notes</th>
<th>Malignant potential</th>
<th>Treatment of localised tumour/metastatic tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcomatoid variants of RCC</td>
<td>Sign of high-grade transformation without being a distinct histological entity</td>
<td>High</td>
<td>Surgery/sunitinib, option of gemcitabine plus doxorubicin [57].</td>
</tr>
<tr>
<td>Multilocular ccRCC</td>
<td>Low, no metastasis</td>
<td></td>
<td>Surgery, NSS*</td>
</tr>
<tr>
<td>Carcinoma of the collecting ducts of Bellini</td>
<td>Rare, often presenting at an advanced stage (N+ 44% and M1 33% at diagnosis). The hazard ratio in CSS in comparison with ccRCC is 4.49 [32].</td>
<td>High, very aggressive. Median survival 30 months [58].</td>
<td>Surgery/Response to targeted therapies was poor [59].</td>
</tr>
<tr>
<td>Renal medullary carcinoma</td>
<td>Very rare. Mainly young black men with sickle cell trait</td>
<td>High, very aggressive, median survival is 5 months [58].</td>
<td>Surgery/different chemotherapy regimes, radiosensitive.</td>
</tr>
<tr>
<td>Translocation RCC (TRCC) Xp11.2</td>
<td>Rare, mainly younger patients under 40, more common in females. It constitutes with TRCC 6p21 MiT translocation renal cell carcinomas [60].</td>
<td>High</td>
<td>Surgery/VEGF-targeted therapy.</td>
</tr>
<tr>
<td>Translocation RCC t(6;11)</td>
<td></td>
<td>Low/intermediate</td>
<td>Surgery, NSS/VEGF-targeted therapy.</td>
</tr>
<tr>
<td>Mucinous tubular and spindle cell carcinoma</td>
<td>Tumour is associated with the loop of Henle</td>
<td>Intermediate</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Acquired cystic disease-associated RCC</td>
<td></td>
<td>Low</td>
<td>Surgery</td>
</tr>
<tr>
<td>Clear cell (tubulo) papillary RCC</td>
<td>It has been reported under the term renal angiomyomatous tumour (RAT) as well.</td>
<td>Low</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Tubulocystic RCC</td>
<td>Mainly men, imaging can be Bosniak III or IV.</td>
<td>Low (90% indolent)</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Hybrid oncocytic chromophobe tumour</td>
<td>Mixture of cells of chRCC and renal oncocytoma. Three clinicopathological situations: sporadic, in association with renal oncocytosis/oncocytomatosis or in patients with Birt-Hogg-Dubé syndrome.</td>
<td>Low or benign</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Metanephric tumours</td>
<td>Divided into metanephric adenoma, adenofibroma, and metanephric stromal tumours.</td>
<td>Benign</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Renal Tumour Type</td>
<td>Description</td>
<td>Histopathological Diagnosis</td>
<td>Treatment</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cystic nephroma/Mixed Epithelial and Stromal Tumour</td>
<td>Term renal epithelial and stromal tumours (REST) is used as well. Imaging – Bosniak type III or II/IV.</td>
<td>Low/benign</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Oncocytoma</td>
<td>3-7% of all renal tumours. Imaging characteristics alone are unreliable when differentiating between oncocytoma and RCC. Histopathological diagnosis remains the reference standard [61, 62].</td>
<td>Benign</td>
<td>Observation (when histologically confirmed) [63, 64]/NSS.</td>
</tr>
<tr>
<td>Hereditary kidney tumours</td>
<td>Details see above</td>
<td>High</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Angiomyolipoma</td>
<td>Details see above</td>
<td>Benign</td>
<td>Consider treatment only in very well selected patients.</td>
</tr>
<tr>
<td>Carcinoma associated with neuroblastoma</td>
<td>Long-term survivors of childhood neuroblastoma have a 329-fold increased risk of renal carcinoma.</td>
<td>Variable</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Thyroid-like follicular carcinoma of the kidney (TLFC)</td>
<td>Succinate Dehydrogenase B Mutation-associated RCC, ALK Translocation RCC (ALK - anaplastic lymphoma kinase).</td>
<td>Low</td>
<td>Surgery, NSS</td>
</tr>
<tr>
<td>Unclassified RCC</td>
<td>RCC that cannot be assigned to any other category of RCC-type carcinoma [4].</td>
<td>Variable</td>
<td>Surgery, NSS</td>
</tr>
</tbody>
</table>

*NSS = nephron-sparing surgery; CSS = cancer specific survival.

3.3.4.2 Summary
A variety of renal tumours exist, and about 15% are benign. All kidney lesions require examination for malignant behaviour.

3.4 Conclusions and recommendations

Conclusions

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Except for AML, most other renal tumours cannot be differentiated from RCC by radiology and should be treated in the same way as RCC.</td>
<td>3</td>
</tr>
<tr>
<td>In biopsy-proven oncocytomas, watchful waiting is an option.</td>
<td>3</td>
</tr>
<tr>
<td>In advanced uncommon renal tumours, a standardised oncological treatment approach does not exist.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosniak cysts ≥ type III should be regarded as RCC and treated accordingly.</td>
<td>C</td>
</tr>
</tbody>
</table>
| AMLs, active surveillance is the most appropriate option for most AMLs. Treatment with selective arterial embolisation (SAE) or NSS can be considered in:
- large tumours (recommended threshold of intervention does not exist, the formerly recommended size of > 4 cm is disputed);
- females of childbearing age;
- patients in whom follow-up or access to emergency care may be inadequate. | C |
4. STAGING AND CLASSIFICATION SYSTEMS

4.1 Staging

The TNM classification system is recommended for clinical and scientific use [65], but requires continuous improvements [66]. The latest version was published in 2009 with supplement 2012 (Table 4.1), and its prognostic value was confirmed in single and multi-institution studies [67, 68]. Tumour size, venous invasion, renal capsular invasion, adrenal involvement, and lymph node (LN) and distant metastasis are included in the TNM classification system (Table 4.1). However, some uncertainties remain:

- The sub-classification of T1 tumours using a cut-off of 4 cm might not be optimal in NSS for localised cancer.
- The value of size stratification of T2 tumours has been questioned [69].
- Since the 2002 version, tumours with renal sinus fat invasion have been classified as pT3a. However, renal sinus fat invasion might carry a worse prognosis than perinephric fat invasion but is included in the same pT3a stage group [70-72] (LE: 3).
- Sub T-stages (pT2b, pT3a, pT3c and pT4) may overlap [68].
- For adequate M staging, accurate preoperative imaging (chest and abdominal CT) should be performed [73, 74] (LE: 4).

Table 4.1: 2009 TNM classification system [65] and TNM supplement 2012 [75]

<table>
<thead>
<tr>
<th>T - Primary tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
</tr>
<tr>
<td>T0</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T1a</td>
</tr>
<tr>
<td>T1b</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>T2a</td>
</tr>
<tr>
<td>T2b</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td>T3a</td>
</tr>
<tr>
<td>T3b</td>
</tr>
<tr>
<td>T3c</td>
</tr>
<tr>
<td>T4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N - Regional LNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M - Distant metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNM stage grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>T1, T2, T3</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
</tr>
<tr>
<td>T4</td>
</tr>
<tr>
<td>Any N</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
</tr>
<tr>
<td>Any N</td>
</tr>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

A help desk for specific questions about TNM classification is available at http://www.uicc.org/tmn.

4.2 Anatomic classification systems

Objective anatomic classification systems, such as the Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) classification system, the R.E.N.A.L. nephrometry score and the C-index have been
proposed, to standardise the description of renal tumours [76-78]. These systems include assessment of tumour size, exophytic/endophytic properties, nearness to the collecting system and renal sinus, and anterior/posterior location.

The use of such a system is helpful as it allows objective prediction of potential morbidity of NSS and tumour ablation techniques. These tools provide information for treatment planning, patient counselling, and comparison of PN and tumour ablation series. However, when selecting the best treatment option, anatomic scores must always be considered together with patient features and surgeon experience.

5. DIAGNOSTIC EVALUATION

5.1 Symptoms
Many renal masses remain asymptomatic until the late disease stages. More than 50% of RCCs are detected incidentally by non-invasive imaging used to investigate various nonspecific symptoms and other abdominal diseases [68, 79] (LE: 3). The classic triad of flank pain, gross haematuria, and palpable abdominal mass is rare (6-10%) and correlates with aggressive histology and advanced disease [80, 81] (LE: 3).

Paraneoplastic syndromes are found in approximately 30% of patients with symptomatic RCCs (LE: 4). Some symptomatic patients present with symptoms caused by metastatic disease, such as bone pain or persistent cough [82] (LE: 3).

5.1.1 Physical examination
Physical examination has a limited role in RCC diagnosis. However, the following findings should prompt radiological examinations:
• Palpable abdominal mass;
• Palpable cervical lymphadenopathy;
• Non-reducing varicocele and bilateral lower extremity oedema, which suggests venous involvement.

5.1.2 Laboratory findings
Commonly assessed laboratory parameters are serum creatinine, glomerular filtration rate (GFR), complete cell blood count, erythrocyte sedimentation rate, liver function study, alkaline phosphatase, lactate dehydrogenase (LDH), serum corrected calcium [83, 84], coagulation study, and urinalysis (LE: 4).

For central renal masses abutting or invading the collecting system, urinary cytology and possibly endoscopic assessment should be considered in order to exclude urothelial cancer (LE: 4).

Split renal function should be estimated using renal scintigraphy in the following situations [85, 86] (LE: 2b):
• when renal function is compromised, as indicated by increased serum creatinine or significantly decreased GFR;
• when renal function is clinically important - e.g., in patients with a solitary kidney or multiple or bilateral tumours.

Renal scintigraphy is an additional diagnostic option in patients at risk of future renal impairment due to comorbid disorders.

5.2 Imaging investigations
Most renal tumours are diagnosed by abdominal US or CT performed for other medical reasons [79] (LE: 3). Renal masses are classified as solid or cystic based on imaging findings.

5.2.1 Presence of enhancement
With solid renal masses, the most important criterion for differentiating malignant lesions is the presence of enhancement [87] (LE: 3). Traditionally, US, CT, or magnetic resonance imaging (MRI) are used for detecting and characterising renal masses. Most renal masses are diagnosed accurately by imaging alone. Contrast-enhanced US can be helpful in specific cases [88-90] (LE: 3).

5.2.2 CT or MRI
CT or MRI are used to characterise renal masses. Imaging must be performed before and after administration of intravenous contrast material to demonstrate enhancement. In CT imaging, enhancement in renal masses is determined by comparing Hounsfield units (HUs) before and after contrast administration. A change of 15 or more HUs demonstrates enhancement [91] (LE: 3). To maximise differential diagnosis and detection,
evaluation should include images from the nephrographic phase for best depiction of renal masses, which do not enhance to the same degree as the renal parenchyma.

CT or MRI allow accurate diagnosis of RCC, but cannot reliably distinguish oncocytoma and fat-free angiomyolipoma from malignant renal neoplasms [61, 92-94] (LE: 3). Abdominal CT provides information on:

- Function and morphology of the contralateral kidney [95] (LE: 3);
- Primary tumour extension;
- Venous involvement;
- Enlargement of locoregional lymph nodes;
- Condition of the adrenal glands and other solid organs (LE: 3).

Abdominal contrast-enhanced biphasic CT angiography is useful in selected cases for detailed information on renal vascular supply [96, 97].

If the results of CT are indeterminate, MRI may provide additional information on:

- enhancement in renal masses [98];
- locally advanced malignancy [99-101];
- venous involvement if the extent of an inferior vena cava (IVC) tumour thrombus is poorly defined on CT [99-102] (LE: 3). Doppler US is less accurate for identifying the extent of a venous tumour thrombus [101] (LE: 3).

MRI is indicated in patients who are allergic to intravenous CT contrast medium and in pregnancy without renal failure [100, 103] (LE: 3). Advanced MRI techniques such as diffusion-weighted and perfusion-weighted imaging are being explored for renal mass assessment [104].

In patients with hereditary RCC who are worried about the radiation exposure of frequent CT scans, MRI may be offered as alternative.

5.2.3 Other investigations

Renal arteriography and inferior venacavography have a limited role in the work-up of selected RCC patients (LE: 3). In patients with any sign of impaired renal function, an isotope renogram and total renal function evaluation should be considered to optimise treatment decision-making [85, 86] (LE: 2a).

The value of positron-emission tomography (PET) in the diagnosis and follow-up of RCC remains to be determined, and PET is not currently recommended [105] (LE: 3).

5.2.4 Radiographic investigations for metastatic RCC

Chest CT is accurate for chest staging [73, 74, 106-108] (LE: 3). However, routine chest radiography must be performed for metastases, but is less accurate than chest CT (LE: 3). There is a consensus that most bone and brain metastases are symptomatic at diagnosis, thus routine bone or brain imaging is not generally indicated [106, 109, 110] (LE: 3). However, bone scan, brain CT, or MRI may be used in the presence of specific clinical or laboratory signs and symptoms [110-112] (LE: 3).

5.2.5 Bosniak classification of renal cystic masses

This classification system classifies renal cysts into five categories, based on CT imaging appearance, to predict malignancy risk [113, 114] (LE: 3). This system also advocates treatment for each category (Table 5.1).

Table 5.1: Bosniak classification of renal cysts [113]

<table>
<thead>
<tr>
<th>Bosniak category</th>
<th>Features</th>
<th>Work-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Simple benign cyst with a hairline-thin wall without septa, calcification, or solid components. Same density as water and does not enhance with contrast medium.</td>
<td>Benign</td>
</tr>
<tr>
<td>II</td>
<td>Benign cyst that may contain a few hairline-thin septa. Fine calcification may be present in the wall or septa. Uniformly high-attenuation lesions < 3 cm in size, with sharp margins without enhancement.</td>
<td>Benign</td>
</tr>
<tr>
<td>IIF</td>
<td>These may contain more hairline-thin septa. Minimal enhancement of a hairline-thin septum or wall. Minimal thickening of the septa or wall. The cyst may contain calcification, which may be nodular and thick, with no contrast enhancement. No enhancing soft-tissue elements. This category also includes totally intrarenal, non-enhancing, high attenuation renal lesions ≥ 3 cm. Generally well-margined.</td>
<td>Follow-up. Some are malignant.</td>
</tr>
</tbody>
</table>
These are indeterminate cystic masses with thickened irregular walls or septa with enhancement.

Surgery or active surveillance – see Chapter 7. Over 50% are malignant.

Clearly malignant containing enhancing soft-tissue components. Surgery. Most are malignant.

5.3 Renal tumour biopsy

Percutaneous renal tumour biopsy can reveal histology of radiologically indeterminate renal masses and should be considered to select patients with small masses for active surveillance, to obtain histology before ablative treatments and to select the most suitable form of medical and surgical treatment strategy in the setting of metastatic disease [115-124] (LE: 3). Due to the high diagnostic accuracy of abdominal imaging, renal tumour biopsy is not necessary in patients with a contrast-enhancing renal mass for whom surgery is planned (LE: 4).

Percutaneous sampling can be performed under local anaesthesia with needle core biopsy and/or fine needle aspiration (FNA). Biopsies can be performed with US or CT guidance, with a similar diagnostic yield [120, 123] (LE: 2b). Eighteen-gauge needles are ideal for core biopsies, as they result in low morbidity and provide sufficient tissue for diagnosis [115-123, 125] (LE: 2b). A coaxial technique allowing multiple biopsies through a coaxial cannula should always be used to avoid potential tumour seeding [115, 116-123] (LE: 3).

Core biopsies should be preferred for the characterization of solid renal masses (LE: 2b). A systematic review and meta-analysis of the diagnostic performance and complications of RTB was recently performed by the panel. Fifty-seven articles including a total of 5228 patients were included in the analysis. Needle core biopsies were found to have better accuracy for the diagnosis of malignancy compared with FNA [6]. Other studies showed that solid pattern and larger tumour size are predictors of a diagnostic core biopsy [120, 123] (LE: 2b).

In experienced centres, core biopsies have a high diagnostic yield, specificity, and sensitivity for the diagnosis of malignancy [6] (LE: 2b). However, 0-22.6% of core biopsies are non-diagnostic [115-123, 126-142] (LE: 2b). If a biopsy is non-diagnostic, and radiologic findings are suspicious for malignancy, a further biopsy or surgical exploration should be considered (LE: 4). Assessment of tumour grade on core biopsies is challenging. The accuracy of nuclear grading of biopsies is poor (62.5% on average), but can be improved (87% on average) using a simplified two-tier system (high-grade vs. low grade) [6] (LE: 2b).

The ideal number and location of core biopsies are undefined. However, at least two good quality cores should be obtained, and necrotic areas should be avoided to maximise diagnostic yield [115, 117, 120, 121, 123] (LE: 4). Peripheral biopsies are preferable for larger tumours, to avoid areas of central necrosis [143] (LE: 2b).

Core biopsies have a low diagnostic yield for cystic masses and are not recommended alone, unless areas with a solid pattern are present (Bosniak IV cysts) [120, 123] (LE: 2b). Combined FNA and core biopsies can provide complementary results, especially for complex cystic lesions [122, 127-129, 140, 144, 145] (LE: 3).

Overall, percutaneous biopsies have low morbidity [6]. Spontaneously resolving subcapsular/perinephric haematoma are frequent complications, while clinically significant bleeding is unusual (0.0-1.4%) and generally self-limiting.

5.4 Recommendations for the diagnostic assessment of renal cell carcinoma

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast-enhanced multi-phasic abdominal CT and MRI are recommended for the work-up of patients with RCC and are considered equal both for staging and diagnosis.</td>
</tr>
<tr>
<td>Contrast-enhanced multi-phasic abdominal CT and MRI are the most appropriate imaging modalities for renal tumour characterization and staging prior to surgery.</td>
</tr>
<tr>
<td>A chest CT is recommended for staging assessment of the lungs and mediastinum.</td>
</tr>
<tr>
<td>Bone scan is not routinely recommended.</td>
</tr>
<tr>
<td>Renal tumour biopsy is recommended before ablative therapy and systemic therapy without previous pathology.</td>
</tr>
<tr>
<td>Percutaneous biopsy is recommended in patients in whom active surveillance is pursued.</td>
</tr>
<tr>
<td>Percutaneous renal tumour biopsy should be obtained with a coaxial technique.</td>
</tr>
</tbody>
</table>
6. PROGNOSTIC FACTORS

Prognostic factors can be classified into: anatomical, histological, clinical, and molecular.

6.1 Anatomical factors
Tumour size, venous invasion, renal capsular invasion, adrenal involvement, and lymph node (LN) and distant metastasis are included in the TNM classification system [65] (Table 4.1).

6.2 Histological factors
Histological factors include Fuhrman grade, RCC subtype, sarcomatoid features, microvascular invasion, tumour necrosis, and invasion of the collecting system. Fuhrman nuclear grade is the most widely accepted grading system [30]. Although affected by intra- and inter-observer discrepancies, it is an independent prognostic factor [146]. A simplified two- or three-strata system may be as accurate for prognostication as the classical four-tiered grading scheme [147, 148] (LE: 3). In univariate analysis, patients with chRCC vs. pRCC vs. ccRCC had a better prognosis [149, 150]. However, prognostic information provided by the RCC type is lost when stratified to tumour stage [31, 150] (LE: 3).

Differences in tumour stage, grade and cancer specific survival (CSS) between the RCC types are illustrated in Table 6.1.

Table 6.1: Basic characteristics of three main types of RCC [31, 32, 151]

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage of RCC (%)</th>
<th>Advanced disease at diagnosis (T3-4, N+, M+)</th>
<th>Fuhrman Grade 3 or 4 [30]</th>
<th>CSS (HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccRCC</td>
<td>80-90%</td>
<td>28%</td>
<td>28.5%</td>
<td>referent</td>
</tr>
<tr>
<td>pRCC</td>
<td>6-15%</td>
<td>17.6%</td>
<td>28.8%</td>
<td>0.64 - 0.85</td>
</tr>
<tr>
<td>chRCC</td>
<td>2-5%</td>
<td>16.9%</td>
<td>32.7%*</td>
<td>0.24 - 0.56</td>
</tr>
</tbody>
</table>

CSS = cancer-specific survival; HR = hazard ratio.
*The Fuhrman grading system is validated for ccRCC, but is unreliable for chRCC. Data based on the Paner et al. grading system are not available yet [30, 40, 41].

In all RCC types, prognosis worsens with stage and histopathological grade (Tables 6.2 and 6.3). The 5-year overall survival (OS) for all types of RCC is 49%, which has improved since 2006 probably due to an increase in incidentally detected RCCs and the introduction of TKI inhibitors [152]. Sarcomatoid changes can be found in all RCC types and are equivalent of high grade and very aggressive tumours.

Table 6.2: CSS by stage and histopathological grade in RCCs - hazard ratio (95% CI) (Keegan et al, 2012 [32]).

<table>
<thead>
<tr>
<th>Stage</th>
<th>CSS (HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1N0M0</td>
<td>Referent</td>
</tr>
<tr>
<td>T2N0M0</td>
<td>2.71 (2.17-3.39)</td>
</tr>
<tr>
<td>T3N0M0</td>
<td>5.20 (4.36-6.21)</td>
</tr>
<tr>
<td>T4N0M0</td>
<td>16.88 (12.40-22.98)</td>
</tr>
<tr>
<td>N+M0</td>
<td>16.33 (12.89-20.73)</td>
</tr>
<tr>
<td>M+</td>
<td>33.23 (28.18-39.18)</td>
</tr>
</tbody>
</table>

CI = confidential interval.

Long-term survival in RCC patients treated by radical (RN) or partial nephrectomy (PN) between 1970 and 2003; for unilateral, sporadic ccRCC, pRCC or chRCC in a cohort study [151] (Table 6.3).
Table 6.3: CSS of surgically treated patients by RCC type (estimated survival rate in percentage [95% CI])

<table>
<thead>
<tr>
<th>Survival time</th>
<th>5 years (%)</th>
<th>10 years (%)</th>
<th>15 years (%)</th>
<th>20 years (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccRCC</td>
<td>71 (69-73)</td>
<td>62 (60-64)</td>
<td>56 (53-58)</td>
<td>52 (49-55)</td>
</tr>
<tr>
<td>pRCC</td>
<td>91 (88-94)</td>
<td>86 (82-89)</td>
<td>85 (81-89)</td>
<td>83 (78-88)</td>
</tr>
<tr>
<td>chRCC</td>
<td>88 (83-94)</td>
<td>86 (80-92)</td>
<td>84 (77-91)</td>
<td>81 (72-90)</td>
</tr>
</tbody>
</table>

Two subgroups of pRCC with different outcomes have been identified [153]: Type 1 are low-grade tumours with a chromophilic cytoplasm and a favourable prognosis. Type 2 are mostly high-grade tumours with an eosinophilic cytoplasm and a propensity for metastases (LE: 3).

RCC with Xp 11.2 translocation has a poor prognosis [154]. Its incidence is low, but should be systematically addressed in young patients.

RCC type classification has been confirmed by cytogenetic and genetic analyses [27-29] (LE: 2b).

6.3 Clinical factors
These include performance status, localised symptoms, cachexia, anaemia, and platelet count [82, 155-157] (LE: 3).

6.4 Molecular factors
Numerous molecular markers such as carbonic anhydrase IX (CaIX), vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF), Ki67 (proliferation), p53, PTEN (phosphatase and tensin homolog) (cell cycle), E-cadherin, C-reactive protein (CRP), osteopontin [158] and CD44 (cell adhesion) [159, 160] have been investigated (LE: 3). None of these markers have improved the predictive accuracy of current prognostic systems and their use is not recommended in routine practice. Although gene expression profiling seems promising, it has not identified new relevant prognostic factors [161].

6.5 Prognostic systems and nomograms
Postoperative prognostic systems and nomograms combining independent prognostic factors have been developed and externally validated [162-168]. These may be more accurate than TNM stage or Fuhrman grade alone for predicting survival (LE: 3). An advantage of nomograms is their ability to measure predictive accuracy (PA), allowing all new predictive parameters to be objectively evaluated. Before being adopted, new prognostic variables or systems should demonstrate that its PA is superior to conventional postoperative histo-prognostic schemes [169]. Recently, new preoperative nomograms with excellent PAs have been designed [170, 171]. Table 6.4 summarises the current most relevant prognostic systems.

6.6 Conclusion and recommendations

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In RCC patients, TNM stage, Fuhrman nuclear grade, and RCC subtype (WHO, 2004; [21]), provide important prognostic information.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of the current TNM classification system.</td>
<td>B</td>
</tr>
<tr>
<td>Grading systems and classification of RCC subtype.</td>
<td>B</td>
</tr>
<tr>
<td>Prognostic systems in the metastatic setting.</td>
<td>B</td>
</tr>
<tr>
<td>In localised disease, the use of integrated prognostic systems or nomograms is not routinely recommended, although they can provide a rationale for enrolling patients into clinical trials.</td>
<td>C</td>
</tr>
<tr>
<td>Molecular prognostic markers are not recommended for routine clinical use.</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 6.4: Anatomical, histological, and clinical variables in the commonly used prognostic models for localised and metastatic RCC

<table>
<thead>
<tr>
<th>Prognostic Models</th>
<th>Variables</th>
<th>TNM Stage</th>
<th>ECOG PS</th>
<th>Karnofsky PS</th>
<th>RCC related symptoms</th>
<th>Fuhrman grade</th>
<th>Tumour necrosis</th>
<th>Tumour size</th>
<th>Delay between diagnosis and treatment</th>
<th>LDH</th>
<th>Corrected calcium</th>
<th>Hemoglobin</th>
<th>Neutrophil count</th>
<th>Platelet count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localised RCC</td>
<td>UISS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSIGN</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post operative Karakiewicz’s nomogram</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic RCC</td>
<td>MSKCC prognostic system</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heng’s model</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECOG PS = Eastern Cooperative Oncology Group performance status; **LDH** = lactate dehydrogenase; **MSKCC** = Memorial Sloan Kettering Cancer Center; **PS** = performance status; **SSIGN** = Stage Size Grade Necrosis; **UISS** = University of California Los Angeles integrated staging system.
7. DISEASE MANAGEMENT

7.1 Treatment of localised RCC

7.1.1 Introduction

A systematic review underpins the findings of Sections 7.1.2 through 7.2.4.2. This review included all relevant published literature comparing surgical management of localised RCC (T1-2N0M0) [172, 173]. Randomised or quasi-randomised controlled trials (RCTs) were included. However, due to the very limited number of RCTs, nonrandomised studies (NRS), prospective observational studies with controls, retrospective matched-pair studies, and comparative studies from the databases of well-defined registries were also included. For this Guidelines version, an updated search was performed up to May 31st, 2013 [174].

7.1.2 Surgical treatment

7.1.2.1 Nephron-sparing surgery versus radical nephrectomy

Based on current available oncological and QoL outcomes, localised renal cancers are better managed by NSS (partial nephrectomy, PN) rather than radical nephrectomy (RN), irrespective of the surgical approach.

The estimated CSS rates at 5 years were comparable using these surgical techniques [175-179].

This was recently confirmed in a study of solitary T1-2 N0M0 renal tumours ≤ 5 cm with normal contralateral kidney function and WHO PS 0-2. At 9.3 years survival follow-up, 198 patients were alive after RN and 173 after PN. The CSS was 98.5 vs 97%, respectively. Local recurrence occurred in one and 6 patients in the RN and PN group, respectively [180].

A number of studies compared PN vs. RN (open or laparoscopic) for renal carcinoma (< 4 cm) [180-184]. RN was associated with increased mortality from any cause after adjusting for patient characteristics. In a prematurely closed randomised study of RCC ≤ 5 cm, comparing PN and RN, there was no difference in OS in the targeted population [179]. In studies analysing RCCs of 4-7 cm, no differences in CSS was observed between PN and RN [183, 185-192]. When laparoscopic PN was compared with laparoscopic RN in RCCs > 4 cm, there was no difference in OS, CSS and recurrence-free survival (RFS) rates [193]. Furthermore, a retrospective matched-pair analysis in elderly patients [194] reported a CSS of 98% for PN vs. 95% for RN.

Other studies have compared various aspects of QoL and safety in open PN and RN [175-178, 190, 192, 195-197].

There was no difference in the length of hospital stay [176, 177, 196], blood transfusions [176, 196, 197], or mean blood loss [176, 196]. Complication rates were inconsistently reported and one intervention was not favoured over another [198]. One study found that mean operative time was longer for open PN [198], but other research found no difference [199]. Three studies consistently reported worse renal function after RN compared to PN [175, 178]. More patients had impaired post-operative renal function after RN after adjustment for diabetes, hypertension and age [178].

One database review compared open PN with laparoscopic RN in RCCs 4-7 cm. A significantly lower mean increase in post-operative creatinine levels was found [186]. Another study comparing laparoscopic PN vs. laparoscopic RN found that estimated GFR (eGFR) decreased less in the PN group, while the RN group had significantly more patients with a two-stage increase in CKD [193]. Another database review [200] compared safety and efficacy of laparoscopic PN in RCCs > 2 cm (2-4 cm versus > 4 cm). The laparoscopic PN group had a greater post-operative decrease in eGFR compared to the patients with smaller RCCs.

Two studies reported QoL post-surgery for RCC. Patients who underwent PN reported better scores, in many aspects of QoL [195]. Those who underwent RN reported more fear associated with living with only one kidney. Regardless of the intervention, patients with RCCs < 4 cm and a normal contralateral kidney showed the highest QoL scores after treatment, which matched their pre-diagnosis scores. Those with more complications had lower QoL scores [176].

No prospective comparative studies reporting oncological outcomes for minimally invasive ablative procedures compared with RN were identified. One trial reported on RFA vs. RN or PN for T1a RCC, resulting in CSS of 100% for all three treatments [201].

Patient and tumour characteristics permitting, the current oncological outcomes evidence base suggests that localised RCCs are best managed by PN than RN, irrespective of the surgical approach. Where open surgery is necessary, the oncological outcomes following open PN are at least as good as open RN and should be the preferred option when feasible.

PN is unsuitable in some patients with localised RCC due to:

- locally advanced tumour growth;
- partial resection is not feasible due to unfavourable tumour location;
- significant deterioration in patient health.
In these situations, the curative therapy is RN, including removal of the tumour-bearing kidney. Complete resection of the primary tumour by open or laparoscopic surgery offers a reasonable chance of cure.

7.1.2.2 Associated procedures
7.1.2.2.1 Adrenalectomy
One prospective NRS compared the outcomes of RN or PN with, or without, ipsilateral adrenalectomy [202]. Multivariate analysis showed that upper pole location was not predictive of adrenal involvement, but tumour size was. No difference in OS at 5 or 10 years was seen, with, or without, adrenalectomy. Adrenalectomy was justified using criteria based on radiographic and intra-operative findings. Only 48 of 2,065 patients underwent concurrent ipsilateral adrenalectomy of which 42 were for benign lesions.

7.1.2.2.2 Lymph node dissection for clinically negative lymph nodes (cN0)
Lymph node dissection (LND) in RCC is controversial [203]. Clinical assessment of LNs status is based on enlargement of LNs on CT/MRI and intraoperative assessment by direct palpation. Less than 20% of clinically positive (cN+) LNs are confirmed to be metastatic at pathology (pN+) [204]. CT/MRI do not allow detection of small metastases in normal sized LNs [205] and extended LND (e-LND) with histopathological examination is the only way to assess LNs status. For clinically positive LNs (cN+) see Section 7.2 on locally advanced RCC. In patients with clinically negative LNs (cN0) six clinical trials have been reported [203], one RCT [204] and five comparative studies [206-210].

Retrospective series support the hypothesis that LND may be beneficial in high-risk patients [205, 211]. However, in the EORTC study only 4% of cN0 patients had positive LNs at final pathology, suggesting that LND represents overtreatment in the majority [204]. Clinical trials of lower quality suggest that e-LND should involve the LNs surrounding the ipsilateral great vessel and the interaortocaval region from the crus of the diaphragm to the common iliac artery. Involvement of interaortocaval LNs without regional hilar involvement is reported in up to 35-45% of cases [205, 206, 212]. At least 15 LNs should be removed [213, 214]. Sentinel LND is an investigational technique [215, 216]. Better survival outcomes are seen in patients with a low number of positive LNs (< 4) and no extranodal extension [217, 218]. A preoperative nomogram to predict pN+ LNs status has been proposed [219].

7.1.2.2.3 Embolisation
Before routine nephrectomy, tumour embolisation has no benefit [220, 221]. In patients unfit for surgery, or with non-resectable disease, embolisation can control symptoms, including gross haematuria or flank pain [222-224]. These indications will be repeated in Sections 7.2 and 7.3 with cross reference to the conclusions and recommendations below.

7.1.2.2.4 Conclusions and recommendations

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN achieves similar oncological outcomes to RN for clinically localised tumours (cT1).</td>
<td>1b</td>
</tr>
<tr>
<td>Ipsilateral adrenalectomy during RN or PN has no survival advantage.</td>
<td>3</td>
</tr>
<tr>
<td>In patients with localised disease without evidence of LN metastases, there is no survival advantage of LND in conjunction with RN.</td>
<td>1b</td>
</tr>
<tr>
<td>In patients unfit for surgery with massive haematuria or flank pain, embolisation can be a beneficial palliative approach.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery is recommended to achieve cure in localised RCC.</td>
<td>B</td>
</tr>
<tr>
<td>PN is recommended in patients with T1a tumours.</td>
<td>A</td>
</tr>
<tr>
<td>PN should be favoured over RN in patients with T1b tumour, whenever feasible.</td>
<td>B</td>
</tr>
<tr>
<td>Ipsilateral adrenalectomy is not recommended when there is no clinical evidence of invasion of the adrenal gland.</td>
<td>B</td>
</tr>
<tr>
<td>LND is not recommended in localised tumour without clinical evidence of LN invasion.</td>
<td>A</td>
</tr>
</tbody>
</table>

7.1.3 Radical and partial nephrectomy techniques
7.1.3.1 Radical nephrectomy techniques
No RCTs have assessed oncological outcomes of laparoscopic vs. open RN. A cohort study [225] and retrospective database reviews are available, mostly of low methodological quality [176, 226, 227]. Similar
oncological outcomes for laparoscopic vs. open RN were found. Data from one RCT [228] and two NRSs [176, 225] showed a significantly shorter hospital stay and lower analgesic requirement for the laparoscopic RN group compared with the open group. Convalescence time was also significantly shorter [225]. No difference in the number of patients receiving blood transfusions was observed, but peri-operative blood loss was significantly less in the laparoscopic arm in all three studies [176, 225, 228]. Surgical complications were marked by low event rates and very wide confidence intervals. There was no difference in complications, but operation time was significantly shorter in the open nephrectomy arm. Post-operative QoL scores were similar [176].

The best approach for RN was the retroperitoneal or transperitoneal with similar oncological outcomes in the two RTCs [229, 230] and one quasi-randomised study [231]. QoL variables were similar in the two approaches.

Hand-assisted vs. standard laparoscopic RN was compared in one RCT [231] and one database review [198]. Estimated 5-year OS, CSS, and RFS rates were comparable. Duration of surgery was significantly shorter in the hand-assisted approach, while length of hospital stay and time to non-strenuous activities were shorter for the standard laparoscopic RN [198, 231]. However, the sample size was small.

Robot-assisted laparoscopic RN vs. laparoscopic RN was compared in one small study [232]. There were no local recurrences, port-site or distant metastases, but the sample size was small and follow-up was short. Similar results were seen in observational cohort studies comparing ‘portless’ and 3-port laparoscopic RN [233, 234]. Peri-operative outcomes were similar.

7.1.3.2 Partial nephrectomy techniques

Studies comparing laparoscopic PN and open PN found no difference in PFS [235-238] and OS [237, 238] in centres with laparoscopic expertise. The mean estimated blood loss is lower with the laparoscopic approach [235, 237, 239], while post-operative mortality, DVT, and pulmonary embolism events are similar [235, 237]. Operative time is generally longer with the laparoscopic approach [236-238] and warm ischaemia time is shorter with the open approach [235, 237, 239, 240]. In a matched-pair comparison, GFR decline was greater in the laparoscopic PN group in the immediate post-operative period [238], but not after a follow-up of 3.6 years. In another comparative study, the surgical approach was not an independent predictor for post-operative CKD [240]. Retroperitoneal and transperitoneal laparoscopic PN have similar peri-operative outcomes [241]. Simple tumour enucleation has similar PFS and CSS rates compared to standard PN and RN in a large study [242, 243].

The feasibility of off-clamp laparoscopic PN and laparoendoscopic single-site PN has been shown in selected patients, but larger studies are needed to confirm their safety and clinical role [244, 245].

No studies have compared the oncological outcomes of robot-assisted vs. laparoscopic PN. A comparison of surgical outcomes after robotic or pure laparoscopic PN in moderate-to-complex renal tumours showed a significantly lower estimated blood loss and a shorter warm ischaemia time in the robotic group [246]. Two recent meta-analyses of relatively small series showed comparable peri-operative outcomes and a shorter warm ischaemia time for robot-assisted PN [247, 248].

7.1.3.3 Conclusions and recommendations

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic RN has lower morbidity than open surgery.</td>
<td>1b</td>
</tr>
<tr>
<td>Oncological outcomes for T1-T2a tumours are equivalent between laparoscopic and open RN.</td>
<td>2a</td>
</tr>
<tr>
<td>PN can be performed, either with an open, pure laparoscopic or robot-assisted approach, based on surgeon’s expertise and skills.</td>
<td>2b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic RN is recommended for patients with T2 tumours and localised masses not treatable by PN.</td>
<td>B</td>
</tr>
<tr>
<td>RN should not be performed in patients with T1 tumours for whom PN is indicated.</td>
<td>B</td>
</tr>
</tbody>
</table>

7.1.4 Therapeutic approaches as alternatives to surgery

7.1.4.1 Surgical versus non-surgical treatment

Population-based studies compared the oncological outcomes of surgery (RN or PN) and non-surgical management for tumours < 4 cm. The analyses showed a significantly lower cancer-specific mortality for patients treated with surgery [249, 250]. However, the patients assigned to the surveillance arm were older and
likely to be more frail and less suitable candidates for surgery to be addressed. Other cause mortality rates in
the non-surgical group significantly exceeded that of the surgical group [249]. Analyses of older patients
(> 75 years) failed to show the same benefit in cancer-specific mortality for surgical treatment [251-253].

7.1.4.2 Surveillance
Elderly and comorbid patients with incidental small renal masses have a low RCC-specific mortality and
significant competing-cause mortality [254, 255]. Active surveillance is defined as the initial monitoring of
tumour size by serial abdominal imaging (US, CT, or MRI) with delayed intervention reserved for tumours
showing clinical progression during follow-up [256].

In the largest reported series of active surveillance, the growth of renal tumours was low and
progression to metastatic disease was reported in a limited number of patients [257, 258].

A single-institutional comparative study evaluating patients aged ≥ 75 years showed decreased OS
for those who underwent surveillance and nephrectomy relative to NSS for clinically T1 renal tumours; however,
patients selected for surveillance were older with greater comorbidity. At multivariable analysis, management
type was not associated with OS after adjusting for age, comorbidity, and other variables [254]. No statistically
significant difference in OS and CSS were observed in another study of RN vs. PN vs. active surveillance for
T1a renal masses with a follow-up of 34 months [259]. Overall, both short- and intermediate-term oncological
outcomes indicate that in selected patients with advanced age and/or comorbidities, active surveillance is
appropriate to initially monitor small renal masses, followed if required, by treatment for progression [256-258,
260-263].

A multicentre study assessed patient QoL undergoing immediate intervention vs. active surveillance.
Patients undergoing immediate intervention had higher QoL scores at baseline, specifically for physical health.
The perceived benefit in physical health persisted for at least 1 year following intervention. Mental health, which
includes domains of depression and anxiety, was not adversely affected while on active surveillance [264].

7.1.4.3 Ablative therapies
7.1.4.3.1 Cryoablation
Cryoablation is performed using either a percutaneous or a laparoscopic-assisted approach. In comparative
studies, there was no significant difference in the overall complication rates between laparoscopic and
percutaneous cryoablation [265-267]. One comparative study reported similar OS, CSS, and RFS in 172
laparoscopic patients with a longer follow-up compared with 123 percutaneous patients with a shorter follow-
up [266]. A shorter average length of hospital stay was found with the percutaneous technique [266, 267]. No
studies compared surveillance strategies to cryoablation.

7.1.4.3.2 Cryoablation versus PN
Studies compared open, laparoscopic or robotic PN with percutaneous or laparoscopic cryoablation.
Oncological outcomes were mixed, with some studies showing no difference in OS, CSS, RFS, DFS, local
recurrence or progression to metastatic disease [268, 269], and some showing significant benefit for the PN
techniques for some or all of these outcomes [270-273]. Not all studies reported all outcomes listed, and some
were small and included benign tumours. No study showed oncological benefit for the cryoablation technique
over PN.

Perioperative outcomes, complication rates and other quality of life measures were also mixed. Some studies
found the length of hospital stay was shorter and surgical blood loss was less with cryoablation [268-270],
while also finding no differences in other peri-operative outcomes, recovery times, complication rates or
post-operative serum creatinine levels. Two studies [272, 273] reported specific Clavien rates, with mostly
non-significant differences, which were mixed for intra-operative vs. post-operative complications. Estimated
GFRs were not significantly different in two studies, but in favour of cryoablation in a third [271-273]. Estimates
of new CKD were also mixed, with one study in favour of cryoablation [271], another strongly in favour of
PN [272], and the third showing no difference [273]. One study compared PN with ablation therapy, either
cryoablation or RFA [274], and showed significantly improved DSS at both 5 and 10 years for PN.

7.1.4.3.3 Radiofrequency ablation
RFA is performed laparoscopically or percutaneously. Three studies compared patients with T1a tumours
treated by laparoscopic or percutaneous RFA [275-277]. Complications occurred in up to 29% of patients but
were mostly minor. Complication rates were similar in patients treated laparoscopically or percutaneously. One
study with a limited number of patients [277] found a higher rate of incomplete ablation in patients treated by
percutaneous RFA. However, no differences in recurrence or CSS were found in the three comparative studies.
7.1.4.3.4 RFA versus PN
Most publications about RFA are retrospective cohort studies with a low number of patients and limited follow-up. Three studies retrospectively compared RFA to surgery in patients with T1a tumours [201, 278, 279].

One study [278] compared T1a patients who underwent either RFA (percutaneous or laparoscopic) or partial nephrectomy and found no difference in OS and CSS. Another study retrospectively reviewed 105 T1a patients treated by percutaneous RFA or radical nephrectomy. CSS was 100% in both groups. OS was lower in the RFA group but patients treated with surgery were younger [201].

In a monocentric study that compared 34 RFA patients to 16 open partial nephrectomy patients, there was a higher rate of complications and transfusions in the PN group. Although the tumours were larger in PN patients, progression rates were similar (0%) [279].

7.1.4.3.5 Cryoablation versus RFA
Two studies compared RFA and cryoablation [280, 281]. No significant differences were reported for OS, CSS, or RFS in either study. For local RFS at 5 years, one study [280] reported improvement with RFA, while the other [281] reported a benefit with cryoablation. One study [280] reported no differences in Clavien complication rates between the techniques.

7.1.4.3.6 Other ablative techniques
Some studies have shown the feasibility of other ablative techniques, such as microwave ablation, laser ablation, and high-intensity focused US ablation. However, these techniques are considered experimental.

7.1.4.3.7 Conclusions and recommendations

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population-based analyses show a significantly lower cancer-specific mortality for patients treated with surgery compared to non-surgical management. However, the same benefit in cancer-specific mortality is not confirmed in analyses focusing on older patients (> 75 years).</td>
<td>3</td>
</tr>
<tr>
<td>In active surveillance cohorts, the growth of small renal masses is low in most cases and progression to metastatic disease is rare (1-2%).</td>
<td>3</td>
</tr>
<tr>
<td>Quality of the available data does not allow definitive conclusions regarding morbidity and oncological outcomes of cryoablation and RFA.</td>
<td>3</td>
</tr>
<tr>
<td>Low quality studies suggest a higher local recurrence rate for minimally invasive therapies compared to PN.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to the low quality of available data no recommendation can be made on RFA and cryoablation.</td>
<td>C</td>
</tr>
<tr>
<td>In the elderly and/or comorbid patients with small renal masses and limited life expectancy, active surveillance, RFA and cryoablation can be offered.</td>
<td>C</td>
</tr>
</tbody>
</table>

7.2 Treatment of locally advanced RCC

7.2.1 Introduction
In addition to the conclusions and recommendations outlined in Section 7.1 for localised RCC certain therapeutic strategies arise in specific situations of locally advanced disease.

7.2.2 Management of clinically positive lymph nodes (cN+)
In the presence of clinically positive LNs (cN+), LND is always justified [34]. However, the extent of LND is controversial [205].

7.2.3 Management of locally advanced unresectable RCC
In patients with non-resectable disease, embolisation can control symptoms, including gross haematuria or flank pain [222-224]. The use of neoadjuvant targeted therapy to downsize tumours is experimental and cannot be recommended outside controlled clinical trials.

7.2.4 Management of RCC with venous thrombus
Tumour thrombus formation in the IVC in RCC patients is a significant adverse prognostic factor. Traditionally, patients with venous tumour thrombus (VTT) undergo surgery to remove the kidney and tumour thrombus (TT). Aggressive surgical resection is widely accepted as the default management option for patients with VTT [282-290]. However, uncertainties remain over the best approach for surgical treatment of these patients.
7.2.4.1 The evidence base for surgery in patients with VTT

The data on whether patients with VTT should undergo surgery is derived from case series. In one of the largest published studies [287] a higher level of thrombus was not associated with increased tumour dissemination to LNs, perinephric fat or distant metastasis. Thus, all patients with non-metastatic disease and VTT, and an acceptable performance status (PS), should be considered for surgical intervention, irrespective of the extent of TT at presentation (LE: 3). The surgical technique and approach for each case should be selected based on the extent of TT (LE: 3).

7.2.4.2 The evidence base for different surgical strategies

A systematic review was undertaken which included comparison-only studies on the management of VTT in non-metastatic RCC [174]. Only 5 studies were eligible for final inclusion. There were high risks of bias across all studies.

Minimal access techniques resulted in significantly shorter operating time compared with traditional median sternotomy [291, 292]. Pre-operative embolisation [293] was associated with increased operating time, blood loss, hospital stay and peri-operative mortality in patients with T3 RCC.

No significant differences in oncological and process outcomes were observed between cardiopulmonary bypass with deep hypothermic circulatory arrest or partial bypass under normothermia or single caval clamp without circulatory support [294].

No surgical method was shown to be superior for the excision of VTT. The surgical method was dependent on the level of TT, and the grade of occlusion of the IVC [291, 292, 294]. The relative benefits and harms of other strategies and approaches regarding access to the IVC and the role of IVC filters and bypass procedures remain uncertain.

7.2.4.3 Conclusions and recommendations

Conclusions LE
In patients with locally advanced disease due to clinically enlarged LNs the survival benefit of LND is unclear. In these cases LND can be performed for staging purposes. 3
Low quality data suggest that tumour thrombus in non-metastatic disease should be excised. 3
Tumour embolisation or IVC filter do not appear to offer any benefits. 3

Recommendations GR
In patients with clinically enlarged LNs, LND can be performed for staging purposes or local control. C
Excision of the kidney tumour and caval thrombus is recommended in patients with non-metastatic RCC. C

7.2.5 Adjuvant therapy

Confirmation is needed regarding the impact on OS of adjuvant tumour vaccination in selected patients undergoing nephrectomy for T3 renal carcinomas [295-299] (LE: 1b). Several RCTs of adjuvant sunitinib, sorafenib, pazopanib, axitinib and everolimus are ongoing. At present, there is no evidence for the use of adjuvant VEGF-R or mTOR inhibitors.

7.2.5.1 Conclusion and recommendation

Conclusions LE
Adjuvant cytokines do not improve survival after nephrectomy. 1b

Recommendations GR
Outside controlled clinical trials, there is no indication for adjuvant therapy following surgery. A

7.3 Advanced/metastatic RCC

7.3.1 Local therapy of advanced/metastatic RCC

7.3.1.1 Cytoreductive nephrectomy

Tumour nephrectomy is curative only if all tumour deposits are excised. This includes patients with the primary tumour in place and single- or oligo-metastatic resectable disease. For most patients with metastatic disease, cytoreductive nephrectomy (CN) is palliative and systemic treatments are necessary. In a meta-analysis comparing CN + immunotherapy versus immunotherapy only, increased long-term survival was found in patients treated with CN [300]. Only retrospective non-comparative data for CN combined with targeting

24 RENAL CELL CARCINOMA - UPDATE MARCH 2015
agents, such as sunitinib, sorafenib and others are available. CN is currently recommended in mRCC patients with good PS, large primary tumours and low metastatic volume. In patients with poor PS or IMDC risk, those with small primaries and high metastatic volume and/or a sarcomatoid tumour CN is not recommended.

7.3.1.1.1 Embolisation of the primary tumour
In patients unfit for surgery, or with non-resectable disease, embolisation can control symptoms, including gross haematuria or flank pain [222-224] (see recommendation Section 7.1.2.2.4).

7.3.1.1.2 Conclusions and recommendation

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoreductive nephrectomy combined with interferon-alpha improves survival in patients with mRCC and good performance status.</td>
<td>1a</td>
</tr>
<tr>
<td>Cytoreductive nephrectomy for patients with simultaneous complete resection of a single metastasis or oligometastases may improve survival and delay systemic therapy.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoreductive nephrectomy is recommended in appropriately selected patients with metastatic RCC.</td>
<td>C</td>
</tr>
</tbody>
</table>

7.3.2 Local therapy of metastases in mRCC
A systematic review of the local treatment of metastases from RCC in any organ was undertaken [301]. Interventions included metastasectomy, various radiotherapy modalities, and no local treatment. The outcomes were OS, CSS and PFS, local symptom control and adverse events. A risk-of-bias assessment was conducted [302]. Of 2,235 studies identified only 16 non-randomised comparative studies were included.

Eight studies reported on local therapies of RCC-metastases in various organs [303-310]. This included metastases to any single organ or multiple organs. Three studies reported on local therapies of RCC-metastases in bone, including the spine [311-313], two in the brain [314, 315] and one each in the liver [316] lung [317] and pancreas [318]. Three studies [307, 309, 317] were abstracts. Data were too heterogeneous for a meta-analysis. There was considerable variation in the type and distribution of systemic therapies (cytokines and VEGF-inhibitors) and in reporting the results.

7.3.2.1 Complete versus no/incomplete metastasectomy
All eight studies [303-310] on RCC metastases in various organs compared complete versus no and/or incomplete metastasectomy. However, in one study [306], complete resections were achieved in only 45% of the metastasectomy cohort, which was compared with no metastasectomy. Non-surgical modalities were not applied. Six studies [303, 305-307, 309, 310] reported a significantly longer median OS or CSS following complete metastasectomy (the median value for median OS or CSS was 40.75 months, range 23-122 months) compared with incomplete and/or no metastasectomy (the median value for median OS or CSS was 14.8 months, range 8.4-55.5 months). Of the two remaining studies, one [304] showed no significant difference in CSS between complete and no metastasectomy, and one [308] reported a longer median OS for metastasectomy albeit no p-value was provided.

Three studies reported on treatment of RCC metastases to the lung [317], liver [316], and pancreas [318], respectively. The lung study reported a significantly higher median OS for metastasectomy versus medical therapy only for both target therapy and immunotherapy. Similarly, the liver and pancreas study reported a significantly higher median OS and 5-year OS for metastasectomy versus no metastasectomy.

7.3.2.2 Local therapies for RCC bone metastases
Of three studies identified, one [313] compared single-dose image-guided radiotherapy (IGRT) with hypofractionated IGRT in patients with RCC bone metastases. Single-dose IGRT (≥ 24 Gray) had a significantly better 3-year actuarial local PFS rate, also shown by Cox regression analysis. Another study [311] compared metastasectomy/curettage and local stabilization with no surgery of solitary RCC bone metastases in various locations. A significantly higher 5-year CSS rate was observed in the intervention group.

After adjusting for prior nephrectomy, gender and age, multivariate analysis still favoured metastasectomy/curettage and stabilization. A third study [312] compared the efficacy and durability of pain relief between single-dose stereotactic body radiotherapy (SBRT) and conventional radiotherapy (CRT) in patients with RCC bone metastases to the spine. Pain ORR, time-to-pain relief and duration of pain relief were similar.
Local therapies for RCC brain metastases

Two studies on RCC brain metastases were included. A three-armed study [314] compared stereotactic radiosurgery (SRS) versus whole brain radiotherapy (WBRT) versus SRS + WBRT. Each group was further subdivided into recursive partitioning analysis (RPA) classes I to III (I favourable, II moderate and III poor patient status). Two-year OS and intracerebral control were equivalent in patients treated with SRS alone and SRS + WBRT. Both treatments were superior to WBRT alone in the general study population and in the RPA subgroup analyses. A comparison of SRS versus SRS + WBRT in a subgroup analysis of RPA class I showed significantly better 2-year OS and intracerebral control for SRS + WBRT based on only three participants. The other study [315] compared fractionated stereotactic radiotherapy (FSRT) with metastasectomy + CRT or CRT alone. Several patients in all groups underwent alternative surgical and non-surgical treatments after initial treatment. 1-, 2- and 3-year survival rates were higher but not significantly so for FSRT than for metastasectomy + CRT or CRT alone. FSRT did not result in a significantly better 2-year local control rate compared with MTS + CRT.

Embolisation of metastases

Embolisation prior to resection of hypervascular bone or spinal metastases can reduce intra-operative blood loss [319]. In selected patients with painful bone or paravertebral metastases, embolisation can relieve symptoms [320] (see recommendation Section 7.1.2.2.4)

Conclusions and recommendations

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All included studies were retrospective non-randomised comparative studies, resulting in a high risk of bias associated with non-randomization, attrition, and selective reporting.</td>
<td>3</td>
</tr>
<tr>
<td>With the exception of brain and possibly bone metastases, metastasectomy remains by default the most appropriate local treatment for most sites.</td>
<td>3</td>
</tr>
<tr>
<td>Retrospective comparative studies consistently point towards a benefit of complete metastasectomy in mRCC patients in terms of overall survival, cancer-specific survival and delay of systemic therapy.</td>
<td>3</td>
</tr>
<tr>
<td>Radiotherapy to bone and brain metastases from RCC can induce significant relief from local symptoms (e.g. pain).</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No general recommendations can be made. The decision to resect metastases has to be taken for each site, and on a case-by-case basis; performance status, risk profiles, patient preference and alternative techniques to achieve local control, must be considered.</td>
<td>C</td>
</tr>
<tr>
<td>In individual cases, stereotactic radiotherapy for bone metastases, and stereotactic radiosurgery for brain metastases can be offered for symptom relief.</td>
<td>C</td>
</tr>
</tbody>
</table>

Systemic therapy for advanced/metastatic RCC

Chemotherapy

Chemotherapy is moderately effective only if 5-fluorouracil (5-FU) is combined with immunotherapeutic agents [321]. However, in one study, interferon-alpha (IFN-α) showed equivalent efficacy to IFN-α+ interleukin-2 (IL-2) + 5-FU [322].

Conclusion and recommendation

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In mRCC 5-FU combined with immunotherapy has equivalent efficacy to IFN-α.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with clear-cell mRCC, chemotherapy is not considered effective.</td>
<td>B</td>
</tr>
</tbody>
</table>

Immunotherapy

IFN-α monotherapy and combined with bevacizumab

Conflicting results exist for IFN-α in clear-cell (cc) mRCC. Several studies showed that IFN-α in mRCC has a survival advantage similar to that of hormonal therapy [323]. IFN-α resulted in a response rate of 6-15%, a 25% decrease in tumour progression risk and a modest survival benefit compared to placebo [83, 324]. However, patients with intermediate-risk disease, failed to confirm this benefit [325].
IFN-α may only be effective in some patient subgroups, including patients with ccRCC, favourable-risk criteria, as defined by the Memorial Sloan-Kettering Cancer Center (MSKCC) and lung metastases only [324]. The moderate efficacy of immunotherapy was confirmed in a Cochrane meta-analysis [324]. Bevacizumab + IFN-α increased response rates and PFS in first-line therapy compared with IFN-α monotherapy [326]. All studies comparing targeted drugs to IFN-α monotherapy therapy showed superiority for sunitinib, bevacizumab + IFN-α, and temsirolimus [326-329]. IFN-α has been superseded by targeted therapy in cc-mRCC.

Table 7.1: MSKCC (Motzer) criteria [83]

<table>
<thead>
<tr>
<th>Risk factors*</th>
<th>Cut-off point used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karnofsky PS</td>
<td>< 80</td>
</tr>
<tr>
<td>Time from diagnosis to treatment</td>
<td>< 12 months</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>< Lower limit of laboratory reference range</td>
</tr>
<tr>
<td>LDH</td>
<td>> 1.5 times the upper limit of laboratory range</td>
</tr>
<tr>
<td>Corrected serum calcium</td>
<td>> 10.0 mg/dL (2.4 mmol/L)</td>
</tr>
</tbody>
</table>

* Favourable (low) risk, no risk factors; intermediate risk, one or two risk factors; poor (high) risk, three or more risk factors.

7.4.2.2 Interleukin-2

IL-2 has been used to treat mRCC since 1985, with response rates ranging from 7% to 27% [329-331]. Complete responses have been achieved with high-dose bolus IL-2 [332]. The toxicity of IL-2 is substantially greater than that of IFN-α, ranging from 7% to 27% [324].

7.4.2.3 Vaccines and targeted immunotherapy

A vaccine trial with tumour antigen 5T4 + first-line standard therapy (i.e. sunitinib, IL-2 or IFN-α) showed no survival benefit compared with placebo and first-line standard therapy [333]. Several vaccination studies are ongoing. Monoclonal antibodies against programmed death-1 (PD-1) or its ligand (PD-1L), which have efficacy and acceptable toxicity in patients with RCC [334], are currently investigated in phase III trials, as first- and second line.

7.4.2.4 Conclusions and recommendations

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-α monotherapy is inferior to targeted therapy in MRCC.</td>
<td>1b</td>
</tr>
<tr>
<td>IL-2 monotherapy may have a role in selected cases (good PS, ccRCC, lung metastases only).</td>
<td>2</td>
</tr>
<tr>
<td>IL-2 has more side-effects than IFN-α.</td>
<td>2-3</td>
</tr>
<tr>
<td>High dose IL-2 is associated with durable complete responses in a limited number of patients. However, no clinical factors or biomarkers exist to accurately predict a durable response in patients treated with HD-IL2.</td>
<td>1b</td>
</tr>
<tr>
<td>Bevacizumab plus IFN-α is more effective than IFN-α in treatment-naive, low-risk and intermediate-risk tumours.</td>
<td>1b</td>
</tr>
<tr>
<td>Vaccination therapy with tumour antigen 5T4 showed no survival benefit over first-line standard therapy.</td>
<td>1b</td>
</tr>
<tr>
<td>Cytokine combinations, with or without additional chemotherapy, do not improve OS compared with monotherapy.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy with IFN-α or HD bolus IL-2 is not routinely recommended as first-line therapy in mRCC.</td>
<td>A</td>
</tr>
</tbody>
</table>

7.4.3 Targeted therapies

In sporadic ccRCC, hypoxia-inducible factor (HIF) accumulation due to von Hippel-Lindau (VHL) inactivation results in overexpression of vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF), which promote neoangiogenesis [335-337]. This process substantially contributes to the development and progression of RCC. There are several targeting drugs approved for treating mRCC in both the USA and Europe:

- sorafenib (Nexavar®);
• sunitinib (Sutent®);
• bevacizumab (Avastin®) combined with IFN-α;
• pazopanib (Votrient®);
• temsirolimus (Torisel®);
• everolimus (Afinitor®);
• axitinib (Inlyta®).

Most published trials have selected for clear-cell carcinoma subtypes, thus no robust evidence-based recommendations can be given for non-ccRCC subtypes.

In major trials leading to registration of the approved targeted agents, patients were stratified according to the MSKCC risk model [323] (Table 7.1). Since the MSKCC (Motzer) criteria were developed during the cytokine era, the International Metastatic Renal Cancer Database Consortium (IMDC) risk model has been established and validated to yield an accurate prognosis for patients treated in the era of targeted therapy. Neutrophilia and thrombocytosis have been added to the list of MSKCC risk factors, while LDH has been removed [338].

The IMDC published data on conditional survival which may be used in patient counselling [339]. The IMDC risk model has been validated and compared with the Cleveland Clinic Foundation (CCF) model, the French model, MSKCC model, and the International Kidney Cancer Working Group (IKWG) model. The IMDC model did not differ from the other models, indicating that a ceiling has been reached in predicting prognosis based solely on clinical factors [340].

<table>
<thead>
<tr>
<th>IMDC Model ***</th>
<th>Patients**</th>
<th>Median OS* (months)</th>
<th>2-y OS (95% CI) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable</td>
<td>n</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>157</td>
<td>18</td>
<td>43.2</td>
</tr>
<tr>
<td>Intermediate</td>
<td>440</td>
<td>52</td>
<td>22.5</td>
</tr>
<tr>
<td>Poor</td>
<td>252</td>
<td>30</td>
<td>7.8</td>
</tr>
</tbody>
</table>

* Based on [340]; ** based on [338]; CI = confidence interval; OS = overall survival.

7.4.3.1 Tyrosine kinase inhibitors
7.4.3.1.1 Sorafenib
Sorafenib is an oral multikinase inhibitor. A trial compared sorafenib and placebo after failure of prior systemic immunotherapy or in patients unfit for immunotherapy. Sorafenib improved PFS [341] (HR: 0.44; 95% CI: 0.35-0.55; p < 0.01). OS improved in patients who crossed over from placebo to sorafenib [342]. In patients with previously untreated mRCC sorafenib was not superior to IFN-α. A number of studies have used sorafenib as the control arm in sunitinib-refractory disease versus axitinib, dovitinib and temsirolimus. None showed superior survival compared to sorafenib.

7.4.3.1.2 Sunitinib
Sunitinib is an oral tyrosine kinase (TK) inhibitor and has antitumour and anti-angiogenic activity. Sunitinib as second-line monotherapy in patients with mRCC demonstrated a partial response in 34-40% and stable disease > 3 months in 27-29% of patients [343]. First-line monotherapy with sunitinib demonstrated longer PFS compared with IFN-α. OS was greater in patients treated for 26.4 and 21.8 months with sunitinib despite crossover [344].

In the EFFECT trial, sunitinib 50 mg/day (4 weeks on/2 weeks off) was compared with continuous uninterrupted sunitinib 37.5 mg/day in patients with clear-cell mRCC [345]. Median time to progression (TTP) with sunitinib 50 mg was numerically longer than the 37.5 mg arm (9.9 months versus 7.1 months). No significant differences in OS were seen (23.1 vs. 23.5 months; p = 0.615). Toxicity was comparable in both arms. Because of the non-significant, but numerically longer TTP with the standard 50 mg dosage, the authors recommended using this regimen. Alternate scheduling of sunitinib (2 weeks on/1 week off) is being used to manage toxicity.

7.4.3.1.3 Pazopanib
Pazopanib is an oral angiogenesis inhibitor. In a trial of pazopanib versus placebo in treatment-naïve mRCC patients and cytokine-treated patients, a significant improvement in PFS and tumour response was observed
Median PFS with pazopanib compared with placebo was:

- 9.2 vs. 4.2 months in the overall study population;
- 11.1 vs. 2.8 months for the treatment-naïve subpopulation;
- 7.4 vs. 4.2 months for the cytokine-pretreated subpopulation.

A trial comparing pazopanib with sunitinib (COMPARZ) established pazopanib as another first-line option. It showed that pazopanib was not associated with significantly worse PFS or OS compared to sunitinib. The two drugs had different toxicity profiles [347], and QoL was better with pazopanib. In another patient-preference study (PISCES), patients preferred pazopanib to sunitinib due to symptomatic toxicity [348]. Both studies were limited in that intermittent therapy (sunitinib) was compared with continuous therapy (pazopanib).

Axitinib

Axitinib is an oral selective second-generation inhibitor of VEGFR-1, -2, and -3. Axitinib was first evaluated as second-line treatment. In the AXIS trial (axitinib versus sorafenib in patients with previously failed cytokine treatment or targeted agents), the sample size calculation was based on a 40% improvement in median PFS from 5-7 months in patients receiving axitinib [349].

The overall median PFS was greater for axitinib than sorafenib. The difference in PFS was greatest in patients in whom cytokine treatment had failed. For those in whom sunitinib had failed, axitinib was associated with a greater PFS than sorafenib (4.8 vs. 3.4 months). Axitinib showed > grade 3 diarrhoea in 11%, hypertension in 16%, and fatigue in 11%. Across all grades, nausea was recorded in 32%, vomiting in 24%, and asthenia in 21%. OS was a secondary end-point of the trial in which crossover was not permitted. Final analysis of OS showed no significant differences between the groups in second-line treatment [350, 351].

Axitinib was investigated in two first-line studies [352, 353]. One investigated the efficacy and safety of axitinib dose titration in previously untreated patients with mRCC. Although the objective RR was higher in patients treated to toxicity, median PFS was 14.5 months in the axitinib titration group, 15.7 months in the placebo titration group, and 16.6 months in nonrandomised patients [352]. This supports the hypothesis that dose escalation is associated with higher RRs.

In a trial of axitinib vs. sorafenib in first-line treatment-naïve cc-mRCC, a significant difference in median PFS between the treatment groups was not demonstrated [353]. As a result of this study, axitinib is not approved for first-line therapy.

Monoclonal antibody against circulating VEGF

Bevacizumab monotherapy and bevacizumab + IFN-α

Bevacizumab is a humanised monoclonal antibody. The AVOREN study compared bevacizumab + IFN-α with INF-α monotherapy in mRCC [326]. Median OR was higher in the bevacizumab + IFN-α group. Median PFS increased from 5.4 months with IFN-α to 10.2 months with bevacizumab + IFN-α. No benefit was seen in MSKCC poor-risk patients. Median OS in this trial, which allowed crossover after progression, was not greater in the bevacizumab+IFN-α group (23.3 vs. 21.3) [354].

A similarly designed trial (CALGB 90206) [355, 356], of bevacizumab + IFN-α vs. IFN-α showed a higher median PFS for the combination group. ORR was also higher in the combination group. Overall toxicity was greater for bevacizumab + IFN-α, with significantly more grade 3 hypertension, anorexia, fatigue, and proteinuria.

mTOR inhibitors

Temsirolimus

Temsirolimus is a specific inhibitor of mTOR [357]. Patients with modified high-risk mRCC in the NCT00065468 trial received first-line temsirolimus or IFN-α monotherapy, or a combination of both [328]. Median OS was higher in the temsirolimus group. However, OS in the temsirolimus + IFN-α group was not significantly superior to IFN-α alone [328]. IFN-α toxicity was marked, partly due to the high doses used. The INTORSECT trial investigated temsirolimus vs. sorafenib in patients who had previously failed sunitinib. Although no benefit in PFS was observed, a significant OS benefit for sorafenib was noted [358]. Based on these results, temsirolimus is not recommended in patients with VEGF TKI refractory disease.

Everolimus

Everolimus is an oral mTOR inhibitor, which is established in the treatment of VEGF-refractory disease. The RECORD-1 study compared everolimus + best supportive care (BSC) vs. placebo + BSC in patients with previously failed anti-VEGFR treatment (or previously intolerant of VEGF targeted therapy) [359]. The initial data showed a median PFS of 4.0 months v.s. 1.9 months for everolimus and placebo, respectively [359].
was extended to 4.9 months in the final analysis HR=0.33 [360]. Subset analysis of PFS for patients receiving only 1 previous VEGF TKI was 5.4 months [361]. This included some patients who were intolerant rather than progressed on therapy (PFS also 5.4 months) [362]. RECORD-1 included patients who failed multiple lines of VEGF-targeted therapy, and received everolimus in third- and fourth-line setting [359].

The RECORD-3 study of sunitinib vs. everolimus in treatment-naïve mRCC followed by either sunitinib or everolimus upon progression reported a higher median PFS for first-line treatment in the sunitinib group [363]. A large number of the crossover patients did not receive the planned subsequent therapy making further analysis complex and underpowered. Survival in the sunitinib-followed-by-everolimus-arm was high, mature analysis is awaited.

7.4.6 Therapeutic strategies and recommendations

7.4.6.1 Therapy for treatment-naïve patients with clear-cell mRCC
Pivotal trials have established sunitinib and bevacizumab plus IFN-α as first-line treatment options in treatment-naïve patients with cc-mRCC and a favourable-to-intermediate risk score. The COMPARZ study demonstrated that pazopanib and sunitinib have similar efficacy and different toxicity profiles. This study firmly establishes pazopanib as another first-line option [347].

7.4.6.1.1 Sequencing targeted therapy
7.4.6.1.1.1 Following progression of disease with VEGF-targeted therapy
Several trials investigated therapeutic options for patients who progressed on first-line VEGF-targeted therapy. RECORD-1 established VEGF TKI until disease progression followed by everolimus as one of the treatment options for patients with mRCC [359]. AXIS was the only trial to compare two TKIs after failure of a prior TKI. The results and interpretation are described under 7.3.1.4 above [349-351]. Comparison of RECORD-1 data with AXIS data is not advised due to differences in patient populations [349-351, 359].

INTORSECT was the only trial to directly compare an mTOR inhibitor and TKI (temsirolimus vs. sorafenib) after disease progression on sunitinib [358]. Median PFS was higher, but not significant, in the temsirolimus group. However, there was a significant difference in OS in favour of sorafenib. These data are not necessarily relevant to other mTOR inhibitors such as everolimus.

No firm recommendations can currently be made as to the best sequence of targeted therapy. However, VEGF-targeted therapy should be used for patients with favourable- and intermediate-risk disease in the first-line setting.

7.4.6.1.1.2 Treatment after progression of disease with mTOR inhibition
There are limited data addressing this issue. In view of the efficacy of VEGF-targeted therapy in renal cancer, a switch to VEGF-targeted therapy is advised (expert opinion and [364]).

7.4.6.1.1.3 Treatment after progression of disease with cytokines
Trials have established sorafenib, axitinib and pazopanib as therapeutic options in this setting with a median PFS of 5.5, 12.1 and 7.4 months, respectively. Based on trial data, axitinib is superior to sorafenib in patients previously treated with cytokine therapy [349-351].

7.4.6.1.1.4 Treatment after second-line targeted therapy
The RECORD-1 study demonstrated the activity of everolimus in patients who had received more than one line of targeted therapy. 26% of patients were treated with two or more lines of VEGF-targeted therapy and significant benefits were seen. Although the GOLD trial failed to demonstrate superior efficacy of dovitinib over sorafenib in patients with mRCC who experienced disease progression after receiving prior VEGF- and mTOR-targeted therapies, the results suggest efficacy and safety of sorafenib in the third-line setting [364].

7.4.6.1.1.5 Combination of targeted agents
There have been a number of trials with VEGF targeted therapy and mTOR inhibitors [365-369]. The results have all been negative. No combinations of targeted agents are currently recommended.

7.4.6.2 Non-clear-cell renal cancer
No phase III trials of patients with non-clear-cell RCC have been reported. Expanded access programmes and subset analysis from RCC studies suggest the outcome of these patients with targeted therapy is poorer than for ccRCC. Targeted treatment in non-clear-cell RCC has focused on temsirolimus, everolimus, sorafenib and sunitinib [328, 370-372].
The most common non-clear-cell subtypes are papillary type 1 and 2 RCCs. There are small single-arm data for sunitinib and everolimus [372-375]. A trial of both types of papillary RCC treated with everolimus (RAPTOR) [375], showed median PFS of 3.7 months per central review in the intention-to-treat population with a median OS of 21.0 months.

Another trial investigated foretinib (a dual MET/VEGFR2 inhibitor) in patients with papillary RCC. Toxicity was acceptable with a high RR in patients with germline MET mutations [376]. However, a randomised phase II trial of everolimus vs. sunitinib with crossover design in non-clear-cell mRCC included 73 patients (27 with papillary RCC) and was stopped after a futility analysis for PFS and OS. Median OS for everolimus was 10.5 months but not reached for sunitinib [377]. The final results presented at the 2014 annual meeting of the American Society of Clinical Oncology showed a nonsignificant trend favouring sunitinib. Both sunitinib and everolimus remain options in this population, with a preference for sunitinib. Patients with ncc-mRCC should be referred to a clinical trial where appropriate.

Collecting-duct cancers are resistant to systemic therapy. There is a lack of data to support specific therapy in these patients. There is limited data supporting the use of targeted therapy in other histological subtypes such as chromophobe tumours [328, 370].

Table 7.3: EAU 2015 evidence-based recommendations for systemic therapy in patients with mRCC

<table>
<thead>
<tr>
<th>RCC type</th>
<th>MSKCC risk group [323]</th>
<th>First-line LE^</th>
<th>Second-line LE^</th>
<th>Third-line LE^</th>
<th>Later lines</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell*</td>
<td>Favourable, intermediate and poor</td>
<td>sunitinib</td>
<td>1b VEGFR:</td>
<td>after</td>
<td>2a VEGFR:</td>
<td>2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pazopanib bevacizumab + IFN Favourable-intermediate only)</td>
<td>1b</td>
<td>axitinib</td>
<td>2a</td>
<td>everolimus</td>
</tr>
<tr>
<td>Clear cell*</td>
<td>poor¶</td>
<td>temsirolimus</td>
<td>1b</td>
<td>any targeted agent</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Non-clear-cell §</td>
<td>any</td>
<td>sunitinib</td>
<td>2a</td>
<td>any targeted agent</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

IFN-α = interferon alpha; LE = level of evidence; MSKCC = Memorial Sloan-Kettering Cancer Center; mTOR = mammalian target of rapamycin inhibitor; RCC = renal cell carcinoma; TKI = tyrosine kinase inhibitor.

^ Doses: IFN-α - 9 MU three times per week subcutaneously, bevacizumab 10 mg/kg biweekly intravenously; sunitinib 50 mg daily orally for 4 weeks, followed by 2 weeks of rest (37.5 mg continuous dosing did not show significant differences); temsirolimus 25 mg weekly intravenously; pazopanib 800 mg daily orally. Axitinib 5 mg twice daily, to be increased to 7 mg twice daily, unless greater than grade 2 toxicity, blood pressure higher than 150/90 mmHg, or the patient is receiving antihypertensive medication. Everolimus, 10 mg daily orally.

§ No standard treatment available. Patients should be treated in the framework of clinical trials or a decision can be made in consultation with the patient to perform treatment in line with ccRCC.

¶ Poor risk criteria in the NCT00065468 trial consisted of MSKCC [323] risk plus metastases in multiple organs.

Sorafenib was inferior to axitinib in a RCT in terms of PFS but not OS [351].

^ Level of evidence was downgraded in instances when data were obtained from subgroup analysis within an RCT.
Conclusions and recommendations for systemic therapy in mRCC

Conclusions

LE	TKIs increase PFS and/or OS as both first-line and second-line treatments for clear-cell mRCC.
	1b
	Axitinib has proven efficacy and superiority in PFS as a second-line treatment after failure of cytokines and VEGF-targeted therapy in comparison with sorafenib.
	1b
	Sunitinib is more effective than IFN-α in treatment-naïve patients.
	1b
	Bevacizumab plus IFN-α is more effective than IFN-α in treatment-naïve low-risk and intermediate-risk patients.
	1b
	Pazopanib is superior to placebo in both naïve mRCC patients and post-cytokine patients.
	1b
	Pazopanib is not inferior to sunitinib in clear-cell mRCC patients.
	1b
	Temsirolimus monotherapy prolongs OS compared to IFN-α in poor-risk mRCC.
	1b
	Everolimus prolongs PFS in patients who have previously failed or are intolerant of VEGF-targeted therapy.
	1b
	Sorafenib has broad activity in a spectrum of settings in clear-cell patients previously treated with cytokine or targeted therapies.
	4
	Both mTOR inhibitors (everolimus and temsirolimus) and VEGF-targeted therapies (sunitinib or sorafenib) can be used in non-clear-cell RCC.
	3
	No combination has proven to be better than single-agent therapy.
	1a

Recommendations

GR	Systemic therapy for mRCC should be based on targeted agents.
	A
	Sunitinib and pazopanib are recommended as first-line therapy for advanced/metastatic clear-cell RCC.
	A
	Bevacizumab + IFN-α recommended as first-line therapy for advanced/metastatic RCC in favourable-risk and intermediate-risk ccRCC.
	A
	Temsirolimus is recommended as first-line treatment in poor-risk RCC patients.
	A
	Axitinib is recommended as second-line treatment for mRCC.
	A
	Everolimus is recommended for ccRCC patients who have failed VEGF-targeted therapy.
	A
	Pazopanib and sorafenib are alternatives to axitinib and are recommended as second-line therapy after failure of prior cytokines.
	B
	Sequencing of targeted agents is recommended.
	A
	Sunitinib can be recommended as first-line therapy for non-clear-cell mRCC.
	B

7.5 Recurrent RCC

7.5.1 Introduction

Locally recurrent disease can occur either after partial nephrectomy, nephrectomy and thermal ablation. After nephron sparing treatment approaches the recurrence may be intrarenal or in addition regional, e.g. venous tumour thrombi or retroperitoneal lymph node metastases. Both are often summarised as locoregional recurrences. Recurrence rates for pT1 tumours after partial nephrectomy are observed in 2.2% and are generally managed surgically depending on the extent of the locoregional recurrence [378]. After thermal ablation locoregional recurrences (intrarenal and regional) have been described in up to 12% [379]. Repeated ablation has often been recommended for intrarenal recurrences following thermal ablation. For locoregional recurrences surgical resection is mandatory as has been described for isolated local recurrences following nephrectomy.

After nephrectomy locally recurrent disease is defined as recurrent disease in the former kidney rest. However, metastasis in the not removed ipsilateral adrenal or non-resected lymph nodes makes interpretation of the true incidence of isolated recurrence in the renal fossa difficult. Treatment of adrenal metastases or lymph node metastases are often described in series of metastasectomy (Section 7.3). Isolated local recurrence however is rare.

The largest series on the treatment of isolated recurrence was published in 2009 [380]. Of 2,945 patients who underwent nephrectomy the authors identified 54 isolated local recurrences in the renal fossa. These however included those to the ipsilateral adrenal and lymph nodes. Exclusively retrospective non-comparative data exist which suggest that aggressive local resection offers durable local tumour control and improves survival. Adverse prognostic factors were a positive surgical margin after resection, the size of the recurrence and sarcomatoid histologic features [380]. In cases where complete surgical removal is not feasible due to advanced tumour growth and pain, palliative treatments including radiation treatment can be considered.
7.5.2 Conclusions and recommendation for advanced/metastatic RCC

Conclusions LE
Isolated recurrence in the local renal fossa is rare. 3
Patients with resectable local recurrences and absent sarcomatoid features may benefit from resection. 3

Recommendation GR
Surgical resection of local recurrent disease may result in durable local control and improved survival C

8. FOLLOW-UP AFTER RADICAL NEPHRECTOMY OR PARTIAL NEPHRECTOMY OR ABLATIVE THERAPIES FOR RCC

8.1 Introduction
Surveillance after treatment for RCC allows the urologist to monitor or identify:
• Postoperative complications;
• Renal function;
• Local recurrence after PN or ablative treatment;
• Recurrence in the contralateral or ipsilateral (after PN) kidney;
• Development of metastases.

The method and timing of examinations have been the subject of many publications. There is no consensus on surveillance after RCC treatment, and there is no evidence that early vs. later diagnosis of recurrences improves survival. However, follow-up is important to increase the available information on RCC, and should be performed by the urologist, who should record the time to recurrence or the development of metastases. Postoperative complications and renal function are readily assessed by the patient’s history, physical examination, and measurement of serum creatinine and eGFR. Repeated long-term monitoring of eGFR is indicated if there is impaired renal function before surgery, or postoperative deterioration. Renal function [381, 382] and non-cancer survival [180–182] can be optimised by performing NSS whenever possible for T1 and T2 tumours [383] (LE: 3). Tumour-bed recurrence is rare, but early diagnosis is useful, as the most effective treatment is cytoreductive surgery [384, 385]. Recurrence in the contralateral kidney is also rare and is related to positive margins, multifocality, and grade [386] (LE: 3). Surveillance can identify local recurrences or metastases at an early stage. This is particularly important with ablative therapies such as cryotherapy and RFA. Although the local recurrence rate is higher than after conventional surgery, the patient may still be cured using repeat ablative therapy or RN [387] (LE: 3). In metastatic disease, extended tumour growth can limit the opportunity for surgical resection, considered the standard therapy in cases of resectable and preferably solitary lesions. In addition, early diagnosis of tumour recurrence may enhance the efficacy of systemic treatment if the tumour burden is low.

8.2 Which investigations for which patients, and when?
Intensive radiological surveillance for all patients is unnecessary. The outcome after surgery for T1a low-grade tumours is almost always excellent. It is therefore reasonable to stratify the follow-up, taking into account the risk of developing recurrence or metastases. Although there is no randomised evidence, large studies have examined prognostic factors with long follow-up periods, from which conclusions can be drawn [31, 388, 389] (LE: 4):
• The sensitivity of chest radiography for small metastases is poor and US has limitations. Surveillance should not be based on these imaging modalities [390]. With low-risk tumours, surveillance intervals should be adapted relative to radiation exposure and benefit. To reduce radiation exposure, MRI can be used.
• When the risk of relapse is intermediate or high, CT of the chest and abdomen should be performed, although significant morbidity associated with the radiation exposure involved in repeated CT scans should be taken into account [391]. CT can clearly reveal metastatic lesions from RCC [392].
• Surveillance should also include clinical evaluation of renal function and cardiovascular risk factors.
• Positron-emission tomography (PET) and PET-CT as well as bone scintigraphy are not the standard of care in RCC surveillance, due to limited specificity and sensitivity.

• Depending on the availability of effective new treatments, more strict follow-up schedules may be required, particularly as there is a higher local recurrence rate after cryotherapy and RFA.

There is controversy over the optimal duration of follow-up. Some argue that follow-up with imaging is not cost-effective after 5 years; however, late metastases are more likely to be solitary and justify more aggressive therapy with curative intent. In addition, patients with tumours that develop in the contralateral kidney can be treated with NSS if the tumours are detected when small. For tumours < 4 cm, there is no difference between PN and RN with regard to recurrences during follow-up [189] (LE: 3).

Several authors [165, 167, 393, 394], have designed scoring systems and nomograms to quantify the likelihood of patients developing tumour recurrences, metastases, and subsequent death. These systems have been compared and validated [395] (LE: 2). Using prognostic variables, several stage-based surveillance regimens have been proposed [396, 397], but do not include ablative therapies. A postoperative nomogram is available for estimating the likelihood of freedom from recurrence at 5 years [162]. Recently, a preoperative prognostic model based on age, symptoms, and TNM staging has been published and validated [171] (LE: 3). A surveillance algorithm for monitoring patients after treatment for RCC is needed, recognising not only the patient risk profile, but also efficacy of the treatment given (Table 8.1).

Table 8.1: Proposed surveillance schedule following treatment for RCC, taking into account patient risk profile and treatment efficacy

<table>
<thead>
<tr>
<th>Risk profile</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low RN/PN only</td>
<td>US CT US CT US CT CT Discharge</td>
</tr>
<tr>
<td>Intermediate RN/PN/cryo/RFA</td>
<td>CT CT CT US CT CT CT once every 2 years</td>
</tr>
<tr>
<td>High RN/PN/cryo/RFA</td>
<td>CT CT CT CT CT CT CT once every 2 years</td>
</tr>
</tbody>
</table>

Cryo = cryotherapy; CT = computed tomography of chest and abdomen, or MRI = magnetic resonance imaging; PN = partial nephrectomy; RFA = radiofrequency ablation; RN = radical nephrectomy; US = ultrasound of abdomen, kidneys and renal bed.

8.3 Conclusions and recommendations for surveillance following RN or PN or ablative therapies in RCC

Conclusions

<table>
<thead>
<tr>
<th>Surveillance can detect local recurrence or metastatic disease while the patient is still surgically curable. Renal function should be assessed.</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk stratification should be based on preexisting classification systems such as the UISS integrated risk assessment score (http://urology.ucla.edu/body.cfm?id=443 [163].</td>
<td>4</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Follow-up after treatment for RCC should be based on a patient's risk factors and type of treatment.</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>For low-risk disease, CT/MRI can be used infrequently.</td>
<td>C</td>
</tr>
<tr>
<td>In intermediate-risk patients, intensified follow-up should be performed, including CT/MRI scans at regular intervals in accordance with a risk-stratified nomogram.</td>
<td>C</td>
</tr>
<tr>
<td>In high-risk patients, the follow-up examinations should include routine CT/MRI scans.</td>
<td>C</td>
</tr>
<tr>
<td>There is an increased risk of intrarenal recurrences in larger (> 7 cm) tumours treated with NSS, or when there is a positive margin. Follow-up should be intensified in these patients.</td>
<td>C</td>
</tr>
</tbody>
</table>

8.4 Research priorities

There is a clear need for future research to determine whether follow-up can optimise patient survival. Further information should be sought at what time point restaging has the highest chance to detect recurrence. Prognostic markers at surgery should be investigated to determine the risk of relapse over time.
9. REFERENCES

http://www.ncbi.nlm.nih.gov/pubmed/20850148

2556-61.

http://www.asco.org/ASCO/Abstracts+%26+Virtual+Meeting/Abstracts?&vmview=abst_detail_view&confID=55&abstractID=32895

348. Bernard J, Escudier CP, Petri Bono, Ugo De Giorgi, Omi Parikh, Robert E. Hawkins, Emmanuel Sevin, Sylvie Negrier, Sadya Khan, Lauren McCann, Faisal Mehmud and David Cella. Patient preference between pazopanib (Paz) and sunitinib (Sun): Results of a randomized double-blind, placebo-controlled, cross-over study in patients with metastatic renal cell carcinoma (mRCC)—PISCES study, NCT 01064310. J Clin Oncol 2012. 30(18 (June 20 Suppl)).

http://meetinglibrary.asco.org/content/94426-114

367. McDermott DF, Manola J, Pins M, et al. The BEST trial (E2804): A randomized phase II study of VEGF, RAF kinase, and mTOR combination targeted therapy (CTT) with bevacizumab (bev), sorafenib (sor), and temsirolimus (tem) in advanced renal cell carcinoma (RCC). J Clin Oncol 2013;31suppl 6;abstr 345. http://meetinglibrary.asco.org/content/107093-134

10. CONFLICT OF INTEREST

All members of the Renal Cell Cancer working group have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publically accessible through the European Association of Urology website: http://www.uroweb.org/guidelines/. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.