Tibial Nerve Stimulation for Treating Neurogenic Lower Urinary Tract Dysfunction: A Systematic Review

Marc P. Schneidera,b,1, Tobias Grossc,1, Lucas M. Bachmannd, Bertil F.M. Bloke, David Castro-Díazf, Giulio Del Popolog, Jan Groene, Rizwan Hamidh, Gilles Karsentyi, Jürgen Pannekj, Lisette ‘t Hoenderdaale, Thomas M. Kesslera,*

aNeuro-Urology, Spinal Cord Injury Center & Research, University of Zürich, Balgrist University Hospital, Zürich, Switzerland; bBrain Research Institute, University of Zürich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland; cDepartment of Urology, University of Bern, Inselspital, Bern, Switzerland; dMedignition Inc., Research Consultants, Zürich, Switzerland; eDepartment of Urology, Emory University Hospital, Atlanta, GA, USA; fDepartment of Neuro-Urology, Careggi University Hospital, Florence, Italy; gDepartment of Neuro-Urology, London Spinal Injuries Centre, Stanmore, UK; hDepartment of Urology, Aix Marseille University, Marseille, France; iNeuro-Urology, Swiss Paraplegic Center, Nottwil, Switzerland

Abstract

Context: Tibial nerve stimulation (TNS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option for patients with an underlying neurological disorder.

Objective: We systematically reviewed all available evidence on the efficacy and safety of TNS for treating neurogenic lower urinary tract dysfunction (NLUTD).

Evidence acquisition: The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement.

Evidence synthesis: After screening 1643 articles, 16 studies (4 randomized controlled trials [RCTs], 9 prospective cohort studies, 2 retrospective case series, and 1 case report) including 469 patients (283 women and 186 men) were included. Five studies reported on acute TNS and 11 on chronic TNS. In acute and chronic TNS, the mean increase of maximum cystometric capacity ranged from 56 to 132 mL and from 49 to 150 mL, and the mean increase of bladder volume at first detrusor overactivity ranged from 44 to 92 mL and from 93 to 121 mL, respectively. In acute and chronic TNS, the mean decrease of maximum detrusor pressure during the storage phase ranged from 5 to 15 cm H\textsubscript{2}O and from 4 to 21 cm H\textsubscript{2}O, respectively. In chronic TNS, the mean decrease in number of voids per 24 h, in number of leakages per 24 h, and in postvoid residual ranged from 3 to 7, from 1 to 4, and from 15 to 55 mL, respectively. No TNS-related adverse events have been reported. Risk of bias and confounding was high in most studies.

Conclusions: Although preliminary data of RCTs and non-RCTs suggest TNS might be effective and safe for treating NLUTD, the evidence base is poor, derived from small, mostly noncomparative studies with a high risk of bias and confounding. More reliable data from well-designed RCTs are needed to reach definitive conclusions.

Patient summary: Early data suggest tibial nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.

\textcopyright 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
1. Introduction

Neurogenic lower urinary tract dysfunction (NLUTD) is highly prevalent, affects the lives of millions of people worldwide, and imposes a substantial economic burden on health care systems [1,2]. The prevalence of NLUTD may approach 100%, depending on the type and duration of the neurological disorder (e.g., in multiple sclerosis [MS]) [3,4]. Quality of life is a major issue, and lower urinary tract function becomes one of the most challenging issues in a patient’s life [5]. NLUTD may cause storage and/or voiding symptoms [1]. Although many different treatments are available, the management of NLUTD is challenging, not least because the standard treatment modalities often have limitations.

Tibial nerve stimulation (TNS), introduced by Stoller in the late 1990s [6], is a promising therapy for nonneurogenic lower urinary tract dysfunction [7]. The tibial nerve is stimulated by an electrode inserted 4–5 cm cephalad to the medial malleolus. The flexion of the big toe or the movement of the other toes as well as a sensory response confirm the correct position of the needle electrode. TNS was found to be effective and safe for treating idiopathic overactive bladder in randomized controlled trials (RCTs) [8–10]. TNS might also be a valuable option in patients with an underlying neurological disorder. We performed a systematic review to assess and appraise the available evidence on the efficacy and safety of TNS for treating NLUTD.

2. Evidence acquisition

2.1. Data sources and searches

This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement [11]. The protocol for the review is available on PROSPERO (CRD42014008678; http://www.crd.york.ac.uk/PROSPERO). We systematically searched Embase, Medline, the Cochrane Central Register of Controlled Trials, and the Health Technology Assessment Database (from January 1, 1946, to January 23, 2015). No language restrictions were applied. We additionally searched the reference list of all included studies and any relevant review articles. Supplement 1 lists the search strategies.

2.2. Study selection

We aimed to include all original studies that reported efficacy and/or safety data on TNS for treating NLUTD including RCTs, comparative non-RCTs, and single-arm cohort studies. Nonoriginal articles, studies not published as full text, those including children only, and those not discriminating between nonneurological and neurological patients were excluded. There was no language restriction. All identified abstracts were imported into a bibliography management software (EndNote X5 [M.P.S.] or X7 [T.G., T.M.K.]; Thomson Reuters, Philadelphia, PA, USA) and sorted according to inclusion and exclusion folders by drag and drop. Abstracts of all identified studies were independently reviewed by two authors (M.P.S. and T.G.). Studies reporting on TNS (defined as any electrical stimulation of the tibial nerve) for treating NLUTD (defined as any type of lower urinary tract dysfunction caused by a neurological disorder) were reviewed in full text.

2.3. Data extraction and risk of bias assessment

The variables assessed included year of publication, study type, number of patients, gender and age, underlying neurological disorder, duration of neurological disorder, acute (i.e., stimulation during urodynamic investigation only) and chronic (i.e., daily on weekly stimulation during 6–12 wk before neuro-urological assessment), TNS (percutaneous or transcutaneous, stimulation frequencies, pulse widths, stimulation signs [perception threshold and/or toe plantar flexion] and durations), TNS effects on urodynamic parameters, postvoid residual and bladder diary variables, patient adherence to TNS, and any adverse events. Data from eligible reports were extracted (by treatment group in comparative studies) in duplicate (M.P.S. and T.G.), and discrepancies were resolved by a third reviewer (T.M.K.).

The Cochrane Risk of Bias Assessment tool was used for RCTs [12]. This included the assessment of sequence generation; allocation concealment; blinding of participants, therapists, and outcome assessors; completeness of outcome data; selective outcome reporting; and other potential sources of bias (Supplementary Fig. 1 and 2).

Risk of bias in comparative non-RCTs was assessed using the described Cochrane tool and an extra item to assess the risk of findings being explained by confounding. This is a pragmatic approach informed by methodological literature pertaining to assessing risks of bias in nonrandomised studies [8,13]. A list of the four most important potential confounders for efficacy and safety outcomes was developed with clinical content experts (European Association of Urology [EAU] neuro-urology guidelines panel). For each study, we asked whether each prognostic confounder was considered and whether, if necessary, the confounder was controlled for in analysis. The potential confounding factors are underlying neurological disorder (e.g., MS, Parkinson’s disease), gender, type of therapy (acute or chronic TNS), and type of stimulation (transcutaneous or percutaneous TNS).

Risk of bias in noncomparative studies cannot be assessed with the approach just described that is designed to assess the internal validity of comparative studies. Therefore, concern was extended in noncomparative studies to address external validity by assessing whether study participants were selected consecutively or were representative of a wider patient population and whether the specified confounding factors were comparable across studies reporting on the same intervention. Attrition bias and selective outcome reporting were also assessed (Supplementary Figs. 1 and 2). This too is a pragmatic approach informed by the methodological literature [12].

2.4. Data synthesis

Effect estimates of TNS were calculated as the difference d between study completion x_1 and baseline x_0 (i.e., 6–12 wk
after baseline). For each study the variance at time point \(x \) was calculated, using the standard deviation \(SD_x \) and group size \(n \), as \(VAR = SD_x^2/n \). The correlation coefficient was assumed to be 0.5, a conservative value that leads to the highest variance. Thus the variance of \(d \) (\(VAR_d \)) was \(VARX_0 + VARX_1/C_0 \times 2 \times 0.5 \times H(VARX_0 \times VARX_1) \) and the corresponding \(SD_d = \sqrt{n} \times VAR_d \). In case of missing \(SD_x \) these were imputed taking the largest of reported \(SD_x \). Pooling of data via meta-analysis was planned for RCTs, but it was not possible because outcome measures of the different studies varied widely. In non-RCTs, no data pooling was planned due to different study designs and the expected clinical and methodological heterogeneity of included studies. However, forest plots were generated to provide a visual representation of results to show the direction and magnitude of effects. This was performed using the \texttt{metan} command of the Stata v.11.2 software package (StataCorp, College Station, TX, USA).

Risk of bias summary and graph (Supplementary Figs. 1 and 2) was generated using Cochrane RevMan software v.5.3 (Informatics and Knowledge Management Department, Cochrane, London, UK).

3. Evidence synthesis

3.1. Search results

Figure 1 shows the PRISMA flow diagram of the literature search and results. After screening of 1943 abstracts, 16 studies were included in a narrative synthesis [14] (Tables 1–3; Fig. 2A–2F): four RCTs [15–18], nine prospective cohort studies [19–27], two retrospective case series [28,29], and one case report [30].

3.2. Study and patient characteristics

Overall, the 16 included studies enrolled a total of 469 patients: 283 women (60%) and 186 men (40%). Patients had MS (\(n = 279 \)), Parkinson’s disease (\(n = 92 \)), cerebrovascular accident (\(n = 25 \)), incomplete spinal cord injury (\(n = 16 \)), or complete spinal cord injury (\(n = 2 \)). There were 8 “others” and 47 not reported. Five studies reported on acute (5 non-RCTs) and 11 on chronic (4 RCTs, 7 non-RCTs) TNS, 4 on transcutaneous (2 RCTs, 2 non-RCTs), and 12 on percutaneous (2 RCTs, 10 non-RCTs) TNS. None of the included studies reported on patient adherence to TNS.

3.3. Efficacy of tibial nerve stimulation

Treatment outcomes of RCTs and non-RCTs are shown in Tables 2 and 3. In acute and chronic TNS, the mean increase of maximum cystometric capacity (Fig. 2A) ranged from 56 to 132 mL and from 49 to 150 mL, respectively. The mean increase of bladder volume at first detrusor overactivity (Fig. 2B) ranged from 44 to 92 mL and from 93 to 121 mL, respectively. In acute and chronic TNS, the mean decrease of maximum detrusor pressure during the storage phase (Fig. 2C) ranged from 5 to 15 cm H\(_2\)O and from 4 to 21 cm.
Table 1 — Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Total patients (female/male)</th>
<th>Type of therapy</th>
<th>Type of stimulation and/or treatment</th>
<th>Stimulation frequencies</th>
<th>Stimulation amplitude/pulse current</th>
<th>Stimulation duration</th>
<th>Test duration, d</th>
<th>Mean age, yr</th>
<th>Neurological disorder</th>
<th>Mean duration of neurological disorder, yr</th>
<th>No. of adverse events</th>
<th>Outcomes measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCTs</td>
<td></td>
</tr>
<tr>
<td>Eftekhari et al [15]</td>
<td>Con 23 (23/0)</td>
<td>Chronic</td>
<td>4 mg tolterodine/d and PTNS</td>
<td>Con</td>
<td>Con</td>
<td>Con</td>
<td>84</td>
<td>50</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NPI, NPU</td>
</tr>
<tr>
<td>Exp 17 (17/0)</td>
<td></td>
<td></td>
<td></td>
<td>Con</td>
<td>Con</td>
<td>30 min/wk</td>
<td>84</td>
<td>47</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Gaspard et al [16]</td>
<td>Con 16 (9/7)</td>
<td>Chronic</td>
<td>Pelvic floor muscle training</td>
<td>Con</td>
<td>Con</td>
<td>Con</td>
<td>63</td>
<td>44</td>
<td>MS 16</td>
<td>10</td>
<td>0</td>
<td>NUE</td>
</tr>
<tr>
<td>Exp 15 (8/7)</td>
<td></td>
<td></td>
<td></td>
<td>TNS</td>
<td>10 Hz</td>
<td>220 µs</td>
<td>30 min/wk</td>
<td>63</td>
<td>41</td>
<td>MS 15</td>
<td>8.6</td>
<td>0</td>
</tr>
<tr>
<td>Monteiro et al [17]</td>
<td>Con 12 (0/12)</td>
<td>Chronic</td>
<td>Stretching sessions of the lower limbs</td>
<td>Con</td>
<td>Con</td>
<td>Con</td>
<td>42</td>
<td>47</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NPI, NPU</td>
</tr>
<tr>
<td>Exp 12 (0/12)</td>
<td></td>
<td></td>
<td></td>
<td>TNS</td>
<td>10 Hz</td>
<td>200 µs</td>
<td>30 min/wk</td>
<td>42</td>
<td>65</td>
<td>CVA 12</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Perissinotto et al [18]</td>
<td>Con 5 (0/5)</td>
<td>Chronic</td>
<td>Sham TNS</td>
<td>Con</td>
<td>Sham device</td>
<td>Sham device</td>
<td>30 min/wk</td>
<td>35</td>
<td>57</td>
<td>PD 5</td>
<td>2</td>
<td>NR</td>
</tr>
<tr>
<td>Exp 8 (0/8)</td>
<td></td>
<td></td>
<td></td>
<td>TNS</td>
<td>10 Hz</td>
<td>200 µs</td>
<td>30 min/wk</td>
<td>35</td>
<td>64</td>
<td>PD 8</td>
<td>8.5</td>
<td>NR</td>
</tr>
<tr>
<td>Non-RCTs</td>
<td></td>
</tr>
<tr>
<td>Amarenco et al [19]</td>
<td>44 (29/15)</td>
<td>Acute</td>
<td>PTNS</td>
<td>10 Hz</td>
<td>200 µs</td>
<td>NR</td>
<td><2 h</td>
<td>1</td>
<td>53</td>
<td>MS 13, PD 9, cSCI 15</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Andrews et al [30]</td>
<td>1 (0/1)</td>
<td>Acute</td>
<td>PTNS</td>
<td>25 Hz</td>
<td>250 µs</td>
<td>30 mA</td>
<td><2 h</td>
<td>1</td>
<td>64</td>
<td>MS 13, PD 9, cSCI 15</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Fjorback et al [29]</td>
<td>12 (5/7)</td>
<td>Acute</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>1.5 × toe plantar flexion threshold</td>
<td><2 h</td>
<td>1</td>
<td>46</td>
<td>MS 12</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Kayab et al [24]</td>
<td>32 (13/19)</td>
<td>Acute</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>1.5 × toe plantar flexion threshold</td>
<td><2 h</td>
<td>1</td>
<td>64</td>
<td>PD 32</td>
<td>7</td>
<td>NR</td>
</tr>
<tr>
<td>Kayab et al [25]</td>
<td>29 (17/12)</td>
<td>Acute</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>1.5 × toe plantar flexion threshold</td>
<td><2 h</td>
<td>1</td>
<td>47</td>
<td>MS 9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>De Sèze et al [20]</td>
<td>70 (51/19)</td>
<td>Chronic</td>
<td>TNS</td>
<td>10 Hz</td>
<td>200 µs</td>
<td>Threshold perception</td>
<td>20 min/d</td>
<td>90</td>
<td>48</td>
<td>MS 70</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>El-Senousy et al [28]</td>
<td>33 (8/25)</td>
<td>Chronic</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>1.5 × toe plantar flexion threshold</td>
<td>30 min/wk</td>
<td>84</td>
<td>62</td>
<td>PD 33</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Finazzi-Agrò et al [21]</td>
<td>14 (6/8)</td>
<td>Chronic</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>5 mA</td>
<td>30 min/wk</td>
<td>84</td>
<td>52</td>
<td>MS 4, PD 2, CVA 1, iSCI 2, others 5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Gobbi et al [22]</td>
<td>18 (16/2)</td>
<td>Chronic</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>5 mA</td>
<td>30 min/wk</td>
<td>84</td>
<td>46</td>
<td>MS 18</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Kabany et al [23]</td>
<td>19 (13/6)</td>
<td>Chronic</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>1.5 × toe plantar flexion threshold</td>
<td>30 min/wk</td>
<td>84</td>
<td>45</td>
<td>MS 19</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Ohannessian et al [27]</td>
<td>6 (6/0)</td>
<td>Chronic</td>
<td>TNS</td>
<td>10 Hz</td>
<td>200 µs</td>
<td>Threshold pain</td>
<td>20 min/wk</td>
<td>42</td>
<td>62</td>
<td>PD 3, others 3</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Zecca et al [26]</td>
<td>83 (62/21)</td>
<td>Chronic</td>
<td>PTNS</td>
<td>20 Hz</td>
<td>200 µs</td>
<td>1 × toe plantar flexion threshold</td>
<td>30 min/wk</td>
<td>84</td>
<td>49</td>
<td>MS 83</td>
<td>14.4</td>
<td>0</td>
</tr>
</tbody>
</table>

Acute = stimulation during urodynamic investigation only; BDO = bladder volume at first detrusor overactivity; Chronic = daily upon weekly stimulation during 6–12 wk before neuro-urological assessment; Con = control intervention; cSCI = complete spinal cord injury; CVA = cerebrovascular accident; Exp = experimental intervention; iSCI = incomplete spinal cord injury; L24 = number of leakages per 24 h; MCC = maximum cystometric capacity; MDS = maximum detrusor pressure during storage phase; MS = multiple sclerosis; NF3 = number of frequency episodes over 3-d period; NI3 = number of incontinence episodes over 3-d period; NUE = number of urgency frequency episodes; PD = Parkinson’s disease; PTNS = percutaneous tibial nerve stimulation; PVR = postvoid residual; RCTs = randomized controlled trials; TNS = transcutaneous tibial nerve stimulation; V24 = number of voids per 24 h.
Table 2 – Treatment outcomes of randomized controlled studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Patients, n</th>
<th>Maximum cystometric capacity, mL</th>
<th>Patients with incontinence, n</th>
<th>No. of urgency frequency episodes</th>
<th>Patients with urgency, n</th>
<th>Postvoid residual, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BL UT</td>
<td>Difference</td>
<td>p value</td>
<td>BL UT</td>
<td>Difference</td>
<td>p value</td>
</tr>
<tr>
<td>Eftekhar et al [15]</td>
<td>Con</td>
<td>23</td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>17</td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Gaspard et al [16]</td>
<td>PFT</td>
<td>16</td>
<td></td>
<td></td>
<td>3.5</td>
<td>1.2</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>15</td>
<td></td>
<td></td>
<td>3</td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Monteiro et al [17]</td>
<td>Con</td>
<td>12</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>12</td>
<td></td>
<td></td>
<td>11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Perissinotto et al [18]</td>
<td>Con</td>
<td>5</td>
<td>215</td>
<td>220</td>
<td>5</td>
<td>0.86</td>
<td>3*</td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>8</td>
<td>260</td>
<td>235</td>
<td>–25</td>
<td>6*</td>
<td>4*</td>
</tr>
</tbody>
</table>

BL = baseline; Con = control intervention; Exp = experimental intervention; NR = not reported; NS = not significant; PFT = pelvic floor muscle training; UT = under treatment.

All reported values are means. P values show group comparison at the same timepoint.

*a Number of incontinence episodes over a 3-d period.
** Number of urgency episodes over a 3-d period.
*** Number of frequency episodes over a 3-d period.

Table 3 – Treatment outcomes of nonrandomized controlled studies

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of patients/Type of therapy</th>
<th>Maximum cystometric capacity, mL</th>
<th>Maximum detrusor pressure during storage phase, cm H2O</th>
<th>Bladder volume at first detrusor overactivity, mL</th>
<th>No. of voids per 24 h</th>
<th>No. of leakages per 24 h</th>
<th>Postvoid residual, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BL UT Difference</td>
<td>p value</td>
<td>BL UT Difference</td>
<td>p value</td>
<td>BL UT Difference</td>
<td>p value</td>
</tr>
<tr>
<td>Amarenco et al [19]</td>
<td>44/acu</td>
<td>221</td>
<td>277</td>
<td>56</td>
<td><0.0001</td>
<td>163</td>
<td>232</td>
</tr>
<tr>
<td>Fjorback et al [29]</td>
<td>12/acu</td>
<td>205</td>
<td>301</td>
<td>96</td>
<td>0.001</td>
<td>122</td>
<td>166</td>
</tr>
<tr>
<td>Kabay et al [24]</td>
<td>32/acu</td>
<td>194</td>
<td>286</td>
<td>93</td>
<td><0.001</td>
<td>138</td>
<td>230</td>
</tr>
<tr>
<td>De Sèze et al [20]</td>
<td>7/chr</td>
<td>233</td>
<td>329</td>
<td>96</td>
<td>0.0001</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>El-Senousy et al [28]</td>
<td>33/chr</td>
<td>230</td>
<td>380</td>
<td>150</td>
<td><0.001</td>
<td>64</td>
<td>43</td>
</tr>
<tr>
<td>Finazzi-Agro et al [21]</td>
<td>14/chr</td>
<td>230</td>
<td>380</td>
<td>150</td>
<td><0.001</td>
<td>212</td>
<td>321</td>
</tr>
<tr>
<td>Gobbi et al [22]</td>
<td>18/chr</td>
<td>12</td>
<td>7</td>
<td>–5</td>
<td><0.05</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Kabay et al [23]</td>
<td>19/chr</td>
<td>200</td>
<td>267</td>
<td>67</td>
<td>0.000</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>Ohannessian et al [27]</td>
<td>6/chr</td>
<td>211</td>
<td>260</td>
<td>49</td>
<td>0.6</td>
<td>124</td>
<td>216</td>
</tr>
<tr>
<td>Zecca et al [26]</td>
<td>83/chr</td>
<td>171</td>
<td>268</td>
<td>97</td>
<td>0.003</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

acu = acute therapy; BL = baseline; chr = chronic therapy; NR = not reported; NS = not significant; UT = under treatment.

All reported values are means.
In chronic TNS, the mean decrease in number of voids per 24 h (Fig. 2D), in number of leakages per 24 h (Fig. 2E), and in postvoid residual in milliliters (Fig. 2F) ranged from 3 to 7, from 1 to 4, and from 16 to 55, respectively.

Safety of tibial nerve stimulation

No TNS-related adverse events have been reported.

Risk of bias and confounding

The risk of bias and confounding was relevant in both RCTs and non-RCTs. In particular, a high risk of selective outcome reporting bias was found (Supplementary Fig. 1 and 2).

Discussion

Principal findings

Improvement in urodynamic parameters (maximum cystometric capacity, bladder volume at first detrusor overactivity, maximum detrusor pressure during storage phase), postvoid residual, and bladder diary variables (number of voids per 24 h, number of leakages per 24 h), as well as no stimulation-related adverse events indicate that TNS might be effective and safe for treating NLUTD. Although our findings are promising, the imprecision of the evidence appears to be high, with most of the studies small and hence underpowered to measure the main outcomes and to allow for subgroup analyses (eg, different neurological disorders, transcutaneous versus percutaneous TNS, stimulation parameters and duration), with significant risk of bias and confounding.

Findings in the context of existing evidence

In animal studies, detrusor overactivity could be suppressed by TNS[31,32]. In humans, TNS has also become a very promising noninvasive (transcutaneous TNS) or minimally invasive (percutaneous TNS) therapeutic option for refractory lower urinary tract dysfunction. Percutaneous TNS was found to be effective in 37–100% of patients with idiopathic overactive bladder, in 41–100% of those with nonobstructive...
urinary retention, and in upon 100% of patients with chronic pelvic pain syndrome, children with overactive bladder or dysfunctional voiding, and in patients with NLUTD [7]. In addition, TNS might improve fecal incontinence [33], highlighting the potential in the neurological patient often with both lower urinary tract and bowel dysfunction, although there is no high level of evidence study assessing the combined dysfunction.

The exact mechanisms of action of neuromodulation procedures remain to be elucidated, but modulation of spinal cord reflexes and brain networks by peripheral afferents seems to be involved [34]. Plastic reorganization of cortical networks triggered by peripheral neuromodulation has been proposed [35]. In a positron emission tomography study of patients treated by sacral neuromodulation for urgency incontinence [36], the authors suggested that acute neuromodulation predominantly involves areas associated with sensorimotor learning that might become progressively less active during the course of chronic neuromodulation. In addition, the sympathetic nervous system might play a role, as indicated by studies of low-frequency pudendal nerve stimulation in cats with chronic spinal cord injury [37]. However, no literature is available about the mechanisms of action of TNS for treating NLUTD.

3.6.3. Implications for research
Considering the promising findings of our systematic review, further investigations are highly warranted. Appropriately designed RCTs are necessary to assess validated disease- and condition-specific quality of life data, urodynamical findings, short-, medium-, and long-term results, as well as cost-effectiveness issues. It would also be of great interest to directly compare transcutaneous and percutaneous TNS, especially considering that transcutaneous in contrast to percutaneous TNS can be easily used at home by the patient, which might represent a real advantage from both the patient’s and the physician’s perspective, saving time and resources. Importantly, stimulation parameters and duration varied widely between the different studies. This is because as yet there are no treatment standards for TNS and no guidelines for therapeutic and maintenance regimens. These must be developed through further research and testing. Although current available TNS devices would allow a wide range of different stimulation settings, the parameters were usually not changed, but individual adjustment of the stimulation parameters by analogy with sacral neuromodulation might improve the response rate and warrants additional studies.

3.6.4. Implications for practice
The type and the inherent course of the neurological disorder highly influences lower urinary tract dysfunction and consequently the effect of a therapy [1,2]. Thus TNS might be initially successful in a patient with MS but become ineffective in the case of disease progression. In addition, early TNS during the spinal shock in patients with acute spinal cord injury might prevent detrusor overactivity and urinary incontinence as proposed for sacral neuromodulation [38]. Importantly, the treatment goal of TNS varies between the different neurological disorders ranging from improving quality of life to protecting renal function by converting a high-pressure into a low-pressure system. This emphasizes the imperative for future TNS studies to investigate disease-specific stimulation effects.

The benefits of TNS are its noninvasiveness or minimally invasiveness allowing the performance of diagnostic measures such as repeated magnetic resonance imaging, additional positive effects on bowel dysfunction, easy application, and excellent safety profile, so that TNS might become a valuable treatment option for patients with NLUTD before more invasive methods are considered.

3.6.5. Limitations of this study
Although this report represents the first systematic review that aims to identify, assess, and appraise the available evidence of TNS for treating patients with NLUTD, certain limitations should be addressed. Methodology and data provided in the included articles varied widely. Almost every study had a before-and-after treatment design. SDs for baseline and follow-up measurements were missing in about a third of studies and had to be imputed. To calculate the SDs of mean differences would have required an estimate of the covariance. This was not reported, and we thus assumed it to be 0.5. Therefore, we would like to issue a note of caution when interpreting the summary figures reported. However, because our primary goal was providing a description of the evidence, we consider our approach to be acceptable. The included studies reported either on acute or on chronic TNS but not on both, and several clinically important outcome parameters were not consistently assessed such as subjective versus objective stimulation effects, duration of TNS effects, and patient adherence to TNS. The number of investigated patients and the follow-up was very limited. Moreover, although we identified four RCTs, they have a high risk of bias, are underpowered, and are generally imprecise. Finally, between-study heterogeneity was substantial, and scarcity of data did not allow for formal subgroup analyses of different neurological disorders, transcutaneous versus percutaneous TNS, stimulation parameters, and duration.

4. Conclusions
Some preliminary evidence indicates that TNS is effective and safe for treating patients with NLUTD. However, the overall quality of the evidence was low. Most of the studies were small and hence underpowered to measure the main outcomes with a significant risk of bias and confounding. In addition, it is unclear which stimulation parameters and maintenance regime are most effective. This review, although suggesting that TNS appears to be a promising and novel treatment for NLUTD, has demonstrated the need for more reliable data from well-designed, adequately sampled, and powered RCTs to reach definitive conclusions.

Author contributions: Thomas M. Kessler had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Study concept and design: Schneider, Gross, Kessler.

Acquisition of data: Schneider, Gross, Kessler.

Analysis and interpretation of data: Schneider, Gross, Bachmann, Kessler.

Drafting of the manuscript: Schneider, Gross, Kessler.

Critical revision of the manuscript for important intellectual content: Bachmann, Blok, Castro-Diaz, Del Popolo, Groen, Hamid, Karsenty, Pannek, ‘t Hoen.

Statistical analysis: Schneider, Gross, Bachmann, Kessler.

Administrative, technical, or material support: Schneider, Gross, Kessler.

Supervision: Kessler.

Other (specify): None.

Financial disclosures: Thomas M. Kessler certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: David Castro-Diaz is a company consultant for Astellas, Allergan, and AMS; receives company speaker honoraria from Astellas and Allergan); and participates in trials for Allergan. Giulio Del Popolo is a company consultant for Allergan, Ipsen, Wellspect, Apogepha, and Hollister; receives company speaker honoraria from Wellspect, Astellas, and Allergan; and participates in trials for Pfizer, Allergan, Ipsen, Recordati, and Astellas. Rizwan Hamid is a company consultant for Astellas and Allergan; receives company speaker honoraria from Astellas and Allergan; participates in trials for Allergan; and receives fellowships and travel grants from Pfizer, Astellas, Astra Tech, and Medtronic. Gilles Karsenty is a company consultant for Allergan, Medtronic, Bouchara Recordati, Lilly, Laborie, and Ipsen AMS; receives company speaker honoraria from Coloplast Porges, Pierre Fabre, and Pfizer; and participates in trials for Allergan, IPSEN, Steba, and Pierre Fabre. Jürgen Pannek is a company consultant for Allergan, B. Braun, and Farco Pharma; receives company speaker honorarium from Astellas, Coloplast, Vifor Pharma, Allergan, and Bayer); and participates in trials for B. Braun and Astra Tech. Marc P. Schneider, Tobias Gross, Lucas M. Bachmann, Bertil F.M. Blok, Jan Groen, Lisette ‘t Hoen, and Thomas M. Kessler have nothing to disclose.

Funding/Support and role of the sponsor: This study was supported by the European Association of Urology (EAU) and an MD-PhD scholarship of the Swiss Academy of Medical Sciences (SAMS). The EAU and SAMS had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Acknowledgments: The valuable help of Cathy Yuan, McMaster University, Hamilton, Canada, in performing the literature search and Karin Plass, European Association of Urology (EAU) Guidelines Office, Arnhem, The Netherlands, for providing the full-text articles and administrative support is gratefully acknowledged. In addition, the authors thank Richard Sylvester and Thomas Lam, both of the EAU Guidelines Office, and Steven MacLennan of the University of Aberdeen, Aberdeen, UK, for providing methodological supervision and support and critical revision of the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.eururo.2015.07.001.

References

