Guidelines on Male Infertility

A. Jungwirth (Chair), T. Diemer, G.R. Dohle, A. Giwercman, Z. Kopa, C. Krausz, H. Tournaye

© European Association of Urology 2015
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>AIM</td>
</tr>
<tr>
<td>1.2</td>
<td>Publication history</td>
</tr>
<tr>
<td>1.3</td>
<td>Panel composition</td>
</tr>
<tr>
<td>2.</td>
<td>METHODS</td>
</tr>
<tr>
<td>3.</td>
<td>THE GUIDELINE</td>
</tr>
<tr>
<td>3A</td>
<td>MALE INFERTILITY</td>
</tr>
<tr>
<td>3A.1</td>
<td>Epidemiology and aetiology</td>
</tr>
<tr>
<td>3A.1.1</td>
<td>Prognostic factors</td>
</tr>
<tr>
<td>3A.1.2</td>
<td>Recommendations on epidemiology and aetiology</td>
</tr>
<tr>
<td>3A.2</td>
<td>Diagnostic evaluation</td>
</tr>
<tr>
<td>3A.2.1</td>
<td>Semen analysis</td>
</tr>
<tr>
<td>3A.2.1.1</td>
<td>Frequency of semen analysis</td>
</tr>
<tr>
<td>3A.2.2</td>
<td>Recommendations for the diagnostic evaluation of male infertility</td>
</tr>
<tr>
<td>3B</td>
<td>PRIMARY SPERMATOGENIC FAILURE</td>
</tr>
<tr>
<td>3B.1</td>
<td>Aetiology</td>
</tr>
<tr>
<td>3B.2</td>
<td>Diagnostic evaluation</td>
</tr>
<tr>
<td>3B.2.1</td>
<td>Semen analysis</td>
</tr>
<tr>
<td>3B.2.2</td>
<td>Hormonal determinations</td>
</tr>
<tr>
<td>3B.2.3</td>
<td>Testicular biopsy</td>
</tr>
<tr>
<td>3B.3</td>
<td>Conclusions and recommendations for testicular deficiency</td>
</tr>
<tr>
<td>3C</td>
<td>GENETIC DISORDERS IN INFERTILITY</td>
</tr>
<tr>
<td>3C.1</td>
<td>Chromosomal abnormalities</td>
</tr>
<tr>
<td>3C.1.1</td>
<td>Sex chromosome abnormalities (Klinefelter's syndrome and variants [47,XXY; 46,XY/47, XXY mosaicism])</td>
</tr>
<tr>
<td>3C.1.2</td>
<td>Autosomal abnormalities</td>
</tr>
<tr>
<td>3C.1.3</td>
<td>Sperm chromosomal abnormalities</td>
</tr>
<tr>
<td>3C.2</td>
<td>Genetic defects</td>
</tr>
<tr>
<td>3C.2.1</td>
<td>X-linked genetic disorders and male fertility</td>
</tr>
<tr>
<td>3C.2.2</td>
<td>Kallmann syndrome</td>
</tr>
<tr>
<td>3C.2.3</td>
<td>Mild androgen insensitivity syndrome</td>
</tr>
<tr>
<td>3C.2.4</td>
<td>Other X-disorders</td>
</tr>
<tr>
<td>3C.3</td>
<td>Y-chromosome and male infertility</td>
</tr>
<tr>
<td>3C.3.1</td>
<td>Clinical implications of Y microdeletions</td>
</tr>
<tr>
<td>3C.3.1.1</td>
<td>Testing for Y microdeletions</td>
</tr>
<tr>
<td>3C.3.1.2</td>
<td>Genetic counselling for AZF deletions</td>
</tr>
<tr>
<td>3C.3.1.3</td>
<td>Y-chromosome: ‘gr/gr’ deletion</td>
</tr>
<tr>
<td>3C.3.1.4</td>
<td>Autosomal defects with severe phenotypic abnormalities and infertility</td>
</tr>
<tr>
<td>3C.4</td>
<td>Cystic fibrosis mutations and male infertility</td>
</tr>
<tr>
<td>3C.4.1</td>
<td>Unilateral or bilateral absence/abnormality of the vas and renal anomalies</td>
</tr>
<tr>
<td>3C.4.2</td>
<td>Unknown genetic disorders</td>
</tr>
<tr>
<td>3C.4.3</td>
<td>DNA fragmentation in spermatozoa</td>
</tr>
<tr>
<td>3C.4.4</td>
<td>Genetic counselling and ICSI</td>
</tr>
<tr>
<td>3C.5</td>
<td>Conclusions and recommendations for genetic disorders in male infertility</td>
</tr>
<tr>
<td>3D.</td>
<td>OBSTRUCTIVE AZOOSPERMIA</td>
</tr>
<tr>
<td>3D.1</td>
<td>Classification</td>
</tr>
<tr>
<td>3D.1.1</td>
<td>Intratesticular obstruction</td>
</tr>
<tr>
<td>3D.1.2</td>
<td>Epididymal obstruction</td>
</tr>
<tr>
<td>3D.1.3</td>
<td>Vas deferens obstruction</td>
</tr>
<tr>
<td>3D.1.4</td>
<td>Ejaculatory duct obstruction</td>
</tr>
<tr>
<td>3D.1.5</td>
<td>Functional obstruction of the distal seminal ducts</td>
</tr>
<tr>
<td>3D.2</td>
<td>Diagnostic evaluation</td>
</tr>
<tr>
<td>3D.2.1</td>
<td>Clinical history</td>
</tr>
<tr>
<td>3D.2.2</td>
<td>Clinical examination</td>
</tr>
<tr>
<td>3D.2.3</td>
<td>Semen analysis</td>
</tr>
<tr>
<td>3D.2.4</td>
<td>Hormone levels</td>
</tr>
</tbody>
</table>
3D.5 Ultrasonography
3D.6 Testicular biopsy
3D.3 Disease management
3D.3.1 Intratesticular obstruction
3D.3.2 Epididymal obstruction
3D.3.3 Proximal vas obstruction
3D.3.4 Distal vas deferens obstruction
3D.3.5 Ejaculatory duct obstruction
3D.4 Conclusions and recommendation for obstructive azoospermia

3E VARICOCELE
3E.1 Classification
3E.2 Diagnostic evaluation
3E.3 Basic considerations
3E.3.1 Varicocele and fertility
3E.3.2 Varicocelectomy
3E.4 Disease management
3E.5 Conclusions and recommendations for varicocele

3F HYPOGONADISM
3F.1 Epidemiology and aetiology
3F.2 Idiopathic hypogonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management
3F.3 Hypergonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management
3F.4 Conclusion and recommendations for hypogonadism

3G CRYPTORCHIDISM
3G.1 Aetiology and pathophysiology
3G.1.1 Incidence of cryptorchidism
3G.1.2 Pathophysiological effects in maldescended testes
3G.1.2.1 Degeneration of germ cells
3G.1.2.2 Relationship with fertility
3G.1.2.3 Germ cell tumours
3G.2 Disease management
3G.2.1 Hormonal treatment
3G.2.2 Surgical treatment
3G.3 Conclusions and recommendations for cryptorchidism

3H IDIOPATHIC MALE INFERTILITY
3H.1 Disease management
3H.1.1 Empirical treatments
3H.2 Recommendation for idiopathic male infertility

3I MALE CONTRACEPTION
3I.1 Vasectomy
3I.1.1 Surgical techniques
3I.1.2 Complications
3I.1.3 Vasectomy failure
3I.1.4 Counselling
3I.2 Vasectomy reversal
3I.2.1 Length of time since vasectomy
3I.2.2 Tubulovasostomy
3I.2.3 Microsurgical vasectomy reversal vs. epididymal or testicular sperm retrieval and ICSI
3I.3 Conclusions and recommendations for male contraception

3J MALE ACCESSORY GLAND INFECTIONS AND INFERTILITY
3J.2 Diagnostic evaluation
3J.2.1 Ejaculate analysis
3J.2.1.1 Microbiological findings
3J.2.1.2 White blood cells
3J.2.1.3 Sperm quality
3J.2.1.4 Seminal plasma alterations
3J.2.1.5 Glandular secretory dysfunction
3J.2.1.6 Reactive oxygen species
3J.2.2 Disease management
1. INTRODUCTION

1.1 Aim
The European Association of Urology (EAU) Guidelines Panel on Male Infertility has prepared these Guidelines to assist urologists and healthcare professionals from related specialties in the treatment of male infertility. Urologists are usually the specialists who are initially responsible for assessing the male when male infertility is suspected. However, infertility can be a multifactorial condition requiring multidisciplinary involvement.

1.2 Publication history

In this 2015 version the text has been significantly reduced so that only key information is included and re-formatted according to the EAU template for non-oncology Guidelines, so that all Guidelines follow a similar format.

A quick reference document (Pocket Guidelines) is available, both in print and in a number of versions for mobile devices, presenting the main findings of the Male Infertility Guidelines. These are abridged versions which may require consultation together with the full text versions. The Male Infertility Panel published a number of scientific publications in the EAU journal European Urology [1-3]. A separate scientific paper on Vasectomy was published in 2012 [3]. All texts can be viewed and downloaded for personal use at the society website: http://www.uroweb.org/guidelines/online-guidelines/.

This document was peer-reviewed prior to publication.

1.3 Panel composition
The Male Infertility Guidelines Panel consists of urologists, endocrinologists and gynaecologists with special training in andrology and experience in the diagnosis and treatment of male infertility.

2. METHODS

References used in this text are graded according to their Level of Evidence (LE) and Guidelines are given a Grade of Recommendation (GR). In this 2015 EAU Guidelines compilation, all standard information on LE and GR has been taken out of the individual Guidelines topics for the sake of brevity. The methodology section (see the introduction chapter of the complete book) outlines the LE and GR criteria which are used throughout the Guidelines, according to a classification system modified from the Oxford Centre for Evidence-based Medicine Levels of Evidence.

The recommendations provided in these guidelines are based on a systematic literature search performed by the panel members. The controlled vocabulary of the MeSH database was used alongside a free text protocol, combining “male infertility” with the terms “diagnosis”, “epidemiology”, “investigations”, “treatment”, “spermatogenic failure”, “genetic abnormalities”, “obstruction”, “hypogonadism”, “varicocele”, “cryptorchidism”, “testicular cancer”, “male accessory gland infection”, “idiopathic”, “contraception”, “ejaculatory dysfunction”, and “cryopreservation”.

For the 2014 print a scoping search was done covering 2012 and 2013, with a cut-off date of September 2013. Embase, Medline and the Cochrane Central Register of Controlled Trials were searched, with a limitation to reviews, meta-analysis or meta-analysis of RCTs. After de-duplication 447 unique records were identified, of which five publications were selected for inclusion.
3. THE GUIDELINE

3A MALE INFERTILITY

Definition
“Infertility is the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy in one year”, World Health Organization (WHO) [4].

3A.1 Epidemiology and aetiology
About 15% of couples do not achieve pregnancy within one year and seek medical treatment for infertility. One in eight couples encounter problems when attempting to conceive a first child and one in six when attempting to conceive a subsequent child. Three percent of women remain involuntarily childless, while 6% of parous women are not able to have as many children as they would wish [5]. Infertility affects both men and women. In 50% of involuntarily childless couples, a male-infertility-associated factor is found together with abnormal semen parameters. A fertile partner may compensate for the fertility problem of the man and thus infertility usually manifests if both partners have reduced fertility [4]. Male fertility can be reduced as a result of [4]:

- congenital or acquired urogenital abnormalities;
- malignancies;
- urogenital tract infections;
- increased scrotal temperature (e.g. as a consequence of varicocele);
- endocrine disturbances;
- genetic abnormalities;
- immunological factors.

In 30-40% of cases, no male-infertility-associated factor is found (idiopathic male infertility). These men present with no previous history of diseases affecting fertility and have normal findings on physical examination and endocrine, genetic and biochemical laboratory testing. However, semen analysis might reveal pathological findings in the spermiogram (see 3A.2.1). Table 1 summarises the main male-infertility-associated factors. Idiopathic male infertility is assumed to be caused by several factors, including endocrine disruption as a result of environmental pollution, reactive oxygen species, or genetic and epigenetic abnormalities.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Unselected patients (n = 12,945)</th>
<th>Azoospermic patients (n = 1,446)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>100%</td>
<td>11.2%</td>
</tr>
<tr>
<td>Infertility of known (possible) cause</td>
<td>42.6%</td>
<td>42.6%</td>
</tr>
<tr>
<td>Maldescended testes</td>
<td>8.4</td>
<td>17.2</td>
</tr>
<tr>
<td>Varicocele</td>
<td>14.8</td>
<td>10.9</td>
</tr>
<tr>
<td>Sperm autoantibodies</td>
<td>3.9</td>
<td>-</td>
</tr>
<tr>
<td>Testicular tumour</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Others</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Idiopathic infertility</td>
<td>30.0</td>
<td>13.3</td>
</tr>
<tr>
<td>Hypogonadism</td>
<td>10.1</td>
<td>16.4</td>
</tr>
<tr>
<td>Klinefelter’s syndrome (47, XXY)</td>
<td>2.6</td>
<td>13.7</td>
</tr>
<tr>
<td>XX male</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Primary hypogonadism of unknown cause</td>
<td>2.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Secondary (hypogonadotropic) hypogonadism</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Kallmann syndrome</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Idiopathic hypogonadotrophic hypogonadism</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Residual after pituitary surgery</td>
<td><0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Others</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Late-onset hypogonadism</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>Constitutional delay of puberty</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>General/systemic disease</td>
<td>2.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Cryopreservation due to malignant disease</td>
<td>7.8</td>
<td>12.5</td>
</tr>
<tr>
<td>Testicular tumour</td>
<td>5.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>1.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>
3A.1.1 Prognostic factors
Prognostic factors for male infertility are:
- duration of infertility
- primary or secondary infertility
- results of semen analysis and
- age and fertility status of female partner.

The cumulative pregnancy rate is 27% in infertile couples with 2 years of follow-up and oligozoospermia as the primary cause of infertility [7]. Female age is the most important single variable influencing outcome in assisted reproduction [8]. Compared to a woman aged 25 years, the fertility potential of a woman aged 35 years is reduced to 50%, to 25% at 38 years, and less than 5% at over 40 years. In many Western countries, women postpone their first pregnancy until after their education and starting a career.

3A.1.2 Recommendations on epidemiology and aetiology

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>To categorise infertility, both partners should be investigated simultaneously.</td>
<td>C</td>
</tr>
<tr>
<td>In the diagnosis and management of male subfertility, the fertility status of the female partner must also be considered, because this might determine the final outcome [5].</td>
<td>B</td>
</tr>
<tr>
<td>The urologist/andrologist should examine any man with fertility problems for urogenital abnormalities. This applies to all men diagnosed with abnormal semen parameters. A diagnosis (even if idiopathic) is mandatory to start appropriate therapy (drugs, surgery, or assisted reproduction).</td>
<td>C</td>
</tr>
</tbody>
</table>

3A.2 Diagnostic evaluation

3A.2.1 Semen analysis
A medical history and physical examination are standard assessments in all men, including semen analysis. A comprehensive andrological examination is indicated if semen analysis shows abnormalities compared with reference values (Table 2). Important treatment decisions are based on the results of semen analysis, therefore, it is essential that the complete laboratory work-up is standardised. Ejaculate analysis has been standardised by the WHO and disseminated by publication of the WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edn.) [9]. It is the consensus that modern spermatology must follow these guidelines.
Table 2: Lower reference limits (5th centiles and their 95% CIs) for semen characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower reference limit (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semen volume (mL)</td>
<td>1.5 (1.4-1.7)</td>
</tr>
<tr>
<td>Total sperm number (106/ejaculate)</td>
<td>39 (33-46)</td>
</tr>
<tr>
<td>Sperm concentration (106/mL)</td>
<td>15 (12-16)</td>
</tr>
<tr>
<td>Total motility (PR + NP)</td>
<td>40 (38-42)</td>
</tr>
<tr>
<td>Progressive motility (PR, %)</td>
<td>32 (31-34)</td>
</tr>
<tr>
<td>Vitality (live spermatozoa, %)</td>
<td>58 (55-63)</td>
</tr>
<tr>
<td>Sperm morphology (normal forms, %)</td>
<td>4 (3.0-4.0)</td>
</tr>
<tr>
<td>Other consensus threshold values</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>> 7.2</td>
</tr>
<tr>
<td>Peroxidase-positive leukocytes (106/mL)</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Optional investigations</td>
<td></td>
</tr>
<tr>
<td>MAR test (motile spermatozoa with bound particles, %)</td>
<td>< 50</td>
</tr>
<tr>
<td>Immunobead test (motile spermatozoa with bound beads, %)</td>
<td>< 50</td>
</tr>
<tr>
<td>Seminal zinc (μmol/ejaculate)</td>
<td>≥ 2.4</td>
</tr>
<tr>
<td>Seminal fructose (μmol/ejaculate)</td>
<td>≥ 13</td>
</tr>
<tr>
<td>Seminal neutral glucosidase (mU/ejaculate)</td>
<td>≤ 20</td>
</tr>
</tbody>
</table>

CIs = confidence intervals; MAR = mixed antiglobulin reaction NP = non-progressive; PR = progressive.

3A.2.1.1 Frequency of semen analysis

If the results of semen analysis are normal according to WHO criteria, one test is sufficient. If the results are abnormal in at least two tests, further andrological investigation is indicated. It is important to differentiate between the following:

- oligozoospermia: spermatozoa < 15 million/mL;
- asthenozoospermia: < 32% progressive motile spermatozoa;
- teratozoospermia: < 4% normal forms.

Often, all three anomalies occur simultaneously, which is defined as oligo-asteno-teratozoospermia (OAT) syndrome. As in azoospermia, in extreme cases of oligozoospermia (spermatozoa < 1 million/mL), there is an increased incidence of obstruction of the male genital tract and genetic abnormalities.

3A.2.2 Recommendations for the diagnostic evaluation of male infertility

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>According to WHO criteria, andrological investigations are indicated if semen analysis is abnormal in at least two tests to define a diagnosis.</td>
<td>A*</td>
</tr>
<tr>
<td>Diagnosis and evaluation of male subfertility according to the WHO Manual for the standardised investigation, diagnosis and management of the infertile male is recommended [10].</td>
<td>C</td>
</tr>
<tr>
<td>Semen analysis must follow the guidelines of the WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edn.) [9].</td>
<td>A*</td>
</tr>
<tr>
<td>The WHO laboratory manual proposes reference values based on fertility, hence, these reference values do not allow to classify a man as being infertile.</td>
<td>A</td>
</tr>
</tbody>
</table>

*Upgraded following panel consensus.

3B PRIMARY SPERMATOGENIC FAILURE

Testicular deficiency as a consequence of primary spermatogenic failure is caused by conditions other than hypothalamic-pituitary disease and obstruction of the male genital tract. It is the commonest form of reduced male fertility. Testicular deficiency may have different aetiologies and present clinically as severe OAT or non-obstructive azoospermia (NOA) [10].

3B.1 Aetiology

The causes of testicular deficiency are summarised in Table 3.
Table 3: Causes of testicular deficiency

<table>
<thead>
<tr>
<th>Factors</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
<td>Anorchia</td>
</tr>
<tr>
<td></td>
<td>Testicular dysgenesis/cryptorchidism</td>
</tr>
<tr>
<td></td>
<td>Genetic abnormalities (karyotype, Y-chromosome deletions)</td>
</tr>
<tr>
<td>Acquired</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Testicular torsion</td>
</tr>
<tr>
<td></td>
<td>Post-inflammator forms, particularly mumps orchitis</td>
</tr>
<tr>
<td></td>
<td>Exogenous factors (medications, cytotoxic or anabolic drugs, irradiation, heat)</td>
</tr>
<tr>
<td></td>
<td>Systemic diseases (liver cirrhosis, renal failure)</td>
</tr>
<tr>
<td></td>
<td>Testicular tumour</td>
</tr>
<tr>
<td></td>
<td>Varicocele</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>Surgery that may compromise vascularisation of the testes and lead to testicular atrophy</td>
</tr>
<tr>
<td></td>
<td>Unknown aetiology</td>
</tr>
<tr>
<td></td>
<td>Unknown pathogenesis</td>
</tr>
</tbody>
</table>

3B.2 Diagnostic evaluation

Routine investigations include semen analysis and hormonal determinations. Other investigations may be required depending on the individual situation.

Typical findings from the history and physical examination of a patient with testicular deficiency are:
- cryptorchidism (uni- or bilateral)
- testicular torsion
- genitourinary infection
- testicular trauma
- exposure to environmental toxins
- gonadotoxic medication including anabolic drugs
- exposure to radiation or cytotoxic agents
- testicular cancer
- absence of testes
- abnormal secondary sexual characteristics
- gynaecomastia
- abnormal testicular volume and/or consistency
- varicocele.

3B.2.1 Semen analysis

In NOA, semen analysis shows normal ejaculate volume and azoospermia after centrifugation. A recommended method is semen centrifugation at 3000 g for 15 min and a thorough microscopic examination by phase contrast optics at ×200 magnification of the pellet. All samples can be stained and re-examined microscopically [9].

3B.2.2 Hormonal determinations

In men with testicular deficiency, hypergonadotrophic hypogonadism is usually present, with high levels of follicle-stimulating hormone (FSH) and luteinising hormone (LH), and sometimes low levels of testosterone. Generally, the levels of FSH correlate with the number of spermatogonia: when spermatogonia are absent or markedly diminished, FSH values are usually elevated; when the number of spermatogonia is normal, but maturation arrest exists at the spermatocyte or spermatid level, FSH values are within the normal range. However, for an individual patient, FSH levels do not accurately predict the spermatogenesis status because men with maturation arrest histology could have normal FSH and normal testis volume and still be azoospermic [11, 12].

3B.2.3 Testicular biopsy

Testicular biopsy can be part of intracytoplasmic sperm injection (ICSI) treatment in patients with clinical evidence of NOA. Testicular sperm extraction (TESE) is the technique of choice. Spermatogenesis may be focal, which means that in about 50% of men with NOA, spermatozoa can be found and used for ICSI. Most authors therefore recommend taking several testicular samples. There is a good correlation between the histology found upon diagnostic biopsy and the likelihood of finding mature sperm cells during testicular sperm retrieval and ICSI [13-15]. However, no threshold value has been found for FSH, inhibin B, or testicular volume
and successful sperm harvesting. When there are complete AZFa and AZFb microdeletions, the likelihood of sperm retrieval is virtually zero and therefore TESE procedures are contraindicated. Microsurgical TESE increases retrieval rates vs. conventional TESE, and should be preferred in severe cases of non-obstructive azoospermia [16-19]. Positive retrievals are reported even in conditions such as Sertoli cell only syndrome type II [10].

The results of ICSI are worse when using sperm retrieved from men with NOA compared to sperm from ejaculated semen and from men with obstructive azoospermia (OA) [20-24]. Birth rates are lower in NOA vs. OA (19% vs 28%) [25].

- ICSI results in significantly lower fertilisation and implantation rates.
- Neonatal health in terms of birth parameters, major anomalies and chromosomal aberrations in a large cohort of children born after use of non-ejaculated sperm, are comparable to the outcome of children born after use of ejaculated sperm [26].

3B.3 Conclusions and recommendations for testicular deficiency

Conclusions

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired spermatogenesis is often associated with elevated FSH concentration.</td>
<td>3</td>
</tr>
<tr>
<td>Spermatozoa are found in about 50% of patients with NOA.</td>
<td>2a</td>
</tr>
<tr>
<td>Pregnancies and live births are eventually obtained in 30-50% of couples with NOA, when spermatozoa have been found in the testicular biopsy.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men who are candidates for sperm retrieval must receive appropriate genetic counselling.</td>
<td>A</td>
</tr>
<tr>
<td>Testicular biopsy is the best procedure to define the histological diagnosis and retrieve sperm in the same procedure. Spermatozoa have to be cryopreserved for use in ICSI.</td>
<td>A</td>
</tr>
<tr>
<td>For patients with NOA who have spermatozoa in their testicular biopsy, ICSI with fresh or cryopreserved spermatozoa is the only therapeutic option.</td>
<td>A</td>
</tr>
<tr>
<td>Men with NOA can be offered TESE with cryopreservation of the spermatozoa to be used for ICSI [27].</td>
<td>A</td>
</tr>
<tr>
<td>To increase the chances of positive sperm retrieval in men with NOA, TESE (microsurgical or multiple) should be used.</td>
<td>A</td>
</tr>
</tbody>
</table>

ICSI = intracytoplasmic sperm injection; TESE = testicular sperm extraction; NOA = non-obstructive azoospermia.

3C GENETIC DISORDERS IN INFERTILITY

All urologists working in andrology must have an understanding of genetic abnormalities associated with infertility, so that they can provide correct advice to couples seeking fertility treatment. Men with very low sperm counts can be offered a reasonable chance of paternity, using in vitro fertilisation (IVF), ICSI, and sperm harvesting from the testes in case of azoospermia. However, the spermatozoa of infertile men show an increased rate of aneuploidy, structural chromosomal abnormalities, and DNA damage, carrying the risk of passing genetic abnormalities to the next generation. Current routine clinical practice is based on the screening of genomic DNA from peripheral blood samples, however, screening of chromosomal anomalies in spermatozoa is also feasible and can be performed in selected cases [28].

3C.1 Chromosomal abnormalities

Chromosome abnormalities can be numerical (e.g. trisomy) or structural (e.g. inversions or translocations). In a survey of pooled data from 11 publications, including 9,766 infertile men, the incidence of chromosomal abnormalities was 5.8% [29]. Of these, sex chromosome abnormalities accounted for 4.2% and autosomal abnormalities for 1.5%. In comparison, the incidence of abnormalities was 0.38% in pooled data from three series, with a total of 94,465 newborn male infants, of which 131 (0.14%) were sex chromosome abnormalities and 232 (0.25%) autosomal abnormalities [29]. The frequency of chromosomal abnormalities increases as testicular deficiency becomes more severe. Patients with a spermatozoa count < 5 million/mL already show a 10-fold higher incidence (4%) of mainly autosomal structural abnormalities compared with the general population [30, 31]. Men with NOA are at highest risk, especially for sex chromosomal abnormalities.
Based on the frequencies of chromosomal aberrations in patients with different sperm concentration, karyotype analysis is indicated in men with azoospermia or oligozoospermia (spermatozoa < 10 million/mL) [31]. A recent study proposes to restrict karyotype to NOA men with the purpose to prevent adverse pregnancy outcomes [32]. If there is a family history of recurrent spontaneous abortions, malformations or mental retardation, karyotype analysis should be requested, regardless of the sperm concentration.

3C.1.1 **Sex chromosome abnormalities (Klinefelter’s syndrome and variants [47,XXY; 46,XY/47, XXY mosaicism])**

Klinefelter’s syndrome is the most common sex chromosome abnormality [29, 33]. Adult men with Klinefelter’s syndrome have small firm testicles, devoid of germ cells. The phenotype varies from a normally virilised man to one with the stigmata of androgen deficiency, including female hair distribution, scant body hair, and long arms and legs due to late epiphyseal closure. Leydig cell function is commonly impaired in men with Klinefelter’s syndrome [34]. Testosterone levels may be normal or low, oestradiol levels normal or elevated, and FSH levels increased. Libido is often normal despite low testosterone levels, but androgen replacement may be needed as the patient ages.

Germ cell presence and sperm production are variable in men with Klinefelter’s mosaicism, 46,XY/47,XXY. Based on sperm fluorescence in situ hybridisation (FISH) studies showing an increased frequency of sex chromosomal abnormalities and increased incidence of autosomal aneuploidy (disomy for chromosomes 13, 18 and 21), concerns have been raised about the chromosomal normality of the embryos generated through ICSI [35].

The production of 24,XY sperm has been reported in 0.9% and 7.0% of men with Klinefelter’s mosaicism [36, 37] and in 1.36-25% of men with somatic karyotype 47,XXY [38-41]. In patients with azoospermia, TESE or (micro-TESE) can be proposed as a therapeutic option since spermatozoa can be recovered in about 30% of cases. Numerous healthy children have been born using ICSI without pre-implantation genetic diagnosis (PGD) and the conception of one 47,XXY foetus has been reported [33]. However, a study of ICSI combined with PGD in 113 embryos reported a significant fall in the rate of normal embryos for couples with Klinefelter’s syndrome with respect to controls (54% vs. 77.2%) [41]. Due to the significant increase of sex chromosomal and autosomal abnormalities in the embryos of Klinefelter’s patients, PGD or amniocentesis analysis should be considered.

Follow-up (possibly every year) of men with Klinefelter’s syndrome is required and androgen replacement therapy should be started after fertility issues have been addressed and when testosterone level is in the range of hypoandrogenism.

3C.1.2 **Autosomal abnormalities**

Genetic counselling should be offered to all couples seeking fertility treatment (including IVF/ICSI) when the male partner has an autosomal karyotype abnormality. The most common autosomal karyotype abnormalities are Robertsonian translocations, reciprocal translocations, paracentric inversions, and marker chromosomes. It is important to look for these structural chromosomal anomalies because there is an increased associated risk of aneuploidy or unbalanced chromosomal complements in the foetus. As with Klinefelter’s syndrome, sperm FISH analysis provides a more accurate risk estimation of affected offspring, however, the diffusion of this genetic test is largely limited by the availability of laboratories able to perform this analysis.

When IVF/ICSI is carried out for men with translocations, PGD or amniocentesis should be performed.

3C.1.3 **Sperm chromosomal abnormalities**

Sperm can be examined for their chromosomal constitution using multicolour FISH both in men with normal karyotype and with anomalies. Aneuploidy in sperm, particularly sex chromosome aneuploidy, is associated with severe damage to spermatogenesis [29, 42-44] and with translocations [45].

Fluorescence in situ hybridisation analysis of spermatozoa is only indicated for specific andrology conditions e.g. macrocephalia [44].

3C.2 **Genetic defects**

3C.2.1 **X-linked genetic disorders and male fertility**

Each man has only one X-chromosome. An X-linked recessive disorder manifests in males. The defect will be transmitted to daughters, but not to sons.
3C.2.2 **Kallmann syndrome**
Patients with Kallmann syndrome have hypogonadotropic hypogonadism and anosmia, but may also have other clinical features, including facial asymmetry, cleft palate, colour blindness, deafness, maldescended testes, and unilateral renal aplasia. This syndrome can be due to mutation in the Kalg-1 gene [on the X-chromosome] or in several other autosomal genes and should be tested [44,45].

Spermatogenesis can be relatively easily induced by hormonal treatment [46], therefore, genetic screening prior to therapy is advisable although it is limited by the rarity of specialised genetic laboratories that can offer this genetic test. Treatment with gonadotropins allows natural conception in most cases, even for men with a relatively low sperm count. Thus, identification of the involved gene (X-linked, autosomal dominant or recessive) can help to provide more accurate genetic counselling, that is, risk estimation for transmission to the offspring.

3C.2.3 **Mild androgen insensitivity syndrome**
The AR gene is located on the long arm of the X-chromosome. Mutations in the AR gene may result in mild to complete androgen insensitivity. The phenotypic features of complete androgen insensitivity syndrome are female external genitalia and absence of pubic hair (Morris syndrome). In partial androgen insensitivity syndrome, phenotypes range from predominantly female phenotype through ambiguous genitalia, to predominantly male phenotype with micropenis, perineal hypospadias, and cryptorchidism. The latter phenotype is also termed Reifenstein syndrome. In the aforementioned severe forms of androgen resistance, there is no risk of transmission because affected men cannot generate their own biological children using the current technologies. Patients with mild androgen insensitivity syndrome have male infertility as their primary or even sole symptom. Disorders of the androgen receptor causing infertility in the absence of any genital abnormality are rare, and only a few mutations have been reported in infertile [47-50] or fertile [51] men.

3C.2.4 **Other X-disorders**
An unexpectedly high number of genes with a testis-specific or enriched expression pattern have been identified on the X-chromosome, and in particular, premeiotic genes are over-represented on the X-chromosome compared with autosomal chromosomes [52]. Nevertheless, to date only a few genes have been screened in relatively small populations and none of them appear relevant for male infertility [53, 54]. On the other hand, two recent independent studies showed a significantly higher deletion load on the X-chromosome in men with spermatogenic failure with respect to normozoospermic controls [55, 56].

3C.3 **Y-chromosome and male infertility**
Microdeletions on the Y-chromosome are termed AZFa, AZFb and AZFc [57]. Clinically relevant deletions remove partially, or in most cases completely, one or more of the AZF regions, and are the most frequent molecular genetic cause of severe oligozoospermia and azoospermia [58]. In each AZF region, there are several spermatogenesis candidate genes [59]. Deletions occur en bloc (i.e. removing more than one gene), thus, it is not possible to determine the role of a single AZF gene from the AZF deletion phenotype and it is unclear if they all participate in spermatogenesis. Gene-specific deletions, which remove a single gene, have been reported only in the AZFa region and concern the USP9Y gene. These studies have suggested that USP9Y is most likely to be a “fine tuner” of sperm production, and its specific screening is not advised [60].

3C.3.1 **Clinical implications of Y microdeletions**
The clinical significance of Yq microdeletions can be summarised as follows:

- They are not found in normozoospermic men, proving there is a clear cut cause-and-effect relationship between Y-deletions and spermatogenic failure [61].
- The highest frequency of Y-deletions is found in azoospermic men (8-12%), followed by oligozoospermic (3-7%) men.
- Deletions are extremely rare with a sperm concentration > 5 million/mL (~0.7%).
- AZFc deletions are most common (65-70%), followed by Y-deletions of the AZFb and AZFb+c or AZFa+b+c regions (25-30%). AZFa region deletions are rare (5%).
- Complete removal of the AZFa region is associated with severe testicular phenotype (Sertoli cell only syndrome), while complete removal of the AZFb region is associated with spermatogenic rest. Complete removal of the AZFc region causes a variable phenotype ranging from azoospermia to oligozoospermia.
- Classical (complete) AZF deletions do not confer a risk for cryptorchidism or testicular cancer [58].

The specificity and genotype/phenotype correlation reported above means that Y-deletion analysis has both a diagnostic and prognostic value for testicular sperm retrieval [58].
3C.3.1.1 Testing for Y microdeletions
Indications for AZF deletion screening are based on sperm count and include azoospermia and severe oligozoospermia (spermatozoa count < 5 million/mL). Thanks to the European Academy of Andrology (EAA) guidelines [62] and the EAA/EMQN (European Molecular Genetics Quality Network) external quality control programme (http://www.emqn.org/emqn/), Yq testing has become more reliable in different routine genetic laboratories. The EAA guidelines provide a set of primers capable of detecting > 95% of clinically relevant deletions [62].

3C.3.1.2 Genetic counselling for AZF deletions
After conception, any Y-deletions are transmitted obligatorily to the male offspring, and genetic counselling is therefore mandatory. In most cases, father and son have the same microdeletion [62], but occasionally the son has a larger one [63]. The extent of spermatogenic failure (still in the range of azoo-/oligozoospermia) cannot be predicted entirely in the son, due to the different genetic background and the presence or absence of environmental factors with potential toxicity for reproductive function. A significant proportion of spermatozoa from men with complete AZFc deletion are nullisomic for sex chromosomes [64, 65], indicating a potential risk for any offspring to develop 45,X0 Turner’s syndrome and other phenotypic anomalies associated with sex chromosome mosaicism, including ambiguous genitalia [66]. Despite this theoretical risk, babies born from fathers affected by Yq microdeletions are phenotypically normal [58, 67].

3C.3.1.3 Y-chromosome: ‘gr/gr’ deletion
A new type of Yq deletion, known as the gr/gr deletion, has been described in the AZFc region [68]. This deletion removes half of the gene content of the AZFc region, affecting the dosage of multicopy genes mapping inside this region. This type of deletion confers a 2.5-8 fold increased risk for oligozoospermia [62, 69-71]. The frequency of gr/gr deletion in oligozoospermic patients is ~4%.

According to four meta-analyses, gr/gr deletion is a significant risk factor for impaired sperm production [70, 71]. It is worth noting that both the frequency of gr/gr deletion and its phenotypic expression vary between different ethnic groups, depending on the Y-chromosome background. For example, in some Y haplogroups, the deletion is fixed and appears to have no negative effect on spermatogenesis. Consequently, the routine screening for gr/gr deletion is still a debated issue, especially in those laboratories serving diverse ethnic and geographic populations. A large multicentre study has shown that gr/gr deletion is a potential risk factor for testicular germ cell tumours [72]. However, these data need further confirmation in an ethnically and geographically matched case-control study setting. For genetic counselling it is worth noticing that partial AZFc deletions (gr/gr and b2/b3) may predispose to complete AZFc deletion in the next generation [73].

3C.3.1.4 Autosomal defects with severe phenotypic abnormalities and infertility
Several inherited disorders are associated with severe or considerable generalised abnormalities and infertility. Among them, Prader-Willy Syndrome, Bardet-Biedl Syndrome, Noonan’s Syndrome, Myotonic dystrophy, dominant polycystic kidney disease, 5α-reductase deficiency, etc. Patients with these defects will be well known to doctors, often from childhood. A fertility problem must be managed in the context of the care of the man as a whole and considering the couple’s ability to care for a child.

3C.4 Cystic fibrosis mutations and male infertility
Cystic fibrosis (CF) is a fatal autosomal-recessive disorder. It is the most common genetic disease of Caucasians; 4% are carriers of gene mutations involving the CF transmembrane conductance regulator (CFTR) gene located on chromosome 7p. It encodes a membrane protein that functions as an ion channel and influences the formation of the ejaculatory duct, seminal vesicle, vas deferens and distal two-thirds of the epididymis.

Congenital bilateral absence of the vas deferens (CBAVD) is associated with CFTR gene mutations and was found in ~2% of men with OA attending a clinic in Edinburgh, UK [74]. The incidence in men with OA varies between different countries. The clinical diagnosis of absent vasa is easy to miss and all men with azoospermia should be very carefully examined to exclude CBAVD, particularly those with a semen volume < 1.5 mL and pH < 7.0. Approximately 1,500 mutations are listed on the CFTR database (http://www.geneticsickkids.on.ca/cftr/). The most frequently found mutations are the F508, R117H and W1282X, but their frequency and the presence of other mutations largely depend on the ethnicity of the patient [75, 76]. Given the functional relevance of a DNA variant (the 5T allele) in a non-coding region of CFTR [75], it is now considered a mild CFTR mutation...
rather than a polymorphism and it should be analysed in each CAVD patient. As more mutations are defined and tested for, almost all men with CBAVD will probably be found to have mutations. It is not practical to test for all known mutations, because many have a very low prevalence in a particular population. Routine testing is usually restricted to the most common mutations in a particular community through the analysis of a mutation panel. Given that this is a recessive disease if a second mutation is not found with the routine panel, a second step analysis is advised which comprises the direct sequencing of the entire gene. Men with CBAVD often have mild clinical stigmata of CF (e.g., history of chest infections). When a man has CBAVD, it is important to test also his partner for CF mutations. If the female partner is found to be a carrier of CFTR mutations, the couple must consider very carefully whether to proceed with ICSI using the male’s sperm, as the risk of having a child with CF or CBAVD will be 50%, depending on the type of mutations carried by the parents. If the female partner is negative for known mutations, the risk of being a carrier of unknown mutations is ~0.4%.

3C.4.1 Unilateral or bilateral absence/abnormality of the vas and renal anomalies

Unilateral absence of the vas deferens is usually associated with ipsilateral absence of the kidney and probably has a different genetic causation [77]. Consequently, in these subjects CFTR mutation screening is not indicated. Men with unilateral absence of the vas deferens are usually fertile, and the condition is most commonly encountered as an incidental finding in the vasectomy clinic. CFTR gene mutation screening is indicated in men with unilateral absence of the vas deferens with normal kidneys.

An abdominal ultrasound should be undertaken both in unilateral and bilateral absence of vas deferens. Findings may range from unilateral absence of the vas with ipsilateral absence of the kidney, to bilateral vessel abnormalities and renal abnormalities, such as pelvic kidney [78].

3C.4.2 Unknown genetic disorders

Considering the high predicted number of genes involved in male gametogenesis, it is likely that most idiopathic forms of spermatogenic disturbances are caused by mutations or polymorphisms in spermatogenesis candidate genes [53]. However, despite an intensive search for new genetic factors, no clinically relevant gene mutations or polymorphisms (except those related to the Y-chromosome) have so far been identified [53, 79, 80], and references therein. The introduction of new analytical approaches provided evidence for the importance of CNVs [55, 56] and further advances are expected with Next Generation Sequencing. Intracytoplasmic sperm injection is used to enable men with severely damaged spermatogenesis to father children in situations formerly considered hopeless and where very few spermatozoa can be obtained. This has led to concern that children may be born with a foetal abnormality, because ICSI may enable defective sperm to bypass the selective processes of the female genital tract and egg covering.

Intracytoplasmic sperm injection babies have a higher risk of de novo sex chromosomal aberrations (about a threefold increase compared with natural conceptions) and paternally inherited structural abnormalities. Treatment with assisted reproductive technology was associated with increased risk of cardiovascular, musculoskeletal, urogenital, and gastrointestinal defects and cerebral palsy [81-83].

3C.4.3 DNA fragmentation in spermatozoa

There is increased DNA damage in spermatozoa from men with oligozoospermia. This increase is associated with reduced chances of natural conception and an increased chance of early pregnancy loss [84].

3C.4.4 Genetic counselling and ICSI

Initially, the couple should be given full information about the risks to the child in order to help them decide whether to proceed with ICSI. Where there is conflict between the wishes of the couple and the interests of the future child, it may be ethically correct to withhold therapy. When both partners are known to carry defects (e.g., CFTR mutations), there is up to a 50% chance of the child developing a clinical condition. Many clinicians and infertility clinic personnel may consider it unethical to proceed because their duty of care to the future child and the interests of society outweigh the wishes of the individual couple. If there is a conflict that cannot be resolved by agreement, the interests of a future child probably take precedence over the interests of a couple. The couple also need to give consideration to preimplantation diagnosis.
Conclusions and recommendations for genetic disorders in male infertility

Conclusions

New insights into the genetic basis of infertility and the advent of ICSI require a good understanding of genetics by clinicians and the general public. Diagnostic advances will allow us to identify the genetic basis of more disorders and diagnose known disorders at a lower cost. For some of these disorders, gene therapy might be practical in the future. In men with spermatogenic damage there is a higher prevalence of chromosome abnormalities reaching the highest frequency in NOA men. AZF deletions are clear-cut causes of spermatogenic impairments with diagnostic and prognostic value for TESE. AZF deletion will be obligatorily transmitted to the son.

Recommendations

From a diagnostic view point, standard karyotype analysis should be offered to all men with damaged spermatogenesis (spermatozoa < 10 million/mL) who are seeking fertility treatment by IVF. Genetic counselling is mandatory in couples with a genetic abnormality found in clinical or genetic investigation and in patients who carry a (potential) inheritable disease. All men with Klinefelter’s syndrome need long-term endocrine follow-up and usually require androgen replacement therapy. Testing for microdeletions is not necessary in men with OA (with normal FSH) when ICSI is used because spermatogenesis should be normal. Men with severely damaged spermatogenesis (spermatozoa < 5 million/mL) should be advised to undergo Yq microdeletion testing for both diagnostic and prognostic purposes. Yq microdeletion also has important implications for genetic counselling.

Obstructive azoospermia (OA) is the absence of spermatozoa and spermatogenetic cells in semen and post-ejaculate urine due to obstruction. OA is less common than NOA and occurs in 15-20% of men with azoospermia. Men with OA present with normal FSH, normal size testes, and epididymal enlargement. Sometimes, the vas deferens is absent. Obstruction in primary infertile men is often present at the epididymal level.

Classification

Intratesticular obstruction

3D.1.1 Intratesticular obstruction

Intratesticular obstruction occurs in 15% of men with OA [85]. Congenital forms are less common than acquired forms (post-inflammatory or post-traumatic).

3D.1.2 Epididymal obstruction

Epididymal obstruction is the most common cause of OA, affecting 30-67% of azoospermic men [85-88]. Congenital epididymal obstruction usually manifests as CBAVD, which is associated with at least one mutation of the CF gene in 82% of cases [89]. Congenital forms of epididymal obstruction include chronic...
sinopulmonary infections (Young’s syndrome) [90]. Acquired forms secondary to acute (e.g., gonococcal) and subclinical (e.g., chlamydial) epididymitis are most common [91, 92]. Other causes may be trauma or surgical intervention [93, 94].

3D.1.3 **Vas deferens obstruction**

Vas deferens obstruction is the most common cause of acquired obstruction following vasectomy [95]. Approximately 2-6% of these men request vasectomy reversal (see Chapter 3G). Vasal obstruction may also occur after hernia repair [96, 97]. The most common congenital vasal obstruction is CBAVD, often accompanied by CF. Unilateral agenesis or a partial defect is associated with contralateral seminal duct anomalies or renal agenesis in 80% and 26% of cases, respectively [98] (see Chapter 3C).

3D.1.4 **Ejaculatory duct obstruction**

Ejaculatory duct obstruction is found in 1-3% of cases of OA [85] and is classified as either cystic or post-inflammatory. Cystic obstructions are usually congenital (i.e., Mullerian duct cyst or urogenital sinus/ejaculatory duct cysts) and are typically midline. In urogenital sinus abnormalities, one or both ejaculatory ducts empty into the cyst [99], while in Mullerian duct anomalies, the ejaculatory ducts are laterally displaced and compressed by the cyst [100]. Paramedian or lateral intraprostatic cysts are rare [101]. Post-inflammatory obstructions of the ejaculatory duct are usually secondary to urethroprostatitis [102]. Congenital or acquired complete obstructions of the ejaculatory ducts are commonly associated with low semen volume, decreased or absent seminal fructose, and acid pH. The seminal vesicles are usually dilated (anterior-posterior diameter > 15 mm) [102, 103].

3D.1.5 **Functional obstruction of the distal seminal ducts**

Functional obstruction of the distal seminal ducts might be attributed to local neuropathy [104]. This abnormality is often associated with urodynamic dysfunction. Impaired sperm transport may be idiopathic or associated with SSRI medication as well.

3D.2 **Diagnostic evaluation**

3D.2.1 **Clinical history**

Clinical history taking should follow the suggestions for the diagnostic evaluation of infertile men (3A.2).

3D.2.2 **Clinical examination**

Clinical examination should follow suggestions for the diagnostic evaluation of infertile men. The following findings indicate OA:

- At least one testis with a volume > 15 mL, although a smaller volume may be found in some patients with OA and concomitant partial testicular failure.
- Enlarged and hardened epididymis.
- Nodules in the epididymis or vas deferens.
- Absence or partial atresia of the vas.

3D.2.3 **Semen analysis**

At least two examinations must be carried out at an interval of 2-3 months, according to the WHO (see Chapter 3A.2). Azoospermia means the inability to detect spermatozoa after centrifugation at ×400 magnification. When semen volume is low, a search must be made for spermatozoa in urine after ejaculation. Absence of spermatozoa and immature germ cells in semen smears suggest complete seminal duct obstruction.

3D.2.4 **Hormone levels**

Serum FSH levels may be normal, but do not exclude a testicular cause of azoospermia. FSH level is normal in 40% of men with primary spermatogenic failure. Inhibin B seems to have a higher predictive value for normal spermatogenesis [88].

3D.2.5 **Ultrasonography**

In addition to physical examination, a scrotal ultrasound may be helpful in finding signs of obstruction (e.g., dilatation of rete testis, enlarged epididymis with cystic lesions, or absent vas deferens) and may demonstrate signs of testicular dysgenesis (e.g., non-homogeneous testicular architecture and microcalcifications) and associated ITGCN. For patients with a low seminal volume and in whom distal obstruction is suspected, transrectal ultrasound (TRUS) is essential. Invasive diagnosis, including testicular biopsy, scrotal exploration, and distal seminal duct evaluation, are indicated in patients with OA in whom an acquired obstruction of the seminal ducts is suspected. Explorative and recanalisation surgery should be carried out simultaneously.
3D.2.6 Testicular biopsy

In selected cases, testicular biopsy may be indicated to exclude spermatogenic failure. Testicular biopsy should be combined with extraction of testicular spermatozoa (i.e., TESE) for cryopreservation.

3D.3 Disease management

3D.3.1 Intratesticular obstruction

Only TESE allows sperm retrieval in these patients and is therefore recommended.

3D.3.2 Epididymal obstruction

Microsurgical epididymal sperm aspiration (MESA) [105] is indicated in men with CBAVD. TESE and PESA are also viable options [106]. Usually, one MESA procedure provides sufficient material for several ICSI cycles [107] and it produces high pregnancy and fertilisation rates [108]. In patients with azoospermia due to acquired epididymal obstruction, microsurgical reconstruction is recommended, with the preferred technique being microsurgical intussusception tubulovasectomy [109]. Reconstruction may be carried out unilaterally or bilaterally; patency and pregnancy rates are usually higher with bilateral reconstruction. Anatomical recanalisation following surgery may require 3-18 months. Before microsurgery (and in all cases where recanalisation is impossible), epididymal spermatozoa should be aspirated and cryopreserved for use in ICSI [107]. Patency rates range between 60% and 87% [94, 110] and cumulative pregnancy rates between 10% and 43%. Recanalisation success rates may be adversely affected by preoperative and intraoperative findings.

3D.3.3 Proximal vas obstruction

Proximal vas obstruction after vasectomy requires microsurgical vasectomy reversal (see Chapter 3G). Vasovasostomy is also required in rare cases of proximal vasal obstructions. The absence of spermatozoa in the intraoperative vas deferens fluid suggests the presence of a secondary epididymal obstruction; especially if the seminal fluid of the proximal vas has a thick “toothpaste” appearance. Microsurgical tubulovasostomy is then indicated.

3D.3.4 Distal vas deferens obstruction

It is usually impossible to correct large bilateral vas deferens defects, resulting from involuntary excision of the vasa deferentia during hernia surgery in early childhood or previous orchidopexy [111]. In these cases TESE/MESA or proximal vas deferens sperm aspiration [112] can be used for cryopreservation for future ICSI.

3D.3.5 Ejaculatory duct obstruction

The treatment of ejaculatory duct obstruction depends on its aetiology. Transurethral resection of the ejaculatory ducts (TURED) [102] can be used in large postinflammatory obstruction and when one or both ejaculatory ducts empty into an intra prostatic midline cyst. Resection may remove part of the verumontanum. In cases of obstruction due to a midline intraprostatic cyst, incision or unroofing of the cyst is required [102]. Intraoperative TRUS makes this procedure safer. If distal seminal tract evaluation is carried out at the time of the procedure, installation of methylene blue dye into the vas deferens can help to document opening of the ducts. The limited success rate of surgical treatment of ejaculatory duct obstruction in terms of spontaneous pregnancies should be weighed against sperm aspiration and ICSI. Complications following TURED include retrograde ejaculation due to bladder neck injury and urine reflux into the ejaculatory ducts, seminal vesicles, and vasa. The alternatives to TURED are MESA, TESE, proximal vas deferens sperm aspiration, seminal vesicle ultrasonically guided aspiration, and direct cyst aspiration. Spermatozoa can then be retrieved by antegrade seminal tract washout [113].

3D.4 Conclusions and recommendation for obstructive azoospermia

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive lesions of the seminal tract should be suspected in azoospermic or severely oligozoospermic patients with normal-sized testes and normal endocrine parameters.</td>
<td>3</td>
</tr>
</tbody>
</table>
Recommendations

In azoospermia caused by epididymal obstruction, standard procedures include vasovasostomy and tubulovastomy.

Sperm retrieval techniques, such as MESA, TESE, and PESA, can be used additionally. These methods should be used only when cryostorage of the material obtained is available.

In azoospermia caused by epididymal obstruction, scrotal exploration with microsurgical epididymal sperm aspiration and cryopreservation of spermatozoa should be performed. Microsurgical reconstruction should be performed, if applicable. Results of reconstructive microsurgery depend on the cause and location of the obstruction, and the surgeon’s expertise.

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
</tbody>
</table>

3E VARICOCELE

Varicocele is a common abnormality which may be associated with the following andrological conditions:

- Failure of ipsilateral testicular growth and development.
- Symptoms of pain and discomfort.
- Male subfertility.
- Hypogonadism.

3E.1 Classification

The following classification of varicocele [114] is useful in clinical practice:

- Subclinical: not palpable or visible at rest or during Valsava manoeuvre, but can be shown by special tests (Doppler ultrasound studies).
- Grade 1: palpable during Valsava manoeuvre, but not otherwise.
- Grade 2: palpable at rest, but not visible.
- Grade 3: visible and palpable at rest.

3E.2 Diagnostic evaluation

The diagnosis of varicocele is made by clinical examination and should be confirmed by colour Duplex analysis [10]. In centres where treatment is carried out by antegrade or retrograde sclerotherapy or embolisation, diagnosis is additionally confirmed by X-ray.

3E.3 Basic considerations

3E.3.1 Varicocele and fertility

Varicocele is a physical abnormality present in 11.7% of adult men and in 25.4% of men with abnormal semen analysis [115]. The exact association between reduced male fertility and varicocele is unknown, but a recent meta-analysis showed that semen improvement is usually observed after surgical correction [116]. Varicocelectomy can reverse sperm DNA damage [117].

3E.3.2 Varicocelectomy

Varicocele repair has been a subject of debate for several decades. The 2009 Cochrane review concluded that there is no evidence that treatment of varicocele improves a couples’ chance of conception [118]. In a recent meta-analysis of four RCTs of varicocelectomy in men with a clinical varicocele, oligozoospermia and otherwise unexplained infertility, there was a trend in favour of surgical correction [119]. Although treatment of varicocele in infertile men may be effective, in adolescents there is a significant risk of overtreatment: most adolescents with a varicocele will have no problem achieving pregnancy later in life [120].

3E.4 Disease management

Several treatments are available for varicocele (Table 4). Current evidence indicates that microsurgical varicocelectomy is the most effective and least morbid method among the varicocelectomy techniques [120].
Table 4: Recurrence and complication rates associated with treatments for varicocele

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ref.</th>
<th>Recurrence/ persistence %</th>
<th>Complication rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antegrade sclerotherapy</td>
<td>[121]</td>
<td>9</td>
<td>Complication rate 0.3-2.2%: testicular atrophy, scrotal haematoma, epididymitis, left-flank erythema</td>
</tr>
<tr>
<td>Retrograde sclerotherapy</td>
<td>[122]</td>
<td>9.8</td>
<td>Adverse reaction to contrast medium, flank pain, persistent thrombophlebitis, vascular perforation</td>
</tr>
<tr>
<td>Retrograde embolisation</td>
<td>[123, 124]</td>
<td>3.8-10</td>
<td>Pain due to thrombophlebitis, bleeding haematoma, infection, venous perforation, hydrocele, radiological complication (e.g., reaction to contrast media), misplacement or migration of coils, retroperitoneal haemorrhage, fibrosis, ureteric obstruction</td>
</tr>
<tr>
<td>Open operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrotal operation</td>
<td></td>
<td>-</td>
<td>Testicular atrophy, arterial damage with risk of devascularisation and testicular gangrene, scrotal haematoma, postoperative hydrocele</td>
</tr>
<tr>
<td>Inguinal approach</td>
<td>[125]</td>
<td>13.3</td>
<td>Possibility of missing out a branch of testicular vein</td>
</tr>
<tr>
<td>High ligation</td>
<td>[126]</td>
<td>29</td>
<td>5-10% incidence of hydrocele (< 1%)</td>
</tr>
<tr>
<td>Microsurgical inguinal or subinguinal</td>
<td>[127, 128]</td>
<td>0.8-4</td>
<td>Postoperative hydrocele arterial injury, scrotal haematoma</td>
</tr>
<tr>
<td>Laparoscopy</td>
<td>[129, 130]</td>
<td>3-7</td>
<td>Injury to testicular artery and lymph vessels; intestinal, vascular and nerve damage; pulmonary embolism; peritonitis; bleeding; postoperative pain in right shoulder (due to diaphragmatic stretching during pneumoperitoneum); pneumoscrotum: wound infection</td>
</tr>
</tbody>
</table>

3E.5 Conclusions and recommendations for varicocele

Conclusions

Current information supports the hypothesis that the presence of varicocele in some men is associated with progressive testicular damage from adolescence onwards and a consequent reduction in fertility.	2a
Although the treatment of varicocele in adolescents may be effective, there is a significant risk of overtreatment.	3
Varicocele repair may be effective in men with subnormal semen analysis, a clinical varicocele and otherwise unexplained infertility.	1a

Recommendations

Varicocele treatment is recommended for adolescents with progressive failure of testicular development documented by serial clinical examination.	B
No evidence indicates benefit from varicocele treatment in infertile men who have normal semen analysis or in men with subclinical varicocele. In this situation, varicocele treatment cannot be recommended.	A
Varicocele repair should be considered in case of a clinical varicocele, oligospermia, infertility duration of ≥ 2 years and otherwise unexplained infertility in the couple.	A
Hypogonadism is characterised by impaired testicular function, which may affect spermatogenesis and/or testosterone synthesis. The symptoms of hypogonadism depend on the degree of androgen deficiency and if the condition develops before or after pubertal development of the secondary sex characteristics.

3F.1 Epidemiology and aetiology

The aetiological and pathogenetic mechanisms of male hypogonadism can be divided into three main categories:

1. **Primary (hypergonadotrophic) hypogonadism** due to testicular failure.
2. **Secondary (hypogonadotrophic) hypogonadism** caused by insufficient gonadotropin-releasing hormone (GnRH) and/or gonadotropin (FSH, LH) secretion.
3. Androgen insensitivity (end-organ resistance).

The most common conditions within these three categories are given in Table 5 (see also Chapter 3C).

Table 5: Disorders associated with male hypogonadism*

<table>
<thead>
<tr>
<th>Primary (hypergonadotrophic) hypogonadism (testicular failure)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorchia</td>
</tr>
<tr>
<td>Maldescended testes</td>
</tr>
<tr>
<td>Klinefelter’s syndrome</td>
</tr>
<tr>
<td>Y-chromosome microdeletions</td>
</tr>
<tr>
<td>Numerical and structural chromosomal anomalies</td>
</tr>
<tr>
<td>Trauma, testicular torsion, orchitis</td>
</tr>
<tr>
<td>Iatrogenic (surgery, medications, irradiation, or cytostatic drugs)</td>
</tr>
<tr>
<td>Exogenous factors (toxins, heat, or occupational hazards)</td>
</tr>
<tr>
<td>Systemic diseases (liver cirrhosis, or renal failure)</td>
</tr>
<tr>
<td>Testicular tumour</td>
</tr>
<tr>
<td>Varicocele</td>
</tr>
<tr>
<td>Idiopathic (e.g., late-onset hypogonadism)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary (hypogonadotrophic) hypogonadism (secondary testicular failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
</tr>
<tr>
<td>Idiopathic hypogonadotrophic hypogonadism</td>
</tr>
<tr>
<td>Normosmic</td>
</tr>
<tr>
<td>Hiposmic/anosmic (Kallmann syndrome)</td>
</tr>
<tr>
<td>Acquired (tumours in the following regions)</td>
</tr>
<tr>
<td>Diencephalon (craniopharyngioma or meningioma)</td>
</tr>
<tr>
<td>Hypothalamus or pituitary</td>
</tr>
<tr>
<td>Empty sella syndrome</td>
</tr>
<tr>
<td>Granulomatous illnesses</td>
</tr>
<tr>
<td>Fractures of the skull base</td>
</tr>
<tr>
<td>Ischaemic or haemorrhagic lesions in hypothalamic area</td>
</tr>
<tr>
<td>Hyperprolactinaemia</td>
</tr>
<tr>
<td>Drugs/anabolic steroids, radiotherapy</td>
</tr>
<tr>
<td>Target organ resistance to androgens</td>
</tr>
<tr>
<td>Testicular feminisation</td>
</tr>
<tr>
<td>Reifenstein syndrome</td>
</tr>
</tbody>
</table>

*Modified from Nieschlag et al. [6].

3F.2 Idiopathic hypogonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management

Idiopathic hypogonadotrophic hypogonadism is characterised by low levels of gonadotropins and sex steroid in the absence of anatomical or functional abnormalities of the hypothalamic-pituitary-gonadal axis [131]. Idiopathic hypogonadotrophic hypogonadism may be an isolated condition or may be associated with anosmia/hyposmia (Kallmann syndrome). Genetic factors causing a deficit of gonadotropins may act at the hypothalamic or pituitary level. Mutations in candidate genes (X-linked or autosomal) can be found in ~30% of congenital cases [131] and should be screened prior to assisted reproduction [132]. Acquired
hypogonadotrophic hypogonadism can be caused by some drugs, hormones, anabolic steroids, or tumours. A suspected tumour requires imaging [computed tomography (CT) or magnetic resonance imaging (MRI)] of the sella region and a complete endocrine work-up. Normal androgen levels and subsequent development of secondary sex characteristics (in cases of onset of hypogonadism before puberty) and a eugonadal state can be achieved by androgen replacement alone. However, stimulation of sperm production requires treatment with human chorionic gonadotropin (hCG) combined with recombinant FSH or urinary FSH or human menopausal gonadotropins (HMGs). If hypogonadotrophic hypogonadism is hypothalamic in origin, an alternative to hCG treatment is pulsatile GnRH [133]. In patients who have developed hypogonadism before puberty and have not been treated with gonadotropins or GnRH, 1-2 years of therapy may be needed to achieve sperm production.

3F.3 Hypergonadotrophic hypogonadism: aetiology, diagnosis and therapeutic management

Many conditions in men are associated with hypergonadotrophic hypogonadism (Table 6, see also Chapter 3C). Most conditions listed in Table 6 only affect the reproductive function of the testes so that only FSH level is elevated. However, it has been reported that men with infertility are at higher risk for developing impaired Leydig cell function [134], while men with Klinefelter’s syndrome often show high LH values and develop hypoandrogenism with ageing [135]. A decrease in testosterone blood concentrations after extensive testicular biopsy in the context of TESE/ICSI has been observed, raising questions about the need for long-term endocrine follow-up of these patients [136]. Laboratory diagnosis of hypergonadotrophic hypogonadism is based on a high level of FSH, decreased serum testosterone, and increased LH levels [132]. Testosterone levels should be evaluated in view of the serum concentration of sex hormone binding globulin (SHBG). Based on levels of total testosterone, albumin and SHBG, free and bioavailable testosterone can be calculated. Due to diurnal variation, blood samples for testosterone assessment should be taken before 10.00 am.

Generally, androgen replacement should not be given to men who are considering parenthood or in case of male infertility. Testosterone suppresses pituitary production of LH and FSH, therefore, replacement therapy should not be given for infertility. In obese men, low levels of testosterone may exist due to the conversion of testosterone in oestradiol by the enzyme aromatase [137]. Anti-oestrogens and aromatase inhibitors may help in these patients elevating FSH and LH and potentially increase sperm quality, next to weight reduction. Injectable, oral and transdermal testosterone preparations are available for clinical use [132]. See also EAU Guidelines on Male Hypogonadism [138].

3F.4 Conclusion and recommendations for hypogonadism

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic patients with primary and secondary hypogonadism who are not considering parenthood are candidates for testosterone substitution therapy.</td>
<td>1b</td>
</tr>
</tbody>
</table>

*Updated following panel consensus.

FSH = follicle-stimulating hormone; LH = luteinising hormone.

3G CRYPTORCHIDISM

Cryptorchidism is the most common congenital abnormality of the male genitalia and is found in 2-5% of newborn boys, depending on gestational age (cryptorchidism occurs more often in premature boys) and age after birth. At the age of 3 months, the incidence of cryptorchidism falls spontaneously to 1-2%. Approximately 20% of undescended testes are non-palpable and may be located within the abdominal cavity.

3G.1 Aetiology and pathophysiology
The aetiology of cryptorchidism is multifactorial, involving disrupted endocrine regulation and several gene defects. It has been postulated that cryptorchidism may be a part of the so-called testicular dysgenesis syndrome (TDS), which is a developmental disorder of the gonads caused by environmental and/or genetic
influences early in pregnancy. Besides cryptorchidism, TDS includes hypospadias, reduced fertility, increased risk of malignancy, and Leydig cell dysfunction [140].

3G.1.1 Incidence of cryptorchidism
The Caucasian population has a threefold higher incidence of cryptorchidism compared to African-Americans. Premature babies have a much higher incidence of cryptorchidism than full-term babies. In a British study, the incidence of cryptorchidism was 2.7% in > 3,000 boys weighing > 2.5 Kg and 21% in premature boys weighing < 2.5 Kg. At the age of 3 months, spontaneous descent occurred in most boys, and the incidence of cryptorchidism fell to 0.9% and 1.7%, in the > 2.5 Kg and < 2.5 Kg group, respectively [141].

3G.1.2 Pathophysiological effects in maldescended testes

3G.1.2.1 Degeneration of germ cells
The degeneration of germ cells in maldescended testes is apparent after the first year of life. Degenerative changes vary, depending on the position of the testis [142]. During the second year, the number of germ cells declines. In 10-45% of affected patients, a complete loss of germ cells can be detected. Early treatment is therefore recommended to conserve spermatogenesis, especially in bilateral cases. Surgical treatment is the most effective and reliable method of bringing testes into the scrotum. Hormone treatment with hCG has been used widely in the past, but it has now been abolished because of increased germ cell apoptosis after treatment [143].

3G.1.2.2 Relationship with fertility
Semen parameters are often impaired in men with a history of cryptorchidism [144]. Surgical treatment during the first or second year of life may have a positive effect on subsequent fertility [145]. However, there is no definitive proof of the protective effect of early orchidopexy. In men with a history of unilateral cryptorchidism, paternity is almost equal (89.7%) to that in men without cryptorchidism (93.7%). In men with unilateral cryptorchidism, paternity is independent of age at orchidopexy and preoperative testicular location and size [146]. However, a history of unilateral cryptorchidism may result in reduced fertility potential and therefore a longer time to achieve pregnancy. In men with bilateral cryptorchidism, oligozoospermia can be found in 31% and azoospermia in 42%. In cases of bilateral cryptorchidism, the rate of paternity is only 35-53%. In cases of bilateral cryptorchidism and azoospermia, orchidopexy performed even in adult life might lead to the appearance of spermatozoa in the ejaculate [147].

3G.1.2.3 Germ cell tumours
Cryptorchidism is a risk factor for testicular cancer and is associated with testicular microcalcification and intratubular germ cell neoplasia of unclassified type (ITGCNU); formerly carcinoma in situ (CIS) of the testes. In 5-10% of testicular cancers, there is a history of cryptorchidism [148]. The risk of a germ cell tumour (GCT) is 3.6-7.4 times higher than in the general population and 2-6% of men with a history of cryptorchidism will develop a testicular tumour [148]. Orchidopexy performed before the age of puberty has been reported to decrease the risk of testicular cancer [149]. However, this and other similar reports are based on retrospective data and do not exclude the possibility that boys undergoing early and late orchidopexy represent different pathogenetic groups of testicular maldescent.

3G.2 Disease management

3G.2.1 Hormonal treatment
Human chorionic gonadotropin or GnRH has been used widely in the past to treat cryptorchidism in childhood. Although 15-20% of retained testes descend during hormonal treatment, one-fifth of these reascend later, which is why hormonal treatment is no longer recommended.

3G.2.2 Surgical treatment
The success rate of surgical treatment for undescended testes is 70-90% [150]. If the spermatic cords or the spermatic vessels are too short to allow proper mobilisation of the testis into the scrotum, a staged orchidopexy (Fowler-Stephenson procedure) can be performed, using open surgery, laparoscopy, or microsurgery. The optimal age for performing orchidopexy is still debated. Some retrospective studies have indicated that early treatment (during the first 2 years of life) has a beneficial effect on preserving future fertility [151], whereas a recent randomised study showed that surgery at 9 months resulted in a partial catch-up of testicular growth until at least age 4 years vs. surgery at 3 years [152]. The results clearly indicate that early surgery has a beneficial effect on testicular growth. Testicular volume is an approximate indirect measure of spermatogenic activity, therefore, it is possible that orchidopexy at an early age might improve future spermatogenesis.
In adulthood, undescended testis should not be removed because it still produces testosterone. Furthermore, as indicated above, correction of bilateral cryptorchidism, even in adulthood, can lead to sperm production in previously azoospermic men [147]. Vascular damage is the most severe complication of orchidopexy and can cause testicular atrophy in 1-2% of cases. In men with non-palpable testes, the postoperative atrophy rate was 12% in those cases with long vascular pedicles that enabled scrotal positioning. Postoperative atrophy in staged orchidopexy has been reported in up to 40% of patients [150].

3G.3 Conclusions and recommendations for cryptorchidism

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptorchidism is multifactorial in origin and can be caused by genetic factors and endocrine disruption early in pregnancy.</td>
<td>3</td>
</tr>
<tr>
<td>Cryptorchidism is often associated with testicular dysgenesis and is a risk factor for infertility and GCT.</td>
<td>2b</td>
</tr>
<tr>
<td>Whether early surgical intervention can prevent germ cell loss is still debatable, but in a randomised study it improved testicular growth in boys treated at the age of 9 months compared to those aged years at the time of orchidopexy.</td>
<td>3</td>
</tr>
<tr>
<td>Paternity in men with unilateral cryptorchidism is almost equal to that in men without cryptorchidism.</td>
<td>3</td>
</tr>
<tr>
<td>Bilateral cryptorchidism significantly reduces the likelihood of paternity.</td>
<td>3</td>
</tr>
</tbody>
</table>

GCT = germ cell tumour.

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal treatment of cryptorchidism in adults is not recommended.</td>
<td>A</td>
</tr>
<tr>
<td>Early orchidopexy (6-12 months of age) might be beneficial for testicular development in adulthood.</td>
<td>B</td>
</tr>
<tr>
<td>If undescended testes are corrected in adulthood, testicular biopsy for detection of ITGCNU (formerly CIS) is recommended at the time of orchidopexy.</td>
<td>B</td>
</tr>
</tbody>
</table>

ITGCNU = intratubular germ cell neoplasia of unclassified type.

3H IDIOPATHIC MALE INFERTILITY

No demonstrable cause of infertility is found in at least 44% of infertile men [153].

3H.1 Disease management

3H.1.1 Empirical treatments

A wide variety of empirical drug treatments of idiopathic male infertility have been used. However, there is little scientific evidence for an empirical approach [154]. Clomiphen citrate and tamoxifen have been widely used in idiopathic OAT but there is no proven evidence for their benefit. A recent meta-analysis reported some improvement in sperm quality and spontaneous pregnancy rate [155]. Androgens, hCG/HMG, bromocriptine, alpha-blockers, systemic corticosteroids and magnesium supplementation are not effective in the treatment of OAT syndrome. Follicle-stimulating hormone might be beneficial in a selection of patients [155]. A Cochrane analysis showed that men taking oral antioxidants had an associated significant increase in live birth rate in IVF patients [156] when compared with men taking the control treatment. Concerning natural conception the role of antioxidants needs further investigations [157].

3H.2 Recommendation for idiopathic male infertility

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical treatment of male infertility is recommended only for cases of hypogonadotrophic hypogonadism.</td>
<td>A</td>
</tr>
</tbody>
</table>
MALE CONTRACEPTION

Development of male contraceptive methods is important because up to 40% of women have an unmet need for family planning, with approximately 80 million women every year having unintended or unwanted pregnancies [158]. Three of the four methods of male contraception have been in use for hundreds of years (i.e., condoms, periodic abstinence, and withdrawal). The typical first-year failure rates of traditional male methods are high (withdrawal 19%, periodic abstinence 20%, and condoms 3-14%) compared to the failure rates of 0.1-3% for modern reversible female methods [159]. For men, male contraceptive methods must be acceptable, cheap, reversible, and effective. The method nearest to being generally available clinically is hormonal male contraception, which is based on the suppression of gonadotropins and testosterone substitution to maintain male sexual function and bone mineralisation, and to prevent muscle wasting [160]. Various contraceptive regimens have been developed and tested, including testosterone monotherapy, androgen/progestin combinations, testosterone with GnRH analogues, and selective androgen- and progestin-receptor modulators. There are racial differences in the response to androgens alone. However, a combination of testosterone with progestin results in complete suppression of spermatogenesis in all races, and provides contraceptive efficacy equivalent to female hormonal methods [161].

3I.1 Vasectomy

Vasectomy is an effective method of permanent male surgical sterilisation [162]. Extensive guidelines on vasectomy were published by the EAU in 2012 [2]. Before vasectomy, the couple should be fully informed about the benefits and risks, especially as an Australian telephone survey found that 9.2% of respondents regretted having a vasectomy [163].

3I.1.1 Surgical techniques

Various techniques are available for vasectomy. The least invasive approach is no-scalpel vasectomy [164], which is also associated with a low rate of complications [165]. The most effective occlusion technique is cauterisation of the lumen of the vas deferens and fascial interposition [166-168]. Most techniques can be carried out safely under local anaesthesia in an outpatient clinic.

3I.1.2 Complications

Vasectomy does not significantly alter spermatogenesis and Leydig cell function. The volume of ejaculate remains unchanged. Potential systemic effects of vasectomy, including atherosclerosis, have not been proven, and there is no evidence of a significant increase in any systemic disease after vasectomy. An increased rate of prostate cancer in men who underwent vasectomy has not been detected [162, 169]. Acute local complications associated with vasectomy include haematoma, wound infection, and epididymitis in up to 5% of cases [162]. The potential long-term complications (e.g., chronic testicular pain) [170] must be discussed with the patient before the procedure.

3I.1.3 Vasectomy failure

If an effective occlusion technique is used, the risk of recanalisation after vasectomy should be < 1% [165]. However, patients should be informed preoperatively that, although rare, long-term recanalisation might occur [171]. No motile spermatozoa should be detected 3 months after vasectomy. Persistent motility is a sign of vasectomy failure, and the procedure will need to be repeated. A “special clearance” given by the urologist with non-motile spermatozoa < 100,000/mL is still under discussion [172].

3I.1.4 Counselling

Counselling with regard to vasectomy must address the following aspects:
- Vasectomy should be considered irreversible.
- Vasectomy is associated with a low complication rate; however, because it is an elective operation, even small risks must be explained, because men (and their partners) might wish to consider these before giving consent.
- Vasectomy can fail, although the failure rate is low.
- Couples should be advised to continue with other effective contraception until clearance is confirmed.
- All available data indicate that vasectomy is not associated with any serious, long-term, side-effects [167].
- Vasectomy involving cauterisation and fascial interposition appears to be the most effective technique [165, 166, 168].

3I.2 Vasectomy reversal

A wide range of surgical success rates have been published for vasectomy reversal (up to 90%), depending on the time between vasectomy and re-fertilisation, type of vasectomy (e.g., open-ended or sealed), type
of reversal (vasovasostomy or vasoepididymostomy), and whether reversal was unilateral or bilateral. Microsurgical techniques should be used [173].

3I.2.1 Length of time since vasectomy
Vasovasostomy results have shown patency rates up to 90%. The longer the interval is from vasectomy to reversal, the lower is the pregnancy rate. In a study of 1,469 men who had undergone microsurgical vasectomy reversal, patency and pregnancy rates were 97% and 76%, respectively, for an interval up to 3 years after vasectomy; 88% and 53% for 3-8 years, 79% and 44% for 9-14 years, and 71% and 30% for > 15 years [174].

3I.2.2 Tubulovasostomy
The chance of secondary epididymal obstruction after vasectomy increases with time. After an interval of 10 years, 25% of men appear to have epididymal blockage. If secondary epididymal obstruction occurs, tubulovasostomy is needed to reverse the vasectomy (see Chapter 3D) [109].

3I.2.3 Microsurgical vasectomy reversal vs. epididymal or testicular sperm retrieval and ICSI
According to the calculations of cost per delivery for vasectomy reversal vs. sperm retrieval/ICSI, under a wide variety of initial assumptions, it is clear that vasectomy reversal is associated with a considerably lower cost per delivery and higher delivery rates [106, 175-177]. Sperm retrieval and ICSI must yield an 81% pregnancy rate per cycle to achieve equal costs to vasectomy reversal.

3I.3 Conclusions and recommendations for male contraception

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasectomy is considered the gold standard for the male contribution to contraception.</td>
<td>1</td>
</tr>
<tr>
<td>All available data indicate that vasectomy is not associated with any serious, long-term side-effects.</td>
<td>1b</td>
</tr>
<tr>
<td>Pregnancy is still achievable after successful vasectomy reversal.</td>
<td>2a</td>
</tr>
<tr>
<td>Methods of male contraception other than vasectomy are associated with high failure rates or are still experimental (e.g., hormonal approach).</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasectomy meets best the criteria for the male contribution to contraception, with regard to efficacy, safety and side effects. Cauterisation and fascial interposition are the most effective techniques.</td>
<td>A</td>
</tr>
<tr>
<td>Patients seeking consultation about vasectomy must be informed about the surgical method, risk of failure, irreversibility, the need for post-procedure contraception until clearance, and the risk of complications.</td>
<td>A*</td>
</tr>
<tr>
<td>Microsurgical vasectomy reversal is a low-risk and (cost-) effective method of restoring fertility.</td>
<td>B</td>
</tr>
<tr>
<td>MESA/PESA/TESE and ICSI should be reserved for failed vasectomy reversal surgery.</td>
<td>A</td>
</tr>
<tr>
<td>For couples wanting to achieve pregnancy, sperm aspiration together with ICSI is a second-line option for selected cases and those with failed vasovasostomy.</td>
<td>B</td>
</tr>
</tbody>
</table>

*Upgraded following panel consensus

MESA = microsurgical epididymal sperm aspiration; PESA = percutaneous epididymal sperm aspiration; TESE = testicular sperm extraction; ICSI = intracytoplasmic sperm injection.

3J MALE ACCESSORY GLAND INFECTIONS AND INFERTILITY

Infections of the male urogenital tract are potentially curable causes of male infertility [10, 178, 179]. The WHO considers urethritis, prostatitis, orchitis and epididymitis to be male accessory gland infections (MAGIs) [10]. However, specific data are not available to confirm that these diseases have a negative influence on sperm quality and male fertility in general.
3J.2 Diagnostic evaluation

3J.2.1 Ejaculate analysis
Ejaculate analysis (see Chapter 3A.2) clarifies whether the prostate is involved as part of a generalised MAGI and provides information about sperm quality. In addition, leukocyte analysis allows differentiation between inflammatory and non-inflammatory chronic pelvic pain syndrome (CPPS) (NIH IIa vs. NIH 3B).

3J.2.1.1 Microbiological findings
After exclusion of urethritis and bladder infection, >10⁶ peroxidase-positive white blood cells (WBCs) per millilitre of ejaculate indicate an inflammatory process. In this case, a culture should be performed for common urinary tract pathogens. A concentration of >10³ cfu/mL urinary tract pathogens in the ejaculate is indicative of significant bacteriospermia. The sampling time can influence the positive rate of microorganisms in semen and the frequency of isolation of different strains [180]. The ideal diagnostic test for Chlamydia trachomatis in semen has not yet been established [181]. In contrast to serological findings in women, antibody tests for C. trachomatis in seminal plasma are not indicative if no type-specific methods are used [181].

Ureaplasma urealyticum is pathogenic only in high concentrations (>10³ cfu/mL ejaculate). No more than 10% of samples analysed for ureaplasma exceed this concentration [182]. Normal colonisation of the urethra hampers the clarification of mycoplasma-associated urogenital infections, using samples such as the ejaculate [183].

3J.2.1.2 White blood cells
The clinical significance of an increased concentration of leukocytes in the ejaculate is controversial [184]. Infection is indicated only by an increased level of leukocytes. Although leukocytospermia is a sign of inflammation, it is not necessarily associated with bacterial or viral infections [185]. According to WHO classification, leukocytospermia is defined as >106 WBCs/mL. Only two studies have analysed alterations of WBCs in the ejaculate of patients with proven prostatitis [186, 187]. Both studies found more leukocytes in men with prostatitis compared to those without inflammation (CPPS, type NIH 3B).

3J.2.1.3 Sperm quality
The deleterious effects of chronic prostatitis on sperm density, motility and morphology are under debate [179]. All investigations have given contradictory results, and have not confirmed that chronic prostatitis has a decisive role in altering conventional semen parameters [188-190].

3J.2.1.4 Seminal plasma alterations
Seminal plasma elastase is a biochemical indicator of polymorphonuclear lymphocyte activity in the ejaculate [179, 191, 192], with a suggested cut-off level of approximately 600 ng/mL [179]. Various cytokines are involved in inflammation and can influence sperm function. Several studies have investigated the association between interleukin (IL) concentration, leukocytes, and sperm function [193-195], but no correlations have been found. The prostate is the main site of origin of IL-6 and IL-8 in the seminal plasma. Cytokines, especially IL-6, play an important role in the male accessory gland inflammatory process [196]. However, elevated cytokine levels do not depend on the number of leukocytes in expressed prostatic secretion (EPS) [197].

3J.2.1.5 Glandular secretory dysfunction
Infections of the sex glands can impair their excretory function. Decreased quantities of citric acid, phosphatase, fructose, zinc, and α-glutamyl-transferase activity are indicators of disturbed prostatic secretory parameters [179]. Reduced fructose concentration indicates impaired vesicular function [182, 198].

3J.2.1.6 Reactive oxygen species
Reactive oxygen species might be increased in chronic urogenital infections associated with increased leukocyte numbers [199]. However, their biological significance in prostatitis remains unclear [179].

3J.2.2 Disease management
Treatment of chronic prostatitis is usually targeted at relieving symptoms [200, 201]. The aims of therapy for altered semen composition in male adnexitis are:

- reduction or eradication of microorganisms in prostatic secretions and semen;
- normalisation of inflammatory (e.g., leukocytes) and secretory parameters;
- improvement of sperm parameters to counteract fertility impairment [202].

Only antibiotic therapy of chronic bacterial prostatitis (NIH II) has provided symptomatic relief, eradication of microorganisms, and a decrease in cellular and humoral inflammatory parameters in urogenital secretions.
Although antibiotics might improve sperm quality [202], there is no evidence that treatment of chronic prostatitis increases the probability of conception [179, 203].

3J.3 Epididymitis
Inflammation of the epididymis causes unilateral pain and swelling, usually with acute onset. Among sexually active men < 35 years of age, epididymitis is most often caused by C. trachomatis or Neisseria gonorrhoea [204, 205]. Sexually transmitted epididymitis is usually accompanied by urethritis. Non-sexually transmitted epididymitis is associated with urinary tract infection and occurs more often in men aged > 35 years [206].

3J.3.1 Diagnostic evaluation

3J.3.3.1 Ejaculate analysis
Ejaculate analysis according to WHO criteria, might indicate persistent inflammatory activity. Transiently decreased sperm counts and forward motility are observed [204, 207, 208]. Semen culture might help to identify pathogenic microorganisms. Development of stenosis in the epididymal duct, reduction of sperm count, and azoospermia are more important in the follow-up of bilateral epididymitis (see Chapter 3D).

3J.3.2 Disease management
Antibiotic therapy is indicated before culture results are available.

Treatment of epididymitis results in:
- microbiological cure of infection;
- improvement of clinical signs and symptoms;
- prevention of potential testicular damage;
- prevention of transmission;
- decrease of potential complications (e.g., infertility or chronic pain).

Patients with epididymitis known or suspected to be caused by N. gonorrhoeae or C. trachomatis must be told to refer their sexual partners for evaluation and treatment [209].

3J.4 Conclusions and recommendations for male accessory gland infections

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethritis and prostatitis are not clearly associated with male infertility.</td>
<td>3</td>
</tr>
<tr>
<td>Antibiotic treatment often only eradicates microorganisms; it has no positive effect on inflammatory alterations, and cannot reverse functional deficits and anatomical dysfunction.</td>
<td>2a</td>
</tr>
</tbody>
</table>

Although antibiotic treatment for MAGI might provide improvement in sperm quality, it does not necessarily enhance the probability of conception. 2a

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with epididymitis that is known or suspected to be caused by N. gonorrhoeae or C. trachomatis must be instructed to refer their sexual partners for evaluation and treatment.</td>
<td>B</td>
</tr>
</tbody>
</table>

3K GERM CELL MALIGNANCY AND TESTICULAR MICROCALCIFICATION

3K.1 Germ cell malignancy and male infertility
Testicular germ cell tumour (TGCT) is the most common malignancy in Caucasian men aged 15-40 years, and affects approximately 1% of subfertile men. The lifetime risk of TGCT varies between ethnic groups and countries. The highest annual incidence of TGCT occurs in Caucasians, and varies from 10/100,000 (e.g., in Denmark and Norway) to 2/100,000 (e.g., in Finland and the Baltic countries). Generally, seminomas and non-seminomas are preceded by CIS, and untreated ITGCNU will eventually progress to invasive cancer [210, 211]. The most convincing evidence for a general decline in male reproductive health is the increase in testicular cancer seen in western countries [212]. In almost all countries with reliable cancer registers, the incidence of testicular cancer has increased [213]. Cryptorchidism and hypospadias are associated with an increased risk
of testicular cancer; men with cryptorchidism and/or hypospadias are over-represented among patients with testicular cancer. Men with dysgenic testes have an increased risk of developing testicular cancer in adulthood. These cancers arise from premalignant gonocytes or CIS cells [214]. Testicular microlithiasis (TM), seen on ultrasound, can be associated with GCT and CIS of the testes.

3K.2 Testicular germ cell cancer and reproductive function
Men with TGCT have decreased semen quality, even before cancer is diagnosed [215]. Orchidectomy implies a risk of azoospermia in these men, with sperm found in the ejaculate before the tumour-bearing testis has been removed. Semen cryopreservation before orchidectomy should therefore be considered (see Chapter 3M). Treatment of TGCT can result in additional impairment of semen quality [216]. In addition to spermatogenic failure, patients with TGCT have Leydig cell dysfunction, even in the contralateral testis [217]. The risk of hypogonadism may therefore be increased in men treated for TGCT. The measurement of pre-treatment levels of testosterone, SHBG, LH and oestradiol might help to anticipate post-treatment hypogonadism. Men who have had TGCT and have low normal androgen levels should receive long-term follow-up because they are at risk of developing hypogonadism as a result of an age-related decrease in testosterone production [218]. The risk of hypogonadism is most pronounced in TGCT patients treated with ≥ 3 cycles of chemotherapy or irradiation of retroperitoneal lymph nodes. However, this risk is greatest at 6-12 months post-treatment. This suggests there may be some improvement in Leydig cell function, and why it is reasonable to expect initiation of androgen replacement, until the patient shows continuous signs of testosterone deficiency, even at 2 years follow-up [219]. The risk of low libido and erectile dysfunction is also increased in TGCT patients [220]. In case of azoospermia, testicular sperm may be recovered to safeguard patient's fertility (Onco-TESE) [221].

3K.3 Testicular microlithiasis
Microcalcification inside the testicular parenchyma can be found in 0.6-9% of men referred for testicular ultrasound [222-225]. Although the true incidence of microcalcification in the general population is unknown, it is probably rare. However, ultrasound findings of TM are common in men with TGCT, cryptorchidism, testicular dysgenesis, infertility, testicular torsion and atrophy, Klinefelter’s syndrome, hypogonadism, male pseudohermaphroditism, varicocele, epididymal cysts, pulmonary microlithiasis, and non-Hodgkin’s lymphoma. The incidence reported seems to be higher with high-frequency ultrasound machines [226]. The relationship between TM and infertility is unclear, but probably relates to dysgenesis of the testes, with degenerate cells being sloughed inside an obstructed seminiferous tubule and failure of the Sertoli cells to phagocytose the debris. Subsequently, calcification occurs. Testicular microlithiasis is found in testes at risk of malignant development. The reported incidence of TM in men with TGCT is 6-46% [227-229]. TM should therefore be considered premalignant. Testicular biopsies from men with TM have found a higher prevalence of CIS, especially in those with bilateral microlithiasis [230]. However, TM is found most often in men with a benign testicular condition and the microcalcification itself is not malignant. Further investigation of the association between TM and CIS will require testicular biopsies in large series of men without signs of TGCT. However, available data indicate that men in whom TM is found by ultrasound, and who have an increased risk of TGCT, should be offered testicular biopsy for detection of CIS. The list of high-risk patients includes men with infertility and bilateral TM, atrophic testes, undescended testes, a history of TGCT, and contralateral TM [231].

3K.4 Recommendations for germ cell malignancy and testicular microcalcification

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>As for all men, patients with TM and without special risk factors (see below) should be encouraged to perform self-examination because this might result in early detection of TGCT.</td>
<td>B</td>
</tr>
<tr>
<td>Testicular biopsy should be offered to men with TM, who belong to one of the following high-risk groups: infertility and bilateral TM, atrophic testes, undescended testes, a history of TGCT, or contralateral TM.</td>
<td>B</td>
</tr>
<tr>
<td>If there are suspicious findings on physical examination or ultrasound in patients with TM and associated lesions, surgical exploration with testicular biopsy or orchidectomy should be considered.</td>
<td>B</td>
</tr>
<tr>
<td>Testicular biopsy, follow-up scrotal ultrasound, routine use of biochemical tumour markers, or abdominal or pelvic CT, are not justified in men with isolated TM without associated risk factors (e.g. infertility, cryptorchidism, testicular cancer, and atrophic testis).</td>
<td>B</td>
</tr>
<tr>
<td>Men with TGCT are at increased risk of developing hypogonadism and sexual dysfunction and should therefore be followed up.</td>
<td>B</td>
</tr>
</tbody>
</table>

TM = testicular microlithiasis; TGCT = testicular germ cell tumour; CT = computed tomography.
3L DISORDERS OF EJACULATION

Disorders of ejaculation are uncommon, but important causes of male infertility.

3L.1 Classification and aetiology

3L.1.1 Anejaculation
Anejaculation involves complete absence of antegrade or retrograde ejaculation. It is caused by failure of semen emission from the seminal vesicles, prostate and ejaculatory ducts into the urethra [232]. True anejaculation is usually associated with a normal orgasmic sensation. True anejaculation is always associated with central or peripheral nervous system dysfunction or with drugs [233] (Table 6).

3L.1.2 Anorgasmia
Anorgasmia is the inability to reach orgasm and can give rise to anejaculation. Anorgasmia is often a primary condition and its cause is usually psychological.

3L.1.3 Delayed ejaculation
In delayed ejaculation, abnormal stimulation of the erect penis is needed to achieve orgasm with ejaculation [232]. Delayed ejaculation can be considered a mild form of anorgasmia. The causes of delayed ejaculation can be psychological, organic (e.g. incomplete spinal cord lesion [234] or iatrogenic penile nerve damage [235]), or pharmacological (e.g. selective serotonin re-uptake inhibitors (SSRIs), antihypertensives, or antipsychotics) [236].

3L.1.4 Retrograde ejaculation
Retrograde ejaculation is the total, or sometimes partial, absence of antegrade ejaculation as a result of semen passing backwards through the bladder neck into the bladder. Patients experience a normal or decreased orgasmic sensation. The causes of retrograde ejaculation can be divided into neurogenic, pharmacological, urethral, or bladder neck incompetence (Table 6).

Table 6: Aetiology of anejaculation and retrograde ejaculation

<table>
<thead>
<tr>
<th>Neurogenic</th>
<th>Pharmacological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord injury</td>
<td>Antihypertensives</td>
</tr>
<tr>
<td>Cauda equina lesions</td>
<td>β1-adrenoceptor antagonists</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>Antipsychotics and antidepressants</td>
</tr>
<tr>
<td>Autonomic neuropathy (diabetes mellitus)</td>
<td>Alcohol</td>
</tr>
<tr>
<td>Retroperitoneal lymphadenectomy</td>
<td></td>
</tr>
<tr>
<td>Sympathectomy or aortoiliac surgery</td>
<td></td>
</tr>
<tr>
<td>Colorectal and anal surgery</td>
<td></td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td></td>
</tr>
<tr>
<td>Urethral</td>
<td>Bladder neck incompetence</td>
</tr>
<tr>
<td>Ectopic ureterocele</td>
<td>Congenital defects/dysfunction of hemitrigone</td>
</tr>
<tr>
<td>Urethral stricture</td>
<td>Bladder extrophy</td>
</tr>
<tr>
<td>Urethral valves or verumontaneum hyperplasia</td>
<td>Bladder neck resection (transurethral resection of the prostate)</td>
</tr>
<tr>
<td>Congenital dopamine β-hydroxylase deficiency</td>
<td>Prostatectomy</td>
</tr>
</tbody>
</table>

3L.1.5 Astenic ejaculation
Astenic ejaculation is characterised by an altered propulsive phase, with a normal emission phase [236]. The orgasmic sensation is reduced and the typically rhythmical contractions associated with ejaculation are missing. Astenic ejaculation does not usually affect semen quality.

3L.1.6 Premature ejaculation
The International Society for Sexual Medicine (ISSM) has adopted the first evidence-based definition of lifelong premature ejaculation (PE): “Premature ejaculation is a male sexual dysfunction characterised by ejaculation which always or nearly always occurs prior to or within about one minute of vaginal penetration; and inability to delay ejaculation on all or nearly all vaginal penetrations; and negative personal consequences, such as distress, bother, frustration and/or the avoidance of sexual intimacy”. Premature ejaculation may be strictly organic (e.g., prostatitis-related) or psychogenic, partner-related or non-selective, and can be associated with
erectile dysfunction. It does not impair fertility, provided intravaginal ejaculation occurs.

3L.2 Diagnostic evaluation
Diagnostic management includes the following recommended procedures.

3L.2.1 Clinical history
The patient must be carefully checked for diabetes, neuropathy, trauma, urogenital infection, previous surgery, and medication. Particular attention must be paid to the characteristics of micturition and ejaculation (presence of nocturnal emission, ejaculatory ability in given circumstances, and primary or acquired disorder), as well as to psychosexual aspects.

3L.2.2 Physical examination
Genital and rectal examinations are conducted, including evaluation of the prostate, bulbocavernosus reflex and anal sphincter tone.

3L.2.3 Post-ejaculatory urinalysis
Post-ejaculatory urinalysis of centrifuged urine can be used to determine if there is total or partial retrograde ejaculation.

3L.2.4 Microbiological examination
Initial, mid-stream urine, EPS, and/or urine after prostatic massage are cultured for evidence of prostatic infection. In cases of increased leukocytes in semen, semen culture or biochemical infection marker tests are also suggested [237].

3L.2.5 Optional diagnostic work-up
This diagnostic work-up can include:
- neurophysiological tests (bulbocavernosus evoked response and dorsal nerve somatosensory evoked potentials);
- tests for autonomic neuropathy;
- psychosexual evaluation;
- videocystometry;
- cystoscopy;
- transrectal ultrasonography;
- uroflowmetry;
- vibratory stimulation of the penis.

3L.3 Disease management
Infertility caused by disorders of ejaculation is seldom treated on the basis of aetiology. Treatment usually involves retrieval of spermatozoa for use in assisted reproduction techniques (ARTs). The following aspects must be considered when selecting treatment:
- Age of patient and his partner.
- Psychological problems of the patient and his partner.
- Couple's willingness and acceptance of different fertility procedures.
- Associated pathology.
- Psychosexual counselling.

3L.3.1 Aetiological treatment
If possible, any pharmacological treatment that is interfering with ejaculation should be stopped. In painful ejaculation, tamsulosin can be administered during antidepressant treatment [238]. Treatment should be given for urogenital infections (i.e., in case of painful ejaculation) [237]. Dapoxetine is an SSRI that has been introduced for the therapy of PE [239], because it appears that PE is related to serotonin levels. Psychotherapy is usually not very effective.

3L.3.2 Symptomatic treatment

3L.3.2.1 Premature ejaculation
Premature ejaculation can be treated with the SSRI dapoxetine or topical anaesthetic agents to increase intravaginal ejaculation latency time, behavioural therapy, and/or psychotherapy.
3L.3.2.2 Retrograde ejaculation

In the absence of spinal cord injury, anatomical anomalies of the urethra, or pharmacological agents, drug treatment must be used to induce antegrade ejaculation (Table 7). Alternatively, the patient can be encouraged to ejaculate when his bladder is full to increase bladder neck closure [240].

Table 7: Drug therapy for retrograde ejaculation

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage regimen</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedrine sulphate</td>
<td>10-15 mg four times daily</td>
<td>[241]</td>
</tr>
<tr>
<td>Midodrine</td>
<td>5 mg three times daily</td>
<td>[242]</td>
</tr>
<tr>
<td>Brompheniramine maleate</td>
<td>8 mg twice daily</td>
<td>[243]</td>
</tr>
<tr>
<td>Imipramine</td>
<td>25-75 mg three times daily</td>
<td>[244]</td>
</tr>
<tr>
<td>Desipramine</td>
<td>50 mg every second day</td>
<td>[245]</td>
</tr>
</tbody>
</table>

Sperm collection from post-orgasmic urine for use in ART is recommended if:
- drug treatment is ineffective or intolerable as a result of side-effects;
- the patient has a spinal cord injury;
- drug therapy inducing retrograde ejaculation cannot be interrupted.

If the biological sperm preparation is not of sufficient quality for intrauterine insemination, the couple must undergo in vitro reproductive procedures (e.g. ICSI). In the case of insufficient drug therapy, testicular (TESE or PESA) or epididymal (MESA) sperm retrieval techniques can be used for assisted reproduction.

3L.3.2.3 Anejaculation

Drug treatment for anejaculation caused by lymphadenectomy and neuropathy, or psychosexual therapy for anorgasmia is not very effective. In all these cases, and in men who have a spinal cord injury, vibrostimulation (i.e., application of a vibrator to the penis) is first-line therapy. In anejaculation, vibrostimulation evokes the ejaculation reflex [246], which requires an intact lumbosacral spinal cord segment. If the quality of semen is poor, or ejaculation is retrograde, the couple may enter an IVF programme. If vibrostimulation has failed, electro-ejaculation can be the therapy of choice [247]. When electro-ejaculation fails or cannot be carried out, sperm can be retrieved from the seminal ducts by aspiration from the vas deferens [248] (see Chapter 3D) or seminal tract washout [249]. TESE can then be used [237, 250]. Anejaculation following either surgery for testicular cancer or total mesorectal excision can be prevented using monolateral lymphadenectomy or autonomic nerve preservation [250], respectively.

3L.4 Conclusion and recommendations for disorders of ejaculation

Conclusion

Ejaculation disorders can be treated using a wide range of drugs and physical stimulation, with a high level of efficacy.

Recommendations

<table>
<thead>
<tr>
<th>Aetiological treatments for ejaculatory disorders should be offered before sperm collection and ART are performed.</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature ejaculation can be treated successfully with either topical anaesthetic creams or SSRIs.</td>
<td>B</td>
</tr>
<tr>
<td>In men with spinal cord injury, vibrostimulation and electro-ejaculation are effective methods of sperm retrieval.</td>
<td>B</td>
</tr>
</tbody>
</table>

ART = assisted reproduction technique; **SSRIs** = selective serotonin reuptake inhibitors.

3M SEMEN CRYOPRESERVATION

Cryopreservation is the storage of biological material at subzero temperatures [e.g., -80 or -196°C (the boiling point of liquid nitrogen)], at which biochemical processes of cell metabolism are slowed or interrupted. At -196°C, the biochemical reactions that lead to cell death are stopped.
3M.1 Indications for storage

Storage of sperm is available in many clinics for the following indications:

- Before potentially sterilising chemotherapy or radiotherapy for cancer [251] or for non-malignant diseases.
- Before surgery that might interfere with fertility (e.g. bladder neck surgery in a younger man or removal of a testicle in a man with testicular malignancy, or before vasectomy or transgender surgery).
- For men with progressive decrease in semen quality as a result of diseases that have an associated risk of subsequent azoospermia (i.e., pituitary macroadenoma, craniopharyngioma, empty sella syndrome, chronic nephropathy, uncontrolled diabetes mellitus, and multiple sclerosis).
- For men with paraplegia when sperm have been obtained by electro-ejaculation or obtained by penile vibratory stimulation.
- For men with psychogenic anejaculation, after sperm have been obtained either by electro-ejaculation or a sperm retrieval procedure.
- After gonadotropin treatment has induced spermatogenesis in men with hypogonadotrophic hypogonadism.
- For men with NOA, the chance of finding sperm using micro-TESE is ~50%.

Cryopreservation can be used for sperm collected through TESE, avoiding repeated sperm retrieval procedures and unnecessary hyperstimulation of the female partner.

- In any situation in which sperm have been obtained by a sperm retrieval procedure (e.g., after failed vasectomy reversal, or in some cases of epididymal obstruction not amenable to surgery).
- For storage of donor sperm, because cryopreservation reduces the risk of transmission of infection from sperm donors. According to the European directives 2004/23 EC and 2006/17 EC fresh sperm are no longer to be used for non-partner donations.

3M.2 Precautions and techniques

3M.2.1 Freezing and thawing process

The cryopreservation techniques currently used are not yet optimal because damage occurs to cells during cryopreservation and prolonged storage. Most damage occurs during freezing and thawing. Major causes of damage during freezing are ice crystal formation and cell dehydration, which disrupt the cell wall and intracellular organelles. Sperm morphology, motility and vitality decrease significantly after thawing, and cryopreservation increases the damage done to sperm DNA [252-255]. Further damage can be caused by contamination of samples with microorganisms and high levels of superoxide radicals [256, 257]. To reduce ice crystal formation, a cryopreservation solution is added before freezing. Various cryopreservation solutions are available commercially, most of which contain varying proportions of glycerol and albumin. After freezing, the samples are immersed in liquid nitrogen.

Several techniques have been developed to try to reduce damage caused by freezing and thawing, including:

- One-step freezing method [258, 259]: sample is held in the vapour phase for 10 min before being plunged into liquid nitrogen.
- Slow or multi-step method [260]: sample is gradually cooled in the vapour phase for approximately 40 min. A programmable automatic freezing machine, which is preset to cool at a rate of 1-10°C/min is used.

The method available depends on the resources of the laboratory. Whichever freezing technique is used, it should be tested using donor sperm and post-thaw examination, and should regularly undergo a quality-control programme. The likelihood of sperm survival decreases with repeated freezing and thawing. The maximum viable storage time for human sperm is not known.

3M.2.2 Cryopreservation of small numbers of sperm

Standard cryopreservation in straws is an efficient way of storing large numbers of sperm (e.g., for a donor insemination programme). However, in micro-TESE, few sperm might be obtained, and the choice is either to freeze testicular tissue and find sperm after thawing the tissue, or to freeze small numbers of sperm. If sperm are frozen in straws, it can be difficult to find any sperm after thawing. Instead, the sperm should be frozen in a pellet [261] or in a container [262].

3M.2.3 Testing for infections and preventing cross-contamination

Sperm storage in straws is used extensively. Large numbers of straws are stored in canisters, with the straws being bathed in a pool of liquid nitrogen. Microbial contamination of the pool of liquid nitrogen results in
contamination of the outside of all the straws [263]. The most widely used safeguard is to use so-called high security closed straws. According to the European directives 2004/23 and 2006/17, samples should be tested for hepatitis B and C and human immunodeficiency virus (HIV). In case of non-partner donation, samples are also tested for C. Trachomatis (by Nucleic Acid Testing [NAT]) and syphilis, as well as genetics, that is, karyotype and most prevalent genetic disorders in the population to which the non-partner donor belongs. Until the test results are known, samples must be stored in an individual quarantine vessel (separate storage). If open straws are used (e.g., for vitrification purposes) some laboratories use the additional safeguard of double-wrapping the straws before freezing, although this is more costly. Some centres carry out cytomegalovirus testing and store negative and positive samples separately. Considerable ethical issues surround the storage of samples before cancer chemotherapy in men who are hepatitis-virus- or HIV-positive. Few clinics have separate storage facilities for HIV-positive samples. However, the success of antiretroviral treatment is increasing the number of HIV-positive men who may wish to store sperm. There is also concern about HIV transmission to children conceived using HIV-positive sperm, because sperm-washing techniques fail in ~5% of cases.

3M.2.4 Fail-safe precautions to prevent loss of stored materials

Any laboratory that undertakes long-term storage of human biological materials should have procedures that guard against accidental loss of material caused by storage vessel failure. This is particularly important for sperm stored before potentially sterilising cancer chemotherapy, because these patients may not be able to obtain further sperm.

3M.2.5 Orphan samples

In malignancy and some other situations, several years might pass before stored samples are required. Inevitably, during this time, the owners of some samples might disappear or die, leaving behind orphan samples for which the owner is no longer contactable. The duty of the laboratory and the legal ownership of these samples can create considerable problems.

3M.3 Biological aspects

Cryopreservation induces deterioration of semen quality. After the sample has been thawed, motility [264] and morphology [265, 266] are worsened, including mitochondrial acrosomal and sperm tail damage [255]. Sperm freezing decreases motility by 31% and mitochondrial activity by 36%, and causes morphological disruption in 37% of sperm [258]. Motility is correlated best with IVF capacity of the thawed sample. Further improvement can be achieved by selecting the subpopulation of sperm with the best motility and DNA integrity and freezing these sperm in seminal plasma [261].

3M.4 Conclusions and recommendations for semen cryopreservation

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The purpose of sperm cryopreservation is to enable future assisted reproduction techniques procedures.</td>
<td>1b</td>
</tr>
<tr>
<td>Cryopreservation techniques are not optimal, and future efforts are needed to improve the outcome of sperm banking.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryopreservation of semen should be offered to all men who are candidates for chemotherapy, radiation or surgical interventions that might interfere with spermatogenesis or cause ejaculatory disorders.</td>
<td>A</td>
</tr>
<tr>
<td>If testicular biopsies are indicated, sperm cryopreservation is strongly advised.</td>
<td>A</td>
</tr>
<tr>
<td>If cryopreservation is not available locally, patients should be advised about the possibility of visiting, or transferring to, the nearest cryopreservation unit before therapy starts.</td>
<td>C</td>
</tr>
<tr>
<td>Consent for cryopreservation should include a record of the man’s wishes for his samples if he dies or is otherwise untraceable.</td>
<td>C</td>
</tr>
<tr>
<td>Precautions should be taken to prevent transmission of viral, sexually transmitted or any other infection by cryostored materials from donor to recipient, and to prevent contamination of stored samples. These precautions include testing of the patient and the use of rapid testing and quarantine of samples until test results are known. Samples from men who are positive for hepatitis virus or HIV should not be stored in the same container as samples from men who have been tested and are free from infection.</td>
<td>C</td>
</tr>
</tbody>
</table>
4. REFERENCES

5. CONFLICT OF INTEREST

All members of the EAU Male Infertility Guidelines Panel have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publicly accessible through the European Association of Urology website. This document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.