Guidelines on Urological Infections

© European Association of Urology 2013
TABLE OF CONTENTS

1. INTRODUCTION
- 1.1 Background
- 1.2 Bacterial resistance development
- 1.3 The aim of the guidelines
- 1.4 Pathogenesis of UTIs
- 1.5 Microbiological and other laboratory findings
- 1.6 Methodology
 - 1.6.1 Level of evidence and grade of guideline recommendations
 - 1.6.2 Publication history
- 1.7 References

2. CLASSIFICATION OF UTIs
- 2.1 Introduction
- 2.2 Anatomical level of infection
- 2.3 Grade of severity
- 2.4 Pathogens
- 2.5 Classification of UTI
- 2.6 Reference

3. UNCOMPPLICATED UTIS IN ADULTS
- 3.1 Summary and recommendations
- 3.2 Definition
 - 3.2.1 Aetiological spectrum
- 3.3 Acute uncomplicated cystitis in premenopausal, non-pregnant women
 - 3.3.1 Diagnosis
 - 3.3.1.1 Clinical diagnosis
 - 3.3.1.2 Laboratory diagnosis
 - 3.3.2 Therapy
 - 3.3.3 Follow-up
- 3.4 Acute uncomplicated pyelonephritis in premenopausal, non-pregnant women
 - 3.4.1 Diagnosis
 - 3.4.1.1 Clinical diagnosis
 - 3.4.1.2 Laboratory diagnosis
 - 3.4.1.3 Imaging diagnosis
 - 3.4.2 Therapy
 - 3.4.2.1 Mild and moderate cases of acute uncomplicated pyelonephritis (Table 3.2)
 - 3.4.2.2 Severe cases of acute uncomplicated pyelonephritis (Table 3.2)
 - 3.4.3 Follow-up
- 3.5 Recurrent (uncomplicated) UTIs in women
 - 3.5.1 Diagnosis
 - 3.5.2 Prevention
 - 3.5.2.1 Antimicrobial prophylaxis
 - 3.5.2.2 Immunoactive prophylaxis
 - 3.5.2.3 Prophylaxis with probiotics
 - 3.5.2.4 Prophylaxis with cranberry
- 3.6 UTIs in pregnancy
 - 3.6.1 Diagnosis of UTI in pregnant women
 - 3.6.2 Definition of bacteriuria
 - 3.6.3 Screening
 - 3.6.4 Treatment of asymptomatic bacteriuria and acute cystitis
 - 3.6.5 Duration of therapy
 - 3.6.6 Follow-up
 - 3.6.7 Prophylaxis
 - 3.6.8 Treatment of pyelonephritis
 - 3.6.9 Complicated UTI
- 3.7 UTIs in postmenopausal women
 - 3.7.1 Risk factors

PAGE
- 8
- 8
- 8
- 8
- 8
- 9
- 10
- 10
- 10
- 11
- 12
- 12
- 13
- 14
- 14
- 15
- 15
- 15
- 15
- 15
- 16
- 16
- 15
- 15
- 15
- 15
- 15
- 16
- 17
- 17
- 17
- 20
- 20
- 20
- 21
- 21
- 21
- 21
- 22
- 22
- 22
- 22
- 22
- 22
- 22
- 23
- 23
- 23
3.7.2 Diagnosis 23
3.7.3 Treatment 23
3.8 Acute uncomplicated UTIs in young men 23
3.8.1 Men with acute uncomplicated UTI 23
3.8.2 Men with UTI and concomitant prostate infection 24
3.9 Asymptomatic bacteriuria 24
3.9.1 Diagnosis 24
3.9.2 Screening 24
3.10 References 25

4. COMPLICATED UTIs DUE TO UROLOGICAL DISORDERS 28
4.1 Summary and recommendations 28
4.2 Definitions and classification 28
4.2.1 Clinical presentation 29
4.2.2 Urine cultures 29
4.3 Microbiology 29
4.3.1 Spectrum and antibiotic resistance 29
4.3.2 Complicated UTIs associated with urinary stones 30
4.3.3 Complicated UTIs associated with urinary catheters 30
4.4 Treatment 30
4.4.1 General principles 30
4.4.2 Choice of antibiotics 30
4.4.3 Duration of antibiotic therapy 31
4.4.4 Complicated UTIs associated with urinary stones 31
4.4.5 Complicated UTIs associated with indwelling catheters 31
4.4.6 Complicated UTIs in patients with spinal cord injury 31
4.4.7 Follow-up after treatment 32
4.5 References 32

5. SEPSIS SYNDROME IN UROLOGY (UROSEPSIS) 34
5.1 Summary and recommendations 34
5.2 Background 34
5.3 Definition and clinical manifestation of sepsis in urology 34
5.4 Physiology and biochemical markers 35
5.4.1 Cytokines as markers of the septic response 35
5.4.2 Procalcitonin is a potential marker of sepsis 36
5.5 Prevention 36
5.5.1 Preventive measures of proven or probable efficacy (9,10) 36
5.5.2 Appropriate perioperative antimicrobial prophylaxis 36
5.5.3 Preventive measures of debatable efficacy 36
5.5.4 Ineffective or counterproductive measures 36
5.6 Algorithm for the management of urosepsis 37
5.7 Treatment 37
5.7.1 Clinical algorithm for management of urosepsis 37
5.7.2 Relief of obstruction 38
5.7.3 Antimicrobial therapy 38
5.7.4 Adjunctive measures (12,13) 38
5.8 Conclusion 38
5.9 Acknowledgement 38
5.10 References 38

6. CATHETER-ASSOCIATED UTIs 39
6.1 Abstract 39
6.2 Summary of recommendations 41
6.3 Reference 42

7. UTIs IN CHILDREN 42
7.1 Summary and recommendations 42
7.2 Background 42
7.3 Aetiology 43
7.4 Pathogenesis and risk factors 43
7.5 Signs and symptoms 43
7.6 Classification 43
 7.6.1 Severe UTI 44
 7.6.2 Simple UTI 44
7.7 Diagnosis 44
 7.7.1 Physical examination 44
 7.7.2 Laboratory tests 44
 7.7.2.1 Collection of the urine 44
 7.7.2.1.1 Suprapubic bladder aspiration 44
 7.7.2.1.2 Bladder catheterisation 44
 7.7.2.1.3 Plastic bag attached to the genitalia 44
 7.7.2.2 Quantification of bacteriuria 44
 7.7.2.3 Other biochemical markers 45
 7.7.2.3.1 Nitrite 45
 7.7.2.3.2 Leukocyte esterase 45
 7.7.2.3.3 C-reactive protein 45
 7.7.2.3.4 Urinary N-acetyl-β-glucosaminidase 45
 7.7.2.3.5 IL-6 45
 7.7.3 Imaging of the urinary tract 46
 7.7.3.1 Ultrasonography 46
 7.7.3.2 Radionuclide studies 46
 7.7.3.3 Cystourethrography 46
 7.7.3.3.1 Conventional voiding cystourethrography 46
 7.7.3.3.2 Radionuclide cystography (indirect) 46
 7.7.3.3.3 Cystosonography 46
 7.7.3.4 Additional imaging 46
 7.7.3.5 Urodynamic evaluation 47
7.8 Schedule of investigation 47
7.9 Treatment 47
 7.9.1 Severe UTIs 47
 7.9.2 Simple UTIs 48
 7.9.3 Prophylaxis 48
7.10 Acknowledgement 48
7.11 References 49

8. UTIs IN RENAL INSUFFICIENCY, TRANSPLANT RECIPIENTS, DIABETES MELLITUS AND IMMUNOSUPPRESSION 53
8.1 Summary and recommendations 53
 8.1.1 Acute effects of UTI on the kidney 53
 8.1.2 Chronic renal disease and UTI 53
 8.1.2.1 APCKD 53
 8.1.2.2 Calculi and UTI 54
 8.1.2.3 Obstruction of the urinary tract and UTI 54
 8.1.3 UTI in renal transplantation and immunosuppression 54
 8.1.4 Antibiotic treatment for UTI in renal insufficiency and after renal transplantation 54
8.2 Background 54
8.3 Acute effects of UTI on the kidney 54
 8.3.1 VUR and intrarenal reflux 54
 8.3.2 Obstructive neuropathy 55
 8.3.3 Renal effects of severe UTI 55
 8.3.4 Acute effects of UTI on the normal kidney 55
 8.3.5 Renal scarring 55
 8.3.6 Specific conditions in which an acute UTI causes renal damage 56
 8.3.6.1 Diabetes mellitus 56
 8.3.6.2 Tuberculosis 57
8.4 Chronic renal disease and UTI 57
 8.4.1 Adult dominant polycystic kidney disease (ADPKD) 57
 8.4.2 Renal calculi 57
8.5 UTI in renal transplantation 58
16.6.4 Monobactams 101
16.6.5 Carbapenems 101
16.6.6 Fluoroquinolones 101
 16.6.6.1 Group 1 fluoroquinolones 102
 16.6.6.2 Group 2 fluoroquinolones 102
 16.6.6.3 Group 3 fluoroquinolones 102
16.6.7 Co-trimoxazole 102
16.6.8 Fosfomycin 102
16.6.9 Nitrofurantoin 103
16.6.10 Macrolides 103
16.6.11 Tetracyclines 103
16.6.12 Aminoglycosides 103
16.6.13 Glycopeptides 103
16.6.14 Oxazolidinones 103
16.6.15 References 103

16.7 Relevant bacteria for urological infections 105

17. ABBREVIATIONS USED IN THE TEXT 106
1. INTRODUCTION

1.1 Background
Urinary tract infections (UTIs) are among the most prevailing infectious diseases with a substantial financial burden on society. In the USA, UTIs are responsible for over 7 million physician visits annually (1). Approximately 15% of all community-prescribed antibiotics in the USA are dispensed for UTI (2) and data from some European countries suggest a similar rate (3). In the US, UTIs account for more than 100,000 hospital admissions annually, most often for pyelonephritis (1). These data do apparently not account for complicated UTI associated with urological patients, the prevalence of which is not known. UTIs represents at least 40% of all hospital acquired infections and are, in the majority of cases, catheter associated (4). Bacteriuria develops in up to 25% of patients who require a urinary catheter for one week or more with a daily risk of 5-7% (5,6). The recent Global Prevalence Infection in Urology (GPIU) studies have shown that 10-12% of patients hospitalised in urological wards have a healthcare-associated infection (HAI). The strains retrieved from these patients are even more resistant (7).

1.2 Bacterial resistance development
The present state of microbial resistance development is alarming (8). The use of antibiotics in the different countries of Europe mirrors the global increase in resistant strains (8). The presence of extended-spectrum β-lactamase (ESBL) producing bacteria showing resistance to most antibiotics, except for the carbapenem group, is steadily increasing in the population (10). Even more alarming are the recent reports from all continents of faecal bacteria carrying the ESBL-carbapenemase (i.e. New-Delhi metallo-β-lactamase NDM-1) making them resistant to all available antibiotics including the carbapenem group.

Particularly troublesome is the increasing resistance to broad-spectrum antibiotics such as fluoroquinolones and cephalosporins due to an overconsumption of these two groups and the parallel development of co-resistance to other antibiotics (collateral damage) (11). This development is a threat for patients undergoing urological surgery in general and men subjected to prostate biopsy in particular.

An urgent and strong grip on this threatening development is thus required. With only a few new antibiotics expected in the coming 5 to 10 years, prudent use of available antibiotics is the only option to delay the development of resistance (9) and the urological community has a responsibility to participate in this combat. It is essential to consider the local microbial environment and resistance pattern as well as each individual patient’s risk factors for harbouring resistant microbes.

<table>
<thead>
<tr>
<th>Bacterial resistance development is a threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>• To treatment of UTI</td>
</tr>
<tr>
<td>• Prophylaxis in urological surgery</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>There is a direct correlation between the use of antibiotics and resistance development</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is an urgent need for combating resistance development by a prudent use of available antibiotics</td>
</tr>
</tbody>
</table>

1.3 The aim of the guidelines
It is the ambition of the present guidelines to provide both urologist and physicians from other medical specialties with evidence-based guidance regarding the treatment and prophylaxis of UTI. These guidelines cover male and female UTIs, male genital infections and special fields such as UTI in paediatric urology, immunosuppression, renal insufficiency and kidney transplant recipients. Much attention is given to antibiotic prophylaxis, aiming to reduce the overuse of peri-operative prophylactic antibiotics. High quality clinical research using strict internationally recognised definitions and classifications as presented in this section are encouraged.

1.4 Pathogenesis of UTIs
Microorganisms can reach the urinary tract by haematogenous or lymphatic spread, but there is abundant clinical and experimental evidence to show that the ascent of microorganisms from the urethra is the most common pathway that leads to a UTI, especially organisms of enteric origin (e.g. E. coli and other Enterobacteriaceae). This provides a logical explanation for the greater frequency of UTIs in women than in men, and for the increased risk of infection following bladder catheterisation or instrumentation. A single insertion of a catheter into the urinary bladder in ambulatory patients results in urinary infection in 1-2% of cases. Indwelling catheters with open-drainage systems result in bacteriuria in almost 100% of cases within 3-4 days. The use of a closed-drainage system, including a valve to prevent retrograde flow, delays the onset of infection, but ultimately does not prevent it. It is thought that bacteria migrate within the mucopurulent space between the urethra and catheter, and that this leads to the development of bacteriuria in almost all patients within about 4 weeks.
Haematogenous infection of the urinary tract is restricted to a few relatively uncommon microbes, such as Staphylococcus aureus, Candida sp., Salmonella sp. and Mycobacterium tuberculosis, which cause primary infections elsewhere in the body. Candida albicans readily causes a clinical UTI via the haematogenous route, but is also an infrequent cause of an ascending infection if an indwelling catheter is present, or following antibiotic therapy.

The concept of bacterial virulence or pathogenicity in the urinary tract infers that not all bacterial species are equally capable of inducing infection. The more compromised the natural defence mechanisms (e.g. obstruction, or bladder catheterisation), the fewer the virulence requirements of any bacterial strain to induce infection. This is supported by the well-documented in vitro observation that bacteria isolated from patients with a complicated UTI frequently fail to express virulence factors. The virulence concept also suggests that certain bacterial strains within a species are uniquely equipped with specialised virulence factors, e.g. different types of pili, which facilitate the ascent of bacteria from the faecal flora, introitus vaginae or periurethral area up the urethra into the bladder, or less frequently, allow the organisms to reach the kidneys to induce systemic inflammation.

1.5 Microbiological and other laboratory findings

The number of bacteria is considered relevant for the diagnosis of a UTI. In 1960, Kass developed the concept of significant bacteriuria (≥ 10^5 cfu/mL) in the context of pyelonephritis in pregnancy (12). Although this concept introduced quantitative microbiology into the diagnosis of infectious diseases, and is therefore still of general importance, it has recently become clear that there is no fixed bacterial count that is indicative of significant bacteriuria, which can be applied to all kinds of UTIs and in all circumstances. As described in Appendix 16.1, the following bacterial counts are clinically relevant:

- ≥ 10^3 cfu/mL of uropathogens in a mid-stream sample of urine (MSU) in acute uncomplicated cystitis in women.
- ≥ 10^4 cfu/mL of uropathogens in an MSU in acute uncomplicated pyelonephritis in women.
- ≥ 10^5 cfu/mL of uropathogens in an MSU in women, or ≥ 10^4 cfu/mL uropathogens in an MSU in men, or in straight catheter urine in women, in a complicated UTI.

In a suprapubic bladder puncture specimen, any count of bacteria is relevant. The problem of counting low numbers, however, has to be considered. If an inoculum of 0.1 mL of urine is used and 10 identical colonies are necessary for statistical reasons of confidence, then in this setting, the lowest number that can be counted is 100 cfu/mL of uropathogens. Asymptomatic bacteriuria is diagnosed if two cultures of the same bacterial strain (in most cases the species only is available), taken ≥ 24 h apart, show bacteriuria of ≥ 10^5 cfu/mL of uropathogens.

It is obvious that methods of urine collection and culture, as well as the quality of laboratory investigations, may vary. Two levels of standard must therefore be used for the management of patients. A basic standard level is necessary for routine assessment, whereas a higher standard level is required for scientific assessment and in special clinical circumstances, e.g. fever of unknown origin in immunocompromised patients. In research, the need for a precise definition of sampling methods, such as the time that urine is kept in the bladder, must be recognised, and these parameters carefully recorded.

In clinical routine assessment, a number of basic criteria must be looked at before a diagnosis can be established, including:

- clinical symptoms;
- results of selected laboratory tests (blood, urine or expressed prostatic secretion [EPS]);
- evidence of the presence of microorganisms by culturing or other specific tests;
- most of these investigations can today be performed in any laboratory.

It has to be considered, however, that microbiological methods and definitions applied must follow accepted standards with regard to specimen transport, pathogen identification, and antimicrobial susceptibility testing. These methods and microbiological definitions may vary between countries and institutions. One example is the breakpoints for classification of pathogen susceptibility. It is important to report not only the results, but also which methods and standards were applied, such as the European Committee for Antimicrobial Susceptibility Testing (EUCAST) (13,14), or the National Committee for Clinical Laboratory Standards (NCCLS) (15). Mixing results obtained by different methods, e.g. rates of bacterial resistance, can be problematic and requires careful interpretation. Histological investigation sometimes shows the presence of non-specific inflammation. Only in some cases, such findings (e.g. prostatitis in patients who have elevated levels of prostate-specific antigen [PSA]) might help determine the appropriate treatment, whereas in more specific inflammation, such as tuberculosis and actinomycosis, histology can be diagnostic. In general, however, histological findings usually contribute very little to the treatment decisions.
1.6 Methodology
The EAU Urological Infections guidelines panel consists of a group of urologists, specialised in the treatment of UTIs. It must be emphasised that clinical guidelines present the best evidence available to the experts at the time of writing. However, following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when treatment decisions for individual patients are being taken. Guidelines help to focus decisions. Clinical decisions must also take into account patients’ personal values and preferences and their individual circumstances.

1.6.1 Level of evidence and grade of guideline recommendations
References used in the text have been assessed according to their level of scientific evidence (Table 1). Guideline recommendations have been graded (Table 2) in accordance with the Oxford Centre for Evidence-Based Medicine levels of evidence (LE) (16). The aim of grading recommendations (GR) is to provide transparency between the underlying evidence and the recommendation given.

<table>
<thead>
<tr>
<th>Type of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence obtained from meta-analysis of randomised trials.</td>
<td>1a</td>
</tr>
<tr>
<td>Evidence obtained from at least one randomised trial.</td>
<td>1b</td>
</tr>
<tr>
<td>Evidence obtained from at least one well-designed controlled study without randomisation.</td>
<td>2a</td>
</tr>
<tr>
<td>Evidence obtained from at least one type of well-designed quasi-experimental study.</td>
<td>2b</td>
</tr>
<tr>
<td>Evidence obtained from well-designed non-experimental studies, such as comparative studies, correlation studies and case reports.</td>
<td>3</td>
</tr>
<tr>
<td>Evidence obtained from expert committee reports or opinions or clinical experience of respected authorities.</td>
<td>4</td>
</tr>
</tbody>
</table>

*Modified from Sackett et al. (16).

It should be noted that when recommendations are graded, the link between the level of evidence and grade of recommendation is not directly linear. Availability of randomised controlled trials (RCTs) may not necessarily translate into a grade A recommendation where there are methodological limitations or disparity in published results.

Conversely, an absence of high level evidence does not necessarily preclude a grade A recommendation, if there is overwhelming clinical experience and consensus. In addition, there may be exceptional situations where corroborating studies cannot be performed, perhaps for ethical or other reasons and in this case unequivocal recommendations are considered helpful for the reader. The quality of the underlying scientific evidence - although a very important factor - has to be balanced against benefits and burdens, values and preferences and cost when a grade is assigned (17-19).

The EAU Guidelines Office, do not perform cost assessments, nor can they address local/national preferences in a systematic fashion. But whenever this data is available, the expert panels will include the information.

<table>
<thead>
<tr>
<th>Nature of recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on clinical studies of good quality and consistency addressing the specific recommendations and including at least one randomised trial.</td>
<td>A</td>
</tr>
<tr>
<td>Based on well-conducted clinical studies, but without randomised clinical trials.</td>
<td>B</td>
</tr>
<tr>
<td>Made despite the absence of directly applicable clinical studies of good quality.</td>
<td>C</td>
</tr>
</tbody>
</table>

*Modified from Sackett et al. (16).

1.6.2 Publication history
A first version of the guidelines on the management of UTI and male genital infections was published in the EAU guidelines 2001 and in European Urology (20). A second updated version was included in the EAU guidelines 2006. The EAU/ICUD textbook on Urogenital Infections (21) has become the book of reference for the Guidelines and the recent update 2011. Guidelines on special conditions of the urogenital tract have also been published elsewhere (22-24).
1.7 References

2.クラスフォカシオフ ツィ

2.1 イントロダクション

従来、UTIsは臨床症状、臨床データ、および微生物の検検で分類されてきた。実際には、UTIsは未治癒したと複数のUTIsと、コレクションに分けられることに重要である。これは従来の分類が認知されていないことを強調している。重要であることを示して治療の必要性を記述する。薬物の合併症のための効果が必要であり、臨床研究を進める。

アニュアルのレビューを含むEUU/CUDウロゲナリティック摂動のイニシアティブ（1）で示された。合計の分類の分類は未確認と認められている。それは薬物の効果を示している。臨床研究を進める。

次の注意が必要であることを示している。

- 解剖学的レベルの感染
- 重症度
- 背景リスク
- 微生物学的検査

症状、従来の臨床データの検査が解剖学的レベルと重症度の感染の焦点を示している。下記のリスクファクターの解析を必要とし、追加の治療を必要とする（i.e. drainage）。

2.2 解剖学的レベルの感染

症状、解剖学的レベルの感染の定義を示す。尿道: urethritis (UR);

- 尿管: cystitis (CY);
- 肾: pyelonephritis (PN);
- 血液流: sepsis (US)。
Figure 2.1 illustrates the basic diagnostic and treatment strategy for UTI. Urethritis, being poorly understood, is for the time being not included. Also the male accessory gland or genital infections (MAGI) orchitis, epididymitis and prostatitis are not included.

Asymptomatic bacteriuria (ABU) needs to be considered a special entity because it can have its source in both the lower and upper urinary tracts, and requires no treatment unless the patient is subjected to urological surgery.

2.3 Grade of severity

The grade of severity is set on a scale of 1-6 that is related to the risk of fatal outcome (Figure 2.1).

Figure 2.1: Classification of UTI as proposed by the EAU European Section of Infection in Urology (ESIU) (1)

<table>
<thead>
<tr>
<th>Severity</th>
<th>Gradient of severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td></td>
</tr>
<tr>
<td>No symptoms</td>
<td>Local symptoms (Dysuria, frequency, urgency, pain or bladder tenderness)</td>
</tr>
<tr>
<td>Investigations</td>
<td>Dipstick (MSU Culture + S as required)</td>
</tr>
<tr>
<td>Risk factors</td>
<td>Risk factor assessment according to ORENUC (Table 2.1)</td>
</tr>
<tr>
<td>Medical and surgical treatment</td>
<td>Uncomplicated UTI</td>
</tr>
<tr>
<td>NO*</td>
<td>Empirical 3-5 days</td>
</tr>
</tbody>
</table>

* Two exceptions: during pregnancy and prior to urological surgery.
Table 2.1: Host risk factors in UTI

<table>
<thead>
<tr>
<th>Type</th>
<th>Category of risk factor</th>
<th>Examples of risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>No known/associated RF</td>
<td>- Healthy premenopausal women</td>
</tr>
<tr>
<td>R</td>
<td>RF of recurrent UTI, but no risk of severe outcome</td>
<td>- Sexual behaviour and contraceptive devices - Hormonal deficiency in post menopause - Secretory type of certain blood groups - Controlled diabetes mellitus</td>
</tr>
<tr>
<td>E</td>
<td>Extra-urogenital RF, with risk or more severe outcome</td>
<td>- Pregnancy - Male gender - Badly controlled diabetes mellitus - Relevant immunosuppression* - Connective tissue diseases* - Prematurity, new-born</td>
</tr>
<tr>
<td>N</td>
<td>Nephropathic disease, with risk of more severe outcome</td>
<td>- Relevant renal insufficiency* - Polycystic nephropathy</td>
</tr>
<tr>
<td>U</td>
<td>Urological RF, with risk or more severe outcome, which can be resolved during therapy</td>
<td>- Ureteral obstruction (i.e. stone, stricture) - Transient short-term urinary tract catheter - Asymptomatic Bacteriuria** - Controlled neurogenic bladder dysfunction - Urological surgery</td>
</tr>
<tr>
<td>C</td>
<td>Permanent urinary Catheter and non resolvable urological RF, with risk of more severe outcome</td>
<td>- Long-term urinary tract catheter treatment - Non-resolvable urinary obstruction - Badly controlled neurogenic bladder</td>
</tr>
</tbody>
</table>

RF = Risk Factor; * = not well defined; ** = usually in combination with other RF (i.e. pregnancy, urological intervention).

2.4 Pathogens

Urine culture will usually identify the causative pathogen (≥ 10^4 cfu/mL) and its susceptibility pattern. Both characteristics can be introduced in the final classification of the clinical stage of infection. The degree of susceptibility is defined as grade a (susceptible) to c (resistant).

2.5 Classification of UTI

Figure 2.2 shows a summary of the additive parameters that make up an individual class of UTI.
By cumulating the different parameters, a UTI can be classified as follows (1):

- **CY-1R**: *E. coli* (a): simple cystitis but recurrent with susceptibility to standard antibiotics.
- **PN-3U**: *K. pneumonia* (b): severe pyelonephritis (with high fever and vomiting), with underlying urological disease (e.g. stones or obstruction) due to *Klebsiella* sp., with a moderate antibiotic resistance profile.
- **US-5C**: *Enterococcus* sp. (a): severe urosepsis with an antibiotic-sensitive *Enterococcus* sp. in a patient with an indwelling catheter.

2.6 **Reference**

3. **UNCOMPlicated UTIs IN ADULTS**

3.1 **Summary and recommendations**
This chapter is by itself the summary of the EAU/ICUD initiative on urogenital infections, Chapter 3 on uncomplicated UTI (1).

3.2 **Definition**
Acute, uncomplicated UTIs in adults include episodes of acute cystitis and acute pyelonephritis in otherwise healthy individuals. These UTIs are seen mostly in women without structural and functional abnormalities within the urinary tract, kidney diseases, or comorbidity that could lead to more serious outcomes and therefore require additional attention (2).

3.2.1 **Aetiological spectrum**
The spectrum of aetiological agents is similar in uncomplicated upper and lower UTIs, with *E. coli* the causative pathogen in 70-95% of cases and *Staphylococcus saprophyticus* in 5-10%. Occasionally, other Enterobacteriaceae, such as *Proteus mirabilis* and *Klebsiella* sp., are isolated (3) (LE: 2a).

3.3 **Acute uncomplicated cystitis in premenopausal, non-pregnant women**

3.3.1 **Diagnosis**

3.3.1.1 **Clinical diagnosis**
The diagnosis of acute uncomplicated cystitis can be made with a high probability based on a focused history of urinary irritative symptomatology (dysuria, frequency and urgency) and the absence of vaginal discharge or irritation, in those women who have no other risk factors for complicated UTIs (4) (LE: 2a, GR: B).

3.3.1.2 **Laboratory diagnosis**
Urine dipstick testing, as opposed to urinary microscopy, is a reasonable alternative to urinalysis for diagnosis of acute uncomplicated cystitis (5,6) (LE: 2a, GR: B).

Urine cultures are recommended for those with: (i) suspected acute pyelonephritis; (ii) symptoms that do not resolve or recur within 2-4 weeks after the completion of treatment; and (iii) those women who present with atypical symptoms (7,8) (LE: 4, GR: B).

A colony count of $\geq 10^3$ cfu/mL of uropathogens is microbiologically diagnostic in women who present with symptoms of acute uncomplicated cystitis (9) (LE: 3, GR: B).

Women who present with atypical symptoms of either acute uncomplicated cystitis or acute uncomplicated pyelonephritis, as well as those who fail to respond to appropriate antimicrobial therapy should be considered for additional diagnostic studies (LE:4, GR: B).

3.3.2 **Therapy**
Antibiotic therapy is recommended because clinical success is significantly more likely in women treated with antibiotics compared with placebo (10) (LE: 1a, GR: A).

The choice of an antibiotic for therapy should be guided by:
- spectrum and susceptibility patterns of the aetiological uropathogens;
- efficacy for the particular indication in clinical studies;
- tolerability;
According to these principles and the available susceptibility patterns in Europe, fosfomycin trometamol 3 g single dose, pivmecillinam 400 mg for 3 days, and nitrofurantoin macrocrystal 100 mg bid for 5 days, are considered as drugs of first choice in many countries, when available (11-13) (LE: 1a, GR: A).

Cotrimoxazole 160/800 mg bid for 3 days or trimethoprim 200 mg for 5 days should only be considered as drugs of first choice in areas with known resistance rates for *E. coli* of < 20% (14,15) (LE: 1b, GR: B).

Alternative antibiotics are ciprofloxacin 250 mg bid, ciprofloxacin extended release 500 mg qd, levofloxacin 250 mg qd, norfloxacin 400 mg bid, and ofloxacin 200 mg bid, each as a 3-day course (16) (LE: 1b, GR: B). However, adverse effects have to be considered (Table 3.1).

Table 3.1: Recommended antimicrobial therapy in acute uncomplicated cystitis in otherwise healthy premenopausal women

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Daily dose</th>
<th>Duration of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfomycin trometamol°</td>
<td>3 g SD</td>
<td>1 day</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>50 mg q6h</td>
<td>7 days</td>
</tr>
<tr>
<td>Nitrofurantoin macrocrystal</td>
<td>100 mg bid</td>
<td>5-7 days</td>
</tr>
<tr>
<td>Pivmecillinam*</td>
<td>400 mg bid</td>
<td>3 days</td>
</tr>
<tr>
<td>Pivmecillinam*</td>
<td>200 mg bid</td>
<td>7 days</td>
</tr>
<tr>
<td>Alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>250 mg bid</td>
<td>3 days</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>250 mg qd</td>
<td>3 days</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>400 mg bid</td>
<td>3 days</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>200 mg bid</td>
<td>3 days</td>
</tr>
<tr>
<td>Cefpodoxime proxetil</td>
<td>100 mg bid</td>
<td>3 days</td>
</tr>
<tr>
<td>If local resistance pattern is known (E. coli resistance < 20%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole</td>
<td>160/800 mg bid</td>
<td>3 days</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>200 mg bid</td>
<td>5 days</td>
</tr>
</tbody>
</table>

°not available in all countries.

*available only in Scandinavia, the Netherlands, Austria, and Canada.

3.3.3 Follow-up

Routine post-treatment urinalysis or urine cultures in asymptomatic patients are not indicated (17) (LE: 2b, GR: B). In women whose symptoms do not resolve by the end of treatment, and in those whose symptoms resolve but recur within 2 weeks, urine culture and antimicrobial susceptibility tests should be performed (LE: 4, GR: B). For therapy in this situation, one should assume that the infecting organism is not susceptible to the agent originally used. Retreatment with a 7-day regimen using another agent should be considered (LE: 4, GR: C).

3.4 Acute uncomplicated pyelonephritis in premenopausal, non-pregnant women

3.4.1 Diagnosis

3.4.1.1 Clinical diagnosis

Acute pyelonephritis is suggested by flank pain, nausea and vomiting, fever (> 38°C), or costovertebral angle tenderness, and it can occur in the absence of symptoms of cystitis (18).

3.4.1.2 Laboratory diagnosis

Urinalysis (e.g. using a dipstick method), including the assessment of white and red blood cells and nitrites, is recommended for routine diagnosis (19) (LE: 4, GR: C).

Colony counts \(\geq 10^6 \) cfu/mL of uropathogens are considered to be indicative of clinically relevant bacteriuria (20) (LE: 2b, GR: C).
3.4.1.3 Imaging diagnosis
Evaluation of the upper urinary tract with ultrasound should be performed to rule out urinary obstruction or renal stone disease (LE: 4, GR: C).

Additional investigations, such as an unenhanced helical computed tomography (CT), excretory urography, or dimercaptosuccinic acid (DMSA) scanning, should be considered if the patients remain febrile after 72 h of treatment (LE: 4, GR: C).

3.4.2 Therapy
As a result of the lack of suitable surveillance studies, the spectrum and susceptibility patterns of uropathogens that cause uncomplicated cystitis can be used as a guide for empirical therapy (3) (LE: 4, GR: B). However, S. saprophyticus is less frequent in acute pyelonephritis as compared to acute cystitis (LE: 4, GR: B).

3.4.2.1 Mild and moderate cases of acute uncomplicated pyelonephritis (Table 3.2)
In mild and moderate cases of acute uncomplicated pyelonephritis, oral therapy of 10-14 days is usually sufficient (LE: 1b, GR: B). A fluoroquinolone for 7-10 days can be recommended as first-line therapy if the resistance rate of E. coli is still < 10% (21) (LE: 1b, GR: A). If the fluoroquinolone dose is increased, the treatment can probably be reduced to 5 days (22,23) (LE: 1b, GR: B). However, increasing numbers of fluoroquinolone-resistant E. coli in the community have already been found in some parts of the world, thus restricting the empirical use of fluoroquinolones.

A third-generation oral cephalosporin, such as cefpodoxime proxetil or ceftibuten, could be an alternative (24,25) (LE: 1b, GR: B). However, available studies have demonstrated only equivalent clinical, but not microbiological, efficacy compared with ciprofloxacin.

As a result of increasing E. coli resistance rates >10%, cotrimoxazole is not suitable for empirical therapy in most areas, but it can be used after sensitivity has been confirmed through susceptibility testing (26) (LE: 1b, GR: B).

Co-amoxiclav is not recommended as a drug of first choice for empirical oral therapy of acute pyelonephritis (LE: 4, GR: B). It is recommended when susceptibility testing shows a susceptible Gram-positive organism (LE: 4, GR: C).

In communities with high rates of fluoroquinolone-resistant and extended-spectrum β-lactamase (ESBL)-producing E. coli (> 10%), initial empirical therapy with an aminoglycoside or carbapenem has to be considered until susceptibility testing demonstrates that oral drugs can also be used (LE: 4, GR: B).

3.4.2.2 Severe cases of acute uncomplicated pyelonephritis (Table 3.2)
Patients with severe pyelonephritis who cannot take oral medication because of systemic symptoms such as nausea and vomiting, have to be treated initially with one of the following parenteral antibiotics:

<table>
<thead>
<tr>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A parenteral fluoroquinolone, in communities with E. coli fluoroquinolone-resistance rates < 10%.</td>
<td>1b</td>
</tr>
<tr>
<td>A third-generation cephalosporin, in communities with ESBL-producing E. coli resistance rates < 10%.</td>
<td>1b</td>
</tr>
<tr>
<td>An aminopenicillin plus a β-lactamase-inhibitor in cases of known susceptible Gram-positive pathogens.</td>
<td>4</td>
</tr>
<tr>
<td>An aminoglycoside or carbapenem in communities with fluoroquinolone and/or ESBL-producing E. coli resistance rates > 10%.</td>
<td>1b</td>
</tr>
</tbody>
</table>

Hospital admission should be considered if complicating factors cannot be ruled out by available diagnostic procedures and/or the patient has clinical signs and symptoms of sepsis (LE: 4, GR: B).

After improvement, the patient can be switched to an oral regimen using one of the above-mentioned antibacterials, if active against the infecting organism, to complete the 1-2-week course of therapy (LE: 1b, GR: B).
Table 3.2: Recommended initial empirical antimicrobial therapy in acute uncomplicated pyelonephritis in otherwise healthy premenopausal women

<table>
<thead>
<tr>
<th>I. Oral therapy in mild and moderate cases</th>
<th>Antibiotics</th>
<th>Daily dose</th>
<th>Duration of therapy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Ciprofloxacin¹</td>
<td>500-750 mg bid</td>
<td>7-10 days</td>
<td>(21)</td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Levofloxacin¹</td>
<td>250-500 mg qd</td>
<td>7-10 days</td>
<td>(27)</td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Levofloxacin</td>
<td>750 mg qd</td>
<td>5 days</td>
<td>(22,23)</td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Cefpodoxime proxetil</td>
<td>200 mg bid</td>
<td>10 days</td>
<td>(25)</td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Ceftibuten</td>
<td>400 mg qd</td>
<td>10 days</td>
<td>(24)</td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Alternatives (clinical but not microbiological equivalent efficacy compared with fluoroquinolones):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Cefpodoxime proxetil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Ceftibuten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Tramophprim-sulphamethoxazole</td>
<td>160/800 mg bid</td>
<td>14 days</td>
<td>(21)</td>
</tr>
<tr>
<td>I. Oral therapy in mild and moderate cases</td>
<td>Co-amoxiclav²³</td>
<td>0.5/0.125 g tid</td>
<td>14 days</td>
<td></td>
</tr>
</tbody>
</table>

¹lower dose studied, but higher dose recommended by experts.
²not studied as monotherapy for acute uncomplicated pyelonephritis.
³mainly for Gram-positive pathogens.

II. Initial parenteral therapy in severe cases

After improvement, the patient can be switched to an oral regimen using one of the above-mentioned antibacterials (if active against the infecting organism) to complete the 1-2-week course of therapy. Therefore, only daily dose and no duration of therapy are indicated.

<table>
<thead>
<tr>
<th>II. Initial parenteral therapy in severe cases</th>
<th>Antibiotics</th>
<th>Daily dose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Ciprofloxacin</td>
<td>400 mg bid</td>
<td>(21)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Levofloxacin¹</td>
<td>250-500 mg qd</td>
<td>(27)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Levofloxacin</td>
<td>750 mg qd</td>
<td>(22)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Alternatives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Cefotaxime²</td>
<td>2 g tid</td>
<td></td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Ceftriaxone¹⁴</td>
<td>1-2 g qd</td>
<td>(28)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Ceftazidime²</td>
<td>1-2 g tid</td>
<td>(29)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Cefepime¹⁴</td>
<td>1-2 g bid</td>
<td>(30)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Co-amoxiclav²³</td>
<td>1.5 g tid</td>
<td></td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Piperacillin/tazobactam¹⁴</td>
<td>2.5-4.5 g tid</td>
<td>(31)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Gentamicin²</td>
<td>5 mg/kg qd</td>
<td></td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Amikacin²</td>
<td>15 mg/kg qd</td>
<td></td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Ertapenem⁴</td>
<td>1 g qd</td>
<td>(28)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Imipenem/cilastatin⁴</td>
<td>0.5/0.5 g tid</td>
<td>(31)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Meropenem⁴</td>
<td>1 g tid</td>
<td>(29)</td>
</tr>
<tr>
<td>II. Initial parenteral therapy in severe cases</td>
<td>Doripenem⁴</td>
<td>0.5 g tid</td>
<td>(32)</td>
</tr>
</tbody>
</table>

¹lower dose studied, but higher dose recommended by experts.
²not studied as monotherapy in acute uncomplicated pyelonephritis.
³mainly for Gram-positive pathogens.
⁴same protocol for acute uncomplicated pyelonephritis and complicated UTI (stratification not always possible).
Figure 3.1: Clinical management of acute pyelonephritis

Symptoms/Signs of Pyelonephritis
- Fever, flank pain

Nausea, Vomiting

NO
- Urinalysis and urine culture
- Sonography (if anomaly suspected)
- Outpatient therapy

Initial Oral Therapy
- Ciprofloxacin or levofloxacin
- Aminopenicillin plus BLI
- Group 3 cephalosporin (e.g., cefpodoxime proxetil)
- TMP-SMX, only if susceptibility of pathogen is known (not for empirical therapy)

Clinical Improvement Within 72 h
- Oral therapy continued (test confirm)
- Total duration of therapy 1-2 Weeks

Urine Culture at Day 4 of Therapy (Optional)
- Urological investigation for complicating factors drainage, in case of obstruction or abscess
- Total duration of therapy 2-3 Weeks

NO
- Urinalysis and urine culture
- Sonography (in all patients)
- Hospitalisation
- Initial parenteral therapy for 1-3 days

Parenteral Therapy
- Ciprofloxacin or levofloxacin
- Aminopenicillin or piperacillin plus BLI
- Group 3 cephalosporin
- Aminoglycosid

Clinical Improvement Within 72 h
- Switch to oral therapy (test confirm)
- Outpatient therapy
- Total duration of therapy 1-2 Weeks

Urine Culture at Day 4 of Therapy (Optional)
- Hospitalisation continued
- Total duration of therapy 2-3 Weeks

YES
- Urinalysis and urine culture
- Sonography (in all patients)
- Hospitalisation
- Initial parenteral therapy for 1-3 days

Clinical Improvement Within 72 h
- Switch to oral therapy (test confirm)
- Outpatient therapy
- Total duration of therapy 1-2 Weeks

Urine Culture at Day 4 of Therapy (Optional)
- Hospitalisation continued
- Total duration of therapy 2-3 Weeks

Additional Urine and Blood Cultures
- Urological investigation for complicating factors drainage, in case of obstruction or abscess
- Total duration of therapy 2-3 Weeks

BLI = β-lactamase inhibitor; **TMP** = trimethoprim; **SMX** = sulphamethoxazole.
3.4.3 **Follow-up**

Routine post-treatment urinalysis and urine cultures in an asymptomatic patient might not be indicated (LE: 4, GR: C).

In women whose pyelonephritis symptoms do not improve within 3 days, or resolve and then recur within 2 weeks, repeated urine culture and antimicrobial susceptibility tests and an appropriate investigation, such as renal ultrasound, CT or renal scintigraphy, should be performed (LE: 4, GR: B).

In patients with no urological abnormality, it should be assumed that the infecting organism is not susceptible to the agent originally used, and an alternative tailored treatment should be considered based on culture results (LE: 4, GR: B).

For patients who relapse with the same pathogen, the diagnosis of uncomplicated pyelonephritis should be reconsidered. Appropriate diagnostic steps are necessary to rule out any complicating factors (LE: 4, GR: C).

An algorithm of the clinical management of acute pyelonephritis is shown in Figure 3.1.

3.5 **Recurrent (uncomplicated) UTIs in women**

3.5.1 **Diagnosis**

Recurrent UTIs are common among young, healthy women, even though they generally have anatomically and physiologically normal urinary tracts (33) (LE: 2a).

Recurrent UTIs need to be diagnosed by urine culture (LE: 4, GR: A). Excretory urography, cystography and cystoscopy are not routinely recommended for evaluation of women with recurrent UTIs (34) (LE: 1b, GR: B).

3.5.2 **Prevention**

Different therapeutic options can be recommended to the patient.

3.5.2.1 **Antimicrobial prophylaxis**

Antimicrobial prophylaxis for prevention of recurrent UTI should be considered only after counselling and behavioural modification has been attempted (LE: 4, GR: A).

Before any prophylaxis regimen is initiated, eradication of a previous UTI should be confirmed by a negative urine culture 1-2 weeks after treatment (LE: 4, GR: A).

Continuous or postcoital antimicrobial prophylaxis should be considered to prevent recurrent uncomplicated cystitis in women in whom non-antimicrobial measures have been unsuccessful (35) (LE: 1a, GR: A). The choice of antibiotics should be based upon the identification and susceptibility pattern of the organism that causes the UTI and the patient’s history of drug allergies. Drug regimens are shown in Tables 3.3 and 3.4.

Table 3.3: Continuous antimicrobial prophylaxis regimens for women with recurrent UTIs (33)

<table>
<thead>
<tr>
<th>Regimens</th>
<th>Expected UTIs per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP-SMX* 40/200 mg once daily</td>
<td>0-0.2</td>
</tr>
<tr>
<td>TMP-SMX 40/200 mg thrice weekly</td>
<td>0.1</td>
</tr>
<tr>
<td>Trimethoprim 100 mg once daily</td>
<td>0-1.5**</td>
</tr>
<tr>
<td>Nitrofurantoin 50 mg once daily</td>
<td>0-0.6</td>
</tr>
<tr>
<td>Nitrofurantoin 100 mg once daily</td>
<td>0-0.7</td>
</tr>
<tr>
<td>Cefaclor 250 mg once daily</td>
<td>0.0</td>
</tr>
<tr>
<td>Cephalexin 125 mg once daily</td>
<td>0.1</td>
</tr>
<tr>
<td>Cephalexin 250 mg once daily</td>
<td>0.2</td>
</tr>
<tr>
<td>Norfloxacin 200 mg once daily</td>
<td>0.0</td>
</tr>
<tr>
<td>Ciprofloxacin 125 mg once daily</td>
<td>0.0</td>
</tr>
<tr>
<td>Fosfomycin 3 g every 10 days</td>
<td>0.14</td>
</tr>
</tbody>
</table>

*Trimethoprim-sulfamethoxazole

**high recurrence rates observed with trimethoprim use associated with trimethoprim resistance
Table 3.4: Postcoital antimicrobial prophylaxis regimens for women with recurrent UTIs (33)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Expected UTIs per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP-SMX* 40/200 mg</td>
<td>0.30</td>
</tr>
<tr>
<td>TMP-SMX 80/400 mg</td>
<td>0.00</td>
</tr>
<tr>
<td>Nitrofurantoin 50 or 100 mg</td>
<td>0.10</td>
</tr>
<tr>
<td>Cephalaxin 250 mg</td>
<td>0.03</td>
</tr>
<tr>
<td>Ciprofloxacin 125 mg</td>
<td>0.00</td>
</tr>
<tr>
<td>Norfloxacin 200 mg</td>
<td>0.00</td>
</tr>
<tr>
<td>Ofloxacin 100 mg</td>
<td>0.06</td>
</tr>
</tbody>
</table>

*Trimethoprim-sulfamethoxazole

In appropriate women with recurrent uncomplicated cystitis, self-diagnosis and self-treatment with a short-course regimen of an antimicrobial agent should be considered (36) (LE: 2b, GR: A).

3.5.2.2 Immunoactive prophylaxis
OM-89 (Uro-Vaxom®) is sufficiently well-documented and has been shown to be more effective than placebo in several randomised trials. Therefore, it can be recommended for immunoprophylaxis in female patients with recurrent uncomplicated UTI (37,38) (LE: 1a, GR: B). Its efficacy in other groups of patients, and its efficacy relative to antimicrobial prophylaxis remain to be established.

For other immunotherapeutic products on the market, larger phase III studies are still missing. In smaller phase II studies, StroVac® and Solco-Urovac® have been shown to be effective when administered with a booster cycle of the same agents (LE: 1a, GR: C).

For other immunotherapeutic products, such as Urostim® and Urvakol®, no controlled studies are available. Therefore, no recommendations are possible.

3.5.2.3 Prophylaxis with probiotics
Accessibility of clinically proven probiotics for UTI prophylaxis is currently not universal. Only the Lactobacillus strains specifically tested in studies should be used for prophylaxis.

When commercially available, it is reasonable to consider the use of intravaginal probiotics that contain L. rhamnosus GR-1 and L. reuteri RC-14 for the prevention of recurrent UTI (39), and these products can be used once or twice weekly (LE: 4, GR: C).

Daily use of the oral product with strains GR-1 and RC-14 is worth testing given that it can restore the vaginal lactobacilli, compete with urogenital pathogens, and prevent bacterial vaginosis, a condition that increases the risk of UTI (39) (LE: 1b, GR: C).

3.5.2.4 Prophylaxis with cranberry
Despite the lack of pharmacological data and the small number of weak clinical studies, there is evidence to suggest that cranberry (Vaccinium macrocarpon) is useful in reducing the rate of lower UTIs in women (40,41) (LE: 1b, GR: C).

For everyday practice, the daily consumption of cranberry products, giving a minimum of 36 mg/day proanthocyanidin A (the active compound), is recommended (LE: 1b, GR: C). The best approach is to use those compounds that have demonstrated clear bioactivity in urine.

3.6 UTIs in pregnancy
Urinary tract infections and asymptomatic bacteriuria are common during pregnancy. Most women are prone to or acquire asymptomatic bacteriuria before pregnancy, and 20-40% of women with asymptomatic bacteriuria develop pyelonephritis during pregnancy.

3.6.1 Diagnosis of UTI in pregnant women
Diagnostic criteria of acute cystitis and pyelonephritis in otherwise healthy pregnant women are similar to that of non-pregnant women (3.3.1 and 3.4.1). However, physical examination and urinalysis including urine culture are highly recommended in cystitis. In addition, in case of suspicion of pyelonephritis, ultrasound of the kidneys and urinary tract is necessary.

3.6.2 Definition of bacteriuria
• In a pregnant woman, asymptomatic bacteriuria is diagnosed in case of two consecutive voided urine
specimens with growth of ≥ 10^5 cfu/mL of the same bacterial species; or a single catheterised specimen with growth of ≥ 10^5 cfu/mL of a uropathogen (17) (LE: 2a, GR: A).

• In a pregnant woman with symptoms compatible with UTI, bacteriuria is considered relevant if a voided or catheterised urine specimen grows ≥ 10^5 cfu/mL of a uropathogen (LE: 4, GR: B).

3.6.3 **Screening**

Pregnant women should be screened for bacteriuria during the first trimester (42) (LE: 1a, GR: A).

3.6.4 **Treatment of asymptomatic bacteriuria and acute cystitis**

Asymptomatic bacteriuria detected during pregnancy should be eradicated with antimicrobial therapy (42) (LE: 1a, GR: A). Acute cystitis should be adequately treated. Recommended antibiotic regimens are listed in Table 3.5.

Table 3.5: Treatment regimens for asymptomatic bacteriuria and cystitis in pregnancy (44)

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Duration of therapy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrofurantoin (Macrobid®) 100 mg</td>
<td>q12 h, 3-5 days</td>
<td>Avoid in G6PD deficiency</td>
</tr>
<tr>
<td>Amoxicillin 500 mg</td>
<td>q8 h, 3-5 days</td>
<td>Increasing resistance</td>
</tr>
<tr>
<td>Co-amoxicillin/clavulanate 500 mg</td>
<td>q12 h, 3-5 days</td>
<td>Increasing resistance</td>
</tr>
<tr>
<td>Cephalexin (Keflex®) 500 mg</td>
<td>q8 h, 3-5 days</td>
<td></td>
</tr>
<tr>
<td>Fosfomycin 3 g</td>
<td>Single dose</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>q12 h, 3-5 days</td>
<td>Avoid trimethoprim in first trimester/term</td>
</tr>
</tbody>
</table>

G6PD = glucose-6-phosphate dehydrogenase

3.6.5 **Duration of therapy**

Short courses of antimicrobial therapy (3 days) should be considered for the treatment of asymptomatic bacteriuria and cystitis in pregnancy (43) (LE: 1a, GR: A).

3.6.6 **Follow-up**

Urine cultures should be obtained 1-2 weeks after completion of therapy for asymptomatic bacteriuria and symptomatic UTI in pregnancy (LE: 4, GR: A).

3.6.7 **Prophylaxis**

Postcoital prophylaxis should be considered in pregnant women with a history of frequent UTIs before onset of pregnancy, to reduce their risk of UTI (44) (LE: 2b, GR: B).

3.6.8 **Treatment of pyelonephritis**

Outpatient management with appropriate antibiotics should be considered in women with pyelonephritis in pregnancy, provided symptoms are mild and close follow-up is feasible (45) (LE: 1b, GR: A). Recommended parenteral antibiotic regimens are shown in Table 3.6 (45,46). After clinical improvement parenteral therapy can be switched to oral therapy for a total treatment duration of 7-10 days (LE: 4; GR:B).

Table 3.6: Treatment regimens for pyelonephritis in pregnancy

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftriaxone</td>
<td>1-2 g IV or IM q24 h</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>1 g IV q8-12 h</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>3.375-4.5 g IV q6 h</td>
</tr>
<tr>
<td>Cefepime</td>
<td>1 g IV q12 h</td>
</tr>
<tr>
<td>Imipenem-cliastatin</td>
<td>500 mg IV q6 h</td>
</tr>
<tr>
<td>Ampicillin +</td>
<td>2 g IV q6 h</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3-5 mg/kg/day IV in 3 divided doses</td>
</tr>
</tbody>
</table>

3.6.9 **Complicated UTI**

For diagnostics of complicating factors within the urinary tract, ultrasonography or magnetic resonance imaging (MRI) should be used preferentially to avoid radiation risk to the foetus (LE: 4; GR: B). Treatment
follows the same general principles as outlined in 4.4. Appropriate antimicrobial therapy for 7-10 days and the management of any urological abnormality are mandatory. Hospitalisation is usually required and supportive care as required.

3.7 UTIs in postmenopausal women

3.7.1 Risk factors

<table>
<thead>
<tr>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 2a</td>
<td>2a</td>
<td>47</td>
</tr>
</tbody>
</table>

- In older institutionalised women, urine catheterisation and functional status deterioration appear to be the most important risk factors associated with UTI.
- Atrophic vaginitis.
- Incontinence, cystocele and post-voiding residual urine.
- UTI before menopause.
- Non-secretor status of blood group antigens.

3.7.2 Diagnosis

Diagnosis of UTI in postmenopausal women should always consider the following:

<table>
<thead>
<tr>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 B</td>
<td>1b</td>
<td>B</td>
</tr>
</tbody>
</table>

- History, physical examination and urinalysis, including culture.
- Genitourinary symptoms are not necessarily related to UTI and an indication for antimicrobial treatment.

3.7.3 Treatment

<table>
<thead>
<tr>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 1b C</td>
<td>1c</td>
<td>C</td>
</tr>
</tbody>
</table>

- Treatment of acute cystitis in postmenopausal women is similar to that in premenopausal women, however, short-term therapy is not so well-established as in premenopausal women.
- Treatment of pyelonephritis in postmenopausal women is similar to that in premenopausal women.
- Asymptomatic bacteriuria in elderly women should not be treated with antibiotics.
- Optimal antimicrobials, doses and duration of treatment in elderly women appear to be similar to those recommended for younger postmenopausal women.
- Oestrogen (especially vaginal) can be administered for prevention of UTI, but results are contradictory.
- Alternative methods, such as cranberry and probiotic lactobacilli, can contribute but they are not sufficient to prevent recurrent UTI.
- If complicating factors, such as urinary obstruction and neurogenic bladder, are ruled out, antimicrobial prophylaxis should be carried out as recommended for premenopausal women.

3.8 Acute uncomplicated UTIs in young men

3.8.1 Men with acute uncomplicated UTI

<table>
<thead>
<tr>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 4 B</td>
<td>4 B</td>
<td>23</td>
</tr>
</tbody>
</table>

- Only a small number of 15-50-year-old men suffer from acute uncomplicated UTI. Such men should receive, as minimum therapy, a 7-day antibiotic regimen.
3.8.2 Men with UTI and concomitant prostate infection

<table>
<thead>
<tr>
<th>Most men with febrile UTI have a concomitant infection of the prostate, as measured by transient increases in serum PSA and prostate volume.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53</td>
<td>2a</td>
<td></td>
</tr>
</tbody>
</table>

Urological evaluation should be carried out routinely in adolescents and men with febrile UTI, pyelonephritis, or recurrent infection, or whenever a complicating factor is suspected.

<table>
<thead>
<tr>
<th>A minimum treatment duration of 2 weeks is recommended, preferably with a fluoroquinolone since prostatic involvement is frequent.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54</td>
<td>2a</td>
<td>B</td>
</tr>
</tbody>
</table>

3.9 Asymptomatic bacteriuria

3.9.1 Diagnosis

<table>
<thead>
<tr>
<th>For women, a count of ≥ 10^5 cfu/mL of a microorganism in a voided urine specimen is diagnostic of bacteriuria.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>2b</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For men, a count of ≥ 10^3 cfu/mL of a microorganism in a voided urine specimen is diagnostic of bacteriuria.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
<td>2a</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For men with specimens collected using an external condom catheter, ≥ 10^6 cfu/mL is an appropriate quantitative diagnostic criterion.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56</td>
<td>2a</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For patients with indwelling urethral catheters, a count of ≥ 10^5 cfu/mL is diagnostic of bacteriuria.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>2b</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For a urine specimen collected by in and out catheter, a count of ≥ 100 cfu/mL is consistent with bacteriuria.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>2a</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyuria in the absence of signs or symptoms in a person with bacteriuria should not be interpreted as symptomatic infection or as an indication for antimicrobial therapy.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>2b</td>
<td>B</td>
</tr>
</tbody>
</table>

3.9.2 Screening

Screening for and treatment of asymptomatic bacteriuria is recommended:

<table>
<thead>
<tr>
<th>For pregnant women.</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

Before an invasive genitourinary procedure for which there is a risk of mucosal bleeding.

<table>
<thead>
<tr>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

Screening for or treatment of asymptomatic bacteriuria is not recommended for:

<table>
<thead>
<tr>
<th>Premenopausal, non-pregnant women</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1a</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postmenopausal women</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1b</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women with diabetes</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>1b</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Healthy men</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>2b</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residents of long-term care facilities</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1a</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with an indwelling urethral catheter</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with nephrostomy tubes or ureteric stents</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with spinal cord injury</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>2a</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients with candiduria</th>
<th>Reference</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1b</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Screening for or treatment of asymptomatic bacteriuria in renal transplant patients beyond the first 6 months is not recommended (LE: 2b, GR: B).
No recommendation can be made with respect to screening for or treatment of bacteriuria in patients with neutropenia (LE: 4).

3.10 References

 http://emedicine.medscape.com/article/245559-workup#aw2aab6b5b3

 http://cid.oxfordjournals.org/content/15/Supplement_1/S216.short

30. Naber KG, Savov O, Salmen HC. Piperacillin 2 g/tazobactam 0.5 g is as effective as imipenem 0.5 g/ cilastatin 0.5 g for the treatment of acute uncomplicated pyelonephritis and complicated urinary tract infections. Int J Antimicrob Agents 2002 Feb;19(2):95-103.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC332712/

http://content.karger.com/ProdukteDB/produkte.asp?Doi=61396

4. **COMPLICATED UTIs DUE TO UROLOGICAL DISORDERS**

4.1 **Summary and recommendations**
A complicated UTI is an infection associated with a condition, such as a structural or functional abnormality of the genitourinary tract, or the presence of an underlying disease that interferes with host defence mechanisms, which increase the risks of acquiring infection or of failing therapy. Examples of risk factors are listed in Table 2.1.

A broad range of bacteria can cause a complicated UTI. The spectrum is much larger than in uncomplicated UTIs, and bacteria are more likely to be resistant to antimicrobials, especially in a treatment-related complicated UTI.

Enterobacteriaceae are the predominant pathogens, with *E. coli* being the most common pathogen. However, non-fermenters (e.g. *Pseudomonas aeruginosa*) and Gram-positive cocci (e.g. staphylococci and enterococci) may also play an important role, depending on the underlying conditions.

Treatment strategy depends on the severity of the illness. Treatment encompasses three goals: management of the urological abnormality, antimicrobial therapy, and supportive care when needed. Hospitalisation is often required. To avoid the emergence of resistant strains, therapy should be guided by urine culture whenever possible.

If empirical therapy is necessary, the antibacterial spectrum of the antibiotic agent should include the most relevant pathogens (GR: A). A fluoroquinolone with mainly renal excretion, an aminopenicillin plus a β-lactamase inhibitor (BLI), a Group 2 or 3a cephalosporin or, in the case of parenteral therapy, an aminoglycoside, are recommended alternatives (LE: 1b, GR: B).

In case of failure of initial therapy, or in case of clinically severe infection, a broader-spectrum antibiotic should be chosen that is also active against *Pseudomonas* (LE: 1b, GR: B), e.g. a fluoroquinolone (if not used for initial therapy), an acylaminopenicilllin (piperacillin) plus a BLI, a Group 3b cephalosporin, or a carbapenem, with or without combination with an aminoglycoside (LE: 1b, GR: B).

The duration of therapy is usually 7-14 days (LE: 1b, GR: A), but sometimes has to be prolonged for up to 21 days (LE: 1b, GR: A).

Until predisposing factors are completely removed, true cure without recurrent infection is usually not possible. Therefore, a urine culture should be carried out 5-9 days after completion of therapy and also 4-6 weeks later (GR: B).

4.2 **Definitions and classification**
A complicated UTI is an infection associated with a condition, such as structural or functional abnormalities...
of the genitourinary tract or the presence of an underlying disease, which increases the risks of acquiring an infection or of failing therapy (1-3). Two criteria are mandatory to define a complicated UTI: a positive urine culture and one or more of the factors listed in Table 4.1.

Table 4.1: Factors that suggest a potential complicated UTI

<table>
<thead>
<tr>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>The presence of an indwelling catheter, stent or splint (urethral, ureteral, renal) or the use of intermittent bladder catheterisation</td>
</tr>
<tr>
<td>Post-void residual urine of > 100 mL</td>
</tr>
<tr>
<td>An obstructive uropathy of any aetiology, e.g. bladder outlet obstruction (including neurogenic urinary bladder), stones and tumour</td>
</tr>
<tr>
<td>Vesico-ureteric reflux or other functional abnormalities</td>
</tr>
<tr>
<td>Urinary tract modifications, such as an ileal loop or pouch</td>
</tr>
<tr>
<td>Chemical or radiation injuries of the uroepithelium</td>
</tr>
<tr>
<td>Peri- and postoperative UTI</td>
</tr>
<tr>
<td>Renal insufficiency and transplantation, diabetes mellitus and immunodeficiency</td>
</tr>
</tbody>
</table>

Complicated UTI can arise in a heterogeneous group of patients. However, neither patient age nor sex per se are part of the definition of a complicated UTI. With regard to prognosis and clinical studies, it is advisable to stratify complicated UTIs due to urological disorders into at least two groups (4):

1. Patients in whom the complicating factors could be eliminated by therapy, e.g. stone extraction, removal of an indwelling catheter.
2. Patients in whom the complicating factor could not be or is not removed satisfactorily during therapy, e.g. permanent indwelling catheter, stone residues after treatment or neurogenic bladder.

4.2.1 Clinical presentation

A complicated UTI may or may not be associated with clinical symptoms (e.g. dysuria, urgency, frequency, flank pain, costovertebral angle tenderness, suprapubic pain and fever). Clinical presentation can vary from severe obstructive acute pyelonephritis with imminent urosepsis to a catheter-associated postoperative UTI, which might disappear spontaneously as soon as the catheter is removed. It also has to be recognised that symptoms, especially lower urinary tract symptoms (LUTS), are not only caused by UTIs but also by other urological disorders, such as benign prostatic hyperplasia (BPH) or transurethral resection of the prostate (TURP).

Apart from urological abnormalities, concomitant medical conditions, such as diabetes mellitus (10%) and renal failure, which can be related to urological abnormalities (5), are often present in a complicated UTI. These are discussed in more details in Sections 8.1.3 and 8.1.4 on UTIs in renal insufficiency, transplant recipients, diabetes mellitus and immunosuppression.

4.2.2 Urine cultures

Significant bacteriuria in a complicated UTI is defined by counts of \(\geq 10^5 \) cfu/mL and \(\geq 10^4 \) cfu/mL, in the mid-stream urine (MSU) of women and men, respectively (1,2). If a straight catheter urine sample is taken, \(\geq 10^4 \) cfu/mL can be considered relevant. For an asymptomatic patient, two consecutive urine cultures (at least 24 h apart) yielding \(\geq 10^6 \) cfu/mL of the same microorganism are required. The requirement for pyuria is \(\geq 10 \) white blood cells (WBC) per high-power field (x400) in the resuspended sediment of a centrifuged aliquot of urine or per mm³ in unspun urine. A dipstick method can also be used for routine assessment, including a leukocyte esterase test, haemoglobin and probably a nitrite reaction.

4.3 Microbiology

4.3.1 Spectrum and antibiotic resistance

Patients with a complicated UTI, both community and hospital-acquired, tend to show a diversity of microorganisms with a higher prevalence of resistance against antimicrobials, and higher rates of treatment failure if the underlying abnormality cannot be corrected.

However, the presence of a resistant strain on its own is not enough to define a complicated UTI. Urinary abnormality (anatomical or functional) or the presence of an underlying disease predisposing to a UTI is also necessary.

A broad range of bacteria can cause a complicated UTI. The spectrum is much larger than with an uncomplicated UTI and the bacteria are more likely to be antibiotic-resistant (especially in a treatment-related complicated UTI) than those isolated in an uncomplicated UTI. E. coli, Proteus, Klebsiella, Pseudomonas and
Serratia sp. and enterococci are the usual strains found in cultures. Enterobacteriaceae predominate (60-75%) (6-8), with *E. coli* as the most common pathogen; particularly if the UTI is a first infection. Otherwise, the bacterial spectrum may vary over time and from one hospital to another.

4.3.2 Complicated UTIs associated with urinary stones

In the subset of complicated UTIs related to urinary stones, the frequency of *E. coli* and enterococci infection seems less important pathogens. In contrast, a greater portion of *Proteus* and *Pseudomonas* sp. (9) is found.

Of the urose-secreting organisms, *Proteus, Providencia* and *Morganella*, and *Corynebacterium urealyticum* are predominant, but *Klebsiella, Pseudomonas* and *Serratia* sp. and staphylococci are also urose-secreting producers to a certain extent.

Among patients with staghorn calculus disease, 88% were found to have a UTI at the time of diagnosis, with 82% of patients infected with urease-producing organisms (10). The enzyme, urease, splits urea into carbon dioxide and ammonia. The resultant increase in ammonia in the urine injures the glycosaminoglycan layer, which in turn increases bacterial adherence (11) and enhances the formation of struvite crystals. These aggregate to form renal stones and cumbustions on urinary catheters (12).

The pathogenic potential of coagulase-negative staphylococci and non-group D streptococci is controversial (13,14). Under certain circumstances, such as the presence of a stone or foreign bodies, staphylococci can be relevant pathogens. Otherwise, staphylococci are not so common in complicated UTIs (0-11%), according to published reports (6,15).

4.3.3 Complicated UTIs associated with urinary catheters

In catheter-associated UTIs, the distribution of microorganisms is similar (16), and biofilm has to be considered. Antimicrobial therapy may only be effective in the early stages of the infection (15). For more details see Chapter 6 on catheter-associated UTIs.

4.4 Treatment

4.4.1 General principles

Treatment strategy depends on the severity of the illness. Appropriate antimicrobial therapy and the management of the urological abnormality are mandatory. If needed, supportive care is given. Hospitalisation is often necessary depending on the severity of the illness.

4.4.2 Choice of antibiotics

Empirical treatment of a symptomatic complicated UTI requires a knowledge of the spectrum of possible pathogens and local antibiotic resistance patterns, as well as assessment of the severity of the underlying urological abnormality (including the evaluation of renal function).

Bacteraemia is usually reported too late to influence the choice of antibiotics. However, suspicion of bacteraemia must influence the empirical treatment. The severity of the associated illness and the underlying urological condition are still of the utmost importance for prognosis.

Many therapeutic trials have been published on the use of specific antimicrobial therapies in complicated UTIs. Unfortunately, most reports are of limited use for the practical management of the patient in a day-to-day situation because of limitations such as:

- poor characterisation of the patient populations;
- unclear evaluation of the severity of the illness;
- nosocomial and community-acquired infections are not accurately distinguished;
- urological outcome is seldom taken into consideration.

Intense use of any antimicrobial, especially when used on an empirical basis in this group of patients with a high likelihood of recurrent infection, will lead to the emergence of resistant microorganisms in subsequent infections. Whenever possible, empirical therapy should be replaced by a therapy adjusted for the specific infective organisms identified in the urine culture. Therefore, a urine specimen for culture must be obtained before initiation of therapy, and the selection of an antimicrobial agent should be re-evaluated once culture results are available (7). To date, it has not been shown that any agent or class of agents is superior in cases in which the infective organism is susceptible to the drug administered.

In patients with renal failure, whether related to a urological abnormality or not, appropriate dose adjustments have to be made.

If empirical treatment is necessary, fluoroquinolones with mainly renal excretion are recommended because they have a large spectrum of antimicrobial activity that covers most of the expected pathogens, and they reach high concentration levels both in the urine and the urogenital tissues. Fluoroquinolones can be used orally as well as parenterally. An aminopenicillin plus a BLI, a Group 2 or 3a cephalosporin, or, in the case of parenteral therapy, an aminoglycoside, are alternatives. A new Group 1 oral carbapenem, ertapenem, in a
prospective randomised trial, has been shown to be as effective as ceftriaxone (16).

In most countries, *E. coli* shows a high rate of resistance against TMP-SMX (18-25% in the latest evaluation in the USA) (17) and should therefore be avoided as a first-line treatment. Fosfomycin trometamol is licensed only for a single-dose therapy of uncomplicated cystitis (18). The aminopenicillins, ampicillin or amoxicillin, are no longer sufficiently active against *E. coli*.

In the case of failure of initial therapy, or if microbiological results are not yet available, or as initial therapy in the case of clinically severe infection, treatment should be switched to an antibiotic with a broader spectrum that is also active against *Pseudomonas*, such as a fluoroquinolone (if not used for initial therapy), an acylaminopenicillin (piperacillin) plus a BLI, or a Group 3b cephalosporin, or a carbapenem, eventually in combination with an aminoglycoside. Similarly, many experts concur that empirical therapy for the institutionalised or hospitalised patients with a serious UTI should include an intravenous antipseudomonal agent because of an increased risk of urosepsis (19).

Patients can generally be treated as outpatients. In more severe cases (e.g. hospitalised patients), antibiotics have to be given parenterally. A combination of an aminoglycoside with a BLI or a fluoroquinolone is widely used for empirical therapy. After a few days of parenteral therapy and clinical improvement, patients can be switched to oral treatment. Therapy has to be reconsidered when the infective strains have been identified and their susceptibilities are known.

The successful treatment of a complicated UTI always combines effective antimicrobial therapy, optimal management of the underlying urological abnormalities or other diseases, and sufficient life-supporting measures. The antibacterial treatment options are summarised in Table 4.2 and Appendix 16.2 (Recommendations for antimicrobial therapy in urology).

4.4.3 Duration of antibiotic therapy

Treatment for 7-14 days is generally recommended, but the duration should be closely related to the treatment of the underlying abnormality (1). Sometimes, a prolongation for up to 21 days, according to the clinical situation, is necessary (2).

4.4.4 Complicated UTIs associated with urinary stones

If a nidus of a stone or an infection remains, stone growth will occur. Complete removal of the stones and adequate antimicrobial therapy are both needed. Eradication of the infection will probably eliminate the growth of struvite calculi (20). Long-term antimicrobial therapy should be considered if complete removal of the stone cannot be achieved (21).

4.4.5 Complicated UTIs associated with indwelling catheters

Current data do not support the treatment of asymptomatic bacteriuria, either during short-term catheterisation (< 30 days) or during long-term catheterisation, because it will promote the emergence of resistant strains (22,23). In short-term catheterisation, antibiotics may delay the onset of bacteriuria, but do not reduce complications (24).

A symptomatic complicated UTI associated with an indwelling catheter is treated with an agent with as narrow a spectrum as possible, based on culture and sensitivity results. The optimal duration is not well established. Treatment durations that are too short as well as too long may cause the emergence of resistant strains. A 7-day course could be a reasonable compromise.

4.4.6 Complicated UTIs in patients with spinal cord injury

In case of persistent UTIs and suspicion of urinary retention, a full urodynamic assessment to appraise bladder function is to be carried out. Priority is to ensure proper drainage of the bladder to protect the urinary tract. For further details, see the EAU guidelines on Neurogenic Lower Urinary Tract Dysfunction (25).

It is generally accepted that asymptomatic bacteriuria in patients with spinal cord injury should not be treated (26), even in cases of intermittent catheterisation. For symptomatic episodes of infection in patients with spinal cord injury, only a few studies have investigated the most appropriate agent and duration of therapy. Currently, 7-10 days of therapy is most commonly used. There is no superiority of one agent or class of antimicrobials in this group of patients.

Antimicrobial treatment options are summarised in Table 4.2.
Table 4.2: Antimicrobial treatment options for empirical therapy

<table>
<thead>
<tr>
<th>Antibiotics recommended for initial empirical treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroquinolones</td>
</tr>
<tr>
<td>Aminopenicillin plus a BLI</td>
</tr>
<tr>
<td>Cephalosporin (Groups 2 or 3a)</td>
</tr>
<tr>
<td>Aminoglycoside</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotics recommended for empirical treatment in case of initial failure, or for severe cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroquinolone (if not used for initial therapy)</td>
</tr>
<tr>
<td>Ureidopenicillin (piperacillin) plus BLI</td>
</tr>
<tr>
<td>Cephalosporin (Group 3b)</td>
</tr>
<tr>
<td>Carbapenem</td>
</tr>
</tbody>
</table>

Combination therapy:
- Aminoglycoside + BLI
- Aminoglycoside + fluoroquinolone

<table>
<thead>
<tr>
<th>Antibiotics not recommended for empirical treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminopenicillins, e.g. amoxicillin, ampicillin</td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole (only if susceptibility of pathogen is known)</td>
</tr>
<tr>
<td>Fosfomycin trometamol</td>
</tr>
</tbody>
</table>

BLI = β-lactam inhibitor

4.4.7 Follow-up after treatment
The greater likelihood of the involvement of resistant microorganisms in complicated UTIs is another feature of these infectious diseases. This is not a priori related to the urinary abnormality, but is related more to the fact that patients with a complicated UTI tend to have recurrent infection (7). For these reasons, before and after the completion of the antimicrobial treatment, urine cultures must be obtained for the identification of the microorganisms and the evaluation of susceptibility testing.

4.5 References

5. SEPSIS SYNDROME IN UROLOGY (UROSEPSIS)

5.1 Summary and recommendations
Patients with urosepsis should be diagnosed at an early stage, especially in the case of a complicated UTI. The systemic inflammatory response syndrome, known as SIRS (fever or hypothermia, hyperleukocytosis or leukopenia, tachycardia, tachypnoea), is recognised as the first event in a cascade to multi-organ failure. Mortality is considerably increased when severe sepsis or septic shock are present, although the prognosis of urosepsis is globally better than that of sepsis from other infectious sites.

The treatment of urosepsis calls for the combination of adequate life-supporting care, appropriate and prompt antibiotic therapy, adjunctive measures (e.g. sympathomimetic amines, hydrocortisone, blood glucose control) and the optimal management of urinary tract disorders (LE: 1a, GR: A). The drainage of any obstruction in the urinary tract is essential as first-line treatment (LE: 1b, GR: A). Urologists are recommended to treat patients in collaboration with intensive care and infectious diseases specialists (LE: 2a, GR: B).

Urosepsis is seen in both community-acquired and healthcare associated infections. Most nosocomial urosepsis can be avoided by measures used to prevent nosocomial infection, e.g. reduction of hospital stay, early removal of indwelling urethral catheters, avoidance of unnecessary urethral catheterisation, correct use of closed catheter systems, and attention to simple daily asepsis techniques to avoid cross-infection (LE: 2a, GR: B).

5.2 Background
Urinary tract infections can manifest as bacteriuria with limited clinical symptoms, sepsis or severe sepsis, depending on localised or systemic extension. Sepsis is diagnosed when clinical evidence of infection is accompanied by signs of systemic inflammation (fever or hypothermia, tachycardia, tachypnoea, leukocyturia or leukopenia). Severe sepsis is defined by the presence of symptoms of organ dysfunction, and septic shock by the presence of persistent hypotension associated with tissue anoxia.

Severe sepsis is a severe situation with a reported mortality rate of 20-42% (1). Most severe sepsis reported in the literature is related to pulmonary (50%) or abdominal (24%) infections, with UTIs accounting for only 5% (2). Sepsis is more common in men than in women (3). In recent years, the incidence of sepsis has increased by 8.7% per year (1), but the associated mortality has decreased, which suggests improved management of patients (total in-hospital mortality rate fell from 27.8% to 17.9% during 1995-2000) (4).

Globally (this is not true for urosepsis), the rate of sepsis due to fungal organisms has increased while Gram-positive bacteria have become the predominant pathogen in sepsis, even if Gram-negative bacteria remain predominant in urosepsis.

In urosepsis, as in other types of sepsis, the severity depends mostly upon the host response. Patients who are more likely to develop urosepsis include: elderly patients; diabetics; immunosuppressed patients, such as transplant recipients; patients receiving cancer chemotherapy or corticosteroids; and patients with AIDS. Urosepsis also depends on local factors, such as urinary tract calculi, obstruction at any level in the urinary tract, congenital uropathy, neurogenic bladder disorders, or endoscopic manoeuvres. However, all patients can be affected by bacterial species that are capable of inducing inflammation within the urinary tract. Moreover, it is now recognised that SIRS may be present without infection (e.g. pancreatitis, burns, or non-septic shock) (5).

For therapeutic purposes, the diagnostic criteria of sepsis should identify patients at an early stage of the syndrome, which should prompt urologists and intensive care specialists to search for and treat infection, apply appropriate therapy, and monitor for organ failure and other complications.

5.3 Definition and clinical manifestation of sepsis in urology
The clinical evidence of UTI is based on symptoms, physical examination, sonographic and radiological features, and laboratory data, such as bacteriuria and leukocyturia. The following definitions apply (Table 5.1):

• Sepsis is a systemic response to infection. The symptoms of SIRS which were initially considered to be ‘mandatory’ for the diagnosis of sepsis (5), are now considered to be alerting symptoms (6). Many
other clinical or biological symptoms must be considered.

- Severe sepsis is sepsis associated with organ dysfunction.
- Septic shock is persistence of hypoperfusion or hypotension despite fluid resuscitation.
- Refractory septic shock is defined by an absence of response to therapy.

Table 5.1: Clinical diagnostic criteria of sepsis and septic shock (5,6)

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>Presence of organisms in a normally sterile site that is usually, but not necessarily, accompanied by an inflammatory host response.</td>
</tr>
<tr>
<td>Bacteraemia</td>
<td>Bacteria present in blood as confirmed by culture. May be transient.</td>
</tr>
</tbody>
</table>
| Systematic inflammatory response syndrome (SIRS) | Response to a wide variety of clinical insults, which can be infectious, as in sepsis but may be non-infectious in aetiology (e.g. burns, or pancreatitis). This systemic response is manifested by two or more of the following conditions:
- Temperature > 38°C or < 36°C
- Heart rate > 90 bpm
- Respiratory rate > 20 breaths/min or PaCO2 < 32 mmHg (< 4.3 kPa)
- WBC > 12,000 cells/mm3 or < 4,000 cells/mm3 or > 10% immature (band) forms |
| Sepsis | Activation of the inflammatory process due to infection. |
| Hypotension | Systolic blood pressure < 90 mmHg or a reduction of > 40 mmHg from baseline in the absence of other causes of hypotension. |
| Severe sepsis | Sepsis associated with organ dysfunction, hypoperfusion or hypotension.
Hyypoperfusion and perfusion abnormalities may include but are not limited to lactic acidosis, oliguria or acute alteration of mental status. |
| Septic shock | Sepsis with hypotension despite adequate fluid resuscitation along with the presence of perfusion abnormalities that may include, but are not limited to lactic acidosis, oliguria, or acute alteration in mental status. Patients who are on inotropic or vasopressor agents may not be hypotensive at the time that perfusion abnormalities are measured. |
| Refractory septic shock | Septic shock that lasts for > 1 h and does not respond to fluid administration or pharmacological intervention. |

5.4 Physiology and biochemical markers

Microorganisms reach the urinary tract by way of the ascending, haematogenous, or lymphatic routes. For urosepsis to be established, the pathogens have to reach the bloodstream. The risk of bacteraemia is increased in severe UTIs, such as pyelonephritis and acute bacterial prostatitis, and is facilitated by obstruction of the urinary tract. *E. coli* remains the most prevalent microorganism. In several countries, some bacterial strains can be resistant to quinolones or third-generation cephalosporins. Some microorganisms are multi-resistant, such as methicillin-resistant *Staphylococcus aureus* (MRSA), *P. aeruginosa* and *Serratia* sp. and therefore difficult to treat. Most commonly, the condition develops in compromised patients (e.g. those with diabetes or immunosuppression), with typical signs of generalised sepsis associated with local signs of infection. A fatal outcome is described in 20-40% of all patients.

5.4.1 Cytokines as markers of the septic response

Cytokines are involved in the pathogenesis of sepsis syndrome. They are peptides that regulate the amplitude and duration of the host inflammatory response. They are released from various cells including monocytes, macrophages and endothelial cells, in response to various infectious stimuli. When they become bound to specific receptors on other cells, cytokines change their behaviour in the inflammatory response. The complex balance between pro- and anti-inflammatory responses is modified in severe sepsis. An immunosuppressive phase follows the initial pro-inflammatory mechanism. Other cytokines are involved such as interleukins (ILs).
Tumour necrosis factor (TNF)-α, IL-1, IL-6 and IL-8 are cytokines that are associated with sepsis. Sepsis may indicate an immune system that is severely compromised and unable to eradicate pathogens or a non-regulated and excessive activation of inflammation, or both. Genetic predisposition is a probable explanation of sepsis in several patients. Mechanisms of organ failure and death in patients with sepsis remain only partially understood (2).

5.4.2 Procalcitonin is a potential marker of sepsis
Procalcitonin is the propeptide of calcitonin, but is devoid of hormonal activity. Normally, levels are undetectable in healthy humans. During severe generalised infections (bacterial, parasitic and fungal) with systemic manifestations, procalcitonin levels may rise to > 100 ng/mL. In contrast, during severe viral infections or inflammatory reactions of non-infectious origin, procalcitonin levels show only a moderate or no increase. The exact site of procalcitonin production during sepsis is not known. Procalcitonin monitoring may be useful in patients likely to develop a SIRS of infectious origin. High procalcitonin levels, or an abrupt increase in levels in these patients, should prompt a search for the source of infection. Procalcitonin may be useful in differentiating between infectious and non-infectious causes of severe inflammatory status (7,8).

5.5 Prevention
Septic shock is the most frequent cause of death for patients hospitalised for community-acquired and nosocomial infection (20-40%). Sepsis initiates the cascade that progresses to severe sepsis and then septic shock in a clinical continuum. Urosepsis treatment calls for a combination of treatment of the cause (obstruction of the urinary tract), adequate life-supporting care, and appropriate antibiotic therapy (2). In such a situation, it is recommended that urologists collaborate with intensive care and infectious disease specialists for the best management of the patient.

5.5.1 Preventive measures of proven or probable efficacy (9,10)
The most effective methods to prevent nosocomial urosepsis are the same as those used to prevent other nosocomial infections:
• Isolation of all patients infected with multi-resistant organisms to avoid cross-infection.
• Prudent use of antimicrobial agents for prophylaxis and treatment of established infections, to avoid selection of resistant strains. Antibiotic agents should be chosen according to the predominant pathogens at a given site of infection in the hospital environment.
• Reduction in hospital stay. It is well known that long inpatient periods before surgery lead to a greater incidence of nosocomial infections.
• Early removal of indwelling urethral catheters, as soon as allowed by the patient's condition. Nosocomial UTIs are promoted by bladder catheterisation as well as by ureteral stenting (11). Antibiotic prophylaxis does not prevent stent colonisation, which appears in 100% of patients with a permanent ureteral stent and in 70% of those temporarily stented.
• Use of closed catheter drainage and minimisation of breaks in the integrity of the system, e.g. for urine sampling or bladder wash-out.
• Use of least-invasive methods to release urinary tract obstruction until the patient is stabilised.
• Attention to simple everyday techniques to assure asepsis, including the routine use of protective, disposable gloves, frequent hand disinfection, and using infectious disease control measures to prevent cross-infections.

5.5.2 Appropriate perioperative antimicrobial prophylaxis
For appropriate perioperative antimicrobial prophylaxis, see Section 15. The potential side effects of antibiotics must be considered before their administration in a prophylactic regimen.

5.5.3 Preventive measures of debatable efficacy
• Instillation of antibiotic or antiseptic drugs into catheters and drainage bags.
• Use of urinary catheters coated with antibiotics or silver.

5.5.4 Ineffective or counterproductive measures
• Continuous or intermittent bladder irrigations with antibiotics or urinary antiseptics that increase the risk of infection with resistant bacteria (9,12).
• Routine administration of antimicrobial drugs to catheterised patients, which reduces the incidence of bacteriuria only for a few days and increases the risk of infection with multi-resistant bacteria (9,12). Its use may be reserved for immunosuppressed patients.
5.6 Algorithm for the management of urosepsis

Figure 5.1: Clinical algorithm for the management of urosepsis

5.7 Treatment

5.7.1 Clinical algorithm for management of urosepsis

Table 5.2: Early goal directed therapy

<table>
<thead>
<tr>
<th>Early goal directed therapy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Central venous pressure (CVP)</td>
<td>8-12 mmHg</td>
</tr>
<tr>
<td>Mean arterial pressure (MAP)</td>
<td>65-90 mmHg</td>
</tr>
<tr>
<td>Central venous oxygen (CVO2)</td>
<td>≥ 70%</td>
</tr>
<tr>
<td>Haematocrit (HKT)</td>
<td>> 30 %</td>
</tr>
<tr>
<td>Urine output</td>
<td>> 40 mL/h</td>
</tr>
</tbody>
</table>

Table 5.3: Levels of therapy in sepsis

<table>
<thead>
<tr>
<th>Levels of therapy in sepsis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Causal therapy</td>
<td>1. Antimicrobial treatment</td>
</tr>
<tr>
<td>Supportive therapy</td>
<td>2. Source control</td>
</tr>
<tr>
<td>Supportive therapy</td>
<td>1. Haemodynamic stabilisation</td>
</tr>
<tr>
<td>Adjunctive therapy</td>
<td>2. Airways, respiration</td>
</tr>
<tr>
<td>Adjunctive therapy</td>
<td>1. Glucocorticosteroids</td>
</tr>
<tr>
<td>Adjunctive therapy</td>
<td>2. Intensified insulin therapy</td>
</tr>
</tbody>
</table>
5.7.2 Relief of obstruction
Drainage of any obstruction in the urinary tract and removal of foreign bodies, such as urinary catheters or stones, should lead to resolution of symptoms and recovery. These are key components of the strategy. This condition is an absolute emergency.

5.7.3 Antimicrobial therapy
Empirical initial treatment should provide broad antimicrobial coverage and should later be adapted on the basis of culture results. The dosage of the antibiotic substances is of paramount importance in patients with sepsis syndrome and should generally be high, with the exception of patients in renal failure. Antimicrobials must be administered not later than 1 h after clinical assumption of sepsis (see algorithm). The antibacterial treatment options are summarised in Appendix 16.1 and 16.2.

5.7.4 Adjunctive measures (12,13)
The management of fluid and electrolyte balance is a crucial aspect of patient care in sepsis syndrome; particularly when the clinical course is complicated by shock. The use of human albumin is debatable. Early goal-directed therapy has been shown to reduce mortality (14). Volaemic expansion and vasopressor therapy have a considerable impact on the outcome. Early intervention with appropriate measures to maintain adequate tissue perfusion and oxygen delivery by prompt institution of fluid therapy, stabilisation of arterial pressure, and providing sufficient oxygen transport capacity are highly effective.

- Hydrocortisone (with a debate on dosage) is useful in patients with relative insufficiency in the pituitary gland-adrenal cortex axis (adrenocorticotropic test) (15).
- Tight blood glucose control by administration of insulin doses up to 50 U/h is associated with a reduction in mortality (16).
- Current evidence does not support the use of human recombinant activated protein C in adults and children with severe sepsis and septic shock (17).
- The best strategy has been summarised and graded according to a careful evidence-based methodology in the recently published ‘Surviving Sepsis Guidelines’ (18).

5.8 Conclusion
Sepsis syndrome in urology remains a severe situation with a mortality rate as high as 20-40%. A recent campaign, ‘Surviving Sepsis Guidelines’, aimed at reducing mortality by 25% in the next few years has been published recently (18). Early recognition of the symptoms may decrease the mortality by timely treatment of urinary tract disorders, e.g. obstruction, or urolithiasis. Adequate life-support measures and appropriate antibiotic treatment provide the best conditions for improving patient survival. The prevention of sepsis syndrome is dependent on good practice to avoid nosocomial infections and using antibiotic prophylaxis and therapy in a prudent and well-accepted manner.

5.9 Acknowledgement
The authors are thankful to Jean M. Carlet, Head of Intensive Care, Hôpital Saint Joseph, Paris, France, for reviewing this manuscript on urosepsis.

5.10 References
6. **CATHETER-ASSOCIATED UTIs**

Based on the EAU guidelines published in 2007 (ISBN-13:978-90-70244-59-0), the following text presents the findings of a comprehensive update produced as a collaborative effort by the ESU (a full EAU section office), the Urological Association of Asia, the Asian Association of UTI/STD, the Western Pacific Society for Chemotherapy, the Federation of European Societies for Chemotherapy and Infection, and the International Society of Chemotherapy for Infection and Cancer. This text was recently published as “The European and Asian guidelines on management and prevention of catheter-associated urinary tract infections” (1). Since the complete document is available online, only the abstract and a summary of the recommendations are presented here.

6.1 Abstract

We surveyed the extensive literature regarding the development, therapy and prevention of catheter-associated UTIs (CAUTIs). We systematically searched for meta-analyses of randomised controlled trials available in Medline, and gave preference to the Cochrane Central Register of Controlled Trials, and also considered other relevant publications, rating them on the basis of their quality. Studies were identified through a PubMed search. The recommendations of the studies, rated according to a modification of the US Department of Health
and Human Services (1992), give a close-to-evidence-based guideline for all medical disciplines, with special emphasis on urology, in which catheter care is an important issue.

The survey found that the urinary tract is the commonest source of nosocomial infection, particularly when the bladder is catheterised (LE: 2a). Most CAUTIs are derived from the patient’s own colonic flora (LE: 2b) and the catheter predisposes to UTI in several ways. The most important risk factor for the development of catheter-associated bacteriuria is the duration of catheterisation (LE: 2a). Most episodes of short-term catheter-associated bacteriuria are asymptomatic and are caused by a single organism (LE: 2a). Further organisms tend to be acquired by patients who are catheterised for > 30 days.

The clinician should be aware of two priorities: the catheter system should remain closed and the duration of catheterisation should be minimal (GR: A). The use of nurse-based or electronic reminder systems to remove unnecessary catheters can decrease the duration of catheterisation and the risk of CAUTI (LE: 2a). The drainage bag should be always kept below the level of the bladder and the connecting tube (GR: B). In case of short-term catheterisation, routine prophylaxis with systemic antibiotics is not recommended (GR: B). There are sparse data about antibiotic prophylaxis in patients on long-term catheterisation, therefore, no recommendation can be made (GR: C). For patients using intermittent catheterisation, routine antibiotic prophylaxis is not recommended (GR: B). Antibiotic irrigation of the catheter and bladder is of no advantage (GR: A). Healthcare workers should be constantly aware of the risk of cross-infection between catheterised patients. They should observe protocols on hand washing and the need to use disposable gloves (GR: A).

A minority of patients can be managed with the use of the non-return (flip) valve catheters, thus avoiding the closed drainage bag. Such patients may exchange the convenience of on-demand drainage with an increased risk of infection. Patients with urethral catheters in place for ≥ 10 years should be screened annually for bladder cancer (GR: C). Clinicians should always consider alternatives to indwelling urethral catheters that are less prone to causing symptomatic infection. In appropriate patients, suprapubic catheters, condom drainage systems and intermittent catheterisation are each preferable to indwelling urethral catheterisation (GR: B). While the catheter is in place, systemic antimicrobial treatment of asymptomatic catheter-associated bacteriuria is not recommended (GR: A), except for some special cases. Routine urine culture in an asymptomatic catheterised patient is also not recommended (GR: C) because treatment is in general not necessary. Antibiotic treatment is recommended only for symptomatic infection (GR: B). After initiation of empirical treatment, usually with broad-spectrum antibiotics based on local susceptibility patterns (GR: C), the choice of antibiotics might need to be adjusted according to urine culture results (GR: B). Long-term antibiotic suppressive therapy is not effective (GR: A).
6.2 Summary of recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>General aspects</td>
<td></td>
</tr>
<tr>
<td>1. Written catheter care protocols are necessary.</td>
<td>B</td>
</tr>
<tr>
<td>2. Health care workers should observe protocols on hand hygiene and the need to use disposable gloves between catheterised patients.</td>
<td>A</td>
</tr>
<tr>
<td>Catheter insertion and choice of catheter</td>
<td></td>
</tr>
<tr>
<td>3. An indwelling catheter should be introduced under antiseptic conditions.</td>
<td>B</td>
</tr>
<tr>
<td>4. Urethral trauma should be minimised by the use of adequate lubricant and the smallest possible catheter calibre.</td>
<td>B</td>
</tr>
<tr>
<td>5. Antibiotic-impregnated catheters may decrease the frequency of asymptomatic bacteriuria within 1 week. There is, however, no evidence that they decrease symptomatic infection. Therefore, they cannot be recommended routinely.</td>
<td>B</td>
</tr>
<tr>
<td>6. Silver alloy catheters significantly reduce the incidence of asymptomatic bacteriuria, but only for < 1 week. There was some evidence of reduced risk for symptomatic UTI. Therefore, they may be useful in some settings.</td>
<td>B</td>
</tr>
<tr>
<td>Prevention</td>
<td></td>
</tr>
<tr>
<td>7. The catheter system should remain closed.</td>
<td>A</td>
</tr>
<tr>
<td>8. The duration of catheterisation should be minimal.</td>
<td>A</td>
</tr>
<tr>
<td>9. Topical antiseptics or antibiotics applied to the catheter, urethra or meatus are not recommended.</td>
<td>A</td>
</tr>
<tr>
<td>10. Benefits from prophylactic antibiotics and antiseptic substances have never been established, therefore, they are not recommended.</td>
<td>A</td>
</tr>
<tr>
<td>11. Removal of the indwelling catheter after non-urological operation before midnight might be beneficial.</td>
<td>B</td>
</tr>
<tr>
<td>12. Long-term indwelling catheters should be changed at intervals adapted to the individual patient, but must be changed before blockage is likely to occur, however, there is no evidence for the exact intervals of changing catheters.</td>
<td>B</td>
</tr>
<tr>
<td>13. Chronic antibiotic suppressive therapy is generally not recommended.</td>
<td>A</td>
</tr>
<tr>
<td>14. The drainage bag should always be kept below the level of the bladder and the connecting tube.</td>
<td>B</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
<tr>
<td>15. Routine urine culture in asymptomatic catheterised patients is not recommended.</td>
<td>B</td>
</tr>
<tr>
<td>16. Urine, and in septic patients, also blood for culture must be taken before any antimicrobial therapy is started.</td>
<td>C</td>
</tr>
<tr>
<td>17. Febrile episodes are only found in < 10% of catheterised patients living in a long-term facility. It is therefore extremely important to rule out other sources of fever.</td>
<td>A</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>18. While the catheter is in place, systemic antimicrobial treatment of asymptomatic catheter-associated bacteriuria is not recommended, except in certain circumstances, especially before traumatic urinary tract interventions.</td>
<td>A</td>
</tr>
<tr>
<td>19. In case of asymptomatic candiduria, neither systemic nor local antifungal therapy is indicated, but removal of the catheter or stent should be considered.</td>
<td>A/C</td>
</tr>
<tr>
<td>20. Antimicrobial treatment is recommended only for symptomatic infection.</td>
<td>B</td>
</tr>
<tr>
<td>21. In case of symptomatic CAUTI, it might be reasonable to replace or remove the catheter before starting antimicrobial therapy if the indwelling catheter has been in place for > 7 days.</td>
<td>B</td>
</tr>
<tr>
<td>22. For empirical therapy, broad-spectrum antibiotics should be given based on local susceptibility patterns.</td>
<td>C</td>
</tr>
<tr>
<td>23. After culture results are available, antibiotic therapy should be adjusted according to pathogen sensitivity.</td>
<td>B</td>
</tr>
</tbody>
</table>
24. In case of candiduria associated with urinary symptoms, or if candiduria is the sign of systemic infection, systemic therapy with antifungals is indicated.

25. Elderly female patients may need treatment if bacteriuria does not resolve spontaneously after catheter removal.

Alternative drainage systems

26. There is limited evidence that postoperative intermittent catheterisation reduces the risk of bacteriuria compared with indwelling catheters. No recommendation can be made.

27. In appropriate patients, a suprapubic, condom drainage system or intermittent catheter is preferable to an indwelling urethral catheter.

28. There is little evidence to suggest that antibiotic prophylaxis decreases bacteriuria in patients using intermittent catheterisation, therefore, it is not recommended.

Long-term follow up

29. Patients with urethral catheters in place for ≥ 10 years should be screened for bladder cancer.

6.3 Reference

7. **UTIs IN CHILDREN**

7.1 **Summary and recommendations**

Urinary tract infection in children is a frequent health problem, with the incidence only a little lower than that of upper respiratory and digestive infections.

The incidence of UTI varies depending on age and sex. In the first year of life, mostly the first 3 months, UTI is more common in boys (3.7%) than in girls (2%), after which the incidence changes, being 3% in girls and 1.1% in boys. Paediatric UTI is the most common cause of fever of unknown origin in boys aged < 3 years. The clinical presentation of UTI in infants and young children can vary from fever to gastrointestinal and lower or upper urinary tract symptoms.

Investigation should be undertaken after two episodes of UTI in girls and one in boys (GR: B). The objective is to rule out the unusual occurrence of obstruction, vesicoureteric reflux (VUR) and dysfunctional voiding, e.g. as caused by a neuropathic disorder.

Chronic pyelonephritic renal scarring develops very early in life due to the combination of a UTI, intrarenal reflux and VUR. It sometimes arises in utero due to dysplasia. Although rare, renal scarring may lead to severe long-term complications such as hypertension and chronic renal failure.

VUR is treated with long-term prophylactic antibiotics (GR: B). Surgical re-implantation or endoscopic treatment is reserved for the small number of children with breakthrough infection (GR: B).

For treatment of UTI in children, short courses are not advised and therefore treatment is continued for 5-7 days and longer (GR: A). If the child is severely ill with vomiting and dehydration, hospital admission is required and parenteral antibiotics are given initially (GR: A).

7.2 **Background**

The urinary tract is a common source of infection in children and infants. It represents the most common bacterial infection in children < 2 years of age (1) (LE: 2a). The outcome of a UTI is usually benign, but in early infancy, it can progress to renal scarring, especially when associated with congenital anomalies of the urinary tract. Delayed sequelae related to renal scarring include hypertension, proteinuria, renal damage and even chronic renal failure, which requires dialysis treatment in a significant number of adults (2) (LE: 2a).

The risk of UTI during the first decade of life is 1% in males and 3% in females (3). It has been suggested that 5% of schoolgirls and up to 0.5% of schoolboys undergo at least one episode of UTI during their school life. The incidence is different for children < 3 months of age, when it is more common in boys. The incidence of asymptomatic bacteriuria is 0.7-3.4% in neonates, 0.7-1.3% in infants < 3 months of age, and 0.2-0.8% in preschool boys and girls (3). The incidence of symptomatic bacteriuria is 0.14% in neonates, with a further increase to 0.7% in boys and 2.8% in girls aged < 6 months. The overall recurrence rate for the neonatal period has been reported to be 25% (3,4).
7.3 Aetiology
The common pathogenic sources are Gram-negative, mainly enteric, bacteria. Of these, *E. coli* is responsible for 90% of UTI episodes (5). Gram-positive bacteria (particularly enterococci and staphylococci) represent 5-7% of cases. Hospital-acquired infections show a wider pattern of aggressive bacteria, such as *Klebsiella*, *Serratia* and *Pseudomonas* sp. Groups A and B streptococci are relatively common in new-born infants (6).

There is an increasing trend towards the isolation of *S. saprophyticus* in UTIs in children, although the role of this bacterium is still debatable (7).

7.4 Pathogenesis and risk factors
The urinary tract is a sterile space with an impermeable lining. Retrograde ascent is the most common mechanism of infection. Nosocomial infection and involvement as part of a systemic infection are less common (8).

Obstruction and dysfunction are among the most common causes of urinary infection. Phimosis predisposes to UTI (9,10) (LE: 2a). Enterobacteria derived from intestinal flora colonise the preputial sac, glandular surface and the distal urethra. Among these bacteria are strains of *E. coli* that express P fimbriae, which adhere to the inner layer of the preputial skin and to uroepithelial cells (11).

A wide variety of congenital urinary tract abnormalities can cause UTIs through obstruction, e.g. urethral valves, ureteropelvic junction obstruction or non-obstructive urinary stasis (e.g. prune belly syndrome, or VUR). More mundane but significant causes of UTIs include labial adhesion and chronic constipation (7).

Dysfunctional voiding in an otherwise normal child may result in infrequent bladder emptying aided by delaying manoeuvres, e.g. crossing legs, sitting on heels (12). Neuropathic bladder dysfunction (e.g. spina bifida, or sphincter dyssynergia) may lead to post-void residual urine and secondary VUR (4).

The link between renal damage and UTIs is controversial. The mechanism in obstructive nephropathy is self-evident, but more subtle changes occur when there is VUR. Almost certainly, the necessary components include VUR, intrarenal reflux and UTI. These must all work together in early childhood when the growing kidney is likely to be susceptible to parenchymal infection. Later on in childhood, the presence of bacteriuria seems irrelevant to the progression of existing scars or the very unusual formation of new scars. Another confounding factor is that many so-called scars are dysplastic renal tissue which develop in utero (13).

7.5 Signs and symptoms
Symptoms are non-specific, and vary with the age of the child and the severity of the disease. Epididymoorchitis is extremely unusual. With scrotal pain and inflammation, testicular torsion has to be considered.

A UTI in neonates may be non-specific and with no localisation. In small children, a UTI may present with gastrointestinal signs, such as vomiting and diarrhoea. In the first weeks of life, 13.6% of patients with fever have a UTI (14). Rarely, septic shock is the presentation. Signs of UTI may be vague in small children, but later on, when they are older than 2 years, frequent voiding, dysuria and suprapubic, abdominal or lumbar pain may appear with or without fever.

7.6 Classification
UTIs may be classified as a first episode or recurrent, or according to severity (simple or severe). Recurrent UTI may be subclassified into three groups (8):

- **Unresolved infection**: subtherapeutic level of antimicrobial, non-compliance with treatment, malabsorption, resistant pathogens.
- **Bacterial persistence**: may be due to a nidus for persistent infection in the urinary tract. Surgical correction or medical treatment for urinary dysfunction may be needed.
- **Reinfection**: each episode is a new infection acquired from periurethral, perineal or rectal flora. From the clinical point of view, severe and simple forms of UTIs should be differentiated because to some extent the severity of symptoms dictates the degree of urgency with which investigation and treatment are to be undertaken (Table 7.1).

Table 7.1: Clinical classification of UTIs in children

<table>
<thead>
<tr>
<th>Severe UTI</th>
<th>Simple UTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever ≥ 39°C</td>
<td>Mild pyrexia</td>
</tr>
<tr>
<td>Persistent vomiting</td>
<td>Good fluid intake</td>
</tr>
<tr>
<td>Serious dehydration</td>
<td>Slight dehydration</td>
</tr>
<tr>
<td>Poor treatment compliance</td>
<td>Good treatment compliance</td>
</tr>
</tbody>
</table>
7.6.1 **Severe UTI**
Severe UTI is related to the presence of fever of $\geq 39^\circ$C, the feeling of being ill, persistent vomiting, and moderate or severe dehydration.

7.6.2 **Simple UTI**
A child with a simple UTI may have only mild pyrexia, but is able to take fluids and oral medication. The child is only slightly or not dehydrated and has a good expected level of compliance. When a low level of compliance is expected, such a child should be managed as one with a severe UTI.

7.7 **Diagnosis**

7.7.1 **Physical examination**
It is mandatory to look for phimosis, labial adhesion, signs of pyelonephritis, epididymo-orchitis, and stigmata of spina bifida, e.g. hairy patch on the sacral skin. The absence of fever does not exclude the presence of an infective process.

7.7.2 **Laboratory tests**
The definitive diagnosis of infection in children requires a positive urine culture (8,15). Urine must be obtained under bacteriologically reliable conditions when undertaking a urine specimen culture (16). A positive urine culture is defined as the presence of $> 100,000$ cfu/mL of one pathogen. The urine specimen may be difficult to obtain in a child < 4 years old, and different methods are advised because there is a high risk of contamination (17,18).

7.7.2.1 **Collection of the urine**
7.7.2.1.1 Suprapubic bladder aspiration
Suprapubic bladder aspiration is the most sensitive method, even though urine may be obtained in 23-99% of cases (8,18).

7.7.2.1.2 Bladder catheterisation
Bladder catheterisation is also a very sensitive method, even though there is the risk of introduction of nosocomial pathogens (8,19).

7.7.2.1.3 Plastic bag attached to the genitalia
Prospective studies have shown a high incidence of false-positive results, ranging from 85 to 99% (8,18). It is helpful when the culture is negative (8,18) and has a positive predictive value of 15% (16). To obtain a urine sample in the best condition in children < 2 years of age (girls and uncircumcised boys without sphincteric control), it is better to use suprapubic bladder aspiration or bladder catheterisation. In older children with sphincteric control, MSU collection is possible and reliable (18).

7.7.2.2 **Quantification of bacteriuria**
The final concentration of bacteria in urine is directly related to the method of collection, diuresis, and method of storage and transport of the specimen (15). The classical definition of significant bacteriuria of $> 10^5$ cfu/mL is still used and depends on the clinical environment (15,17).

The presence of pyuria (> 5 leukocytes per field) and bacteriuria in a fresh urine sample reinforce the clinical diagnosis of UTI (17).

In boys, when the urine is obtained by bladder catheterisation, the urine culture is considered positive with $> 10^4$ cfu/mL. Even though Hoberman (20) has identified a microorganism in 65% of cases with colony counts between 10,000 and 50,000 cfu/mL, there was a mixed growth pattern suggesting contamination. In these cases, it is better to repeat the culture or to evaluate the presence of other signs, such as pyuria, nitrites or other biochemical markers (15). The collection of MSU or in a collecting bag of $\geq 10^6$ cfu/mL is considered positive (16) (Table 7.2).

Table 7.2: Criteria for UTI in children

<table>
<thead>
<tr>
<th>Urine specimen from suprapubic bladder puncture</th>
<th>Urine specimen from bladder catheterisation</th>
<th>Urine specimen from midstream void</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any number of cfu/mL (at least 10 identical colonies)</td>
<td>$\geq 1,000$-50,000 cfu/mL</td>
<td>$\geq 10^4$ cfu/mL with symptoms $\geq 10^5$ cfu/mL without symptoms</td>
</tr>
</tbody>
</table>
7.7.2.3 Other biochemical markers

The presence of other biochemical markers in a urine sample are useful to establish the diagnosis of UTI (8). The most frequent markers are nitrite and leukocyte esterase usually combined in a dipstick test.

7.7.2.3.1 Nitrite

Nitrite is the degradation product of nitrate in bacterial metabolism, particularly in Gram-negative bacteria. When an infection is caused by Gram-positive bacteria, the test may be negative (8,16). Limitations of the nitrite test include:

- not all uropathogens reduce nitrate to nitrite, e.g. P. aeruginosa, or enterococci;
- even nitrite-producing pathogens may show a negative test result, due to the short transit time in the bladder in cases of high diuresis and urine dilution, e.g. neonates;
- the nitrite test has a sensitivity of only 45-60%, but a very good specificity of 85-98% (8,17,21).

7.7.2.3.2 Leukocyte esterase

Leukocyte esterase is produced by the activity of leukocytes. The test for leukocyte esterase has a sensitivity of 48-86% and a specificity of 17-93% (8,17,20,21).

A combination of nitrite and leukocyte esterase testing improves sensitivity and specificity, but carries the risk of false-positive results (21).

The dipstick test has become useful to exclude rapidly and reliably the presence of a UTI, provided both nitrite and leukocyte esterase tests are negative. If the tests are positive, it is better to confirm the results in combination with the clinical symptoms and other tests (17,21).

Bacteriuria without pyuria may be found:

- in bacterial contamination;
- in colonisation (asymptomatic bacteriuria);
- when collecting a specimen before the onset of an inflammatory reaction.

In such cases, it is advisable to repeat the urinalysis after 24 h to clarify the situation. Even in febrile children with a positive urine culture, the absence of pyuria may cast doubt on the diagnosis of UTI. Instead, asymptomatic bacteriuria with a concomitant septic focus responsible for the febrile syndrome has to be considered.

Bacteriuria without pyuria is found in 0.5% of specimens. This figure corresponds well with the estimated rate of asymptomatic bacteriuria in childhood (20,22) (LE: 2a).

Pyuria without bacteriuria may be due to:

- incomplete antimicrobial treatment of UTI;
- urolithiasis and foreign bodies;
- infections caused by M. tuberculosis and other fastidious bacteria, e.g. Chlamydia trachomatis.

Thus, either bacteriuria or pyuria may not be considered reliable parameters to diagnose or exclude UTI. Their assessment can be influenced by other factors, such as the degree of hydration, method of specimen collection, mode of centrifugation, volume in which sediment is resuspended and subjective interpretation of results (23). However, according to Landau et al. (24), pyuria in febrile children is indicative of acute pyelonephritis.

For all of these reasons, in neonates and children < 6 months of age, either pyuria, bacteriuria or the nitrite test, separately, have minimal predictive value for UTI (25,26) (LE: 3). In contrast, the positive predictive value of significant Gram staining with pyuria is 85% (20) (LE: 2b). In older children, pyuria with a positive nitrite test is more reliable for the diagnosis of UTI, with a positive predictive value of 98%.

Combining bacteriuria and pyuria in febrile children, the findings of ≥ 10 WBC/mm³ and ≥ 50,000 cfu/mL in a specimen collected by catheterisation are significant for a UTI, and discriminate between infection and contamination (20,25).

7.7.2.3.3 C-reactive protein

Although non-specific in febrile children with bacteriuria, C-reactive protein seems to be useful in distinguishing between acute pyelonephritis and other causes of bacteriuria. It is considered significant at a concentration > 20 μg/mL.

7.7.2.3.4 Urinary N-acetyl-β-glucosaminidase

Urinary N-acetyl-β-glucosaminidase is a marker of tubular damage. It is increased in febrile UTI and may become a reliable diagnostic marker for UTIs, although it is also elevated in VUR (27).

7.7.2.3.5 IL-6

The clinical use of urinary concentrations of IL-6 in UTIs (28) is still at the research stage.
7.7.3 Imaging of the urinary tract
A gold standard imaging technique has to be cost-effective, painless, safe, and have minimal or no radiation, as well as have the ability to detect any significant structural anomaly. Current techniques do not fulfil all such requirements.

7.7.3.1 Ultrasonography
Ultrasonography (US) has become very useful in children because of its safety, speed and high accuracy in identifying the anatomy and size of the renal parenchyma and collecting system (29). It is subjective and therefore operator-dependent, and gives no information on renal function. However, scars can be identified, although not as well as with Tc-99m DMSA scanning (29,30) (LE: 2a). This technique has been shown to be very sensitive and excretory urography must be reserved only for when images need to be morphologically clarified (31) (LE: 2a).

7.7.3.2 Radionuclide studies
Tc-99m DMSA is a radiopharmaceutical that is bound to the basement membrane of proximal renal tubular cells; half of the dose remains in the renal cortex after 6 h. This technique is helpful in determining functional renal mass and ensures an accurate diagnosis of cortical scarring by showing areas of hypoactivity, which indicates lack of function. A UTI interferes with the uptake of this radiotracer by the proximal renal tubular cells, and may show areas of focal defect in the renal parenchyma. A star-shaped defect in the renal parenchyma may indicate an acute episode of pyelonephritis. A focal defect in the renal cortex usually indicates a chronic lesion or a renal scar (32-34) (LE: 2a).

Focal scarring or a smooth uniform loss of renal substance as demonstrated by Tc-99m DMSA is generally regarded as being associated with VUR (reflux nephropathy) (35,36). However, Rushton et al. (37) have stated that significant renal scarring may develop, regardless of the existence or absence of VUR. Ransley and Risdon (38) have reported that Tc-99m DMSA shows a specificity of 100% and sensitivity of 80% for renal scarring.

The use of Tc-99m DMSA scanning can be helpful in the early diagnosis of acute pyelonephritis. About 50-85% of children show positive findings in the first week. Minimal parenchymal defects, when characterised by a slight area of hypoactivity, can resolve with antimicrobial therapy (39,40). However, defects lasting > 5 months are considered to be renal scarring (41) (LE: 2a).

Tc-99m DMSA scans are considered more sensitive than excretory urography and US in the detection of renal scars (42-45). It remains questionable whether radionuclide scans can substitute for echography as a first-line diagnostic approach in children with a UTI (46,47).

7.7.3.3 Cystourethrography
7.7.3.3.1 Conventional voiding cystourethrography
Voiding cystourethrogram (VCU) is the most widely used radiological exploration for the study of the lower urinary tract and especially of VUR. It is considered mandatory in the evaluation of UTIs in children < 1 year of age. Its main drawbacks are the risk of infection, the need for retrogrades filling of the bladder, and the possible deleterious effect of radiation on children (48). In recent years, tailored low-dose fluoroscopic VCU has been used for the evaluation of VUR in girls to minimise radiological exposure (49). VCU is mandatory in the assessment of febrile childhood UTI, even in the presence of normal US. Up to 23% of these patients may reveal VUR (50).

7.7.3.3.2 Radionuclide cystography (indirect)
This investigation is performed by prolonging the period of scanning after the injection of Tc-99m diethylene triamine pentaacetaete (DTPA) or mercaptoacetyltriglycine (MAG-3) as part of dynamic renography. It represents an attractive alternative to conventional cystography, especially when following patients with reflux, because of its lower dose of radiation. Disadvantages are poor image resolution and difficulty in detecting lower urinary tract abnormalities (51,52).

7.7.3.3.3 Cystosonography
Contrast-material-enhanced voiding ultrasonography has been introduced for the diagnoses of VUR without irradiation (47,52). Further studies are necessary to determine the role of this new imaging modality in UTI.

7.7.3.4 Additional imaging
Excretory urography remains a valuable tool in the evaluation of the urinary tract in children, but its use in UTIs is debatable unless preliminary imaging has demonstrated abnormalities that require further investigation. The major disadvantages in infants are the risks of side effects from exposure to contrast media and radiation (53). However, the role of excretory urography is declining with the increasing technical superiority of CT (54) and
MRI. However, the indications for their use is still limited in UTI.

7.7.3.5 Urodynamic evaluation
When voiding dysfunction is suspected, e.g. incontinence, residual urine, increased bladder wall thickness, urodynamic evaluation with uroflowmetry, (video) cystometry, including pressure flow studies, and electromyography should be considered.

7.8 Schedule of investigation
Screening of infants for asymptomatic bacteriuria is unlikely to prevent pyelonephritic scar formation, as these usually develop very early in infancy. Only a minority of children with a UTI have an underlying urological disorder, but when present, such a disorder can cause considerable morbidity. Thus, after a maximum of two UTI episodes in a girl and one in a boy, investigations should be undertaken (Figure 7.1), but not in the case of asymptomatic bacteriuria (51-58). The need for DTPA/MAG-3 scanning is determined by the ultrasound findings, particularly if there is suspicion of an obstructive lesion.

Figure 7.1: Schedule of investigation of a UTI in a child

| Physical examination + Urinalysis/urine culture |
| > 2 UTI episodes in girls | > 1 UTI episode in boys |
| Echography + VCU |
| Optional: Intravenous urography DMSA scan |

DMSA = dimercaptosuccinic acid; UTI = urinary tract infection; VCU = voiding cystourethrography.

7.9 Treatment
Treatment has four main goals:
1. elimination of symptoms and eradication of bacteriuria in the acute episode;
2. prevention of renal scarring;
3. prevention of a recurrent UTI;
4. correction of associated urological lesions.

7.9.1 Severe UTIs
A severe UTI requires adequate parenteral fluid replacement and appropriate antimicrobial treatment, preferably with cephalosporins (third generation). If a Gram-positive UTI is suspected by Gram stain, it is useful to administer aminoglycosides in combination with ampicillin or amoxycillin/clavulanate (59) (LE: 2a). Antimicrobial treatment has to be initiated on an empirical basis, but should be adjusted according to culture results as soon as possible. In patients with an allergy to cephalosporins, aztreonam or gentamicin may be used. When aminoglycosides are necessary, serum levels should be monitored for dose adjustment. Chloramphenicol, sulphonamides, tetracyclines, rifampicin, amphotericin B and quinolones should be avoided. The use of ceftriaxone must also be avoided due to its undesired side effect of jaundice.

A wide variety of antimicrobials can be used in older children, with the exception of tetracyclines (because of tooth staining). Fluorinated quinolones may produce cartilage toxicity (58), but if necessary, may be used as second-line therapy in the treatment of serious infections, because musculoskeletal adverse events are of moderate intensity and transient (60,61). For a safety period of 24-36 h, parenteral therapy should be administered. When the child becomes afebrile and is able to take fluids, he/she may be given an oral agent to complete the 10-14 days of treatment, which may be continued on an outpatient basis. This provides some advantages, such as less psychological impact on the child and more comfort for the whole family. It is also less expensive, well tolerated and eventually prevents opportunistic infections (20). The preferred oral antimicrobials are: trimethoprim (TMP), co-trimoxazole (TMP plus sulphamethoxazole), an oral cephalosporin,
or amoxycillin/clavulanate. However, the indications for TMP are declining in areas with increasing resistance.

In children < 3 years of age, who have difficulty taking oral medications, parenteral treatment for 7-10 days seems advisable, with similar results to those with oral treatment (62).

If there are significant abnormalities in the urinary tract (e.g. VUR, or obstruction), appropriate urological intervention should be considered. If renal scarring is detected, the patient will need careful follow-up by a paediatrician in anticipation of sequelae such as hypertension, renal function impairment, and recurrent UTI.

An overview of the treatment of febrile UTIs in children is given in Figure 7.2 and the dosing of antimicrobial agents is outlined in Table 7.3 (63).

Figure 7.2: Treatment of febrile UTIs in children

7.9.2 Simple UTIs
A simple UTI is considered to be a low-risk infection in children. Oral empirical treatment with TMP, an oral cephalosporin or amoxycillin/clavulanate is recommended, according to the local resistance pattern. The duration of treatment in uncomplicated UTIs treated orally should be 5-7 days (64,65) (LE: 1b). A single parenteral dose may be used in cases of doubtful compliance and with a normal urinary tract (66) (LE: 2a). If the response is poor or complications develop, the child must be admitted to hospital for parenteral treatment (67).

7.9.3 Prophylaxis
If there is an increased risk of pyelonephritis, e.g. VUR, and recurrent UTI, low-dose antibiotic prophylaxis is recommended (68,69) (LE: 2a). It may also be used after an acute episode of UTI until the diagnostic work-up is completed. The most effective antimicrobial agents are: nitrofurantoin, TMP, cephalexin and cefaclor (68).

7.10 Acknowledgement
With our grateful thanks, the chapter on UTIs in children was updated also by Jorge Caffaratti Sfulcini, Paediatric Urology, Fundació Puigvert, Barcelona, Spain, as co-author.
Table 7.3: Dosing of antimicrobial agents in children aged 3 months to 12 years*

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Application</th>
<th>Age</th>
<th>Total dose per day</th>
<th>No. of doses per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Intravenous</td>
<td>3-12 months</td>
<td>100-300 mg/kg BW</td>
<td>3</td>
</tr>
<tr>
<td>Amoxycillin</td>
<td>Oral</td>
<td>3 months to 12 years</td>
<td>50-100 mg/kg BW</td>
<td>2-3</td>
</tr>
<tr>
<td>Amoxycillin/clavulanate</td>
<td>Intravenous</td>
<td>3 months to 12 years</td>
<td>60-100 mg/kg BW</td>
<td>3</td>
</tr>
<tr>
<td>Amoxycillin/clavulanate</td>
<td>Oral</td>
<td>3 months to 12 years</td>
<td>37.5-75 mg/kg BW</td>
<td>2-3</td>
</tr>
<tr>
<td>Cephalaxin</td>
<td>Treatment</td>
<td>Oral</td>
<td>3 months to 12 years</td>
<td>50-100 mg/kg BW</td>
</tr>
<tr>
<td></td>
<td>Prophylaxis</td>
<td>Oral</td>
<td>1-12 years</td>
<td>10 mg/kg BW</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>Treatment</td>
<td>Oral</td>
<td>3 months to 12 years</td>
<td>50-100 mg/kg BW</td>
</tr>
<tr>
<td></td>
<td>Prophylaxis</td>
<td>Oral</td>
<td>1-12 years</td>
<td>10 mg/kg BW</td>
</tr>
<tr>
<td>Cefixime</td>
<td>Oral</td>
<td>3 months to 12 years</td>
<td>8-12 mg/kg BW</td>
<td>1-2</td>
</tr>
<tr>
<td>Cetriaxone</td>
<td>Intravenous</td>
<td>3 months to 12 years</td>
<td>50-100 mg/kg BW</td>
<td>1</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>Intravenous</td>
<td>3 months to 12 years</td>
<td>(50)-100 mg/kg BW</td>
<td>3</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>Intravenous</td>
<td>3-12 months</td>
<td>5-7.5 mg/kg BW</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Intravenous</td>
<td>1-2 years</td>
<td>5 mg/kg BW</td>
<td>1-3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Treatment</td>
<td>Oral</td>
<td>1-12 years</td>
<td>6 mg/kg BW</td>
</tr>
<tr>
<td></td>
<td>Prophylaxis</td>
<td>Oral</td>
<td>1-12 years</td>
<td>1-2 mg/kg BW</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>Treatment</td>
<td>Oral</td>
<td>1-12 years</td>
<td>3-5 mg/kg BW</td>
</tr>
<tr>
<td></td>
<td>Prophylaxis</td>
<td>Oral</td>
<td>1-12 years</td>
<td>1 mg/kg BW</td>
</tr>
</tbody>
</table>

BW = body weight.
* Adapted from ref. 63.

7.11 References

8. UTIs IN RENAL INSUFFICIENCY, TRANSPLANT RECIPIENTS, DIABETES MELLITUS AND IMMUNOSUPPRESSION

8.1 Summary and recommendations

8.1.1 Acute effects of UTI on the kidney
In acute pyelonephritis, very dramatic changes can occur with focal reduction in perfusion on imaging and corresponding renal tubular dysfunction. However, if in the adult the kidney is normal beforehand, chronic renal damage is unlikely. There is no evidence that prolonged or intensive antibiotic treatment of acute pyelonephritis shortens the episode or prevents complications.

In diabetes mellitus, overwhelming infection can predispose to pyogenic infection with intrarenal perinephric abscess formation, emphysematous pyelonephritis, and rarely, a specific form of infective interstitial nephropathy. Papillary necrosis is a common consequence of pyelonephritis in patients with diabetes. Women are more prone to asymptomatic bacteriuria than men with diabetes, but in both sexes, progression to clinical pyelonephritis is more likely than in normal individuals. The risk factors for developing asymptomatic bacteriuria differ between type 1 and type 2 diabetes.

It is arguable that diabetic patients are susceptible to rapid progression of parenchymal infection. However, the clearance of asymptomatic bacteriuria should not be attempted if the intention is to prevent complications, notably acute pyelonephritis (GR: A).

8.1.2 Chronic renal disease and UTI
There are several factors of general potential importance that predispose to infection in uraemia, including the loss of several urinary defence mechanisms and a degree of immunosuppression. Typically, adult polycystic kidney disease (APCKD), gross VUR and end-stage obstructive uropathy harbour infective foci or promote ascending infection, but not invariably so. Clearly, severe UTI with accompanying bacteraemia can hasten progression of renal failure, but there is little evidence that vigorous treatment of lesser degrees of infection or prophylaxis will slow renal functional impairment once it is established (GR: C).

In patients with VUR and UTI in end-stage chronic renal failure, bilateral nephroureterectomy should only be undertaken as a last resort (GR: B).

8.1.2.1 APCKD
In patients with acute pyelonephritis and infected cysts (presenting as recurrent bacteraemia or local sepsis), treatment requires a long course of high-dose systemic fluoroquinolones, followed by prophylaxis. Bilateral
nephrectomy should be utilised as a last resort (GR: B).

8.1.2.2 Calculi and UTI
Management is similar to that for patients without renal impairment, i.e. to clear the stones if possible and to minimise antibiotic treatment if the calculus cannot be removed. Nephrectomy should be performed as a last resort, but even residual renal function may be of vital importance (GR: B).

8.1.2.3 Obstruction of the urinary tract and UTI
As in all other situations, the combination of obstruction and infection is dangerous and should be treated vigorously. Obstruction may be covert and require specific diagnostic tests, e.g. video-urodynamics, or upper urinary tract pressure flow studies.

8.1.3 UTI in renal transplantation and immunosuppression
The need to correct uropathy or to remove a potential focus of infection in an end-stage disease kidney is more pressing in patients enlisted for renal transplantation. Even so, the results of nephrectomy for a scarred or hydronephrotic kidney may be disappointing.

Imunosuppression is of secondary importance, although if this is extreme, it can promote persistent bacteriuria, which may become symptomatic. In the context of renal transplantation, UTI is very common, but immunosuppression is only one of many factors that are mainly classified as 'surgical'.

HIV infection is associated with acute and chronic renal disease, possibly through the mechanisms of thrombotic microangiopathy and immune-mediated glomerulonephritis. Steroids, angiotensin-converting enzyme (ACE) inhibitors and highly active retroviral therapy appear to reduce progression to end-stage renal disease.

8.1.4 Antibiotic treatment for UTI in renal insufficiency and after renal transplantation
The principles of antibiotic treatment for UTI in the presence of renal impairment, during dialysis treatment and after renal transplantation are discussed in the text and summarised in Tables 8.1-8.4.

8.2 Background
Whenever UTI is present in patients with renal insufficiency, problems arise in both the treatment of infection and the management of renal disease. There are also important scientific issues to be considered concerning the cause, special susceptibilities, effects and complications of renal parenchymal infection, particularly in the immunosuppressed patient.

This part of the guidelines can be subdivided into four sections.
1. What are the acute effects of UTI on the kidney and do the lesions become chronic?
2. Does chronic renal disease progress more quickly as a result of infection, and do particular renal diseases predispose to UTI?
3. Are immunosuppressed patients prone to UTI, particularly in the context of renal transplantation? Is UTI a significant cause of graft failure?
4. Which problems arise in antibiotic therapy in patients with renal insufficiency and after renal transplantation?

8.3 Acute effects of UTI on the kidney
Some authors regard acute pyelonephritis as complicated because, in their view, it may cause renal scarring in a previously normal kidney (1,2) (LE: 2a). Pathologically, a similar process may occur in such fundamentally different situations as obstructive and reflux nephropathy, although the distribution and extent of the lesions may be different (3-5) (LE: 2a).

8.3.1 VUR and intrarenal reflux
The effects of VUR and intrarenal reflux on the renal parenchyma, and the contribution of ascending infection are still unresolved. Renal scarring can certainly be acquired as a result of these three factors, although, in almost all cases, this usually occurs very early in life. In this narrow age range, developmental renal dysplasia must be a major consideration in the pathogenesis of chronic pyelonephritis.

Although acute infection is important in the early stages of this disease, the status of either recurrent acute UTI or asymptomatic bacteriuria specifically in the progression of scar formation is tenuous. Prophylactic antibiotics therefore offer little benefit in preserving renal tissue in reflux nephropathy in older children and adults, even if the reflux has not already been successfully treated (6) (GR: A). However, further discussion of reflux nephropathy is beyond the scope of these guidelines.
8.3.2 **Obstructive neuropathy**

Obstruction occurring through a voiding disorder or supravesically causes renal tubular dysfunction and ultimately renal damage, mainly through the process of apoptosis. Infection enhances the process of parenchymal loss. In extreme cases, pyonephrosis, perinephric abscess and widespread systemic sepsis develop. Obstruction has to be cleared if infection is to be eradicated (7) (GR: A).

A detailed discussion of obstructive nephropathy is not appropriate here, but the kidney that is permanently damaged by any cause has less reserve to withstand the effects of reflux, obstruction and infection. In any circumstances, the combination of obstruction and infection is a surgical emergency and both must be relieved without delay. It is sometimes difficult to exclude an element of obstruction when discussing the pathogenesis of putative infective renal damage in the alleged normal kidney. Urinary calculi and pregnancy can cause urinary stasis and an intermittent increase in pressure in the upper urinary tract, which can cause subtle and persistent damage.

8.3.3 **Renal effects of severe UTI**

Severe infection can lead to renal functional impairment through sepsis, endotoxaemia, hypotension and poor renal perfusion, as part of the process of multiorgan failure. The presence of renal calculi and diabetes mellitus further reduces host defences (8).

8.3.4 **Acute effects of UTI on the normal kidney**

The acute effects of UTI on the normal kidney are complex. They are worth reviewing because they may provide a lead in deciding how chronic changes can occur and therefore a basis for the development of guidelines on the prevention of renal damage.

E. coli is the most common of the Gram-negative bacteria that are isolated in the majority of patients with acute pyelonephritis. The proportion of infections caused by *E. coli* is lower in adults than children (69% vs. 80%) (9) (LE: 2b).

Virulent microorganisms cause direct cellular injury, usually after colonising the renal pelvis. Damage can also occur indirectly from the effects of inflammatory mediators. Metastatic infection rarely causes renal infection, which presents as cortical abscesses, and usually only in susceptible individuals (see the sections below on Diabetes mellitus and Immunosuppression) (10).

Bacterial infection in the urinary tract can induce fever and elevate acute phase reactants, such as C-reactive protein, and erythrocyte sedimentation rate (ESR). Bacterial infection also elicits immunoglobulin A and cytokine responses (11) (LE: 2b). In particular, serum levels of IL-6 and IL-8 are elevated (12,13) (LE: 2b). Tissue damage is reflected by urinary secretion of tubular proteins and enzymes, such as a2-macroglobulin, b2-microglobulin and N-acetyl-b-D-glucosaminidase. In functional terms, there may be a loss of concentrating power that can persist in the long term (14,15) (LE: 2b). The fact that there is a serological immune response and bacteria become coated with antibodies to various antigenic components of the microorganism is regarded as evidence of an immune response, and therefore, of exposure to microorganisms that are potentially damaging to the renal parenchyma (16) (LE: 2b).

There are many identifiable factors relating to virulence of the bacterial cell and to its ability to adhere to the mucosa as a preliminary to invasion (17). For example, type 1 pili or fimbriae combine with mannose receptors on the uromucoid, which is part of the protective mucopolysaccharide layer found on uroepithelial cells lining the urinary tract. Type 2 or P fimbriae bind to glycolipids of the blood group substances that are secreted by the host urothelium. In practical terms, *E. coli*, which is pathological to the kidney, appears to express P (or pyelonephritis-associated) or type 2 fimbriae, at least in children in whom 90% of individuals with acute pyelonephritis express these bacteria, compared with a much smaller proportion of those who have had cystitis or asymptomatic bacteriuria (18) (LE: 2b).

Bacterial adhesion may be of variable benefit to the bacterium, because its attachment may mean that it is easier for host defence mechanisms to localise and abolish it (19). The cellular and humoral inflammatory host response is also a crucial part of host defences. Various cytokines (e.g. IL-6 and IL-8) are responsible for inducing leukocyte migration, and may be intrinsically deficient in converting asymptomatic bacterial colonisation to clinical infection.

Paradoxically, reduced adhesiveness can facilitate silent penetration into the renal parenchyma. In a Swedish study, a group of 160 patients who had recently suffered acute UTI all developed reduced concentrating power, even though a significant proportion (40%) did not develop a febrile illness. In the majority of these patients, the infiltrating bacteria had reduced adhesive characteristics, perhaps facilitating their penetration into the renal parenchyma and promoting more permanent structural and functional damage (15) (LE: 2b).

8.3.5 **Renal scarring**

The possible development of scarring, as a result of UTI in the absence of reflux, obstruction or calculi, is...
controversial (20) (LE: 2a). It is agreed that dramatic reduction in renal perfusion and excretion can occur acutely and so-called ‘lobar nephronia’ has been demonstrated with the newer methods of imaging, such as CT or DMSA scanning, but not with standard intravenous urography (IVU).

A study has shown that 55% of patients with no pre-existing lesions developed acute parenchymal lesions during an episode of acute pyelonephritis (2) (LE: 2a). These lesions were found to have persisted after 3-6 months follow-up in 77% of patients (9) (LE: 3).

An earlier study by Alwall (21) has described 29 women who were followed for 20-30 years, with evidence of increasing renal damage and chronic pyelonephritis upon biopsy (LE: 3). That study would have used cruder diagnostic techniques, which might not have identified pre-existing disease, therefore, patients may have had renal damage initially. Over such a long period, it was impossible to exclude other causes of renal impairment and interstitial nephropathy, e.g. analgesic abuse. This important issue is clarified by a recent more critical study of DMSA scanning during the acute phase of acute pyelonephritis. In the study, 37 of 81 patients had one or more perfusion defects, of which, the majority resolved within 3 months. In lesions that persisted, further imaging invariably showed evidence of reflux or obstructive nephropathy that must have predated the acute infective episode (22) (LE: 2a).

In summary, small parenchymal scars demonstrated by modern imaging may develop as a result of acute non-obstructive pyelonephritis. However, such patients do not develop chronic renal failure and the scar is a very different lesion from the typical scar of reflux nephropathy. This is reflected in clinical experience. Thus, in acute pyelonephritis, IVU or DMSA scanning during an acute urinary infection can have alarming and dramatic results, but in practical terms the observed changes mostly resolve.

The poor correlation between the severity of the symptoms in an episode of acute pyelonephritis and the risk of permanent damage, which is very small, should discourage the clinician from prescribing excessive antibiotic treatment beyond that needed to suppress the acute inflammatory reaction (GR: A).

In future, the rare occurrence of renal damage apparently arising from acute or recurrent uncomplicated UTI may be prevented by targeting long-term treatment at selected patients. These patients will have been identified as having an intrinsic genetic defect in the host response of cytokine release to infection. Such a genetic defect would be even more important if a patient also had structural abnormalities that cause complicated UTI.

8.3.6 Specific conditions in which an acute UTI causes renal damage

There are several specific conditions in which acute UTI can cause renal damage.

8.3.6.1 Diabetes mellitus

Asymptomatic bacteriuria is common in diabetic women. In a prospective study of non-pregnant women with diabetes mellitus, 26% had significant bacteriuria (≥ 10^5 cfu/mL) compared with 6% of controls. Women with type 1 diabetes are particularly at risk if they have had diabetes for a long time or complications have developed, particularly peripheral neuropathy and proteinuria. Risk factors in patients with type 2 diabetes were old age, proteinuria, a low body mass index and a past history of recurrent UTIs (23) (LE: 2a).

Diabetes mellitus increases the risk of acute pyelonephritis from infection by Enterobacteriaceae That originate in the lower urogenital tract. Klebsiella infection is particularly common (25% compared with 12% in non-diabetics).

Asymptomatic bacteriuria is common in women with diabetes (though not in men). If left untreated, it may lead to renal functional impairment (24). The mechanism is ill-understood and, as in uncomplicated acute pyelonephritis, a direct causal link is dubious. Other subtle factors may be present, such as underlying diabetic nephropathy (25) and autonomic neuropathy that causes voiding dysfunction. Impaired host resistance is thought to predispose to persistence of nephropathogenic organisms, but specific evidence is lacking for the development of renal complications. Glycosuria inhibits phagocytosis and perhaps cellular immunity, and encourages bacterial adherence. However, diabetic women with asymptomatic bacteriuria can have good glycaemic control, but still show reduced urinary cytokine and leukocyte concentrations (although polymorph function is normal). Poor glycaemic control has not been shown to increase the risk of bacteriuria (26).

It has always been recognised that diabetic patients are particularly susceptible to rapid progression of renal parenchymal infection and ensuing complications. Until recently, there was no consensus on the questions of pre-emptive screening, treatment and prophylaxis of asymptomatic bacteriuria. However, these issues have been addressed in a placebo-controlled, double-blind randomised trial (27) (LE: 1b), which has concluded that treatment does not reduce complications, and diabetes should not therefore be regarded as an indication for screening or treatment of asymptomatic bacteriuria. The findings from this trial have been subsequently recognised in the guidelines published by the Infectious Diseases Society of America (IDSA) on the diagnosis and treatment of asymptomatic bacteriuria in general (28).

Diabetic patients are also prone to an under-reported and probably unusual form of infective interstitial nephritis, which sometimes includes infection by gas-forming organisms, with a high mortality (emphysematous
pyelonephritis) (29). This is characterised histologically by acute pyogenic infiltration with micro-abscesses and the development of acute renal failure. The origin of the organisms may be haematogenous. Even in the absence of obstruction, acute parenchymal infection may progress insidiously to form an intrarenal abscess that ruptures, which leads to a perinephric collection and a psoas abscess. The presentation can occasionally be indolent.

Papillary necrosis is common in diabetics, particularly in association with acute pyelonephritis. It is certainly associated with permanent renal parenchymal scarring, although it is difficult to exclude obstruction by the sloughed papillae as the cause of the nephropathy. Antibiotic prophylaxis for the treatment of asymptomatic bacteriuria is probably required (GR: C).

8.3.6.2 Tuberculosis
Tuberculosis can cause acute and chronic renal damage through bilateral renal infiltration. Rarely, this can lead to end-stage renal failure. However, a more subtle form of interstitial granulomatous disease can occur, which is sufficient to cause renal failure in the absence of fibrosis, calcification or obstruction (30,31) (LE: 3).

Tuberculosis and leprosy can cause renal damage through the development of amyloid and a form of proliferative glomerulonephritis (32,33) (LE: 2b). For more details see the EAU guidelines on genitourinary tuberculosis (34).

8.4 Chronic renal disease and UTI
There are good reasons why all uraemic patients should be prone to UTI, and why UTI should increase the rate of deterioration of renal function. The antibacterial properties of normal urine, due to urea or low pH and high osmolality, may be lost (35). Uraemic patients are also mildly immunosuppressed and the formation of protective uroepithelial mucus may be inhibited (36-38) (LE: 2b).

However, apart from a few exceptions, there is little evidence for a causal relationship between pre-existing chronic renal disease and persistent UTI (7). The results of removing a scarred or hydronephrotic kidney in the hope of curing infection are often disappointing.

The few exceptions include the following.

8.4.1 Adult dominant polycystic kidney disease (ADPKD)
UTI is a prominent complication of ADPKD, with symptomatic UTI being the presenting feature in 23-42% of patients, who are usually female (39). It may be difficult to obtain a positive culture on standard laboratory media, but pyuria is common, particularly in the later stages of disease progression. Acute pyelonephritis is common and may originate from pyogenic infection in the cysts (40) (LE: 3).

The efficacy of antibiotic treatment may depend on whether cysts are derived from proximal (active secretion) or distal tubules (passive diffusion) and on the lipid solubility of the agent used. Cephalosporins, gentamicin and ampicillin, which are standard treatments of acute pyelonephritis and require active transport, are often ineffective (41) (LE: 2b). Fluoroquinolones are generally the most effective (GR: A).

After transplantation, overall graft and patient survival rates do not differ between ADPKD and control groups (42) (LE: 2a). However, despite close monitoring of patients, UTI and septicaemic episodes are still a significant cause of morbidity, such that bilateral nephrectomy may be the only option.

Polycystic disease is not to be confused with acquired renal cystic disease of the end-stage kidney, which has no predisposition to UTI.

The issue of whether urological complications, including UTI, affect the progression of renal failure in polycystic disease or in any other renal pathology is controversial. Severe symptomatic UTIs may indicate an adverse prognosis, particularly in men with ADPKD.

8.4.2 Renal calculi
Nephrolithiasis, particularly from infective struvite stones, obstructive uropathy and gross reflux, clearly does promote infection, although not always. However, it is doubtful whether vigorous treatment of asymptomatic bacteriuria or even mild clinical UTI makes any difference to the progression of renal disease (43) (LE: 3).

It is disappointing that, as yet, few studies have provided long-term serial data that identify renal damage and its causal relationship with infection. In this respect, it is of some interest that a study of 100 patients who underwent reflux prevention surgery at least 20 years before has recently been published (44). It was concluded that even patients whose reflux prevention surgery had been successful were prone to recurrent UTI, hypertension and complications, which even occasionally included progressive renal scarring. Such consequences should at least inform the patient’s decision in deciding between surgical and medical treatment of VUR.
8.5 UTI in renal transplantation

UTI is common after renal transplantation. Bacteriuria is present in 35-80% of patients, although the risk has been reduced by improvements in donation surgery, which have lowered the dose of immunosuppressive therapy and prophylactic antibiotics (45).

8.5.1 Donor organ infection

Early factors predisposing to UTI include infection in the transplanted kidney. Clearly, the organ donor should be screened for a variety of viral and bacterial infections. Detailed discussion of this process is beyond the limits of these guidelines. However, it must be acknowledged that the urinary tract of the cadaver donor is rarely investigated, even if the mid-stream urine (MSU) culture is positive. Antibiotics are given empirically, but usually the first suspicion of occurrence of a renal tract abnormality is raised during the organ donation operation. Under these circumstances, only the most obvious renal or ureteric abnormality will be detected. Very occasionally, organ donation will be abandoned at this late stage.

After the kidney is removed from its storage box, the effluent from the renal vein and surrounding fluid in the sterile plastic bags that contain the excised kidney should ideally be cultured because microorganisms are likely to have been introduced during the donation process. Bladder catheters and ureteric stents promote the loss of the glycosoaminoglycan layer from the uroepithelium, as well as providing a source of microorganisms within the mucous biofilm that covers the foreign body. Infection in the native kidney may worsen considerably as a result of maximum immunosuppression.

In renal transplant recipients, the following problems are most troublesome: papillary necrosis, particularly in diabetes mellitus (46), massive infective VUR, polycystic disease, and infective calculi. There is also concern about the increasing number of children with congenital uropathy, often associated with neuropathic bladder dysfunction and the sinister combination of intravesical obstruction, poor bladder compliance, residual urine, and VUR. A full urodynamic assessment, establishing a routine of intermittent self-catheterisation and any necessary bladder surgery must be completed well in advance of renal transplantation.

Urinary diversions and bladder augmentation and substitution have also been successfully completed in patients on dialysis treatment and after transplantation, although bacteriuria is common and may require antibiotic treatment (47).

In the first 3 months, UTI is more likely to be symptomatic with a high rate of relapse. Later on, there is a lower rate of pyelonephritis and bacteraemia, and a better response to antibiotics unless there are urological complications (e.g. fistula, or obstruction of the urinary tract). Infarction, either of the whole kidney or of a segment due to arterial damage, can promote UTI through bacterial colonisation of dead tissue. This often occurs by commensal or fastidious pathogens. The infection may be impossible to eradicate until the kidney, or at least the dead segment, is removed.

8.5.2 Graft failure

There are several potential mechanisms by which severe UTI can cause graft failure. There was an early suggestion that reflux into the graft could lead to pyelonephritis and parenchymal scarring. However, these findings have not been confirmed and most surgeons do not make a special effort to perform an antireflux anastomosis.

Infection can theoretically induce graft failure by three other mechanisms, such as by the direct effect of cytokines, growth factors (e.g. tumour necrosis factor [TNF]) and free radicals as part of the inflammation cascade (45). UTIs can also reactivate cytomegalovirus infection, which can lead to acute transplant rejection. Sometimes it can be very difficult to distinguish rejection from infection (48) (LE: 2b).

For many years, the polyomavirus type BK has been listed as a possible candidate for causing transplant ureteric stenosis. Improved detection of so-called ‘decoy cells’ in urine and of virus DNA by polymerase chain reaction has confirmed the causal relationship between infection and obstruction, but also with interstitial nephropathy progressing to graft loss in possibly 5% of recipients. The virus is susceptible to treatment with the antiviral agent cidofovir (49) (LE: 2a).

8.5.3 Kidney and whole-organ pancreas transplantation

Simultaneous kidney and whole-organ pancreas transplantation can present specific urological complications when the bladder is chosen for drainage of exocrine secretions. These may include recurrent UTI, chemical urethritis and bladder calculi of sufficient severity to warrant cystoenteric conversion. The risk of such complications is minimised if urodynamic abnormalities, e.g. obstruction, are identified and corrected well in advance of the transplant procedure (50) (LE: 3).

8.6 Antibiotic therapy in renal failure and transplant recipients

Much of the detailed information on antibiotic prescribing in renal failure is summarised in Tables 8.1-8.5 and Appendix 16.3. It is important to note that peritoneal dialysis and haemodialysis clear certain antibiotics, which
should either be avoided or given at much higher doses. Also, there are important interactions to consider between immunosuppressive agents and antibiotics.

Table 8.1: Use of antibiotics for UTI with renal impairment

| Most antibiotics have a wide therapeutic index. No adjustment of dose is necessary until GFR < 20 mL/min, except antibiotics with nephrotoxic potential, e.g. aminoglycoside. |
| Drugs removed by dialysis should be administered after dialysis treatment. |
| Combination of loop diuretics (e.g. furosemide) and a cephalosporin is nephrotoxic. |
| Nitrofurantoin and tetracyclines are contraindicated, but not doxycycline. |
| GFR = glomerular filtration rate. |

Table 8.2: Clearance of antibiotics at haemodialysis

<table>
<thead>
<tr>
<th>Dialysed</th>
<th>Slightly dialysed</th>
<th>Not dialysed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxycillin/ampicillin</td>
<td>Fluoroquinolones*</td>
<td>Amphotericin</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>Co-trimoxazole</td>
<td>Meticillin</td>
</tr>
<tr>
<td>Cephalosporins*</td>
<td>Erythromycin</td>
<td>Teicoplanin</td>
</tr>
<tr>
<td>Aminoglycosides*</td>
<td>Vancomycin</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aztreonam*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Drugs cleared by peritoneal dialysis.

Table 8.3: Treatment of tuberculosis in renal failure

- Rifampicin and isoniazid (INH) not cleared by dialysis. Give pyridoxine.
- Ethambutol not dialysed. Reduce dose if GFR < 30 mL/min.
- Avoid rifampicin with cyclosporin.

Table 8.4: Recommendations for prevention and treatment of UTI in renal transplantation

- Treat infection in recipient before transplantation.
- Culture donor tissue sample and perfusate.
- Perioperative antibiotic prophylaxis.
- 6 months low-dose TMP-SMX (co-trimoxazole) (LE: 1b, GR: A).
- Empirical treatment of overt infection (quinolone, TMP-SMX for 10-14 days).

TMX = trimethoprim-sulphamethoxazole.

Table 8.5: Drug interactions with cyclosporin and tacrolimus

| Rifampicin |
| Erythromycin |
| Aminoglycosides |
| TMP-SMX |
| Amphotericin B |

TMP-SMX = trimethoprim-sulphamethoxazole.

8.6.1 Treatment of UTI in renal transplant recipients

The treatment of a symptomatic UTI is similar to treatment given to non-transplant patients. However, a short
course of treatment has yet to be established, and in most cases a 10-14-day course of treatment is given.

The choice of antibiotic is dictated by the special need for penetration into the renal parenchyma rather than for merely a ‘mucosal’ antibiotic. Fluoroquinolones seem to be particularly effective.

There is good evidence for the beneficial effects of treating asymptomatic bacteriuria in the first 6 months after renal transplantation (51) (LE: 2a). Patients must be investigated for surgical complications.

In most units, the combination of trimethoprim and sulphamethoxazole (co-trimoxazole) is effective in preventing UTI (52) (LE: 1b). It will also prevent Pneumocystis carinii pneumonia (PCP) and infection with other rare fastidious organisms. Low-dose antibiotic prophylaxis with co-trimoxazole has been recommended for 6 months after transplantation. This will cover the high-risk period when infection is more likely to be symptomatic and associated with acute graft impairment. At a low dose, adverse interactions with cyclosporin do not occur, although the higher dose advocated by some units results in synergistic nephrotoxicity with trimethoprim.

A number of other drug interactions need to be considered, e.g. gentamicin, co-trimoxazole and amphotericin B promote cyclosporin and tacrolimus toxicity. Rifampicin and erythromycin also interact with calcineurin inhibitors by increasing cytochrome p450 synthetase and inhibiting hepatic cyclosporin A metabolism.

In any patients with relapsing or recurrent infection, an anatomical cause, such as a urological complication in the transplant kidney or recipient bladder dysfunction, must be considered and treated vigorously.

8.6.2 **Fungal infections**

Candidal infections can occur in any immunosuppressed patient, but are more common in diabetic patients and those with chronic residual urine and in whom there is an indwelling catheter or stent. It is wise to treat all patients with antifungal agents (fluconazole, amphotericin B plus flucytosine) even when they are asymptomatic. Removal of the catheter or stents is usually necessary (GR: B).

8.6.3 **Schistosomiasis**

Schistosomiasis is a familiar problem for patients treated for end-stage renal failure from locations where the disease is endemic. Renal transplantation is possible, even when live donors and recipients have active lesions, provided they are treated. Combined medication (praziquantil and oxaminoquine) is recommended for 1 month. In a trial that compared infected patients with those free of schistosomiasis, there was no difference between the incidence of acute and chronic rejection. However, UTI and urological complications occurred in the infected group and a higher cyclosporin dose was required. Despite this, however, it was concluded that active schistosomiasis did not preclude transplantation (53) (LE: 3). For further details on schistosomiasis in genitourinary tract infections see Bichler et al. (54).

8.7 **Immunosuppression**

It is well known that viral and fungal infections are common in immunosuppressed patients.

8.7.1 **Human immunodeficiency virus (HIV) infection**

HIV infection can lead to acute renal failure through non-specific severe systemic illness, and to chronic renal failure through a variety of nephropathies. These include HIV-induced thrombotic microangiopathy, immune-mediated glomerulonephritis and nephropathy due to virus-induced cellular damage, primarily to the glomerular epithelial cell. Combination therapy using corticosteroids, ACE inhibitors and highly active antiretroviral therapy seems to delay and prevent progression of nephropathy, although evidence from randomised trials is not available (55). HIV infection is therefore no longer a contraindication to renal replacement therapy.

The place of immunosuppression per se in the development of UTI remains unresolved (56). Patients with end-stage renal failure are generally not particularly susceptible to the usual Gram-negative urinary pathogens, although they may acquire unusual and granulomatous infections. Patients have evidence of reduced cellular and humoral immunity.

However, the situation is a little clearer in male patients with HIV and AIDS, in whom there is a close relationship between CD4 counts and the risk of bacteriuria, particularly in patients whose counts are < 200 cells/mL (57). About 40% of patients with bacteriuria are asymptomatic. In these patients, PCP prophylaxis of the type used in transplant patients may not reduce the rate of bacteriuria, perhaps due to the previous development of resistant organisms.

8.7.2 **Viral and fungal infections**

Viral and fungal infections are relatively common in immunosuppressed patients.
8.8 References

9. URETHRITIS

9.1 Epidemiology
From a therapeutic and clinical point of view, gonorrhoeal urethritis has to be differentiated from non-specific urethritis. In Central Europe, non-specific urethritis is much more frequent than gonorrhoeal urethritis. There is a correlation between promiscuity and low socioeconomic status and the frequency of infections due to Neisseria gonorrhoeae and C. trachomatis. Infection is spread by sexual contact.

9.2 Pathogens
Pathogens include N. gonorrhoeae, C. trachomatis, Mycoplasma genitalium and Trichomonas vaginalis. The frequency of the different species varies between patient populations (1-5). Mycoplasma hominis probably does not cause urethritis, and Ureaplasma urealyticum is an infrequent cause. In most cases, clinical evidence of Mycoplasma or Ureaplasma is caused by asymptomatic colonisation of the urogenital tract.

9.3 Route of infection and pathogenesis
Causative agents either remain extracellularly on the epithelial layer or penetrate into the epithelium (N. gonorrhoeae and C. trachomatis) and cause pyogenic infection. Although arising from urethritis, chlamydiae and gonococci can spread further through the urogenital tract to cause epididymitis in men or cervicitis, endometritis and salpingitis in women. Recent evidence has suggested that Myc. genitalium can also cause cervicitis and pelvic inflammatory disease in women (6) (LE: 3).

9.4 Clinical course
Mucopurulent or purulent discharge, alguria, dysuria and urethral pruritus are symptoms of urethritis. However, many infections of the urethra are asymptomatic.

9.5 Diagnosis
A Gram stain of a urethral discharge or a urethral smear that shows more than five leukocytes per high power field (> 1,000) and eventually, gonococci located intracellularly as Gram-negative diplococci, indicate pyogenic urethritis (7) (LE: 3, GR: B). The Gram stain is the preferred rapid diagnostic test for evaluating urethritis. It is highly sensitive and specific for documenting urethritis and the presence or absence of gonococcal infection. A positive leukocyte esterase test or > 10 leukocytes per high power field (> 400) in the first voiding urine specimen is diagnostic. In all patients with urethritis, and when sexual transmission is suspected, the aim should be to identify the pathogenic organisms. If an amplification system is used for identifying the pathogens, the first voiding urine specimen can be taken instead of a urethral smear. Trichomonas sp. can usually be identified microscopically.
9.6 Therapy

9.6.1 Treatment of gonorrhoeal urethritis

The following guidelines for therapy comply with the recommendations of the US Centers for Disease Control and Prevention (8-10). The following antimicrobials can be recommended for the treatment of gonorrhoea:

As first-choice treatment
- ceftriaxone, 1 g intramuscularly (with local anaesthetic) as a single dose;
- azithromycin, 1 g orally as a single dose.

Alternative regimens
- ciprofloxacin, 500 mg orally as single dose;
- ofloxacin, 400 mg orally as single dose;
- levofloxacin, 250 mg orally as single dose.

Note that fluoroquinolones are contraindicated in adolescents (< 18 years) and pregnant women.

As a result of the continuous spread of fluoroquinolone-resistant
N. gonorrhoeae, this class of antibiotics is no longer recommended for the treatment of gonorrhoea in the United States (11). In Europe, knowledge of local susceptibility patterns is mandatory for the correct treatment of gonorrhoeal urethritis.

Because gonorrhoeae is frequently accompanied by chlamydial infection, an active antichlamydial therapy should be added.

9.6.2 Treatment of non-gonorrhoeal urethritis

The following treatment has been successfully applied to non-gonorrhoeal urethritis:

<table>
<thead>
<tr>
<th>As first choice of treatment:</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>azithromycin, 1 g orally as single dose</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>doxycycline, 100 mg orally twice daily for 7 days</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

As second choice of treatment:
- erythromycin base, 500 mg orally four times daily for 14 days
- erythromycin ethylsuccinate, 800 mg orally four times daily for 7 days
- ofloxacin, 300 mg orally twice daily for 7 days
- levofloxacin, 500 mg orally once daily for 7 days

Doxycycline and azithromycin are considered to be equally effective in the treatment of chlamydial infections, however, infections with Myc. genitalium may respond better to azithromycin (12). Erythromycin is less effective and causes more side effects. In pregnant women, fluoroquinolones and doxycycline are contraindicated, therefore, besides erythromycin and azithromycin, a regimen with amoxicillin 500 mg three times daily for 7 days is also recommended.

If therapy fails, one should consider treating infections by T. vaginalis and/or Mycoplasma with a combination of metronidazole (2 g orally as single dose) and erythromycin (500 mg orally four times daily for 7 days). As in other STDs, the treatment of sexual partners is necessary.

9.7 Follow-up and prevention

Patients should return for evaluation if symptoms persist or recur after completion of therapy. Patients should be instructed to abstain from sexual intercourse until 7 days after therapy is initiated, provided their symptoms have resolved and their sexual partners have been adequately treated. Persons who have been diagnosed with a new STD should receive testing for other STDs, including syphilis and HIV.

9.8 References

10. **BACTERIAL PROSTATITIS**

10.1 **Summary and recommendations**

Bacterial prostatitis is a disease entity diagnosed clinically and by evidence of inflammation and infection localised to the prostate. According to the duration of symptoms, bacterial prostatitis is described as either acute or chronic, when symptoms persist for at least 3 months. It is recommended that European urologists use the classification suggested by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH), in which bacterial prostatitis with confirmed or suspected infection is distinguished from chronic pelvic pain syndrome (CPPS).

Acute bacterial prostatitis can be a serious infection. Parenteral administration of high doses of a bactericidal antibiotic is usually required, which may include a broad-spectrum penicillin, a third-generation cephalosporin, or a fluoroquinolone. All of these agents can be combined with an aminoglycoside for initial therapy. Treatment is required until there is defervescence and normalisation of infection parameters (LE: 3, GR: B). In less severe cases, a fluoroquinolone may be given orally for 10 days (LE: 3, GR: B).

In chronic bacterial prostatitis, and if infection is strongly suspected in CPPS, preferably a fluoroquinolone should be given for at least 4 weeks. In case of fluoroquinolones resistance or adverse reactions, trimethoprim can be given orally for a period of 4 to 12 weeks after the initial diagnosis. The patient should then be reassessed and antibiotics only continued if pre-treatment cultures are positive and/or the patient has reported positive effects from the treatment. A total treatment period of 4-6 weeks is recommended (LE: 3, GR: B).

Patients with CPPS are treated empirically with numerous medical and physical modalities. The management of pain and other related symptoms are covered in the EAU Guidelines on Chronic Pelvic Pain (1).
origin is accepted, and the term prostatitis syndrome or, more recently, CPPS, in which no infective agent can be found and whose origin is multifactorial and in most cases obscure.

Prostatitis and CPPS are diagnosed by symptoms and evidence of inflammation and infection localised to the prostate (2). A causative pathogen, however, is detected by routine methods in only 5-10% of cases (3), and for whom antimicrobial therapy therefore has a rational basis. The remainder of patients are treated empirically with numerous medical and physical modalities. However, recent improvement in classification and application of modern methods, including molecular biology, should allow proper systematisation of treatment (4-6).

This chapter reviews documented or suspected bacterial infections of the prostate.

10.3 Diagnosis

10.3.1 History and symptoms

According to the duration of symptoms, bacterial prostatitis is described as either acute or chronic, the latter being defined by symptoms that persist for at least 3 months (4-6). The predominant symptoms are pain at various locations and LUTS (Tables 10.2 and 10.3) (7-9). Chronic bacterial prostatitis is the most frequent cause of recurrent UTI in men (10).

Table 10.1: Classification of prostatitis and CPPS according to NIDDK/NIH (4-6)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Acute bacterial prostatitis</td>
</tr>
<tr>
<td>II</td>
<td>Chronic bacterial prostatitis</td>
</tr>
<tr>
<td>III</td>
<td>Chronic abacterial prostatitis - CPPS</td>
</tr>
<tr>
<td>IIIA</td>
<td>Inflammatory CPPS (white cells in semen/EPS/VB3)</td>
</tr>
<tr>
<td>IIIB</td>
<td>Non-inflammatory CPPS (no white cells in semen/EPS/VB3)</td>
</tr>
<tr>
<td>IV</td>
<td>Asymptomatic inflammatory prostatitis (histological prostatitis)</td>
</tr>
</tbody>
</table>

CPPS = chronic pelvic pain syndrome; EPS = expressed prostatic secretion; VB3 = voided bladder urine 3 (urine following prostatic massage).

Table 10.2: Localisation of pain in patients with prostatitis like symptoms*

<table>
<thead>
<tr>
<th>Site of pain</th>
<th>Percentage of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate/perineum</td>
<td>46%</td>
</tr>
<tr>
<td>Scrotum and/or testes</td>
<td>39%</td>
</tr>
<tr>
<td>Penis</td>
<td>6%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>6%</td>
</tr>
<tr>
<td>Lower back</td>
<td>2%</td>
</tr>
</tbody>
</table>

*Adapted from Zerrman et al. (6).

Table 10.3: LUTS in patients with prostatitis like symptoms*

<table>
<thead>
<tr>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent need to urinate</td>
</tr>
<tr>
<td>Difficulty urinating, e.g. weak stream and straining</td>
</tr>
<tr>
<td>Pain on urination, or that increases with urination</td>
</tr>
</tbody>
</table>

*Adapted from Alexander et al. (9).

10.3.1.1 Symptom questionnaires

Symptoms appear to have a strong basis for use as a classification parameter in bacterial prostatitis as well as in CPPS (11). Prostatitis symptom questionnaires have therefore been developed for the quantification of symptoms (11,12). They include the Chronic Prostatitis Symptom Index (CPSI), which was recently developed by the International Prostatitis Collaborative Network (IPCN), initiated by the NIH (USA) (13).

Although the CPSI has been validated, to date, its benefit in clinical studies is still uncertain. The questionnaire contains four questions regarding pain or discomfort, two regarding urination, and three related to quality of life (see Appendix 16.5).

10.3.2 Clinical findings

In acute prostatitis, the prostate may be swollen and tender on digital rectal examination (DRE). Prostatic
massage is contraindicated. Otherwise, the prostate is usually normal on palpation. An essential consideration in the clinical evaluation is to exclude prostatic abscess. In case of lasting symptoms (“chronic prostatitis” symptoms) CPSS as well as other urogenital and ano-rectal disorders must be taken into consideration.

Symptoms of chronic prostatitis or CPSS can mask prostate tuberculosis. Pyospermia and hematospermia in men in endemic regions or with a history of tuberculosis should be investigated.

10.3.3 Urine cultures and expressed prostatic secretion
The most important investigations in the evaluation of the patient with acute prostatitis is mid-stream urine culture. In chronic bacterial prostatitis, a quantitative bacteriological localisation cultures and microscopy of the segmented urine and of expressed prostatic secretion (EPS), as described by Meares and Stamey (2) (see Appendix 16.6).

The Enterobacteriaceae, especially *E. coli*, are the predominant pathogens in acute bacterial prostatitis (Table 10.4) (14). In chronic bacterial prostatitis, the spectrum of strains is wider. The significance of intracellular bacteria, such as *C. trachomatis*, is uncertain (15). In patients with immune deficiency or HIV infection, prostatitis may be caused by fastidious pathogens, such as *M. tuberculosis*, *Candida* sp. and rare pathogens, such as *Coccidioides immitis*, *Blastomyces dermatitidis*, and *Histoplasma capsulatum* (16). In case of suspected prostate tuberculosis, the urine should be investigated for *Mycobacterium* spp by PCR technique.

Table 10.4: Most common pathogens in prostatitis

<table>
<thead>
<tr>
<th>Aetiologically recognised pathogens*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
</tr>
<tr>
<td>Klebsiella sp.</td>
</tr>
<tr>
<td>Prot. mirabilis</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
</tr>
<tr>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>Organisms of debatable significance</td>
</tr>
<tr>
<td>Staphylococci</td>
</tr>
<tr>
<td>Streptococci</td>
</tr>
<tr>
<td>Corynebacterium sp.</td>
</tr>
<tr>
<td>C. trachomatis</td>
</tr>
<tr>
<td>U. urealyticum</td>
</tr>
<tr>
<td>Myc. hominis</td>
</tr>
</tbody>
</table>

*Adapted from Weidner et al. (3) and Schneider et al. (14).

10.3.4 Prostate biopsy
Perineal biopsies cannot be recommended as routine work-up and should be reserved only for research purposes. Transrectal prostate biopsy is not advisable in bacterial prostatitis (LE: 4; GR: C).

10.3.5 Other tests
Transrectal ultrasound (TRUS) may reveal intraprostatic abscesses, calcification in the prostate, and dilatation of the seminal vesicles but is unreliable and cannot be used as a diagnostic tool in prostatitis (17).

10.3.6 Additional investigations
10.3.6.1 Ejaculate analysis
An analysis of the ejaculate is not recommended for microbiological investigation due to the low sensitivity and specificity compared to the 2- or 3-glass tests. Ejaculate analysis is however frequently involved as part of the investigation of a generalised male accessory gland infection (MAGI) and it provides information about sperm quality. The EAU working group believes that guidelines on prostatitis should not contain a set of differential diagnostic examinations. An experienced urologist should decide which investigations are relevant for each individual patient. Bladder outflow and urethral obstruction should always be considered and ruled out by uroflowmetry, retrograde urethrography, or endoscopy.

10.3.6.2 Prostate Specific Antigen (PSA)
PSA is often increased in acute bacterial prostatitis and other urogenital infections. If a patient has elevated PSA and evidence of prostatic inflammation, serum PSA will normalise after antimicrobial treatment for 4
weeks in about 50% of patients (18). A delay of at least 3 months should be allowed before it can be assumed that a stable level of PSA has been reached. Measurement of free and total PSA adds no practical diagnostic information in prostatitis (19).

10.4 Treatment

10.4.1 Antibiotics

Antibiotics are life-saving in acute bacterial prostatitis and recommended in chronic bacterial prostatitis.

Acute bacterial prostatitis is a serious infection with fever, intense local pain, and general symptoms. Parenteral administration of high doses of bactericidal antibiotics, such as a broad-spectrum penicillin, a third-generation cephalosporin or a fluoroquinolone, should be administered. For initial therapy, any of these antibiotics may be combined with an aminoglycoside. After defervescence and normalisation of infection parameters, oral therapy can be substituted and continued for a total of 2-4 weeks (20).

The recommended antibiotics in chronic bacterial prostatitis, together with their advantages and disadvantages, are listed in Table 10.7 (21). Fluoroquinolones, such as ciprofloxacin and levofloxacin, are considered drugs of choice because of their favourable pharmacokinetic properties (21) (LE: 2b, GR: B), their generally good safety profile, and antibacterial activity against Gram-negative pathogens, including *P. aeruginosa*. In addition, levofloxacin is active against Gram-positive and atypical pathogens, such as *C. trachomatis* and genital mycoplasmas (LE: 2b, GR: B).

The duration of antibiotic treatment is based on experience and expert opinion and is supported by many clinical studies (22). In chronic bacterial prostatitis antibiotics should be given for 4-6 weeks after initial diagnosis. Relatively high doses are needed and oral therapy is preferred (21,22) (LE: 3, GR: B). If intracellular bacteria have been detected or are suspected, tetracyclines or erythromycin should be given (21,23) (LE: 2b, GR: B).

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroquinolones</td>
<td>Favoursable pharmacokinetics</td>
<td>Depending on the substance:</td>
<td>Recommend</td>
</tr>
<tr>
<td></td>
<td>Excellent penetration into the prostate</td>
<td>Drug interaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good bioavailability</td>
<td>Phototoxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equivalent oral and parenteral pharmacokinetics (depending on the substance)</td>
<td>Central nervous system adverse events</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good activity against typical and atypical pathogens and P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In general, good safety profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Good penetration into prostate</td>
<td>No activity against Pseudomonas, some enterococci and some Enterobacteriaceae</td>
<td>Consider</td>
</tr>
<tr>
<td></td>
<td>Oral and parenteral forms available</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relatively cheap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoring unnecessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active against most relevant pathogens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Cheap</td>
<td>No activity against P. Aeruginosa</td>
<td>Reserve for special indications</td>
</tr>
<tr>
<td></td>
<td>Oral and parenteral forms available</td>
<td>Unreliable activity against coagulase-negative staphylococci, E. coli, other Enterobacteriaceae, and enterococci</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good activity against Chlamydia and Mycoplasma</td>
<td>Contraindicated in renal and liver failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk of skin sensitisation</td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td>Reasonably active against Gram-positive bacteria</td>
<td>Minimal supporting data from clinical trials</td>
<td>Reserve for special indications</td>
</tr>
<tr>
<td></td>
<td>Active against Chlamydia</td>
<td>Unreliable activity against Gram-negative bacteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good penetration into prostate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relatively non-toxic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Adapted from Bjerklund Johansen et al. (21).
10.4.2 **Intraprostatic injection of antibiotics**

This treatment has not been evaluated in controlled trials and should not be considered (24,25).

10.4.3 **Drainage and surgery**

Approximately 10 per cent of men with acute prostatitis will experience urinary retention (26) which can be managed by suprapubic, intermittent or indwelling catheterisation. Suprapubic cystostomy placement is however generally recommended. The use of catheterisation without evidence of retention may increase the risk of progression to chronic prostatitis (27). Alpha-blocker treatment has also been recommended, but clinical evidence of benefit is poor.

In case of prostatic abscess, both drainage and conservative treatment strategies appear feasible (28). The size may matter. In one study conservative treatment was successful if the abscess cavities were smaller than 1 cm in diameter, while larger abscesses were better treated by single aspiration or continuous drainage (29). Surgery should be avoided in the treatment of bacterial prostatitis.

10.5 **References**

11. EPIDIDYMITIS AND ORCHITIS

11.1 Summary and recommendations

Orchitis and epididymitis are classified as acute or chronic processes according to the onset and clinical course. The most common type of orchitis, mumps orchitis, develops in 20-30% of post-pubertal patients with mumps virus infection. If mumps orchitis is suspected, a history of parotitis and evidence of IgM antibodies in the serum supports the diagnosis.

Epididymitis is almost always unilateral and relatively acute in onset. In young males it is associated with sexual activity and infection of the consort (LE: 3). The majority of cases in sexually active males aged < 35 years are due to sexually transmitted organisms, whereas in elderly patients, it is usually due to common urinary pathogens (LE: 3). Epididymitis causes pain and swelling, which begins in the tail of the epididymis, and may spread to involve the rest of the epididymis and testicular tissue. The spermatic cord is usually tender and swollen. It is imperative for the physician to differentiate between epididymitis and spermatic cord torsion as soon as possible using all available information. The microbial aetiology of epididymitis can usually be determined by examination of a Gram stain of a urethral smear and/or an MSU for the detection of Gram-negative bacteriuria (LE: 3). A urethral swab and MSU should be obtained for microbiological investigation before antimicrobial therapy (GR: C). Antimicrobials should be selected on the empirical basis

UROLOGICAL INFECTIONS - LIMITED UPDATE MARCH 2013
that in young, sexually active men, C. trachomatis is usually causative, and that in older men, the most common uropathogens are involved. Fluoroquinolones with activity against C. trachomatis (e.g. ofloxacin and levofloxacin), should be the drugs of first choice. If C. trachomatis has been detected, treatment could also be continued with doxycycline, 200 mg/day, for a total of at least 2 weeks. Macrolides may be used as alternative agents (GR: C). Supportive therapy includes bed rest, up positioning of the testes and anti-inflammatory therapy. In case of C. trachomatis epididymitis, the sexual partner should also be treated (GR: C). Abscess-forming epididymitis or orchitis needs surgical treatment. Chronic epididymitis can sometimes be the first clinical manifestation of urogenital tuberculosis.

11.2 Definition and classification
Epididymitis, inflammation of the epididymis, causes pain and swelling which is almost always unilateral and relatively acute in onset. In some cases, the testes are involved in the inflammatory process (epididymo-orchitis). On the other hand, inflammatory processes of the testicle, especially virally induced orchitis, often involve the epididymis.

Orchitis and epididymitis are classified as acute or chronic processes according to the onset and clinical course. Chronic disease with induration develops in 15% of acute epididymitis cases. In the case of testicular involvement, chronic inflammation may result in testicular atrophy and the destruction of spermatogenesis (1,2).

11.3 Incidence and prevalence
There are no new data available concerning the incidence and prevalence of epididymitis. According to older data, acute epididymitis has been a major cause for admission to hospitals of military personnel (2) (LE: 3). Acute epididymitis in young men is associated with sexual activity and infection of the consort (3) (LE: 3).

The most common type of orchitis, mumps orchitis, develops in 20-30% of post-pubertal patients with mumps virus infection. The incidence depends upon the vaccination status of the population (4). Primary chronic orchitis is a granulomatous disease, and a rare condition with uncertain aetiology that has been reported in about 100 cases in the literature (5).

11.4 Morbidity
Complications in epididymo-orchitis include abscess formation, testicular infarction, testicular atrophy, development of chronic epididymal induration and infertility (2).

Epididymitis caused by sexually transmitted organisms occurs mainly in sexually active males aged < 35 years (2,6) (LE: 3). The majority of cases of epididymitis are due to common urinary pathogens, which are also the most common cause of bacteriuria (2,6) (LE: 3). Bladder outlet obstruction and urogenital malformations are risk factors for this type of infection.

11.5 Pathogenesis and pathology
Typically, in epididymitis due to common bacteria and sexually transmitted organisms, the infection is spread from the urethra or bladder. In non-specific granulomatous orchitis, autoimmune phenomena are assumed to trigger chronic inflammation (5,7). Paediatric orchitis and mumps orchitis are of haematogenous origin (7).

Epididymo-orchitis is also seen in systemic infections such as tuberculosis, lues, brucellosis and cryptococcus disease.

11.6 Diagnosis
In acute epididymitis, the inflammation and swelling usually begin in the tail of the epididymis, and may spread to involve the rest of the epididymis and testicular tissue. The spermatic cord is usually tender and swollen. All men with epididymitis that is caused by sexually transmitted organisms have a history of sexual exposure, and the organisms can lie dormant for months before the onset of symptoms. If the patient is examined immediately after undergoing urinalysis, urethritis and urethral discharge may be missed because WBC and bacteria have been washed out of the urethra during urination.

The microbial aetiology of epididymitis can usually be determined by examination of a Gram stain of a urethral smear and/or an MSU for the detection of Gram-negative bacteriuria. The presence of intracellular Gram-negative diplococci on the smear correlates with infection with N. gonorrhoeae. The presence of only WBC on a urethral smear indicates the presence of non-gonorrhoeal urethritis. C. trachomatis is isolated in approximately two-thirds of these patients (2,6) (LE: 3).

Ejaculate analysis according to WHO criteria including leukocyte analysis indicates persistent inflammatory activity. In many cases, transient decreased sperm counts and forward motility can be found. Azospermia due to complete obstruction of both epididymides is a rare complication (8). If mumps orchitis is suspected, a history of parotitis and evidence of IgM antibodies in the serum supports the diagnosis. In about 20% of mumps orchitis cases, the disease occurs bilaterally in post-pubertal men with a risk of testicular
atrophy and azoospermia (3) (LE: 3).

11.6.1 **Differential diagnosis**

It is imperative for the physician to differentiate between epididymitis and spermatic cord torsion as soon as possible using all available information, including the age of the patient, history of urethritis, clinical evaluation and Doppler (duplex) scanning of testicular blood flow.

11.7 **Treatment**

Only a few studies have measured the penetration of antimicrobial agents into the epididymis and testes in humans. Of these, the fluoroquinolones have shown favourable properties (9) (LE: 2a).

Antimicrobials should be selected on the empirical basis that in young, sexually active men, *C. trachomatis* is usually causative, and that in older men, with BPH or other micturition disturbances, the most common uropathogens are involved. Studies that have compared microbiological results from puncture of the epididymis and from urethral swabs as well as urine have shown very good correlation. Therefore, before antimicrobial therapy, a urethral swab and MSU should be obtained for microbiological investigation (GR: C).

Again, fluoroquinolones, preferably those with activity against C. *trachomatis* (e.g. ofloxacin and levofloxacin), should be the drugs of first choice, because of their broad antibacterial spectra and their favourable penetration into the tissues of the urogenital tract. If *C. trachomatis* has been detected as an aetiological agent, treatment could also be continued with doxycycline, 200 mg/day, for a total period of at least 2 weeks. Macrolides may be used as alternative agents (GR: C).

Supportive therapy includes bed rest, up-positioning of the testes and antiphlogistic therapy. In young men, epididymitis can lead to permanent occlusion of the epididymal ducts and thus to infertility, therefore, one should consider antiphlogistic therapy with methylprednisolone, 40 mg/day, and reduce the dose by half every second day (GR: C).

In case of *C. trachomatis* epididymitis, the sexual partner should also be treated (GR: C). If uropathogens are found as causative agents, a thorough search for micturition disturbances should be carried out to prevent relapse (GR: C). Abscess-forming epididymitis or orchitis also needs surgical treatment. Chronic epididymitis can sometimes be the first clinical manifestation of urogenital tuberculosis.

11.8 **References**

12. FOURNIER’S GANGRENE

12.1 Summary of recommendations

1. Full, repeated surgical debridement should commence within 24 h of presentation (LE: 3; GR: B).
2. Treatment with broad-spectrum antibiotics should be started on presentation, with subsequently refinement according to culture and clinical response (LE: 3; GR: B).
3. Adjunctive treatment such as pooled immunoglobulin and hyperbaric oxygen are not recommended, except in the context of clinical trials (LE: 3; GR: C).

12.2 Background

Fournier's gangrene is an aggressive and frequently fatal polymicrobial soft tissue infection of the perineum, peri-anal region, and external genitalia. It is an anatomical sub-category of necrotising fasciitis with which it shares a common aetiology and management pathway. Evidence regarding investigation and treatment is predominantly from case series and expert opinion (LE: 3/4).

12.3 Clinical presentation

Fournier's gangrene remains rare but its incidence is increasing with an ageing population and higher prevalence of diabetes, and emergence of multi-resistant pathogens. Typically there is painful swelling of the scrotum or perineum with severe sepsis. Examination shows a small necrotic areas of skin with surrounding erythema and oedema. Crepitus on palpation and a foul-smelling exudate occurs with more advanced disease. Risk factors include immuno-compromised patients, most commonly diabetes or malnutrition, or a recent history of catheterisation, instrumentation or perineal surgery. In up to 40% of cases, the onset is more insidious with undiagnosed pain often resulting in delayed treatment. A high index of suspicion and careful examination, particularly of obese patients, is required.

12.4 Microbiology

Fournier's gangrene is typically a type 1 necrotising fasciitis that is polymicrobial in origin, including *S. aureus*, *Streptococcus* sp., *Klebsiella* sp., *E. coli* and anaerobs; involvement of *Clostridium* sp. is now less common. These organisms secrete endotoxins causing tissue necrosis and severe cardiovascular impairment. Subsequent inflammatory reaction by the host contributes to multi-organ failure and death if untreated.

12.5 Management

The degree of internal necrosis is usually vastly greater than suggested by external signs, and consequently, adequate, repeated surgical debridement is necessary to save the patient's life (LE: 3; GR: B). Disease specific severity scoring systems do not appear superior to generic critical illness scores and are therefore not recommended for routine use (LE: 3; GR: C). Computed tomography or MRI can help define para-rectal involvement, suggesting the need for colostomy (LE: 3, GR: C). Consensus from case series suggests that surgical debridement should be early (< 24 h) and complete, because delayed and/or inadequate surgery results in higher mortality (LE: 3; GR: B). Concurrent parenteral antibiotic treatment should be given that covers all causative organisms and can penetrate inflammatory tissue (LE: 3, GR: B). This can then be refined following surgical cultures. The benefit of pooled immunoglobulin therapy and hyperbaric oxygen remains uncertain and should not be used routinely (LE:3; GR: C). With aggressive early surgical and medical management, survival rates are > 70% depending upon patient group and availability of critical care (LE: 3). Following resolution, reconstruction using skin grafts is required.
Further reading

13. SEXUALLY TRANSMITTED INFECTIONS

The classical bacteria that cause venereal diseases, e.g. gonorrhoea, syphilis, chancroid and inguinal granuloma, only account for a small proportion of all known sexually transmitted deceases (STDs) today. Other bacteria and viruses as well as yeasts, protozoa and epizoa must also be regarded as causative organisms of STD. Taken together, all STDs are caused by > 30 relevant pathogens. However, not all pathogens that can be sexually transmitted manifest genital diseases, and not all genital infections are exclusively sexually transmitted. At present, the reader is referred to the 2010 CDC STD Treatment Guidelines (1).

The human immunodeficiency virus (HIV) causes a disease of the immune system leading to a vast panorama of complications and complex medical conditions also called acquired immunodeficiency.
synbdrome (AIDS). The urogenital tract is rarely involved. The topic is beyond the scope of these guidelines.

13.1 Reference

14. SPECIFIC INFECTIONS

Urogenital tuberculosis and bilharziasis are two infections that may affect the urogenital tract. Although not endemic in Europe, cases of urogenital tuberculosis are occasionally diagnosed in all communities. In a world of globalisation, travellers are regularly confronted with situations in which they may be infected. Guidelines on the diagnosis and management of these two infections have been published elsewhere. Following the abstract printed here, there is a direct link to these published guidelines, which can be consulted for free.

14.1 Urogenital tuberculosis
Nearly one third of the world’s population is estimated to be infected with *M. tuberculosis*. Moreover, tuberculosis is the most common opportunistic infection in AIDS patients. Urogenital tuberculosis is not very common but it is considered a severe form of extra-pulmonary tuberculosis. The diagnosis of urogenital tuberculosis is made based on culture studies by isolation of the causative organism; however, biopsy material on conventional solid media may occasionally be required. Drugs are the first-line therapy in urogenital tuberculosis. Treatment regimens of 6 months are effective in most patients. Although chemotherapy is the mainstay of treatment, surgery in the form of ablation or reconstruction may be unavoidable. Both radical and reconstructive surgery should be carried out in the first 2 months of intensive chemotherapy.

14.1.1 Reference

14.2 Urogenital schistosomiasis
More than 100 million people worldwide are affected by bilharziasis, which is caused by Schistosoma haematobium. For travellers, precautions are most important. For the population in endemic areas, an integrated approach including health education is necessary. Effective pharmacological treatment is available.

14.2.1 Reference

15. PERIOPERATIVE ANTIBACTERIAL PROPHYLAXIS IN UROLOGY

15.1 Summary and recommendations
The aim of antimicrobial prophylaxis in urological surgery is to prevent infective complications that result from diagnostic and therapeutic procedures at the time of surgery and in the immediate post-operative period. However, evidence for the best choice of antibiotics and prophylactic regimens is limited (Table 15.1).

Before surgery, it is essential to categorise the patients in relation to (1):
- general health status according to American Society of Anesthesiology (ASA) score P1-P5;
- presence of general risk factors such as older age, diabetes mellitus, impaired immune system, malnutrition, extreme weight;
- presence of specific endogenous or exogenous risk factors such as a history of UTI or urogenital
infection, indwelling catheters, bacterial burden, previous instrumentation, genetic factors;

- type of surgery and surgical field contamination burden;
- expected level of surgical invasiveness, duration and technical aspects.

Only transrectal core prostate biopsy (LE: 1b, GR: A) and TURP (LE: 1a, GR: A) are well documented. There is no evidence for any benefits of antibiotic prophylaxis in standard non-complicated endoscopic procedures and shockwave lithotripsy (SWL), although it is recommended in complicated procedures and patients with identified risk factors.

For open and laparoscopic surgery, the same rules as in abdominal and gynaecological surgery can be applied. No antibiotic prophylaxis is recommended for clean operations, whereas a single or 1-day dose is recommended in clean-contaminated. The approach in contaminated operations varies with the type of procedure, the level of surgical site contamination and level of difficulty. Opening of the urinary tract is considered as clean-contaminated surgery.

A single dose or a short course of antimicrobials can be given parenterally or orally. The administration route depends on the type of intervention and patient characteristics. Oral administration requires drugs that have good bioavailability. In a case of continuous close urinary drainage, prolongation of perioperative antibiotic prophylaxis is not recommended.

Many antibiotics are suitable for perioperative antibacterial prophylaxis, e.g. co-trimoxazole, second-generation cephalosporins, fluoroquinolones, aminopenicillins plus a beta-lactam inhibitor, and aminoglycosides. Broader-spectrum antibiotics including fluoroquinolones should be used cautiously and reserved for treatment. This applies also to the use of vancomycin.

The use of antimicrobials should be based on knowledge of the local pathogen profile and antibiotic susceptibility pattern. Best practice includes surveillance and an audit of infectious complications.

Table 15.1: Level of evidence and grade of recommendation for standard urological procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>LE</th>
<th>GR</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoscopy</td>
<td>1b</td>
<td>A</td>
<td>Low frequency of infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contradictory findings</td>
</tr>
<tr>
<td>Urodynamic study</td>
<td>1a</td>
<td>A</td>
<td>Low frequency of infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contradictory findings</td>
</tr>
<tr>
<td>Transrectal core biopsy of prostate</td>
<td>1b</td>
<td>A</td>
<td>High risk of infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assess carefully risk factors</td>
</tr>
<tr>
<td>Diagnostic ureteroscopy</td>
<td>4</td>
<td>C</td>
<td>No available studies</td>
</tr>
<tr>
<td>Therapeutic procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB</td>
<td>2b</td>
<td>C</td>
<td>Poor data. No concern given to burden of tumour, i.e. size, multiplicity, necrosis</td>
</tr>
<tr>
<td>TURP</td>
<td>1a</td>
<td>A</td>
<td>Good documentation</td>
</tr>
<tr>
<td>SWL (standard, no risk factors such as the presence of a stent or nephrostomy tube)</td>
<td>1a/1b</td>
<td>A</td>
<td>Low frequency of infections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contradictory findings</td>
</tr>
<tr>
<td>Ureteroscopy stone</td>
<td>2b</td>
<td>B</td>
<td>Literature does not distinguish between severity of stone management</td>
</tr>
<tr>
<td>Percutaneous stone management</td>
<td>2b</td>
<td>B</td>
<td>High risk of infection</td>
</tr>
<tr>
<td>Open and laparoscopic surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean operations (no opening of urinary tract)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>3</td>
<td>C</td>
<td>SSI poorly documented</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catheter-related UTI</td>
</tr>
<tr>
<td>Scrotal surgery</td>
<td>3</td>
<td>C</td>
<td>Review studies contradictory</td>
</tr>
<tr>
<td>Prosthetic implants</td>
<td>3</td>
<td>B</td>
<td>Limited documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regimen not well defined</td>
</tr>
<tr>
<td>Clean-contaminated (opening of urinary tract)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephroureterectomy</td>
<td>3</td>
<td>B</td>
<td>Poor documentation</td>
</tr>
<tr>
<td>Ureteropelvic junction repair</td>
<td>4</td>
<td>C</td>
<td>No studies detected</td>
</tr>
<tr>
<td>Total (radical) prostatectomy</td>
<td>2a</td>
<td>B</td>
<td>No RCT, poor documentation</td>
</tr>
<tr>
<td>Partial bladder resection</td>
<td>3</td>
<td>C</td>
<td>No specific RCT studies</td>
</tr>
</tbody>
</table>
15.2 Introduction

Antibiotic prophylaxis in urology has been controversial for many years. Most studies in the past have been poorly designed and lacked statistical power. There has been inconsistency concerning definitions and assessment of risk factors. Urological practice has changed particularly in the last decade and older studies are no longer relevant. Several surveys among urologists in Europe have revealed wide differences in regimens and choice of antibiotics for prophylaxis. Clearly, there is a need for evidence-based guidelines (2-6).

The present section aims to clarify the current state of knowledge and to propose practical recommendations based on clinical studies, expert opinion and professional consensus. The section also considers the recommendations of societies, such as the Paul Ehrlich Society for Chemotherapy, the corresponding working groups of the German Society of Urology (7), French Association of Urology (8) and of an international consensus working group (1).

One systematic review of antibiotic prophylaxis in urological surgery has been published (9). The results of the review strengthen the underlying documentation for the present recommendations.

A recent pan-European survey was carried out by the EAU Section for Infection in Urology (ESIU) in a large number of European countries, including > 200 urological services or units. The survey found that ≥ 10-12% of patients had a healthcare-associated UTI (10). Moreover, a review of antibiotic prophylaxis praxis showed large discrepancies in the use of antibiotic prophylaxis in all type of procedures and between countries, and low compliance to the guidelines (11). The surveys illustrate the need for a stringent antibiotic policy throughout Europe, and that recommendations for antibiotic prophylaxis should be included in the general antibiotic policy of each hospital.

The microbial development of resistance presents a challenge to the urological community for both treatment and prophylaxis. It is essential that the urologist is aware of the microbial pattern and resistance profile in his/her community and can assess the risk of each individual patient of harbouring resistant strains (see Section 1.2).

15.3 Goals of perioperative antibacterial prophylaxis

Antibiotic prophylaxis and therapy are two different issues. Antibiotic prophylaxis aims to prevent healthcare-associated infections that result from diagnostic and therapeutic procedures. Antibiotic prophylaxis is only one of several measures to prevent infections and can never compensate for poor hygiene and operative technique. In contrast, antibiotic therapy is the treatment of a clinically suspected or microbiologically proven infection.

There is a dilemma regarding the definition of infections. The US CDC have presented definitions that are currently the most comprehensive, and are recommended for the evaluation of infectious complications (12). These definitions have also been used in the recent pan-European study on nosocomial UTI (10). Revision of definitions and recommendations are on-going in some countries (13). Table 15.2 illustrates the different types of infectious complications encountered in urological surgery.

Table 15.2: Main types of healthcare-associated infections encountered in urological practice

<table>
<thead>
<tr>
<th>Site of infection</th>
<th>Minor</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical wound Incision/surgical site infection (SSI)</td>
<td>Superficial wound infection</td>
<td>Deep wound infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wound rupture (abdominal dehiscence)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep abdominal or surgical site abscess</td>
</tr>
<tr>
<td>UTI or organ-specific infection</td>
<td>Asymptomatic bacteriuria (bacterial colonisation)</td>
<td>Febrile UTI</td>
</tr>
<tr>
<td></td>
<td>Symptomatic lower UTI</td>
<td></td>
</tr>
<tr>
<td>Blood stream</td>
<td>Bacteremia without signs of systemic response</td>
<td>SIRS or sepsis with signs of systemic response</td>
</tr>
<tr>
<td>Other urogenital sites</td>
<td>Epididymitis (Orchitis)</td>
<td>Acute bacterial prostatitis (type I)</td>
</tr>
<tr>
<td>Other sites</td>
<td>Epispididymitis (Orchitis)</td>
<td>Septic embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary bone infection</td>
</tr>
</tbody>
</table>
Surgical site infections are seen after open surgery and to some extent after laparoscopic surgery. Febrile and complicated UTIs are mainly complications of endoscopic surgery and the use of indwelling catheters and stents. They can also occur following open surgery of the urinary tract. Sepsis can be seen with all types of procedures.

The endpoints of perioperative prophylaxis in urology are debatable. It is generally agreed that its main aim is to prevent symptomatic, febrile urogenital infections such as acute pyelonephritis, prostatitis, epididymitis and urosepsis, as well as serious wound infections directly related to surgery (Table 15.2). This might be extended to asymptomatic bacteriuria and even minor wound infections, which could easily be treated on an outpatient basis. In some circumstances, even minor wound infections can have serious consequences, as in implant surgery. However, asymptomatic bacteriuria after TURP or other endourological procedures can disappear spontaneously and is usually of no clinical significance. Another question is whether perioperative prophylaxis should also be concerned with the prevention of non-urological infections, e.g. endocarditis and postoperative pneumonia. Perioperative antibacterial prophylaxis in urology must go beyond the traditional aim of prophylaxis in surgery, which is the prevention of wound infections.

15.4 Risk factors

Risk factors (Table 15.3 and 2.1) are underestimated in most trials. However, they are important in the preoperative assessment of the patient. They are related to:

- general health of the patient as defined by ASA score P1-P5;
- presence of general risk factors such as older age, diabetes mellitus, impaired immune system, malnutrition, extreme weight;
- presence of specific endogenous or exogenous risk factors such as a history of UTI or urogenital infection, indwelling catheters, bacterial burden, previous instrumentation, genetic factors;
- type of surgery and surgical field contamination;
- expected level of surgical invasiveness, duration and technical aspects.

The traditional classification of surgical procedures according to Cruse and Foord (14) into clean, clean-contaminated, contaminated, and infected/dirty operations applies to open surgery but not to endourological interventions. It is still debated whether opening of the urinary tract (i.e. bladder surgery, radical prostatectomy, or surgery of the renal pelvis and ureter) should be classified as clean or clean-contaminated surgery in cases of negative urine culture. The same applies to endoscopic and transurethral surgery. However, members of the EAU Expert Group consider these procedures as clean-contaminated because urine culture is not always a predictor of bacterial presence, and the lower genitourinary tract is colonised by microflora, even in the presence of sterile urine (6,15,16).

Table 15.3: Generally accepted risk factors for infectious complications

<table>
<thead>
<tr>
<th>General risk factors</th>
<th>Special risk factors associated with an increased bacterial load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older age</td>
<td>Long preoperative hospital stay or recent hospitalisation</td>
</tr>
<tr>
<td>Deficient nutritional status</td>
<td>History of recurrent urogenital infections</td>
</tr>
<tr>
<td>Impaired immune response</td>
<td>Surgery involving bowel segment</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Colonisation with microorganisms</td>
</tr>
<tr>
<td>Smoking</td>
<td>Long-term drainage</td>
</tr>
<tr>
<td>Extreme weight</td>
<td>Urinary obstruction</td>
</tr>
<tr>
<td>Coexisting infection at a remote site</td>
<td>Urinary stone</td>
</tr>
<tr>
<td>Lack of control of risk factors</td>
<td></td>
</tr>
</tbody>
</table>

The pan-European study on nosocomial UTI (10) has identified the three most important risk factors for infectious complications as:

- an indwelling catheter;
- previous urogenital infection;
- long preoperative hospital stay.

The risk of infection varies with the type of intervention. The wide spectrum of interventions further complicates the provision of clear-cut recommendations. Furthermore, the bacterial load, the duration and difficulty of the operation, the surgeon's skill, and perioperative bleeding may also influence the risk of infection (6).

15.5 Principles of antibiotic prophylaxis

Antibiotic prophylaxis aims at protecting the patient but not at the expense of promoting resistance. However,
there is good evidence that intelligent use of prophylaxis can lower the overall consumption of antibiotics (16,17). It is essential to individualise the choice of antibiotic prophylaxis according to each patient’s cumulative risk factors (18). Urine culture prior to surgery is strongly recommended. Antibiotics cannot replace other basic measures to reduce infection (19-21).

Unfortunately, the benefit of antibiotic prophylaxis for most modern urological procedures has not yet been established by well-designed interventional studies.

15.5.1 **Timing**

There is a given time-frame during which antibiotic prophylaxis should be administered. Although the following guidelines are based on research into skin wounds and clean-contaminated and contaminated bowel surgery, there is good reason to believe that the same findings apply to urological surgery. The optimal time for antibiotic prophylaxis is 1-2 h before instrumentation. Some studies on bowel surgery indicate similar results up to 3 h after the start of an intervention (22-24).

For practical purposes, oral antibiotic prophylaxis should be given approximately 1 h before the intervention. Intravenous antibiotic prophylaxis should be given at the induction of anaesthesia. These timings allow antibiotic prophylaxis to reach a peak concentration at the time of highest risk during the procedure, and an effective concentration shortly afterwards (25). It is worth noting that a bloodstream infection can develop in less than an hour (22).

15.5.2 **Route of administration**

Oral administration is as effective as the intravenous route for antibiotics with sufficient bioavailability. This is recommended for most interventions when the patient can easily take the drug 1 h before intervention. In other cases, intravenous administration is recommended. Local irrigation of the operating field with antibiotics is not recommended.

15.5.3 **Duration of the regimen**

For most procedures, duration of antibiotic prophylaxis has not yet been adequately addressed and rarely can a defined regimen be recommended. In principle, the duration of perioperative prophylaxis should be minimised; ideally to a single preoperative antibiotic dose. Perioperative prophylaxis should be prolonged only where there are significant risk factors (see Section 15.4).

15.5.4 **Choice of antibiotics**

No clear-cut recommendations can be given, as there are considerable variations in Europe regarding both bacterial spectra and susceptibility to different antibiotics. Antimicrobial resistance is usually higher in Mediterranean compared with Northern European countries; resistance is correlated with an up to fourfold difference in sales of antibiotics (26). Thus, knowledge of the local pathogen profile, susceptibility and virulence is mandatory in establishing local antibiotic guidelines. It is also essential to define the predominant pathogens for each type of procedure. When choosing an antimicrobial agent, it is necessary to consider the procedure-specific risk factors, contamination load, target organ, and the role of local inflammation.

In general, many antibiotics are suitable for perioperative antibacterial prophylaxis, e.g. co-trimoxazole, second-generation cephalosporins, aminopenicillins plus a BLI, aminoglycosides and fluoroquinolones. Broad-spectrum antibiotics should be used sparingly and reserved for treatment. Fluoroquinolones should be avoided as far as possible for prophylaxis. This applies also to the use of vancomycin.

15.6 **Prophylactic regimens in defined procedures**

All procedures are not alike. There is a large variation in invasiveness and risk for identical interventions. The empirical relationship between the level of invasiveness and risk for infective complications is illustrated in Figure 15.1. Moreover, a tentative classification of the urological procedures in relation to the surgical field contamination level is given in Table 15.5.a and 15.5.b.
The EAU/ESIU working group has suggested a distribution of the different common diagnostic and therapeutic urological procedures in relation to the categories of surgical site contamination after adaptation to the urological context (14,27). The recommendations for antibiotic prophylaxis in standard urological surgery are summarised in Table 15.4a and 15.4b (28,29).

15.6.1 Diagnostic procedures
Antimicrobial prophylaxis in core biopsy of the prostate is generally recommended (GR: A). However, the choice of regimens remains debatable. Most regimens used are effective, and recent studies have suggested that 1-day and even single doses are sufficient in low-risk patients (30-45) (LE: 1b, GR: A). The increase in fluoroquinolones resistance in the faecal flora has raised the question of appropriateness of the current recommendations (46,47). No clear-cut alternative is evidence-based. Each urologist must weigh the need for a prostate biopsy in relation to the risk, assess the individual risks factors including the risk of harbouring a resistant bacteria (i.e. ESBL) and consider the need for a rectal swab before the instrumentation.

The frequency of infectious complications after cystoscopy, urodynamic studies and diagnostic simple ureteroscopy is low. The use of antibiotic prophylaxis is still debated and the results are controversial. In view of the very large number of cystoscopic examinations and the potential adverse effect on bacterial sensitivity, antibiotic prophylaxis is not recommended in standard cases. However, bacteriuria, indwelling catheters, and a history of urogenital infection are risk factors that must be considered (48-62) (LE: 1b, GR: A).

15.6.2 Endourological treatment procedures (urinary tract entered)
There is little evidence for any benefit of antibiotic prophylaxis in TURB. However, antibiotic prophylaxis should be considered in patients with large tumours with a prolonged resection time, large necrotic tumours, and with risk factors (49,63,64) (LE: 2b, GR: C).

Transurethral resection of the prostate is the best-studied urological intervention. A meta-analysis of 32 prospective, randomised and controlled studies, including > 4,000 patients, showed a benefit of antibiotic prophylaxis with a relative risk reduction of 65% and 77% for bacteriuria and sepsicaemia, respectively (16,65-67) (LE: 1a, GR: A). There is a difference between smaller resections in healthy patients and large resections in at-risk patients (Figure 15.1).

There have been few studies that have defined the risk of infection following ureteroscopy and percutaneous stone removal, and no clear-cut evidence exists (68). It is reasonable, however, to distinguish low-risk procedures, such as simple diagnostic and distal stone treatment, from higher-risk procedures, such as treatment of proximal impacted stones and intrarenal interventions (Figure 15.1) (5). Other risk factors (i.e. size, length, bleeding, and surgeon’s experience) also need to be considered in the choice of regimen (69-76) (LE: 2b, GR: B).

Shockwave lithotripsy is one of the most commonly performed procedures in urology. No standard prophylaxis is recommended. However, prophylaxis is recommended in cases of internal stent and treatment, due to the increased bacterial burden (e.g. indwelling catheter, nephrostomy tube, or infectious stones) (77-86) (LE: 1a-1b, GR: A).

Most antibiotic groups have been evaluated, such as fluoroquinolones, BLJs, including cephalosporins, and co-trimoxazole, but comparative studies are limited.
15.6.3 Laparoscopic surgery
There has been a lack of sufficiently powered studies in laparoscopic urological surgery. However, it seems reasonable to manage laparoscopic surgical procedures in the same manner as the corresponding open procedures (LE: 4, GR: C).

15.6.4 Open or laparoscopic urological operations without opening of the urinary tract (clean procedures)
No standard antibiotic prophylaxis is recommended in clean operations (87-94) (LE: 3, GR: C).

15.6.5 Open or laparoscopic urological operations with open urinary tract (clean-contaminated procedures)
In cases of opening the urinary tract, a single perioperative parenteral dose of antibiotics is recommended (LE: 3, GR: C). This is valuable for standard procedures such as total (radical) prostatectomy (92-95). In open enucleation of prostatic adenoma, the risk of postoperative infection is particularly high (96) (LE: 2b, GR: B).

15.6.6 Open urological operations with bowel segment (clean-contaminated or contaminated procedures)
Antibiotic prophylaxis is recommended, as for clean-contaminated operations in general surgery. Single or 1-day dosage is recommended, although prolonged operation and other morbidity risk factors might support the use of a prolonged regimen, which should be < 72 h. The choice of antibiotic should focus on aerobic and anaerobic pathogens. Evidence is based on colorectal surgery (LE: 1a, GR: A), but experience is limited as for specific urological interventions (97-100) (LE: 2a, GR: B).

15.6.7 Postoperative drainage of the urinary tract
When continuous urinary drainage is left in place after surgery, prolongation of perioperative antibacterial prophylaxis is not recommended, unless a complicated infection that requires treatment is suspected. Asymptomatic bacteriuria (bacterial colonisation) should only to be treated before surgery or after removal of the drainage tube (LE: 3, GR: B).

15.6.8 Implantation of prosthetic devices
When infectious complications occur in implant surgery, they are usually problematic and often result in removal of the prosthetic device. Diabetes mellitus is considered a specific risk factor for infection. Skin-related staphylococci are responsible for most infections. The antibiotics used must be chosen to target these strains (101-104) (LE: 2a, GR: B).

Table 15.4a: Surgical Wound classes modified from (13) and adapted to urological surgery. Tentative classification of urological procedures in relation to the different levels of surgical field contamination. The risk of wound infection or SSI expressed in per cent (within brackets in left column) is that of classical wound infections without antibiotic prophylaxis and not bacteriuria or clinical UTI in urological surgery (Modified from Urogenital infections, EAU/ICUD, 2010, p 674-75). In this table some examples of open and laparoscopic procedures are given and the ABP basic principle.

<table>
<thead>
<tr>
<th>Surgical contamination</th>
<th>Description</th>
<th>Open or laparoscopic urological surgery (examples of procedures)</th>
<th>Antibiotic prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean (I) (1-4%)</td>
<td>Uninfected surgical site Urogenital tract not entered No evidence of inflammation No break in technique</td>
<td>Simple nephrectomy Planned scrotal surgery Vasectomy Varicocele</td>
<td>No</td>
</tr>
<tr>
<td>Clean-contaminated (UT) (IIA) (Not well studied)</td>
<td>Urogenital tract (UT) entered with no or little (controlled) spillage. No break in technique</td>
<td>Pelvio-ureteric junction repair Nephroureteral tumour resection Total prostatectomy Bladder surgery, partial cystectomy</td>
<td>Single dose prior to (oral) or at surgery (i.v.)</td>
</tr>
</tbody>
</table>
Clean-contaminated (bowel) (IIB) (4-10%)
Gastrointestinal tract (GIT) entered with no or little (controlled spillage. No break in technique
Urine diversion (small intestine) Orthotopic bladder replacement; ileal conduit
Single dose prior to (oral) or at surgery (i.v.)

Contaminated (IIIA) (10-15%)
UT and/or GIT entered, spillage of GI content; inflammatory tissue; major break in technique; Open, fresh accidental wounds
Urine diversion (large intestine) Spillage (small and large intestine) Concomitant GI disease Trauma surgery
Control of bacteriuria prior to surgery Single dose at surgery. Consider prolonged regime

Dirty (IV) (15-40%)
Pre-existing infection; viscera perforation Old traumatic wound
Drainage of abscess Large dirty trauma surgery

Table 15.4b: Tentative classification of the different diagnostic and therapeutic endoscopic urological procedures in relation to the level of surgical field contamination. Bacteriuria is a key factor to separate between clean-contaminated and contaminated surgical environment (modified from Urogenital infections EAU/ICUD, 2010, p 674-75).

<table>
<thead>
<tr>
<th>Level of surgical field contamination</th>
<th>Bacteriuria</th>
<th>Diagnostic procedures</th>
<th>TURB and TURP</th>
<th>URS PCNL</th>
<th>SWL</th>
<th>Antibiotic prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean (I)</td>
<td>No</td>
<td>Cystoscopy Urodynamic study</td>
<td>Small TURB/ fulguration (similar cystoscopy)</td>
<td>Diagnostic URS (simple, no history of UTI)</td>
<td>Standard kidney of ureter No obstruction, no history of UT</td>
<td>No</td>
</tr>
<tr>
<td>Clean-contaminated (UT) (IIIA)</td>
<td>No</td>
<td>Trans-perineal prostate biopsy</td>
<td>TURB large tumour (no history of UTI) TURP (no history UTI or other identified RF) Controlled BU</td>
<td>Diagnostic URS Uncomplicated stone (no obstruction, no stent, not “impacted”) History of UTI</td>
<td>Standard kidney or ureter Moderate obstruction and/or history of UTI</td>
<td>Single dose prior to (oral) or at surgery (i.v.)</td>
</tr>
<tr>
<td>Contaminated (UT=IIIA)</td>
<td>Yes</td>
<td>Trans-perineal prostate biopsy (history of UTI) Trans-rectal prostate biopsy</td>
<td>TURB necrosis/ bacteriuria TURP in men with indwelling catheter or bacteriuria</td>
<td>Complicated stone (Moderate obstruction, “impacted”)</td>
<td>Complex stone Obstruction Nephrostomy or JJ-stent present</td>
<td>Control of bacteriuria prior to surgery Single dose at surgery. Consider prolonged regimen</td>
</tr>
<tr>
<td>Infected/Dirty (IV)</td>
<td>Yes</td>
<td>Prostate biopsy in men with catheter or UTI</td>
<td>Diagnostic URS Uncomplicated stone (no obstruction, no stent, not “impacted”)</td>
<td>Complicated stone (Moderate obstruction, “impacted”)</td>
<td>Complex stone Obstruction Nephrostomy or JJ-stent present</td>
<td>Antibiotic treatment</td>
</tr>
</tbody>
</table>

UROLOGICAL INFECTIONS - LIMITED UPDATE MARCH 2013 83
Table 15.5: Recommendations for perioperative antibiotic prophylaxis in urology

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Pathogens (expected)</th>
<th>Prophylaxis</th>
<th>Antibiotics</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transrectal biopsy of the prostate</td>
<td>Enterobacteriaceae Anaerobes?</td>
<td>All patients</td>
<td>Fluoroquinolones TMP ± SMX Metronidazole?¹</td>
<td>Single dose effective in low-risk patients. Consider prolonged course in high-risk patients</td>
</tr>
<tr>
<td>Cystoscopy</td>
<td>Enterobacteriaceae Enterococci</td>
<td>No</td>
<td>TMP ± SMX Cephalosporin 2nd generation</td>
<td>Consider in high-risk patients</td>
</tr>
<tr>
<td>Urodynamic examination</td>
<td>Enterobacteriaceae Enterococci</td>
<td>No</td>
<td>TMP ± SMX Cephalosporin 2nd generation</td>
<td>Consider in high-risk patients</td>
</tr>
<tr>
<td>Ureteroscopy</td>
<td>Enterobacteriaceae Enterococci</td>
<td>No</td>
<td>TMP ± SMX Cephalosporin 2nd generation</td>
<td>Consider in high-risk patients</td>
</tr>
<tr>
<td>Endourological surgery and SWL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWL</td>
<td>Enterobacteriaceae Enterococci</td>
<td>No</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI</td>
<td>Risk patients</td>
</tr>
<tr>
<td>SWL with stent or nephrostomy tube</td>
<td>Enterobacteriaceae Enterococci</td>
<td>All patients</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI</td>
<td></td>
</tr>
<tr>
<td>Ureteroscopy for uncomplicated distal stone</td>
<td>Enterobacteriaceae Enterococci</td>
<td>No</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI Fluoroquinolones</td>
<td>Consider in risk patients</td>
</tr>
<tr>
<td>Ureteroscopy of proximal or impacted stone and</td>
<td>Enterobacteriaceae Enterococci</td>
<td>All patients</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI Fluoroquinolones</td>
<td>Short course Length to be determined Intravenous suggested at operation</td>
</tr>
<tr>
<td>TURP</td>
<td>Enterobacteriaceae Enterococci</td>
<td>All patients</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI</td>
<td>Low-risk patients and small-size prostate probably do not require prophylaxis</td>
</tr>
<tr>
<td>TUR of bladder tumour</td>
<td>Enterobacteriaceae Enterococci</td>
<td>No</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI</td>
<td>Consider in high-risk patients and large tumours</td>
</tr>
<tr>
<td>Open or laparoscopic urological surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean operations</td>
<td>Skin-related pathogens, e.g. staphylococci Catheter-associated uropathogens</td>
<td>No</td>
<td></td>
<td>Consider in high-risk patients Short postoperative catheter requires no treatment</td>
</tr>
<tr>
<td>Clean-contaminated (opening of urinary tract)</td>
<td>Enterobacteriaceae Enterococci Staphylococci</td>
<td>Recommended</td>
<td>TMP ± SMX Cephalosporin 2nd or 3rd generation Aminopenicillin/BLI</td>
<td>Single perioperative course</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Clean-contaminated/ contaminated (use of bowel segments)</td>
<td>Enterobacteriaceae Enterococci Anaerobes Skin-related bacteria</td>
<td>All patients</td>
<td>Cephalosporin 2nd or 3rd generation Metronidazole</td>
<td>As for colonic surgery</td>
</tr>
<tr>
<td>Implant of prosthetic devices</td>
<td>Skin-related bacteria, e.g. staphylococci</td>
<td>All patients</td>
<td>Cephalosporin 2nd or 3rd generation Penicillin (penicillinase stable)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\)No evidence for metronidazole in core biopsy of the prostate.

\(^{a}\) = gram-negative bacteria excluding Pseudomonas aeruginosa.

15.7 References

 www.urofrance.org

16. APPENDICES

16.1 Criteria for the diagnosis of UTI, as modified according to IDSA/European Society of Clinical Microbiology and Infectious Diseases guidelines (1-3)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Clinical features</th>
<th>Laboratory investigations</th>
</tr>
</thead>
</table>
| 1 | Acute uncomplicated UTI in women; acute uncomplicated cystitis in women | Dysuria, urgency, frequency, suprapubic pain, no urinary symptoms in 4 weeks before this episode | > 10 WBC/mm³
> 10³ cfu/mL* |
| 2 | Acute uncomplicated pyelonephritis | Fever, chills, flank pain; other diagnoses excluded; no history or clinical evidence of urological abnormalities (ultrasonography, radiography) | > 10 WBC/mm³
> 10⁴ cfu/mL* |
| 3 | Complicated UTI | Any combination of symptoms from categories 1 and 2 above; one or more factors associated with a complicated UTI (see text) | > 10 WBC/mm³
> 10⁵ cfu/mL* in women
> 10⁴ cfu/mL* in men, or in straight catheter urine in women |
| 4 | Asymptomatic bacteriuria | No urinary symptoms | > 10 WBC/mm³
> 10⁵ cfu/mL* in two consecutive MSU cultures
> 24 h apart |
| 5 | Recurrent UTI (antimicrobial prophylaxis) | At least three episodes of uncomplicated infection documented by culture in past 12 months: women only; no structural/functional abnormalities | < 10³ cfu/mL* |

All pyuria counts refer to unspun urine.
Uropathogen in MSU culture.

16.1.1 References

16.2 Recommendations for antimicrobial therapy in urology

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Most frequent pathogen/species</th>
<th>Initial, empirical antimicrobial therapy</th>
<th>Therapy duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystitis acute, uncomplicated</td>
<td>• E. coli • Klebsiella • Proteus • Staphylococci</td>
<td>• TMP-SMX<sup>1</sup> • Nitrofurantoin • Fosfomycin trometamol • Pivmecillinam Alternative: • Fluoroquinolone<sup>2,3</sup></td>
<td>3 days (5-)7 days 1 day (3-)5 days (1-)3 days</td>
</tr>
<tr>
<td>Pyelonephritis acute, uncomplicated</td>
<td>• E. coli • Proteus • Klebsiella • Other enterobacteria • Staphylococci</td>
<td>• Fluoroquinolone<sup>2</sup> • Cephalosporin (group 3a) Alternatives: • Aminopenicillin/BLI • Aminoglycoside</td>
<td>7-10 days</td>
</tr>
<tr>
<td>UTI with complicating factors</td>
<td>• E. coli • Enterococci • Pseudomonas • Staphylococci</td>
<td>• Fluoroquinolone<sup>2</sup> • Aminopenicillin/BLI • Cephalosporin (group 2) • Cephalosporin (group 3a) • Aminoglycoside</td>
<td>3-5 days after defervescence or control/elimination of complicating factor</td>
</tr>
<tr>
<td>Nosocomial UTI</td>
<td>• Klebsiella • Proteus</td>
<td>In case of failure of initial therapy within 1-3 days or in clinically cases: Anti-Pseudomonas active: • Fluoroquinolone, if not used initially • Acylaminopenicillin/BLI • Cephalosporin (group 3b) • Carbapenem • ± Aminoglycoside In case of Candida: • Fluconazole • Amphotericin B</td>
<td></td>
</tr>
<tr>
<td>Pyelonephritis severe acute, complicated</td>
<td>• Enterobacter • Other enterobacteria • (Candida)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostatitis acute, chronic</td>
<td>• E. coli • Other enterobacteria • Pseudomonas • Enterococci • Staphylococci • Chlamydia • Ureaplasma • E. coli • Other enterobacteria After urological interventions - multi-resistant pathogens: • Pseudomonas • Proteus • Serratia • Enterobacter</td>
<td>• Fluoroquinolone<sup>2</sup> Alternative in acute bacterial prostatitis: • Cephalosporin (group 3a/b) In case of Chlamydia or Ureaplasma: • Doxycycline • Macrolide • Cephalosporin (group 3a/b) • Fluoroquinolone<sup>2</sup> • Anti-Pseudomonas active acylaminopenicillin/BLI • Carbapenem • ± Aminoglycoside</td>
<td>Acute: 2-4 weeks Chronic: 4-6 weeks or longer</td>
</tr>
<tr>
<td>Epididymitis Ureaplasma: Acute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urosepsis</td>
<td></td>
<td>Acute: 3-5 days after defervescence or control/elimination of complicating factor</td>
<td></td>
</tr>
</tbody>
</table>

¹Only in areas with resistance rate < 20% (for E. coli).

²Fluoroquinolone with mainly renal excretion (see text).

³Avoid Fluoroquinolones in uncomplicated cystitis whenever possible.
16.3 Recommendations for antimicrobial prescription in renal failure

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Mild 50-20</th>
<th>Moderate 20-10</th>
<th>Severe < 10</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Aciclovir</td>
<td>normal dose every 12 h</td>
<td>normal dose every 24 h</td>
<td>50% of normal dose every 24 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Aciclovir po</td>
<td>normal</td>
<td>Herpes simplex: normal</td>
<td>Herpes simplex: 200 mg bid</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Amikacin</td>
<td>5-6 mg/kg 12 h</td>
<td>3-4 mg/kg 24 h HD: 5mg/kg post HD and monitor levels</td>
<td>2 mg/kg 24-48 h</td>
<td>Give post-HD Monitor pre- and 1 h post-dose levels after 3rd dose and adjust dose as required</td>
</tr>
<tr>
<td>Amoxicillin po</td>
<td>normal</td>
<td>normal</td>
<td>250 mg 8 h (normal)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Amphotericin</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>(Liposomal + lipid complex) Amphotererin is highly NEPHROTOXIC. Consider using liposomal/lipid complex amphotericin. Daily monitoring of renal function (GFR) essential.</td>
</tr>
<tr>
<td>Ampicillin IV</td>
<td>normal</td>
<td>250-500 mg 6 h</td>
<td>250 mg 6 h (500 mg 6 h)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>normal</td>
<td>75%</td>
<td>20-50% Max. 3.6 g/day (1.2 g qds)</td>
<td>Give post-HD Refer to microbiology for dosing in SBE</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>normal</td>
<td>normal</td>
<td>1 g stat then 50%</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Cefradine</td>
<td>normal</td>
<td>Normal</td>
<td>250 mg 6 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>1 g 12 h</td>
<td>1 g 24 h</td>
<td>500 mg 24 h (1 g 24 h)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>normal</td>
<td>normal</td>
<td>normal Max. 2 g/day</td>
<td></td>
</tr>
<tr>
<td>Cefuroxime IV</td>
<td>normal</td>
<td>750 mg-1.5 g 12 h</td>
<td>750 mg 24 h (750 mg 12 h)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Ciproflazin IV + po</td>
<td>normal</td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Clarithromycin IV + po</td>
<td>normal</td>
<td>normal</td>
<td>50%</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Clindamycin IV + po</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>Co-amoxiclav IV (Augmentin)</td>
<td>normal</td>
<td>1.2 stat then 50% 12 h (1.2 g 12 h)</td>
<td>1.2 stat then 50% 24 h (1.2 g stat then 600 mg 12 h)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Co-amoxiclav po (Augmentin)</td>
<td>normal</td>
<td>375-625 mg 12 h (375 mg 8 h)</td>
<td>375 mg 12 h (375 mg 8 h)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>*Co-trimoxazole IV</td>
<td>normal</td>
<td>Normal for 3/7 then 50%</td>
<td>50%</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Medicine</td>
<td>Normal GFR</td>
<td>Reduced GFR</td>
<td>Renal Impairment</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>All other tetracyclines contraindicated in renal impairment</td>
</tr>
<tr>
<td>Erythromycin IV + po</td>
<td>normal</td>
<td>normal</td>
<td>normal Max. 1.5 g/day (500 mg qds)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>*Ethambutol</td>
<td>normal</td>
<td>24-36 h</td>
<td>48 h</td>
<td>Monitor levels if GFR < 30mL/min (contact Mirco)</td>
</tr>
<tr>
<td>Flucloxacin IV + po</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>normal</td>
<td>normal</td>
<td>normal 50%</td>
<td>No adjustments in single-dose therapy required</td>
</tr>
<tr>
<td>*Flucytosine</td>
<td>50 mg/kg 12 h</td>
<td>50 mg/kg 24 h</td>
<td>50 mg/kg stat then dose according to levels</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Fusidic acid</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>1) Gentamicin ONCE DAILY</td>
<td>GFR 10-40 mL/min</td>
<td>GFR < 10 mL/min</td>
<td>BOTH METHODS Monitor blood levels:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 mg/kg stat (max. 300 mg)</td>
<td>2 mg/kg (max. 200 mg) redose according to levels</td>
<td>Give post-HD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check pre-dose levels 18-24 h after first dose</td>
<td>HD: 1-2 mg/kg Post-HD: redose according to levels</td>
<td>Once daily: pre only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redose only when level < 1 mg/L</td>
<td>Redose according to levels</td>
<td>Conventional: pre and 1 h post level required.</td>
<td></td>
</tr>
<tr>
<td>2) Gentamicin CONVENTIONAL</td>
<td>80 mg 12 h</td>
<td>80 mg 48 h</td>
<td>80 mg 24 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Imipenem</td>
<td>500 mg 8-12 h</td>
<td>250-500 mg bid</td>
<td>Risk of convulsions - use Meropenem: see below</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>normal</td>
<td>normal</td>
<td>200-300 mg 24 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>500 mg stat then 250 mg bid**</td>
<td>500 mg stat then 125 mg bid**</td>
<td>500 mg stat then 125 mg od</td>
<td>**Applies if full dose is 500 mg bid If full dose is 500 mg od, five reduced doses daily</td>
</tr>
<tr>
<td>Linezolid</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Meropenem</td>
<td>12 h</td>
<td>50% 12 h</td>
<td>50% 24 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>normal</td>
<td>normal</td>
<td>12 h (normal)</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>Do NOT use in renal impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin V</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Piperacillin/ Tazobactam (Tazocin)</td>
<td>4.5 g 8 h</td>
<td>4.5 g 12 h</td>
<td>4.5 g 12 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>normal</td>
<td>normal</td>
<td>50-100%</td>
<td>Dose reduction after day 3 of therapy</td>
</tr>
<tr>
<td>*Teicoplanin</td>
<td>100% 48 h</td>
<td>100% 72 h</td>
<td>100% 72 h</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>See Doxycycline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>normal</td>
<td>Normal for 3/7 then 50% 18 h</td>
<td>50% 24 h</td>
<td>Give post-HD</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1 g od</td>
<td>Check pre-dose level before 3rd dose</td>
<td>1 g 48 h</td>
<td>Check pre-dose level before 2nd dose</td>
</tr>
<tr>
<td>Vorinconazole</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>Give post HD</td>
</tr>
</tbody>
</table>

\textit{bid} = twice daily; \textit{HD} = haemodialysis; \textit{od} = once daily; \textit{po} = by mouth; \textit{qid} = four times daily; \textit{SBE} = subacute bacterial endocarditis; \textit{tds} = total dissolved solids; \textit{qds} = Quantum Dots.

NIH-Chronic Prostatitis Symptom Index (NIH-CPSI)

Pain or Discomfort

1. In the last week, have you experienced any pain or discomfort in the following areas?

 a. Area between rectum and testicles (perineum)

 Yes □ 1, No □ 0

 b. Testicles

 Yes □ 1, No □ 0

 c. Tip of penis (not related to urination)

 Yes □ 1, No □ 0

 d. Below your waist, in your pubic or bladder area

 Yes □ 1, No □ 0

2. In the last week, have you experienced:

 a. Pain or burning during urination?

 Yes □ 1, No □ 0

 b. Pain or discomfort during or after sexual climax (ejaculation)?

 Yes □ 1, No □ 0

3. How often have you had pain or discomfort in any of these areas over the last week?

 □ 0 Never
 □ 1 Rarely
 □ 2 Sometimes
 □ 3 Often
 □ 4 Usually
 □ 5 Always

4. Which number best describes your AVERAGE pain or discomfort on the days that you had it, over the last week?

 □ 0 □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9 □ 10
 NO = PAIN AS BAD
 AS YOU CAN IMAGINE = PAIN AS BAD

Urination

5. How often have you had a sensation of not emptying your bladder completely after you finished urinating over the last week?

 □ 0 Not at all
 □ 1 Less than 1 time in 5
 □ 2 Less than half the time
 □ 3 About half the time
 □ 4 More than half the time
 □ 5 Almost always

6. How often have you had to urinate again less than two hours after you finished urinating, over the last week?

 □ 0 Not at all
 □ 1 Less than 1 time in 5
 □ 2 Less than half the time
 □ 3 About half the time
 □ 4 More than half the time
 □ 5 Almost always

Impact of Symptoms

7. How much have your symptoms kept you from doing the kinds of things you would usually do over the last week?

 □ 0 None
 □ 1 Only a little
 □ 2 Some
 □ 3 A lot

8. How much did you think about your symptoms, over the last week?

 □ 0 None
 □ 1 Only a little
 □ 2 Some
 □ 3 A lot

Quality of life

9. If you were to spend the rest of your life with your symptoms, just the way they have been during the last week, how would you feel about that?

 □ 0 Delighted
 □ 1 Pleased
 □ 2 Mostly satisfied
 □ 3 Mixed (about equally satisfied and dissatisfied)
 □ 4 Mostly dissatisfied
 □ 5 Unhappy
 □ 6 Terrible

Scoring the NIH-CPSI Prostatitis Symptom Index Domain

Pain:

Total of items 1a,1b,1c,1d,2a,2b,3 and 4 =

Urinary Symptoms:

Total of items 5 and 6 =

Quality of Life Impact:

Total of items 7,8, and 9 =
16.5 Meares & Stamey localisation technique*

MEARES AND STAMEY LOCALIZATION TECHNIQUE

1. Approximately 30 minutes before taking the specimen, the patient should drink 400ml of liquid (two glasses). The test starts when the patient wants to void.
2. The lids of four sterile specimen containers, which are marked VB1, VB2, EPS and VB3, should be removed. Place the uncapped specimen containers on a flat surface and maintain sterility.
3. Hands are washed.
4. Expose the penis and retract the foreskin so that the glans is exposed. The foreskin should be retracted throughout.
5. Cleanse the glans with a soap solution, remove the soap with sterile gauze or cotton and dry the glans.
6. Urinate 10-15ml into the first container marked VB1.
7. Urinate 100-200ml into the toilet bowl or vessel and without interrupting the urine stream, urinate 10-15ml into the second container marked VB2.
8. The patient bends forward and holds the sterile specimen container (EPS) to catch the prostate secretion.
9. The physician massages the prostate until several drops of prostate secretion (EPS) are obtained.
10. If no EPS can be collected during massage, a drop may be present at the office of the urethra and this drop should be taken with a 10ml calibrated loop and cultured.
11. Immediately after prostate massage, the patient urinates 10-15ml of urine into the container marked VB2.

© Elsevier 2004 Infections Disease 2e - www.idreference.com

16.6 Antibacterial agents

<table>
<thead>
<tr>
<th>Groups</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethoprim-sulphonamide combinations</td>
<td>Trimethoprim, co-trimoxazole, co-tetroxoprime (trimethoprim plus sulfametrol)</td>
</tr>
<tr>
<td>Fluoroquinolones¹,²</td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>Norfloxacin, pefloxacin</td>
</tr>
<tr>
<td>Group 2</td>
<td>Enoxacin, fleroxacin, lomefloxacin, ofloxacin, ciprofloxacin</td>
</tr>
<tr>
<td>Group 3</td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>Group 4</td>
<td>Gatifloxacin, moxifloxacin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin, roxithromycin, clarithromycin, azithromycin</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Doxycycline, minocycline, tetracycline</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>Fosfomycin sodium, fosfomycin trometamol³</td>
</tr>
<tr>
<td>Nitrofurans⁴</td>
<td>Nitrofurantoin</td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>Penicillin G</td>
</tr>
<tr>
<td>Phenoxymenicillirs</td>
<td>Penicillin V, propicillin, azidocillin</td>
</tr>
<tr>
<td>Isoxazolylpenicillirs</td>
<td>Oxacillin, cloxacillin, dicloxacillin, flucloxacillin</td>
</tr>
<tr>
<td>Aminobenzylpenicillin⁵</td>
<td>Ampicillin, amoxyccillin, bacampicillin</td>
</tr>
<tr>
<td>Aminopenicillins/BLI⁶</td>
<td>Ampicillin/sulbactam, amoxyccillin/clavulanic acid⁷</td>
</tr>
</tbody>
</table>
Acylaminopenicillins | Mezlocillin, piperacillin
---|---
±BLI⁶ | Piperacillin/tazobactam, sulbactam⁶

Cephalosporins¹

- **Group 1 (oral)**: Cefalexin, cefadroxil, cefaclor
- **Group 2 (oral)**: Loracarbef, cefuroxime axetil
- **Group 3 (oral)**: Cefpodoxime proxetil, cefetamet pivoxil, ceftibuten, cefixime
- **Group 1 (parenteral)**: Cefazolin
- **Group 2 (parenteral)**: Cefamandole, cefuroxime, cefotiam
- **Group 3a (parenteral)**: Cefodizime, cefotaxime, ceftriaxone
- **Group 3b (parenteral)**: Cefoperazone, ceftazidime
- **Group 4 (parenteral)**: Cefepime, cefpirome
- **Group 5 (parenteral)**: Cefoxitin

Monobactams | Aztreonam
Carbapenems | Imipenem, meropenem, ertapenem
Aminoglycosides | Gentamicin, netilmicin, tobramycin, amikacin
Glycopeptides | Vancomycin, teicoplanin
Oxazolidones | Linezolid

¹Classification according to the Paul Ehrlich Society for Chemotherapy (1-3).
²Only in adults, except pregnant and lactating women.
³Only in acute, uncomplicated cystitis as a single dose.
⁴Contraindicated in renal failure and in newborns.
⁵In cases of resistance, the pathogen is most likely to be a β-lactamase producer.
⁶BLIs can only be used in combination with β-lactam antibiotics.
⁷In solution, storage instability.

16.6.1 *Penicillins*

Penicillin G and the oral penicillins, penicillin V, propicillin and azidocillin, have a high intrinsic activity against streptococci and pneumococci. However, the resistance rate of pneumococci may vary considerably between countries. In Germany, penicillin resistance in pneumococci is still < 1%. Because of their narrow spectrum of activity, these penicillins do not have any role in the treatment of urogenital infections.

16.6.1.1 *Aminopenicillins*

Aminopenicillins, e.g. ampicillin and amoxycillin, have a broader spectrum of activity. Apart from streptococci and pneumococci, they cover enterococci, *Haemophilus influenzae*, *Haemophilus parainfluenzae*, *Listeria sp.*, *E. coli*, *P. mirabilis*, and *Salmonella* and *Shigella* sp. However, resistance may occur.

Aminopenicillins are sensitive to β-lactamases. They are therefore not sufficiently active against certain species, such as staphylococci, *Moraxella catarrhalis*, *Bacteroides fragilis* and many enterobacteria. This gap in the spectrum of activity can be closed by the use of a BLI (clavulanic acid, or sulbactam). Amoxycillin/clavulanic acid and ampicillin/sulbactam are available on the market as fixed combinations. Indications for aminopenicillins and their combinations with a BLI are mild respiratory tract infections, UTIs, as well as infections of the skin and soft tissues.

16.6.1.2 *Acylaminopenicillins*

The acylaminopenicillins include apalcillin, azlocillin, mezlocillin and piperacillin. They are characterised by their high activity against enterococci, enterobacteria and *Pseudomonas* (weaker activity of mezlocillin). Acylaminopenicillins are hydrolyzed by β-lactamases and are therefore active only against β-lactamase-producing strains of staphylococci, *B. fragilis*, and if used in combination with a BLI, some of the enterobacteria. The acylaminopenicillin/BLI combination provides a broad spectrum of activity and may be used for a large number of indications, including complicated UTIs and urosepsis. A selection of free combinations with sulbactam is available, or there is the fixed combination of tazobactam and piperacillin, which has the advantages of being easy to use and a well-documented database drawn from qualified clinical studies.

16.6.1.3 *Isoxazolylpenicillins*

Isoxazolylpenicillins are available as parenteral drugs with oxacillin and flucloxacillin, and have a narrow...
spectrum of activity. Their indications are limited to infections caused by S. aureus. Due to their suboptimal pharmacokinetic parameters, isoxazolylpenicillins are preferably used in milder infections of the skin and soft tissues, and of the ear, nose and throat area. They play no role in the treatment of UTIs, but may be used for staphylococcal abscesses in the genital area.

16.6.2 Parenteral cephalosporins
According to the Paul Ehrlich Society for Chemotherapy (1), the parenteral cephalosporins have been classified into five groups, according to their spectrum of activity (Table 16.7.2).

16.6.2.1 Group 1 cephalosporins
Group 1 cephalosporins (cefazolin and cefazedone) are very active against streptococci and staphylococci (including penicillin-G-resistant strains). They have only weak activity against Gram-negative microorganisms. Like all cephalosporins, cefazolin is not active against enterococci and MRSA and methicillin-resistant coagulase-negative staphylococci (MRSE).

16.6.2.2 Group 2 cephalosporins
Compared with Group 1 cephalosporins, Group 2 cephalosporins, e.g. cefuroxime, cefotiame and cefamandole, exhibit markedly improved activity against Gram-negative pathogens and maintain high activity against staphylococci.

16.6.2.3 Group 3a cephalosporins
Group 3a cephalosporins have high activity against Gram-negative bacteria and less activity against staphylococci. They differ mainly in their pharmacokinetic characteristics.

16.6.2.4 Group 3b cephalosporins
Group 3b cephalosporins, e.g. ceftazidime and cefoperazone, have added high anti-pseudomonal activity. However, the activity of cefoperazone against P. aeruginosa is markedly inferior to that of the other substances in this group.

16.6.2.5 Group 4 cephalosporins
Group 4 cephalosporins, e.g. cefepime and cefpirome, have a comparable activity against Gram-negative bacteria, but are more stable against extended-spectrum β-lactamases, and a better activity against Gram-positive bacteria.

16.6.2.6 Group 5 cephalosporins
The Group 5 cephalosporins are characterised by their anti-anaerobic activity. These cephalosporins have superior activity against Gram-negative bacteria compared with Group 1 and 2 cephalosporins, but most of them are weaker than Group 3 drugs. At present, cefoxitin is the only drug of that group available on the market in some countries.
Table 16.6.2: Classification of parenteral cephalosporins (2)

<table>
<thead>
<tr>
<th>Group</th>
<th>Generic names</th>
<th>Features of the group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (1st generation)</td>
<td>Cefazolin</td>
<td>• Active against Gram-positive and partly against Gram-negative bacteria</td>
</tr>
<tr>
<td></td>
<td>Cefazedone</td>
<td>• Stable against staphylococcal penicillinases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unstable against β-lactamases of Gram-negative bacteria</td>
</tr>
<tr>
<td>Group 2 (2nd generation)</td>
<td>Cefuroxime</td>
<td>• Activity against Gram-positive bacteria good, but weaker than Group 1</td>
</tr>
<tr>
<td></td>
<td>Cefotiame</td>
<td>• Activity against Gram-negative bacteria superior to that of Group 1</td>
</tr>
<tr>
<td></td>
<td>Cefamandole</td>
<td>• Stable against staphylococcal penicillinases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Limited stability against β-lactamases of Gram-negative bacteria</td>
</tr>
<tr>
<td>Group 3a (3rd generation)</td>
<td>Cefotaxime</td>
<td>• Activity against Gram-negative bacteria clearly superior to that of Groups 1 and 2</td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone</td>
<td>• Stable against numerous β-lactamases of Gram-negative bacteria</td>
</tr>
<tr>
<td></td>
<td>Cefmenoxime</td>
<td>• Microbiologically less active against staphylococci</td>
</tr>
<tr>
<td></td>
<td>Cefodizime</td>
<td></td>
</tr>
<tr>
<td>Group 3b (3rd generation)</td>
<td>Cefazidime</td>
<td>• Spectrum of antibacterial activity similar to that of Group 3a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 4</td>
<td>Cefepime</td>
<td>• Spectrum of antibacterial activity similar to that of Group 3a</td>
</tr>
<tr>
<td></td>
<td>Cefpirome</td>
<td>• Additional activity against P. aeruginosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Higher stability against beta-lactamases than group 3b</td>
</tr>
<tr>
<td>Group 5</td>
<td>Cefoxitin</td>
<td>• With anti-anaerobic activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Superior activity against Gram-negative bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Weaker than Group 3</td>
</tr>
</tbody>
</table>

16.6.3 Oral cephalosporins

Oral cephalosporins are classified into three groups, based on their spectrum of activity, according to the recommendations of the Paul Ehrlich Society for Chemotherapy (1) (Table 16.7.3).

Table 16.7.3: Classification of oral cephalosporins (1)

<table>
<thead>
<tr>
<th>Oral cephalosporins</th>
<th>Drug names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Cefalexin</td>
</tr>
<tr>
<td></td>
<td>Cefadroxil</td>
</tr>
<tr>
<td></td>
<td>Cefaclor</td>
</tr>
<tr>
<td>Group 2</td>
<td>Cefprozil</td>
</tr>
<tr>
<td></td>
<td>Loracarbef</td>
</tr>
<tr>
<td></td>
<td>Cefuroxime axetile</td>
</tr>
<tr>
<td>Group 3</td>
<td>Cefpodoxime proxetile</td>
</tr>
<tr>
<td></td>
<td>Cefetamet pivoxile</td>
</tr>
<tr>
<td></td>
<td>Cefetibuten</td>
</tr>
<tr>
<td></td>
<td>Cefixime</td>
</tr>
</tbody>
</table>

16.6.3.1 Group 1 oral cephalosporins

Group 1 oral cephalosporins include cefalexin, cefadroxil and cefaclor. They are mainly active against Gram-positive cocci with limited activity against H. influenzae (cefaclor). Their main indications are skin and soft tissue infections and, with limitations, respiratory tract infections. Their activity against enterobacteria is limited,
therefore, they can only be recommended for the treatment or prophylaxis of uncomplicated UTIs in children or pregnant women, for whom the use of other antibiotics is limited.

16.6.3.2 Group 2 oral cephalosporins
The activity of cefprozil against S. aureus, Streptococcus pyogenes, Streptococcus pneumoniae, H. influenzae and Mor. catarrhalis is somewhat higher than that of cefaclor. However, cefprozil is less active than cefaclor against E. coli, Klebsiella pneumoniae and Pr. mirabilis.

Loracarbef is structurally close to cefaclor. In contrast to cefaclor, it is stable in solution, has better pharmacokinetics and a broader antibacterial spectrum. However, its activity against staphylococci is lower than that of cefaclor. The main indications are respiratory tract, skin and soft-tissue infections and uncomplicated UTIs.

Cefuroxime axetile has a higher β-lactamase stability and thus a broader spectrum than others in this group. It can be used mainly for bacterial infections of the upper (including otitis media) and lower respiratory tract, for skin and soft-tissue infections, and UTIs.

16.6.3.3 Group 3 oral cephalosporins
Group 3 oral cephalosporins have a higher activity and a broader spectrum against enterobacteria than group 2 cephalosporins. In contrast, their activity against Gram-positive bacteria is lower. Against staphylococci, the activity of cefpodoxime proxetil is intermediate, whereas cefetamet pivoxil, ceftibuten and cefixime are inactive.

The main indications for the oral cephalosporins of group 3 are complicated infections of the respiratory tract (provided that staphylococci can be excluded) and infections due to enterobacteria, e.g. UTIs or infections in immunocompromised patients. Group 3 oral cephalosporins are also suitable for oral switch therapy, i.e. when initial parenteral therapy (using a parenteral group 3a cephalosporin) needs to be continued orally. In addition, cefixime is licensed also for treatment of gonorrhoea.

16.6.4 Monobactams
Among the monobactams, only aztreonam is available. It is active only against Gram-negative aerobes. In this respect, its spectrum and activity are similar to those of the parenteral group 3b cephalosporins.

16.6.5 Carbapenems
Carbapenems are broad-spectrum antibiotics with good activity against Gram-positive and Gram-negative bacteria, including anaerobes. They are preferably used in the treatment of mixed infections and in the initial therapy of life-threatening diseases, including urosepsis. Imipenem/cilastatin, meropenem and doripenem are also active against P. aeruginosa. However, ertapenem is not active against P. aeruginosa. Ertapenem has a longer half-life than imipenem/cilastatin and meropenem, and is therefore, suitable for once-daily dosing.

16.6.6 Fluoroquinolones
Non-fluorinated quinolones are no longer recommended because of their poor antibacterial activity. According to the Paul Ehrlich Society for Chemotherapy, the fluoroquinolones are classified into four groups, based on their spectrum of activity, their pharmacokinetics and indications (Table 16.7.4).

<table>
<thead>
<tr>
<th>Table 16.6.4: Classification of fluoroquinolones, as modified according to the Paul Ehrlich Society for Chemotherapy (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic name</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Group 1</td>
</tr>
<tr>
<td>Norfloxacin</td>
</tr>
<tr>
<td>Pefloxacin**</td>
</tr>
<tr>
<td>Group 2</td>
</tr>
<tr>
<td>Enoxacin</td>
</tr>
<tr>
<td>Fleroxacin***</td>
</tr>
<tr>
<td>Lomefloxacin</td>
</tr>
<tr>
<td>Ofloxacin</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
</tr>
</tbody>
</table>
Group 3 | Improved activity against Gram-positive and atypical pathogens
---|---
Levofloxacin

Group 4	Improved activity against Gram-positive and atypical pathogens and anaerobes
Gatifloxacin
Moxifloxacin

* Listed according to increasing in vitro activity (minimum inhibitory concentration) against indicative pathogens.
** In France and other countries, pefloxacin is also available for systemic use.
*** Investigated in acute exacerbations of chronic bronchitis, UTIs, gonorrhoea and gastrointestinal infections.

16.6.6.1 Group 1 fluoroquinolones
The indications for group 1 fluoroquinolones are limited to UTIs in some countries, e.g. Germany. In France and some other countries, pefloxacin is also used for systemic oral and parenteral use. Norfloxacin is not available as parenteral antibiotic.

16.6.6.2 Group 2 fluoroquinolones
Group 2 fluoroquinolones includes fluoroquinolones for systemic use with a broad spectrum of indications. These include infections of the urinary tract, respiratory tract, skin and soft tissues, bones and joints, as well as systemic infections and even sepsis. Group 2 fluoroquinolones exhibit good activity against enterobacteria and *H. influenzae*, with less activity against staphylococci, pneumococci, enterococci and atypical pathogens, e.g. *Chlamydia*, *Legionella* and *Mycoplasma* sp. Their activity against *P. aeruginosa* varies, with ciprofloxacin being most active in vitro. In addition, ciprofloxacin, ofloxacin and fleroxacin are also available for parenteral use.

16.6.6.3 Group 3 fluoroquinolones
The main difference in the spectra of activity of group 3 fluoroquinolones (levofloxacin) and group 4 fluoroquinolones (gatifloxacin and moxifloxacin) is that the former have a higher intrinsic activity against Gram-positive pathogens, such as staphylococci, streptococci, pneumococci and enterococci.

However, group 3 and group 4 fluoroquinolones have comparable activity against Gram-negative pathogens. In addition, they have improved activity against the so-called atypical pathogens, such as *Chlamydia*, *Mycoplasma* and *Legionella* sp. In addition, group 4 fluoroquinolones have improved anti-anaerobic activity.

The only group 3 fluoroquinolone available for parenteral use is levofloxacin; the left enantiomer of the ofloxacin racemate. The main indications for levofloxacin are respiratory tract infections, and, due to its high renal elimination rate, UTIs, as well as skin and soft-tissue infections.

Among group 4 fluoroquinolones, gatifloxacin (not on the market in Europe), moxifloxacin and trovafloxacin have been licensed. However, in June 1999, trovafloxacin was taken off the market because of severe side effects. Thus, to date, no parenteral fluoroquinolone of this group has been made available.

Apart from respiratory tract infections, these broad-spectrum fluoroquinolones are appropriate for treatment of skin, soft-tissue and intra-abdominal infections, and oral treatment of gynaecological infections. However, final judgement of their position in the treatment of these diseases is not yet possible. Gatifloxacin has the highest renal excretion (about 84%) after oral administration. It is therefore also the most suitable for the treatment of uncomplicated and complicated UTI. Urinary excretion of moxifloxacin after oral administration is only in the range of about 20%.

16.6.7 Co-trimoxazole
The treatment of UTIs is the main indication for trimethoprim alone or in combination with a sulphonamide, e.g. sulphamethoxazole. Trimethoprim with or without sulphamethoxazole can also be used for the prophylaxis of recurrent cystitis. The resistance group against *E. coli* can vary between countries. It is therefore not recommended for empirical therapy of acute uncomplicated cystitis or pyelonephritis, when the resistance rate in the area is > 10-20% (4). In complicated UTIs, co-trimoxazole should only be used in accordance with sensitivity testing. Trimethoprim, especially in combination with sulphamethoxazole, can lead to severe although rare adverse events, such as Lyell syndrome, Stevens-Johnson syndrome and pancytopenia.

16.6.8 Fosfomycin
Fosfomycin is active against Gram-negative and Gram-positive bacteria. The sodium salt is only for parenteral use. Fosfomycin trometamol is licensed for single-dose (3 g) treatment of uncomplicated cystitis in women.
16.6.9 **Nitrofurantoin**
The antibacterial activity of nitrofurantoin is limited to the urinary tract because of its low serum concentrations. It is active against *E. coli*, *Citrobacter* and most strains of *Klebsiella* and *Enterobacter*, whereas *Providencia* and *Serratia* are mostly resistant. *Proteus*, *P. aeruginosa* and *Acinetobacter* are almost always resistant. It is active against Gram-positive cocci, e.g. enterococci and staphylococci.

Nitrofurantoin is suitable only for the treatment or prophylaxis of uncomplicated UTIs. Short-term therapy for this indication has not been proven in sufficiently large studies. Little development of resistance has been observed over many years. Treatment can lead to severe, though rare adverse events, such as chronic desquamative interstitial pneumonia with fibrosis.

16.6.10 **Macrolides**
Erythromycin is the only macrolide that is available for both oral and parenteral use. The newer macrolides, roxithromycin, clarithromycin and azithromycin, are better tolerated than erythromycin, but can only be administered orally. The macrolides have good activity against streptococci, pneumococci, *Bordetella pertussis*, and *Chlamydia, Mycoplasma* and *Legionella* sp. The macrolides are not active against Gram-negative rods, therefore, their use in the treatment of UTIs is limited to special indications, such as non-gonococcal urethritis due to *C. trachomatis*.

16.6.11 **Tetracyclines**
The resistance against doxycycline and tetracycline of pneumococci, streptococci, *H. influenzae* and *E. coli* shows marked regional differences. Tetracyclines are therefore only suitable for initial empirical therapy if the local resistance situation is sufficiently well known and justifies their use. As a result of their high activity against the so-called atypical pathogens (*Legionella, Chlamydia* and *Mycoplasma* sp.), they may be used as alternative antibiotics in infections caused by these microorganisms, e.g. in non-gonococcal urethritis due to *C. trachomatis*.

16.6.12 **Aminoglycosides**
Aminoglycosides are for parenteral use only. These drugs have a narrow therapeutic window. Their effective levels of activity are close to toxic borderline concentrations, making a strict therapeutic indication mandatory. With few exceptions (e.g. treatment of UTIs), aminoglycosides should only be used in combination with another appropriate antibiotic. Ideal partners are β-lactam antibiotics, because this combination has a marked synergistic effect against certain bacterial species. Streptomycin is one of the older aminoglycosides and is used only for the treatment of tuberculosis.

Newer aminoglycosides include netilmicin, gentamicin, tobramycin and amikacin. They have good activity against enterobacteria and *Pseudomonas* (especially tobramycin). Their activity against streptococci, anaerobes and *H. influenzae* is not satisfactory. Resistance data for tobramycin, gentamicin and netilmicin are almost identical, whereas the resistance situation is more favourable for amikacin against many enterobacteria.

16.6.13 **Glycopeptides**
The glycopeptides vancomycin and teicoplanin are active against Gram-positive pathogens, i.e. staphylococci (including oxacillin-resistant strains), streptococci, enterococci, *Clostridium difficile*, diphtheria bacteria and Gram-positive aerobes. They are inactive against Gram-negative pathogens. Their use is indicated:

- In infections caused by the above-mentioned pathogens in case of allergy against all other suitable antibiotics.
- In infections caused by ampicillin-resistant enterococci or oxacillin-resistant staphylococci, or multi-resistant corynebacteria.
- As an alternative, in oral form, to metronidazole for the treatment of pseudomembranous colitis.

Due to the risk of selection of glycopeptide-resistant enterococci and staphylococci, the use of glycopeptides should be highly restricted. Similar to the aminoglycosides, glycopeptides have a narrow therapeutic window.

16.6.14 **Oxazolidinones**
The only substance of this group is linezolid, which can be administered parenterally and orally. It has good activity against Gram-positive cocci, such as staphylococci, including methicillin (oxacillin)-resistant strains, enterococci, including vancomycin-resistant strains, and streptococci.

16.6.15 **References**

16.7 Relevant bacteria for urological infections

Anaerobic bacteria not considered.
17. ABBREVIATIONS USED IN THE TEXT

This list is not comprehensive for the most common abbreviations.

ABU asymptomatic bacteriuria
ACE angiotensin-converting enzyme
ADPKD adult dominant polycystic disease
APCKD adult polycystic kidney disease
BLI β-lactamase inhibitor
BPH benign prostatic hyperplasia
CPPS chronic pelvic pain syndrome
CPSI Chronic Prostatitis Symptom Index
CT computed tomography
CAUTIs catheter-associated urinary tract infections
DMSA dimercaptosuccinic acid
DTPA diethylenetriamine pentaacetate
EPS expressed prostatic secretion
EUCAST European Committee for Antimicrobial Susceptibility Testing
G6PD glucose-6-phosphate dehydrogenase
GFR glomerular filtration rate
IDSA Infectious Diseases Society of America
IL interleukin
IPCN International Prostatitis Collaborative Network
IVU intravenous urography
LUTS lower urinary tract symptom
MAG-3 mercaptoacetylglucose
MRI magnetic resonance imaging
MRSA methicillin-resistant Staphylococcus aureus
MSU mid-stream sample of urine
NCCLS National Committee for Clinical Laboratory Standards
NIDDK National Institute of Diabetes and Digestive and Kidney Diseases
NIH National Institutes of Health
PCP Pneumocystis carinii pneumonia
PSA prostate-specific antigen
SIRS systemic inflammatory response syndrome
SMX sulphamethoxazole
SSI surgical site infection
STD sexually transmitted disease
SWL shockwave lithotripsy
TMP trimethoprim
TNF tumour necrosis factor
TRUS transrectual ultrasound
TURP transurethral resection of the prostate
US ultrasonography
UTI urinary tract infection
VB1 first-voided urine
VB2 mid-stream urine
VB3 voided bladder urine-3
VCU voiding cystourethography
VUR vesicoureteric reflux
WBC white blood cells

Conflict of interest
All members of the Urological Infections Guidelines working panel have provided disclosure statements on all relationships that they have that might be perceived to be a potential source of a conflict of interest. This information is publically accessible through the European Association of Urology website. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation, and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.