TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>1. INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Aim and scope</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Panel composition</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Available publications</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Publication history and summary of changes</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1 Publication history</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2 Summary of changes</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2.1 Changes in recommendation</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2.2 Summary of evidence</td>
<td>5</td>
</tr>
</tbody>
</table>

2. METHODS	5
2.1 Data Identification	5
2.2 Review	6
2.3 Future goals	6

3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY	6
3.1 Epidemiology	6
3.2 Aetiology	6
3.3 Pathology	7
3.4 Summary of evidence	7

4. STAGING AND CLASSIFICATION SYSTEMS	7
4.1 Definition of non-muscle-invasive bladder cancer	7
4.2 Tumour, Node, Metastasis Classification (TNM)	7
4.3 Histological grading of non-muscle-invasive bladder urothelial carcinomas	8
4.4 CIS and its classification	8
4.5 Inter- and intra-observer variability in staging and grading	9
4.6 Further promising observer variability in staging and grading	9
4.7 Summary of evidence – classification	9
4.8 Recommendations for bladder cancer classification	9

5. DIAGNOSIS	10
5.1 Patient history	10
5.2 Signs and symptoms	10
5.3 Physical examination	10
5.4 Imaging	10
5.4.1 Computed tomography urography and intravenous urography	10
5.4.2 Ultrasound (US)	10
5.5 Urinary cytology	10
5.6 Urinary molecular marker tests	10
5.7 Potential application of urinary cytology and markers	11
5.7.1 Screening of the population at risk of bladder cancer	11
5.7.2 Exploration of patients after haematuria or other symptoms suggestive of bladder cancer (primary detection)	11
5.7.3 Surveillance of NMIBC	11
5.7.3.1 Follow-up of high-risk NMIBC	11
5.7.3.2 Follow-up of low/intermediate-risk NMIBC	11
5.8 Cystoscopy	11
5.9 Summary of evidence – primary assessment of NMIBC	12
5.10 Recommendations for the primary assessment of NMIBC	12
5.11 Transurethral resection of Ta, T1 bladder tumours	12
5.11.1 Strategy of the procedure	12
5.11.2 Office-based fulguration	13
5.11.3 New resection techniques	13
5.11.4 Bladder and prostatic urethral biopsies	13
5.12 New methods of tumour visualisation	13
5.12.1 Photodynamic diagnosis (fluorescence cystoscopy)	13
5.12.2 Narrow-band imaging	14
5.13 Second resection 14
5.14 Pathology report 14
5.15 Summary of evidence - TURB and pathology report 14
5.16 Recommendations for TURB and/or biopsies and pathology report 14

6. PREDICTING DISEASE RECURRENCE AND PROGRESSION 15
6.1 Ta, T1 tumours 15
6.2 Carcinoma in situ 17
6.3 Patient stratification into risk groups 17
6.4 Summary of evidence - stratification of NMIBC 18
6.5 Recommendations for stratification of NMIBC 18

7. DISEASE MANAGEMENT 18
7.1 Counselling of smoking cessation 18
7.2 Adjuvant treatment 19
7.2.1 Intravesical chemotherapy 19
7.2.1.1 A single, immediate, post-operative intravesical instillation of chemotherapy 19
7.2.1.2 Additional adjuvant intravesical chemotherapy instillations 19
7.2.1.3 Options for improving efficacy of intravesical chemotherapy 19
7.2.1.3.1 Adjustment of pH, duration of instillation, and drug concentration 19
7.2.1.3.2 Microwave-induced hyperthermia and electromotive drug administration (EMDA) 20
7.2.1.4 Summary of evidence - intravesical chemotherapy 20
7.2.2 Intravesical bacillus Calmette-Guérin (BCG) immunotherapy 20
7.2.2.1 Efficacy of BCG 20
7.2.2.2 BCG strain 20
7.2.2.3 BCG toxicity 20
7.2.2.4 Optimal BCG schedule 22
7.2.2.5 Optimal dose of BCG 22
7.2.2.6 Indications for BCG 22
7.2.2.7 Summary of evidence - BCG treatment 22
7.2.3 Combination therapy 23
7.2.4 Specific aspects of treatment of CIS 23
7.2.4.1 Treatment strategy 23
7.2.4.2 Cohort studies on intravesical BCG or chemotherapy 23
7.2.4.3 Prospective randomised trials on intravesical BCG or chemotherapy 23
7.2.4.4 Treatment of CIS in prostatic urethra and upper urinary tract 23
7.2.4.5 Summary of evidence – treatment of CIS 23
7.3 Treatment of failure of intravesical therapy 25
7.3.1 Failure of intravesical chemotherapy 25
7.3.2 Recurrence and failure after intravesical BCG immunotherapy 25
7.3.3 Treatment of BCG failure and recurrences after BCG 25
7.3.4 Summary of evidence - treatment failure of intravesical therapy 25
7.4 Radical cystectomy for NMIBC 26
7.5 Recommendations for adjuvant therapy in Ta, T1 tumours and for therapy of CIS 27
7.6 Treatment recommendations in Ta, T1 tumours and CIS according to risk stratification 28
7.7 Treatment recommendations for BCG failure and recurrences after BCG 28

8. FOLLOW-UP OF PATIENTS WITH NMIBC 29
8.1 Summary of evidence - follow-up of patients with NMIBC 29
8.2 Recommendations for follow-up in patients after TURB of NMIBC 30

9. REFERENCES 30

10. CONFLICT OF INTEREST 45
1. INTRODUCTION

1.1 Aim and scope
This overview represents the updated European Association of Urology (EAU) guidelines for Non-muscle-invasive Bladder Cancer (NMIBC) Ta, T1 and CIS. The information presented is limited to urothelial carcinoma, unless specified otherwise. The aim is to provide practical guidance on the clinical management of NMIBC with a focus on clinical presentation and recommendations.

Separate EAU guidelines documents are available addressing upper tract urothelial carcinomas (UTUCs) [1], muscle-invasive and metastatic bladder cancer (MIBC) [2], and primary urethral carcinomas [3]. It must be emphasised that clinical guidelines present the best evidence available to the experts but following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients, but rather help to focus decisions - also taking personal values and preferences/individual circumstances of patients into account.

1.2 Panel composition
The EAU Guidelines Panel on NMIBC consists of an international multidisciplinary group of clinicians, including a pathologist and a statistician. Members of this panel have been selected based on their expertise and to represent the professionals treating patients suspected of harbouring bladder cancer.

All experts involved in the production of this document have submitted potential conflict of interest statements which can be viewed on the EAU website Uroweb: https://uroweb.org/guideline/non-muscle-invasive-bladder-cancer/.

1.3 Available publications
A quick reference document (Pocket guidelines) is available, both in print and in a number of versions for mobile devices, presenting the main findings of the NMIBC Guidelines. These are abridged versions which may require consultation together with the full text version. Several scientific publications are available, as are a number of translations of all versions of the EAU NMIBC Guidelines. All documents can be accessed on the EAU website.

1.4 Publication history and summary of changes
1.4.1 Publication history
The EAU Guidelines on Bladder Cancer were first published in 2000. This 2016 NMIBC guidelines document presents a limited update of the 2015 full text document.

1.4.2 Summary of changes
Key changes in this 2016 print:

1.4.2.1 Changes in recommendation
• In Section 5.16 – a recommendation has been added:

Recommendations for TURB and/or biopsies, tumour classification and pathology report

| In patients suspected of harbouring bladder cancer TURB followed by pathology investigation of the obtained specimen(s) is recommended as a diagnostic procedure and initial treatment step. | A |

TURB = transurethral resection of the bladder.

• Section 7.2.1.1 - A single, immediate, post-operative intravesical instillation of chemotherapy – has been expanded to include the findings of systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma of the bladder: Which patients benefit from the instillation? [4].

• The recommendations as presented in Section 7.5 and Table 7.6 - Treatment recommendations in Ta, T1 tumours and CIS according to risk stratification - have been adapted. The recommendation grade did not change.

| Section 7.5 Recommendations for adjuvant therapy in Ta, T1 tumours and for therapy of CIS | GR |
| In patients with tumours presumed to be at low risk and in those presumed to be at intermediate risk with previous low recurrence rate (less than or equal to one recurrence per year) and expected EORTC recurrence score < 5, one immediate chemotherapy instillation is recommended. | A |

CIS = carcinoma in situ; EORTC = European Organization for Research and Treatment of Cancer.
Table 7.6 - Treatment recommendations in Ta, T1 tumours and CIS according to risk stratification

<table>
<thead>
<tr>
<th>Risk category</th>
<th>Definition</th>
<th>Treatment recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate-risk tumours</td>
<td>All cases between categories of low and high risk</td>
<td>In patients with previous low recurrence rate (less than or equal to one recurrence per year) and expected EORTC recurrence score < 5, one immediate instillation of intravesical chemotherapy after TURB. In all patients either 1-year full-dose BCG treatment (induction plus 3-weekly instillations at 3,6 and 12 months), or instillations of chemotherapy (the optimal schedule is not known) for a maximum of 1 year.</td>
</tr>
</tbody>
</table>

BCG = Bacillus Calmette-Guérin; EORTC = European Organization for Research and Treatment of Cancer; TURB = transurethral resection of the bladder.

1.4.2.2 Summary of evidence

- Section 3.4 - A summary of evidence has been added to Chapter 3 – Epidemiology, aetiology and pathology.
- Section 4.7 – A summary of evidence has been added to Chapter 4 – Staging and classification systems.
- Section 5.15 - Summary of evidence has been added to Chapter 5 – Diagnosis.
- Section 6.4 – A summary of evidence has been added to Chapter 6 – Predicting disease recurrence and progression.
- Section 7.2.1.4 – A summary of evidence has been added to Section 7.2.1 Intravesical chemotherapy.
- Section 7.2.2.7 – A summary of evidence has been added to Section 7.2.2 Intravesical bacillus Calmette Guérin immunotherapy.
- Section 7.2.4.5 – A summary of evidence has been added to Section 7.2.4 Specific aspects of treatment of CIS.
- Section 7.3.4 – A Summary of evidence has been added to Section 7.3 Treatment failure of intravesical therapy.

2. METHODS

2.1 Data Identification

For the 2016 NMIBC Guidelines, new and relevant evidence has been identified, collated and appraised through a structured assessment of the literature.

A broad and comprehensive scoping exercise covering all areas of the NMIBC Guidelines was performed. The search was limited to studies representing high levels of evidence only (i.e. systematic reviews with meta-analysis, randomised controlled trials, and prospective non-randomised comparative studies only) published in the English language. The search was restricted to articles published during the period from 1st April 2014 to 31st May 2015. Databases covered by the search included Medline, EMBASE and the Cochrane Libraries. A total of 1,040 unique records were identified, retrieved and screened for relevance. A detailed search strategy is available online:

A section of the text has been updated based on a systematic review and individual patient data meta-analysis:

Recommendations in this text are assessed according to their level of evidence (LE) and Guidelines are given a grade of recommendation (GR), according to a classification system modified from the Oxford Centre for Evidence-Based Medicine Levels of Evidence [5]. Additional methodology information can be found in the general Methodology section of this print, and online at the EAU website: http://uroweb.org/guidelines/.

A list of Associations endorsing the EAU Guidelines can also be viewed online at the above address.
2.2 Review
The following section was peer reviewed prior to publication:
- Chapter 7 – Disease management

The other sections of the NMIBC Guidelines were peer-reviewed in 2015.

2.3 Future goals
The results on ongoing and new systematic reviews will be included in the 2017 update of the NMIBC Guidelines. These reviews are performed using standard Cochrane systematic review methodology; http://www.cochranelibrary.com/about/about-cochrane-systematic-reviews.html:

Ongoing systematic reviews:
1. Is there a difference between the 2004 WHO grading system and the 1973 WHO grading system for NMIBC in terms of prognostic performance? [6].
2. Is there a difference between the 2004 WHO grading system and the 1973 WHO grading system for NMIBC in terms of reproducibility?

3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY

3.1 Epidemiology
Bladder cancer (BC) is the 7th most commonly diagnosed cancer in the male population worldwide, while it drops to 11th when both genders are considered [7]. The worldwide age-standardised incidence rate (per 100,000 person/years) is 9.0 for men and 2.2 for women [7]. In the European Union (EU), the age-standardised incidence rate is 19.1 for men and 4.0 for women [7]. In Europe, the highest age-standardised incidence rate has been reported in Belgium (31 in men and 6.2 in women) and the lowest in Finland (18.1 in men and 4.3 in women) [7].

Worldwide, BC age-standardised mortality rate (per 100,000 person/years) was 3.2 for men vs. 0.9 for women in 2012 [7]. Bladder cancer incidence and mortality rates vary across countries due to differences in risk factors, detection and diagnostic practices, and availability of treatments. The variations are, however, partly caused by the different methodology and quality of data collection [8, 9]. The incidence and mortality of BC has decreased in some registries, possibly reflecting the decreased impact of causative agents [9, 10].

Approximately 75% of patients with BC present with a disease confined to the mucosa (stage Ta, CIS) or submucosa (stage T1). They have a high prevalence due to long-term survival in many cases and lower risk of cancer-specific mortality compared to T2-4 tumours [8, 11].

3.2 Aetiology
Tobacco smoking is the most important risk factor for BC, accounting for approximately 50% of cases [8, 12-14] (LE: 3). Tobacco smoke contains aromatic amines and polycyclic aromatic hydrocarbons, which are renally excreted.

Occupational exposure to aromatic amines, polycyclic aromatic hydrocarbons and chlorinated hydrocarbons is the second most important risk factor for BC, accounting for about 10% of all cases. This type of occupational exposure occurs mainly in industrial plants, processing paint, dye, metal and petroleum products [8, 15-17]. In developed industrial settings, these risks have been reduced by work-safety guidelines so that chemical workers no longer have a higher incidence of BC compared to the general population [18].

While family history seems to have little impact [19] and no overt significance of any genetic variation for BC has been shown to date, genetic predisposition has an influence on the incidence of BC via its impact on susceptibility to other risk factors [8, 20, 21].

Although the significance of the amount of fluid intake is uncertain, the chlorination of drinking water and subsequent levels of trihalomethanes are potentially carcinogenic, while exposure to arsenic in drinking water increases risk [8, 11, 22] (LE: 3). The association between personal hair dye use and risk remains uncertain; an increased risk has been suggested in users of permanent hair dyes with an NAT2 slow acetylation phenotype [23, 24]. Other dietary habits seem to have little impact [25].

Exposure to ionizing radiation is connected with increased risk; weak association was also suggested for cyclophosphamide and pioglitazone [8, 11] (LE: 3). Schistosomiasis, a chronic endemic cystitis, based on recurrent infection with a parasitic trematode, is also a cause of BC [8] (LE: 3).
3.3 Pathology
The information presented in text is limited to urothelial carcinoma, unless specified otherwise.

3.4 Summary of evidence

<table>
<thead>
<tr>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide, bladder cancer is the 11th most commonly diagnosed cancer.</td>
</tr>
<tr>
<td>Several risk factors connected with the risk of BC diagnosis have been identified.</td>
</tr>
</tbody>
</table>

BC = bladder cancer.

4. STAGING AND CLASSIFICATION SYSTEMS

4.1 Definition of non-muscle-invasive bladder cancer
Papillary tumours confined to the mucosa and invading the lamina propria are classified as stage Ta and T1, respectively, according to the Tumour, Node, Metastasis (TNM) classification system. Flat, high-grade tumours that are confined to the mucosa are classified as CIS (Tis). These tumours can be treated by transurethral resection of the bladder (TURB) and/or intravesical instillations and are therefore grouped under the heading of NMIBC for therapeutic purposes. However, molecular biology techniques and clinical experience have demonstrated the highly malignant potential of CIS and T1 lesions. The terms “NMIBC” and “superficial BC” are therefore suboptimal descriptions.

4.2 Tumour, Node, Metastasis Classification (TNM)
The 2002 TNM classification approved by the Union International Contre le Cancer (UICC) was updated in 2009 (7th Edn.), but with no changes for bladder tumours (Table 4.1) [26].

Table 4.1: 2009 TNM classification of urinary bladder cancer

<table>
<thead>
<tr>
<th>T - Primary tumour</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Primary tumour cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>T0 No evidence of primary tumour</td>
<td></td>
</tr>
<tr>
<td>Ta Non-invasive papillary carcinoma</td>
<td></td>
</tr>
<tr>
<td>Tis Carcinoma in situ: ‘flat tumour’</td>
<td></td>
</tr>
<tr>
<td>T1 Tumour invades subepithelial connective tissue</td>
<td></td>
</tr>
<tr>
<td>T2 Tumour invades muscle</td>
<td></td>
</tr>
<tr>
<td>T2a Tumour invades superficial muscle (inner half)</td>
<td></td>
</tr>
<tr>
<td>T2b Tumour invades deep muscle (outer half)</td>
<td></td>
</tr>
<tr>
<td>T3 Tumour invades perivesical tissue</td>
<td></td>
</tr>
<tr>
<td>T3a Microscopically</td>
<td></td>
</tr>
<tr>
<td>T3b Macroscopically (extravesical mass)</td>
<td></td>
</tr>
<tr>
<td>T4 Tumour invades any of the following: prostate, uterus, vagina, pelvic wall, abdominal wall</td>
<td></td>
</tr>
<tr>
<td>T4a Tumour invades prostate, uterus or vagina</td>
<td></td>
</tr>
<tr>
<td>T4b Tumour invades pelvic wall or abdominal wall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N - Lymph nodes</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX Regional lymph nodes cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>N0 No regional lymph node metastasis</td>
<td></td>
</tr>
<tr>
<td>N1 Metastasis in a single lymph node in the true pelvis (hypogastric, obturator, external iliac, or presacral)</td>
<td></td>
</tr>
<tr>
<td>N2 Metastasis in multiple lymph nodes in the true pelvis (hypogastric, obturator, external iliac, or presacral)</td>
<td></td>
</tr>
<tr>
<td>N3 Metastasis in common iliac lymph node(s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M - Distant metastasis</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX Distant metastasis cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>M0 No distant metastasis</td>
<td></td>
</tr>
<tr>
<td>M1 Distant metastasis</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Histological grading of non-muscle-invasive bladder urothelial carcinomas

In 2004, the World Health Organization (WHO) and the International Society of Urological Pathology (ISUP) published a new histological classification of urothelial carcinomas which provides a different patient stratification between individual categories compared to the older 1973 WHO classification [27, 28] (Tables 4.2, 4.3, Fig 4.1). Recently an update of the WHO grading classification was published, but the following guidelines are still based on the 2004 WHO classification [28, 29].

Table 4.2: WHO grading in 1973 and in 2004 [27, 28]

<table>
<thead>
<tr>
<th>1973 WHO grading</th>
<th>2004 WHO grading system [papillary lesions]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial papilloma</td>
<td>Urothelial papilloma (completely benign lesion)</td>
</tr>
<tr>
<td>Grade 1: well differentiated</td>
<td>Papillary urothelial neoplasm of low malignant potential (PUNLMP)</td>
</tr>
<tr>
<td>Grade 2: moderately differentiated</td>
<td>Low-grade (LG) papillary urothelial carcinoma</td>
</tr>
<tr>
<td>Grade 3: poorly differentiated</td>
<td>High-grade (HG) papillary urothelial carcinoma</td>
</tr>
</tbody>
</table>

The prognostic value of both WHO 1973 and 2004 grading systems has been confirmed. Attempts to demonstrate better prognostic value of one of them, however, have yielded controversial results [30-35]. (LE: 2a). Moreover the WHO 2004 systems have not been fully incorporated into prognostic models yet.

Figure 4.1: Stratification of tumours according to grade in the WHO 1973 and 2004 classifications [30]*

Histologic Spectrum of urothelial carcinoma [UC]

*1973 WHO Grade 1 carcinomas have been reassigned to papillary urothelial neoplasm of low malignant potential (PUNLMP) and low-grade (LG) carcinomas in 2004/2016 WHO classification, and Grade 2 carcinomas to LG and high-grade (HG) carcinomas. All 1973 WHO Grade 3 carcinomas have been reassigned to HG carcinomas (Reproduced with permission from Elsevier).

PUNLMP = papillary urothelial neoplasm of low malignant potential; WHO = World Health Organization.

4.4 CIS and its classification

Carcinoma in situ (CIS) is a flat, high-grade, non-invasive urothelial carcinoma. It can be missed at cystoscopy or be considered as an inflammatory lesion if it is not biopsied. Carcinoma in situ is often multifocal and can occur in the bladder, but also in the upper urinary tract, prostatic ducts, and prostatic urethra [36].

Classification of CIS into clinical type [37]:
- Primary: isolated CIS with no previous or concurrent papillary tumours and no previous CIS;
- Secondary: CIS detected during follow-up of patients with a previous tumour that was not CIS;
- Concurrent: CIS in the presence of any other urothelial tumour in the bladder.
Table 4.3: WHO 2004 histological classification for flat lesions

- Urothelial proliferation of uncertain malignant potential (flat lesion without atypia or papillary aspects)
- Reactive atypia (flat lesion with atypia)
- Atypia of unknown significance
- Urothelial dysplasia
- Urothelial CIS is always high-grade

4.5 Inter- and intra-observer variability in staging and grading

There is significant variability among pathologists for diagnosis of CIS, for which agreement is achieved in only 70-78% of cases [38, 39] (LE: 2a). There is also interobserver variability in the classification of stage T1 vs. Ta tumours and tumour grading in both the 1997 and 2004 classifications. The general conformity in staging and grading is between 50% and 60% [34, 38-43] (LE: 2a). The published comparisons have not clearly confirmed that the WHO 2004 classification has better reproducibility than the 1973 classification [31, 34, 44].

4.6 Further promising pathology parameters

Some novel parameters based on pathological investigation of resected tissue have been considered for subclassification and prognostic purposes. In T1 tumours, the depth and extent of invasion into the lamina propria (T1 substaging) can be evaluated. The prognostic value of this evaluation has been demonstrated by some retrospective cohort studies [45-48] (LE: 3); nevertheless, it is not recommended in the WHO classification.

According to a meta-analysis of retrospective trials, the presence of lymphovascular invasion (LVI) in TURB specimens was connected with increased risk of pathological upstaging [49] (LE: 3). Lymphovascular invasion has been reported as an unfavourable prognostic factor in T1 tumours [50] (LE: 3).

Some variants of urothelial carcinoma (micropapillary, plasmocytoid, nested, sarcomatoid, microcystic, squamous and adeno variants of urothelial carcinoma etc.), have a poor prognosis [49, 51-57] (LE: 3).

Molecular markers, particularly FGFR3 mutation status, are promising but need further validation [32, 48, 58-60].

4.7 Summary of evidence – classification

The depth of invasion (staging) is classified according to the TNM classification.	LE 2a
Papillary tumours confined to the mucosa and invading the lamina propria are classified as stage Ta and T1, respectively. Flat, high-grade tumours that are confined to the mucosa are classified as CIS (Tis).	LE 2a
T1 and CIS have high malignant potential, the term NMIBC is therefore a suboptimal description.	LE 3
For histological classification of NMIBC, the WHO 1973 and 2004 grading systems are used.	LE 2a

CIS (Tis) = carcinoma in situ; NMIBC = non-muscle invasive bladder cancer; TNM = Tumour, Node, Metastasis (classification); WHO = World Health Organization.

4.8 Recommendations for bladder cancer classification

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>For classification of the depth of tumour invasion (staging) use the 2009 TNM system.</td>
<td>A</td>
</tr>
<tr>
<td>For histological classification, use the 1973 and 2004/2016 WHO grading systems.</td>
<td>A</td>
</tr>
<tr>
<td>Do not use the term “superficial bladder cancer”.</td>
<td>A</td>
</tr>
<tr>
<td>Whenever you use the terminology NMIBC in individual cases, mention the tumour stage and grade.</td>
<td>A</td>
</tr>
</tbody>
</table>

TNM = Tumour, Node, Metastasis (classification); WHO = World Health Organization.
5. **DIAGNOSIS**

5.1 **Patient history**
A comprehensive patient history is mandatory.

5.2 **Signs and symptoms**
Haematuria is the most common finding in NMIBC. CIS might be suspected in patients with “storage” lower urinary tract symptoms.

5.3 **Physical examination**
Physical examination does not reveal NMIBC.

5.4 **Imaging**

5.4.1 **Computed tomography urography and intravenous urography**
Computed tomography (CT) urography is used to detect papillary tumours in the urinary tract, which can be seen as filling defects or indicated by hydronephrosis.

Intravenous urography (IVU) can be an alternative if CT is not available [61] (LE: 3), but particularly in muscle-invasive tumours of the bladder and in UTUCs, CT urography gives more information than IVU (including status of lymph nodes and neighbouring organs).

The necessity to perform a baseline CT urography or IVU once a bladder tumour has been detected is questionable due to the low incidence of significant findings obtained [62-64] (LE: 2a). The incidence of UTUCs is low (1.8%), but increases to 7.5% in tumours located in the trigone [63] (LE: 2b). The risk of UTUC during follow up increases in patients with multiple- and high-risk tumours [65] (LE: 3).

5.4.2 **Ultrasound (US)**
Transabdominal US permits characterisation of renal masses, detection of hydronephrosis, and visualisation of intraluminal masses in the bladder [62] (LE: 3). Ultrasound is therefore a useful tool for detection of obstruction in patients with haematuria. However, it cannot exclude the presence of UTUC and cannot replace CT urography.

The diagnosis of CIS cannot be made with imaging methods (CT urography, IVU or US) (LE: 4).

5.5 **Urinary cytology**
The examination of voided urine or bladder-washing specimens for exfoliated cancer cells has high sensitivity in G3 and high-grade tumours (84%), but low sensitivity in G1 and low-grade tumours (16%) [66]. The sensitivity in CIS detection is 28-100% [67] (LE: 2b). Cytology is useful, particularly as an adjunct to cystoscopy, if G3/CIS malignancy is present. Positive voided urinary cytology can indicate an urothelial tumour anywhere in the urinary tract; negative cytology, however, does not exclude the presence of a tumour.

Cytological interpretation is user-dependent [68]. Evaluation can be hampered by low cellular yield, urinary tract infections, stones, or intravesical instillations, but in experienced hands specificity exceeds 90% [69] (LE: 2b).

Urine collection should respect the recommendation provided in Section 5.10. One cytospin slide from the sample is usually sufficient [70]. In patients with suspect cytology it is reasonable to repeat the investigation [71] (LE: 3).

5.6 **Urinary molecular marker tests**
Driven by the low sensitivity of urine cytology, numerous urinary tests were developed [69, 72-79]. None of these markers have been accepted for diagnosis or follow-up in routine practice or clinical guidelines. Some urine tests that have been evaluated in several laboratories/centres and with sufficient numbers of patients are listed in Table 5.1.

The following conclusions can be drawn regarding the existing tests:

- Sensitivity is usually higher at the cost of lower specificity, compared to urine cytology [69, 73-82] (LE: 3).
- Benign conditions and BCG influence many urinary marker tests [69, 72-79] (LE: 3).
- Requirements for sensitivity and specificity of a urinary marker test depend on the clinical context of the patient (screening, primary detection, follow up [high risk, low-/intermediate-risk]) [73-76] (LE: 3).
- Patient selection explains the wide range in performance of the markers listed in Table 5.1.
- Unlike other urine tests, false-positive results of UroVysion and microsatellite analysis can be attributed to occult disease and these markers therefore identify patients likely to experience early recurrence [83-87] and possibly progression [88] (LE: 3).
Table 5.1: Summary of main urinary markers

<table>
<thead>
<tr>
<th>Markers (or test specifications)</th>
<th>Overall sensitivity (%)</th>
<th>Overall specificity (%)</th>
<th>Sensitivity for high-grade tumours (%)</th>
<th>Point-of-care test</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UroVysion (FISH)</td>
<td>30-86</td>
<td>63-95</td>
<td>66-70</td>
<td>No</td>
<td>2b</td>
</tr>
<tr>
<td>Microsatellite analysis</td>
<td>58-92</td>
<td>73-100</td>
<td>90-92</td>
<td>No</td>
<td>1b</td>
</tr>
<tr>
<td>Immunocyto/uCyt +</td>
<td>52-100</td>
<td>63-79</td>
<td>62-92</td>
<td>No</td>
<td>2a</td>
</tr>
<tr>
<td>Nuclear matrix Protein 22</td>
<td>47-100</td>
<td>56-98</td>
<td>75-92</td>
<td>Yes</td>
<td>2a</td>
</tr>
<tr>
<td>BTA stat</td>
<td>29-83</td>
<td>56-86</td>
<td>62-91</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>BTA TRAK</td>
<td>53-91</td>
<td>28-83</td>
<td>74-77</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>Cytokeratins</td>
<td>12-88</td>
<td>73-95</td>
<td>33-100</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

BTA = bladder tumour antigen.

5.7 Potential application of urinary cytology and markers

The following objectives of urinary cytology or molecular tests must be considered.

5.7.1 Screening of the population at risk of bladder cancer

The application of haematuria dipstick, NMP22 or UroVysion in BC screening in high-risk populations has been reported [89, 90]. The low incidence of BC in the general population and the short lead-time impair feasibility and cost-effectiveness [76, 87, 89, 90]. Routine application of screening is not recommended.

5.7.2 Exploration of patients after haematuria or other symptoms suggestive of bladder cancer (primary detection)

It is generally accepted that none of the tests can replace cystoscopy. However, urinary cytology or markers can be used as an adjunct to cystoscopy to detect invisible tumours, particularly CIS. In this setting, sensitivity for high-grade tumours and specificity are particularly important. Urinary cytology is highly specific, but urinary markers lack this high specificity and are not recommended for primary detection.

5.7.3 Surveillance of NMIBC

Research has been carried out into the usefulness of urinary cytology vs. markers in the follow-up of NMIBC [76, 78, 91, 92].

5.7.3.1 Follow-up of high-risk NMIBC

High-risk tumours should be detected early in follow-up, and the percentage of tumours missed should be as low as possible. Therefore, the best surveillance strategy for these patients will continue to include frequent cystoscopy and cytology.

5.7.3.2 Follow-up of low/intermediate-risk NMIBC

To reduce the number of cystoscopy procedures, urinary markers should be able to detect recurrence before the tumours are large and numerous. The limitation of urinary cytology is its low sensitivity for low-grade recurrences. Several urinary markers are better, but still do not detect half of the low-grade tumours identified by cystoscopy [73, 76] (LE: 3).

According to current knowledge, no urinary marker can replace cystoscopy during follow up or help to lower cystoscopic frequency in a routine fashion. One prospective randomised study found that knowledge of positive test results (microsatellite analysis) can improve the quality of follow-up cystoscopy [93] (LE: 1b). It supports the adjunctive role of a non-invasive urine test performed before follow-up cystoscopy [93].

5.8 Cystoscopy

The diagnosis of papillary BC ultimately depends on cystoscopic examination of the bladder and histological evaluation of the resected tissue. CIS is diagnosed by a combination of cystoscopy, urine cytology, and histological evaluation of multiple bladder biopsies [94]. Cystoscopy is initially performed in the office. A flexible instrument with topical intra-urethral anaesthetic lubricant instillation results in better compliance compared to a rigid instrument, especially in men [95].
5.9 Summary of evidence – primary assessment of NMIBC

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The diagnosis of BC depends on cystoscopic examination.</td>
<td>1</td>
</tr>
<tr>
<td>Urinary cytology has high sensitivity in high-grade tumours including CIS.</td>
<td>2b</td>
</tr>
</tbody>
</table>

BC = bladder cancer; CIS = carcinoma in situ.

5.10 Recommendations for the primary assessment of NMIBC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient history should be taken.</td>
<td>A</td>
</tr>
<tr>
<td>Renal and bladder US may be used during the initial work-up in patients with haematuria.</td>
<td>C</td>
</tr>
<tr>
<td>At the time of the initial diagnosis of NMIBC, CT urography (or IVU) should be performed in selected cases (e.g., tumours located in the trigone, multiple or high-risk tumours).</td>
<td>B</td>
</tr>
<tr>
<td>Cystoscopy is recommended in all patients with symptoms suggestive of BC. It cannot be replaced by cytology or by any other non-invasive test.</td>
<td>A</td>
</tr>
<tr>
<td>Cystoscopy should describe all macroscopic features of the tumour (site, size, number and appearance) and mucosal abnormalities. A bladder diagram is recommended (Figure 5.1).</td>
<td>C</td>
</tr>
<tr>
<td>Voided urine cytology is advocated as an adjunct to cystoscopy to detect high-grade tumour.</td>
<td>C</td>
</tr>
<tr>
<td>Cytology should be performed on fresh urine with adequate fixation. Morning urine is not suitable because of the frequent presence of cytolysis.</td>
<td>C</td>
</tr>
</tbody>
</table>

BC = bladder cancer; CT = computed tomography; IVU = intravenous urography; NMIBC = non-muscle invasive bladder cancer; US = ultrasound.

5.11 Transurethral resection of Ta, T1 bladder tumours

5.11.1 Strategy of the procedure

The goal of TURB in Ta, T1 BC is to make the correct diagnosis and completely remove all visible lesions. It is a crucial procedure in the diagnosis and treatment of BC. TURB should be performed systematically in individual
steps (see Section 5.16). The strategy of resection depends on the size of the lesion (see Section 5.16).

Separate resection of larger tumours provides good information about the vertical and horizontal extent of the tumour and helps to improve completeness of resection [96, 97] (LE: 3).

A complete and correct TURB is essential to achieve a good prognosis [98]. It has been confirmed that the absence of detrusor muscle in the specimen is associated with a significantly higher risk of residual disease, early recurrence and tumour understaging [97, 99] (LE: 2b). It has been shown that surgical experience can improve TURB results, which supports the role of teaching programmes [100].

5.11.2 Office-based fulguration
In patients with a history of small, Ta LG/G1 tumours, fulguration of small papillary recurrences on an outpatient basis can reduce the therapeutic burden and can be a treatment option [101, 102] (LE: 3). There are no prospective comparative studies assessing the oncological outcomes.

5.11.3 New resection techniques
Compared to monopolar resection, the bipolar electrocautery system has been introduced to reduce the risk of complications (e.g., bladder perforation due to obturator nerve stimulation) and produce better specimens for the pathologist [103] (LE: 3). Currently, the results remain controversial [104-106].

5.11.4 Bladder and prostatic urethral biopsies
Carcinoma in situ can present as a velvet-like, reddish area indistinguishable from inflammation, or it may not be visible at all. For this reason, the strategy of taking biopsies from abnormal urothelium and biopsies from normal-looking mucosa (random/mapping biopsies) is recommended (see Section 5.16). The indication for random biopsies reflects the fact, that the likelihood of detecting CIS, especially in low-risk tumours, is extremely low (< 2%) [107] (LE: 2a). The risk increases in patients with high-risk tumours and with positive cytology [108].

If equipment is available, photodynamic diagnosis (PDD) is a useful tool to target the biopsy (see Section 5.12.1).

Involvement of the prostatic urethra and ducts in men with NMIBC has been reported. Palou et al. [109] showed that in 128 men with T1G3 BC, the incidence of CIS in the prostatic urethra was 11.7% (LE: 2b). The risk of prostatic urethra- or duct involvement is higher if the tumour is located on the trigone or bladder neck, in the presence of bladder CIS and multiple tumours [110] (LE: 3). Based on this observation, a biopsy from the prostatic urethra is necessary in some cases (see recommendation in Section 5.16) [109, 111].

5.12 New methods of tumour visualisation
As a standard procedure, cystoscopy and TURB are performed using white light. However, the use of white light can lead to missing lesions that are present but not visible, which is why new technologies are being developed.

5.12.1 Photodynamic diagnosis (fluorescence cystoscopy)
Photodynamic diagnosis (PDD) is performed using violet light after intravesical instillation of 5-aminolaevulinic acid (ALA) or hexaminolaevulinic acid (HAL). It has been confirmed that fluorescence-guided biopsy and resection are more sensitive than conventional procedures for the detection of malignant tumours, particularly for CIS [112, 113] (LE: 2a). In a systematic review and meta-analysis, PDD had higher sensitivity than white-light endoscopy in the pooled estimates for analyses at both the patient-level (92% vs.71%) and biopsy-level (93% vs.65%) [113]. A prospective randomised trial did not confirm a higher detection rate in patients with known positive cytology before TURB [114].

Photodynamic diagnosis had lower specificity than white-light endoscopy (63% vs. 81%) [113]. False-positivity can be induced by inflammation or recent TURB and during the first 3 months after BCG instillation [115, 116] (LE: 3). Prospective randomised studies evaluating the impact of ALA fluorescence-guided (FC) TURB on disease-recurrence rate provided controversial results [113, 117, 118].

The beneficial effect of HAL FC on recurrence rate in patients with TURB was confirmed by a multicentre, prospective, randomised trial and by a raw-data based meta-analysis of controlled trials. A meta-analysis reported in HAL arms an increase in detection of tumour lesions across all risk groups and an absolute reduction of < 10% in recurrence rates within 12 months [119] (LE: 1a). The beneficial effect of HAL FC on recurrence rate in patients with TURB and early intravesical instillation of chemotherapy was not confirmed by two prospective randomised trials [120, 121]. The value of FC for improvement of outcome in relation to progression rate, survival and clinical management remains to be demonstrated.
5.12.2 **Narrow-band imaging**
In narrow-band imaging (NBI), the contrast between normal urothelium and hyper-vascular cancer tissue is enhanced. Initial studies have demonstrated improved cancer detection by NBI-guided biopsies and resection [122, 123] (LE: 3). The suggested reduction of recurrence rate if NBI is used during TURB has not yet been fully confirmed [124].

5.13 **Second resection**
The significant risk of residual tumour after initial TURB of Ta, T1 lesions has been demonstrated [98] (LE: 2a). Persistent disease after resection of T1 tumours has been observed in 33-55% of patients, and after resection of TaG3 tumour in 41.4% [125-129]. Moreover, the tumour is often understaged by initial resection. The likelihood that muscle-invasive disease is detected by second resection of initially T1 tumour ranges from 4-25%, and it increases to 45% if there was no muscle in the initial resection [114]. This risk increased to 50% in some radical cystectomy (RC) series, although these studies only enrolled selected patients [130-132] (LE: 2a). Treatment of a Ta, T1 high-grade tumour and a T2 tumour is completely different; correct staging is therefore important.

It has been demonstrated that a second TURB can increase recurrence-free survival [125, 126] (LE: 2a), improve outcomes after BCG treatment [133] (LE: 3) and provide prognostic information [130, 134] (LE: 3). Based on these arguments, a second TURB is recommended in selected cases (see Section 5.16).

5.14 **Pathology report**
Pathological investigation of the specimen(s) obtained by TURB and biopsies is an essential step in the diagnosis and treatment decision-making process for BC. Close co-operation between urologists and pathologists is recommended. A high quality of resected and submitted tissue is essential for correct pathological assessment. The presence of sufficient muscle is necessary for the correct assignment of T category. To obtain all required information, the specimen collection, handling and evaluation should respect the recommendations provided below (see Section 5.16) [135].

5.15 **Summary of evidence - TURB and pathology report**

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB followed by pathology investigation of the obtained specimen(s) is an essential step in the treatment of NMIBC.</td>
<td>1</td>
</tr>
<tr>
<td>The absence of detrusor muscle in the specimen is associated with a significantly higher risk of residual disease and tumour understaging.</td>
<td>2b</td>
</tr>
<tr>
<td>In patients with a history of small, Ta LG/G1 tumours, fulguration of small papillary recurrences on an outpatient basis is feasible and safe.</td>
<td>3</td>
</tr>
<tr>
<td>A second TURB can detect residual tumours and tumour understaging, increase recurrence-free survival, improve outcomes after BCG treatment and provide prognostic information.</td>
<td></td>
</tr>
</tbody>
</table>

BCG = bacillus Calmette-Guérin; **TURB** = transurethral resection of the bladder.

5.16 **Recommendations for TURB and/or biopsies and pathology report**

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients suspected of harbouring bladder cancer TURB followed by pathology investigation of the obtained specimen(s) is recommended as a diagnostic procedure and initial treatment step.</td>
<td>A</td>
</tr>
<tr>
<td>Perform TURB systematically in individual steps:</td>
<td></td>
</tr>
<tr>
<td>• bimanual palpation under anaesthesia;</td>
<td></td>
</tr>
<tr>
<td>• insertion of the resectoscope, under visual control with inspection of the whole urethra;</td>
<td></td>
</tr>
<tr>
<td>• inspection of the whole urothelial lining of the bladder;</td>
<td></td>
</tr>
<tr>
<td>• biopsy from prostatic urethra (if indicated);</td>
<td></td>
</tr>
<tr>
<td>• cold-cup bladder biopsies (if indicated);</td>
<td></td>
</tr>
<tr>
<td>• resection of the tumour;</td>
<td></td>
</tr>
<tr>
<td>• surgical report formulation;</td>
<td></td>
</tr>
<tr>
<td>• precise description of the specimen for pathology evaluation.</td>
<td></td>
</tr>
<tr>
<td>Performance of individual steps:</td>
<td></td>
</tr>
<tr>
<td>Perform resection in one piece for small papillary tumours (< 1 cm), including part from the underlying bladder wall.</td>
<td>B</td>
</tr>
<tr>
<td>Perform resection in fractions including the exophytic part of the tumour, the underlying bladder wall with the detrusor muscle, and the edges of the resection area for tumours > 1 cm in diameter.</td>
<td>B</td>
</tr>
</tbody>
</table>
Avoid cauterisation as much as possible during TURB to avoid tissue deterioration. C

Take biopsies from abnormal-looking urothelium. Biopsies from normal-looking mucosa (trigone, bladder dome, and right, left, anterior and posterior bladder walls) are recommended when cytology is positive or when high-risk exophytic tumour is expected (non-papillary appearance). If equipment is available, use PDD-guided biopsies. B

Take biopsy of the prostatic urethra in cases of bladder neck tumour, when bladder CIS is present or suspected, when there is positive cytology without evidence of tumour in the bladder, or when abnormalities of the prostatic urethra are visible. If biopsy is not performed during the initial procedure, it should be completed at the time of the second resection. C

Take the biopsy from abnormal areas in the prostatic urethra and from the precollicular area (between 5 and 7 o'clock position) using a resection loop. In primary non-muscle-invasive tumours when stromal invasion is not suspected, cold-cup biopsy with forceps can be used. C

Refer the specimens from different biopsies and resection fractions to the pathologist in separate containers and label them separately. C

TURB protocol must describe tumour appearance, all steps of the procedure, as well as the extent and completeness of resection. C

In patients with positive cytology, but negative cystoscopy, exclude a UTUC, CIS in the bladder (random biopsies or PDD-guided biopsies) and tumour in prostatic urethra (prostatic urethra biopsy). C

Perform a second TURB in the following situations:
- after incomplete initial TURB;
- if there is no muscle in the specimen after initial resection, with exception of TaG1 tumours and primary CIS;
- in all T1 tumours;
- in all HG/G3 tumours, except primary CIS.
A

If indicated, perform a second TURB within 2-6 weeks after initial resection. It should include the resection of primary tumour site. C

Pathological report

The pathological report should specify tumour location, tumour grade, depth of tumour invasion, presence of CIS, and whether the detrusor muscle is present in the specimen. A

The pathological report should specify the presence of LVI or unusual (variant) histology. C

In difficult cases, consider an additional review by an experienced genitourinary pathologist. B

CIS = carcinoma in situ; LVI = lymphovascular invasion; PDD = photodynamic diagnosis; TURB = transurethral resection of the bladder; UTUC = upper tract urothelial carcinoma.

6. PREDICTING DISEASE RECURRENCE AND PROGRESSION

6.1 Ta, T1 tumours

In order to predict separately the short- and long-term risks of disease recurrence and progression in individual patients, the EORTC Genito-Urinary Cancer Group has developed a scoring system and risk tables [136]. The basis for these tables are individual patient data from 2,596 patients diagnosed with Ta, T1 tumours, who were randomised into seven EORTC trials. Patients with CIS alone were not included. Seventy-eight percent of patients received intravesical treatment, mostly chemotherapy. However, they did not undergo a second TURB or receive maintenance BCG.

The scoring system is based on the six most significant clinical and pathological factors which are shown in Table 6.1. It also illustrates the weights applied to various factors for calculating the total scores for recurrence and progression. Table 6.2 shows the total scores stratified, as in the original article [136], into four categories that reflect various probabilities of recurrence and progression at 1 and 5 years (LE: 2a).
Table 6.1: Weighting used to calculate disease recurrence and progression scores

<table>
<thead>
<tr>
<th>Factor</th>
<th>Recurrence</th>
<th>Progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tumours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>≥ 8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Tumour diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3 cm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥ 3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Prior recurrence rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≤ 1 recurrence/year</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>> 1 recurrence/year</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Concurrent CIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Total Score</td>
<td>0-17</td>
<td>0-23</td>
</tr>
</tbody>
</table>

Table 6.2: Probability of recurrence and disease progression according to total score

<table>
<thead>
<tr>
<th>Recurrence score</th>
<th>Probability of recurrence at 1 year</th>
<th>Probability of recurrence at 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>0</td>
<td>15 (10-19)</td>
<td>31 (24-37)</td>
</tr>
<tr>
<td>1-4</td>
<td>24 (21-26)</td>
<td>46 (42-49)</td>
</tr>
<tr>
<td>5-9</td>
<td>38 (35-41)</td>
<td>62 (58-65)</td>
</tr>
<tr>
<td>10-17</td>
<td>61 (55-67)</td>
<td>78 (73-84)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Progression score</th>
<th>Probability of progression at 1 year</th>
<th>Probability of progression at 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>0</td>
<td>0.2 (0-0.7)</td>
<td>0.8 (0-1.7)</td>
</tr>
<tr>
<td>2-6</td>
<td>1 (0.4-1.6)</td>
<td>6 (5-8)</td>
</tr>
<tr>
<td>7-13</td>
<td>5 (4-7)</td>
<td>17 (14-20)</td>
</tr>
<tr>
<td>14-23</td>
<td>17 (10-24)</td>
<td>45 (35-55)</td>
</tr>
</tbody>
</table>

NB: Electronic calculators for Tables 6.1 and 6.2, which have been updated for the iPhone, iPad and Android phones and tablets, are available at http://www.eortc.be/tools/bladdercalculator/.

A scoring model for BCG-treated patients that predicts the short- and long-term risks of recurrence and progression has been published by the Club Urológico Español de Tratamiento Oncológico (CUETO) (Spanish Urological Oncology Group). It is based on an analysis of 1,062 patients from four CUETO trials that compared different intravesical BCG treatments. Patients received 12 instillations over 5-6 months. No immediate post-operative instillation or second TURB was performed in these patients. The scoring system is based on the evaluation of seven prognostic factors:

- sex;
- age;
- prior recurrence status;
- number of tumours;
- T category;
- associated CIS;
- tumour grade.
Using these tables, the calculated risk of recurrence is lower than that obtained by the EORTC tables. For progression, probability is lower only in high-risk patients [137] (LE: 2a). The lower risks in the CUETO tables may be attributed to using BCG, which is a more effective instillation therapy. The CUETO risk calculator is available at: http://www.aeu.es/Cueto.html.

The prognostic value of the EORTC scoring system has been confirmed by data from the CUETO patients treated with BCG and by long-term follow up in an independent patient population [138, 139] (LE: 2a).

In 1,812 intermediate- and high-risk patients without CIS treated with 1 to 3 years of maintenance BCG, the EORTC found that the prior disease-recurrence rate and number of tumours were the most important prognostic factors for disease recurrence, stage and grade were the most important prognostic factors for disease progression and disease-specific survival, while age and grade were the most important prognostic factors for overall survival (OS). T1G3 patients do poorly, with 1- and 5-year disease-progression rates of 11.4% and 19.8%, respectively. Using these data the new EORTC risk tables for BCG treated patients were designed [140] (LE: 2a).

Further prognostic factors have been described in selected patient populations:
- In T1G3 tumours important prognostic factors were female sex and CIS in the prostatic urethra in patients treated with an induction course of BCG, and age, tumour size and concurrent CIS in BCG-treated patients (62% with induction course only) [109] [141] (LE: 2b).
- Attention must be given to patients with T1G3 tumours in bladder (pseudo) diverticulum because of an absence of muscle layer in the diverticular wall [142] (LE: 3).
- In patients with high-risk disease, the tumour stage at the time of the 2nd TURB is an unfavourable prognostic factor [130, 134] (LE: 3).
- In patients with T1G2 tumours treated with TURB, recurrence at 3 months was the most important predictor of progression [143] (LE: 2b).
- The prognostic value of pathological factors has been discussed elsewhere (see Section 4.6). More research is needed to determine the role of molecular markers in improving the predictive accuracy of currently available risk tables [138, 144].

6.2 Carcinoma in situ

Without any treatment, approximately 54% of patients with CIS progress to muscle-invasive disease [145] (LE: 3). Unfortunately, there are no reliable prognostic factors that can be used to predict the course of the disease. Publications are based on retrospective analyses of small series of patients and conclusions are not homogeneous. Some studies have reported a worse prognosis in concurrent CIS and T1 tumours compared to primary CIS [146, 147], in extended CIS [148] and in CIS in the prostatic urethra [109] (LE: 3).

The response to intravesical treatment with BCG or chemotherapy is an important prognostic factor for subsequent progression and death caused by BC [137-139, 143]. Approximately 10-20% of complete responders eventually progress to muscle-invasive disease, compared with 66% of non-responders [149, 150] (LE: 2a).

6.3 Patient stratification into risk groups

To facilitate treatment recommendations it is important to categorise patients into risk groups. Based on available prognostic factors and in particular data from the EORTC risk tables, the Guidelines Panel recommends stratification of patients into three risk groups. Table 6.3 provides a definition of these risk groups, which takes into account the EORTC risk tables’ probabilities of recurrence and especially progression.
Table 6.3: Risk group stratification

<table>
<thead>
<tr>
<th>Risk group stratification</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-risk tumours</td>
<td>Primary, solitary, Ta, G1* (PUNLMP, LG), < 3 cm, no CIS</td>
</tr>
<tr>
<td>Intermediate-risk tumours</td>
<td>All tumours not defined in the two adjacent categories (between the category of low- and high-risk).</td>
</tr>
<tr>
<td>High-risk tumours</td>
<td>Any of the following:</td>
</tr>
<tr>
<td></td>
<td>• T1 tumour</td>
</tr>
<tr>
<td></td>
<td>• G3** (HG) tumour</td>
</tr>
<tr>
<td></td>
<td>• CIS</td>
</tr>
<tr>
<td></td>
<td>• Multiple and recurrent and large (> 3 cm) Ta, G1G2 tumours (all conditions must be presented in this point)*</td>
</tr>
</tbody>
</table>

Substratification of high-risk tumours for clinical purposes is addressed in Table 7.2.

*low grade is a mixture of G1 and G2
** high grade is a mixture of some G2 and all G3 (see Figure 4.1)
CIS = carcinoma in situ; HG = high-grade; LG = low-grade; PUNLUMP = Papillary urothelial neoplasm of low malignant potential.

6.4 Summary of evidence - stratification of NMIBC

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The EORTC scoring system and risk tables predict the short- and long-term risks of disease recurrence and progression in individual patients with NMIBC.</td>
<td>2a</td>
</tr>
<tr>
<td>In patients treated with BCG, the CUETO scoring model predicts the short- and long-term risks of disease recurrence and progression.</td>
<td>2a</td>
</tr>
<tr>
<td>In patients receiving BCG maintenance, prior recurrence rate and number of tumours are the most important prognostic factors for disease recurrence.</td>
<td>2a</td>
</tr>
<tr>
<td>Stage and grade are the most important prognostic factors for disease progression and disease specific survival.</td>
<td>2a</td>
</tr>
<tr>
<td>Patient age and grade are the most important prognostic factors for OS.</td>
<td>2a</td>
</tr>
</tbody>
</table>

BCG = bacillus Calmette-Guérin; CUETO = Club Urológico Español de Tratamiento Oncológico; EORTC = European Organization for Research and Treatment of Cancer; OS = overall survival.

6.5 Recommendations for stratification of NMIBC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratify patients into three risk groups according to Table 6.3.</td>
<td>B</td>
</tr>
<tr>
<td>Apply EORTC risk tables and calculator for individual prediction of the risk of tumour recurrence and progression in different intervals after TURB.</td>
<td>B</td>
</tr>
<tr>
<td>For individual prediction of the risk of tumour recurrence and progression in patients treated with BCG use the CUETO risk tables and the new EORTC risk tables.</td>
<td>B</td>
</tr>
</tbody>
</table>

BCG = bacillus Calmette-Guérin; CUETO = Club Urológico Español de Tratamiento Oncológico; EORTC = European Organization for Research and Treatment of Cancer; TURB = transurethral resection of the bladder.

7. DISEASE MANAGEMENT

7.1 Counselling of smoking cessation

It has been confirmed that smoking increases the risk of tumour recurrence and progression [151, 152] (LE: 3). While it is still controversial whether smoking cessation in bladder cancer will favourably influence the outcome of BC treatment, patients should be counselled to stop smoking due to the general risks connected with tobacco smoking [153-156] (LE: 3).
7.2 Adjuvant treatment

7.2.1 Intravesical chemotherapy

Although TURB by itself can eradicate a Ta, T1 tumour completely, these tumours commonly recur and can progress to MIBC. The high variability in the 3-month recurrence rate indicates that the TURB was incomplete or provokes recurrences in a high percentage of patients [98]. It is therefore necessary to consider adjuvant therapy in all patients.

7.2.1.1 A single, immediate, post-operative intravesical instillation of chemotherapy

Immediate single instillation (SI) has been shown to act by destroying circulating tumour cells after TURB, and by an ablative effect (chemoerosion) on residual tumour cells at the resection site and on small overlooked tumours [157-160] (LE: 3).

Four large meta-analyses comprising 1,476 to 3,103 patients have consistently shown that after TURB, SI significantly reduces the recurrence rate compared to TURB alone [4, 161-163] [LE: 1a]. In the most recent systematic review and individual patient data meta-analysis of 2,278 eligible patients [4], SI reduced the 5-year recurrence rate by 14%, from 59% to 45%. The number to treat (NNT) to prevent one recurrence within 5 years was 7 eligible patients. Only patients with a prior recurrence rate of less than or equal to one recurrence per year and those with an EORTC recurrence score < 5 benefited from SI. In patients with an EORTC recurrence score ≥ 5 and/or patients with a prior recurrence rate of > 1 recurrence per year, SI was not effective as a single adjuvant treatment in these two subgroups of patients. Mitomycin C (MMC), epirubicin, and pirarubicin have all shown a beneficial effect [4]. No randomised comparisons of individual drugs are have been conducted [4, 161-163] (LE: 1a).

Prevention of tumour cell implantation should be initiated within the first few hours after TURB. After that, tumour cells are firmly implanted and are covered by extracellular matrix [157, 164-166] (LE: 3). In all SI studies, the instillation was administered within 24 hours. To maximize the efficacy of SI, one should devise flexible practices that allow the instillation to be given as soon as possible after TURB, preferably within the first 2 hours in the recovery room or even in the operating theatre.

As severe complications have been reported in patients with drug extravasation [167, 168] safety measures should be maintained (see Section 7.5).

7.2.1.2 Additional adjuvant intravesical chemotherapy instillations

The need for further adjuvant intravesical therapy depends on prognosis. In low-risk patients (Tables 6.1, 6.2 and 6.3), a SI reduces the risk of recurrence and is considered to be the standard and complete treatment [161] (LE: 1a). For other patients, however, a SI remains an incomplete treatment because of the considerable likelihood of recurrence and/or progression (Tables 6.1, 6.2 and 6.3). The individual patient data meta-analysis also showed that a SI reduced recurrences in intermediate-risk patients with an EORTC recurrence score < 5, none of whom received further treatment prior to recurrence. There is evidence from several studies in intermediate-risk patients that SI might have an impact on recurrence even when further adjuvant instillations are given, however they do not take into account the EORTC recurrence score [169-171] (LE: 2a). In one study [172], further chemotherapy instillations after SI improved recurrence-free survival in intermediate-risk patients (LE: 2a). Conversely, a sufficient number of delayed repeat chemotherapy instillations without SI can also reduce recurrences [169, 171].

A large meta-analysis of 3,703 patients from 11 randomised trials showed a highly significant 44% reduction in the odds of recurrence at one year in favour of chemotherapy over TURB alone [173]. This corresponds to an absolute difference of 13-14% in the number of patients with recurrence. Contrary to these findings, two meta-analyses have demonstrated that BCG therapy may reduce the risk of tumour progression [174, 175] (LE: 1a) (see Section 7.2.2.1). Moreover, BCG maintenance therapy appears to be significantly better in preventing recurrences than chemotherapy [176-178] (see Section 7.2.2) (LE: 1a). However, BCG causes significantly more side effects than does chemotherapy [178] (LE: 1a).

The length and frequency of chemotherapy instillations is still controversial. A systematic review of RCTs, comparing different schedules of intravesical chemotherapy instillations, concluded that the ideal duration and intensity of the schedule remains undefined because of conflicting data [171]. The available evidence does not support treatment longer than one year (LE: 3).

7.2.1.3 Options for improving efficacy of intravesical chemotherapy

7.2.1.3.1 Adjustment of pH, duration of instillation, and drug concentration

One RCT using MMC has demonstrated that adapting urinary pH, decreasing urinary excretion, and buffering the intravesical solution reduced the recurrence rate [179] (LE: 1b). Another trial reported that a 1-hour instillation of MMC was more effective than 30 minutes instillation, but no efficacy comparisons are available for 1- and 2-hour instillations [180] (LE: 3). Another RCT using epirubicin has documented that concentration is more important than treatment duration [181] (LE: 1b). In view of these data, instructions are provided (see Section 7.5).
7.2.1.3.2 Microwave-induced hyperthermia and electromotive drug administration (EMDA)
Promising data have been presented on enhancing the efficacy of MMC using microwave-induced hyperthermia or the efficacy of MMC using electromotive drug administration (EMDA) in patients with high-risk tumours. The current evidence, however, is limited [182-184] and both treatment modalities are considered to be experimental (LE: 2b).

7.2.1.4 Summary of evidence - intravesical chemotherapy

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with NMIBC and prior low recurrence rate (less than or equal to one recurrence per year) and in those with an EORTC recurrence score < 5, SI significantly reduces the recurrence rate compared to TURB alone.</td>
<td>1a</td>
</tr>
<tr>
<td>In intermediate-risk patients, SI might have an impact on recurrence even when further adjuvant instillations are given.</td>
<td>3</td>
</tr>
<tr>
<td>Further chemotherapy instillations after SI improve recurrence-free survival in intermediate-risk patients.</td>
<td>2a</td>
</tr>
</tbody>
</table>

EORTC = European Organization for Research and Treatment of Cancer; SI = single instillation; TURB = transurethral resection of the bladder.

7.2.2 Intravesical bacillus Calmette-Guérin (BCG) immunotherapy

7.2.2.1 Efficacy of BCG
Five meta-analyses have confirmed that BCG after TURB is superior to TURB alone or TURB + chemotherapy for preventing the recurrence of NMIBC [176, 185-188] (LE: 1a). Three recent RCTs of intermediate- and high-risk tumours have compared BCG with epirubicin + interferon [189], MMC [190], or epirubicin alone [177] and have confirmed the superiority of BCG for prevention of tumour recurrence (LE: 1a). The effect is long-lasting [177, 190] and was also observed in a separate analysis of patients with intermediate-risk tumours [177].

One meta-analysis [176] has evaluated the individual data from 2,820 patients enrolled in nine RCTs that have compared MMC vs. BCG. In the trials with BCG maintenance, there was a 32% reduction in the risk of recurrence for BCG compared to MMC, but a 28% increase in the risk of recurrence for patients treated with BCG in the trials without BCG maintenance.

Two meta-analyses have demonstrated that BCG therapy prevents, or at least delays, the risk of tumour progression [174, 175] (LE: 1a). A meta-analysis carried out by the EORTC-GUCG has evaluated data from 4,863 patients enrolled in 24 RCTs. Five different BCG strains were used, and in 20 of the trials, some form of BCG maintenance was used. Based on a median follow-up of 2.5 years, in 260 out of 2,658 patients (9.8%) treated with BCG, tumours progressed compared to 304 out of 2,205 (13.8%) in the control groups (TURB alone, TURB + intravesical chemotherapy, or TURB + other immunotherapy). This shows a reduction of 27% in the odds of progression with BCG maintenance treatment. The size of the reduction was similar in patients with Ta, T1 papillary tumours and in those with CIS [175]. A recent RCT with long-term observation has demonstrated significantly fewer distant metastases and better overall- and disease-specific survival in patients treated with BCG compared to epirubicin [177] (LE: 1b). On the contrary, a meta-analysis of individual patient data was not able to confirm any statistically significant difference between MMC and BCG for progression, survival and cause of death [176].

The conflicting results in the outcomes of these studies can be explained by different patient characteristics, duration of follow-up, methodology and statistical power. However, most studies showed a reduction in the risk of progression in high- and intermediate-risk tumours if BCG was applied including a maintenance schedule.

Two other meta-analyses have suggested a possible bias in favour of BCG arising from the inclusion of patients previously treated with intravesical chemotherapy [191]. In the most recent meta-analysis, however, BCG maintenance was more effective than MMC, both in patients previously treated and not previously treated with chemotherapy [176] (LE: 1a). It was demonstrated that BCG was less effective in patients > 70 years of age, but it was still more effective than epirubicin [192] (LE: 1a).

7.2.2.2 BCG strain
The EORTC meta-analysis suggested no large differences in efficacy between various BCG strains [175]. Recently published smaller studies without maintenance demonstrated some differences between strains. This clearly needs further evaluation in prospective trials [193, 194] (LE: 2a).

7.2.2.3 BCG toxicity
BCG intravesical treatment is associated with more side effects compared to intravesical chemotherapy [175]
(LE: 1a). However, serious side effects are encountered in < 5% of patients and can be treated effectively in almost all cases [195] (LE: 1b). It has been shown that a maintenance schedule is not associated with an increased risk of side effects compared to an induction course [195]. Side effects requiring treatment stoppage were seen more often in the first year of therapy [196].

Major complications can appear after systemic absorption of the drug. Thus, contraindications of BCG intravesical instillation should be respected (see Section 7.5).

The presence of leukocyturia, non-visible haematuria or asymptomatic bacteriuria is not a contraindication for BCG application, and antibiotic prophylaxis is not necessary in these cases [197, 198] (LE: 3).

BCG should be used with caution (relative contraindication) in immunocompromised patients (immunosuppression, human immunodeficiency virus [HIV] infection) [199], although some small studies have shown similar efficacy and no increase in complications compared to non-immunocompromised patients. The role of prophylactic anti-tuberculosis medication in these patients remains unclear [200-202] (LE: 3).

The management of side effects after BCG should reflect their type and grade according to the recommendations provided by the International Bladder Cancer Group (IBCG) and by a Spanish group [203, 204] (Table 7.1).

Table 7.1: Management options for side effects associated with intravesical BCG [204-207]

<table>
<thead>
<tr>
<th>Management options for local side effects (modified from IBCG group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms of cystitis</td>
</tr>
<tr>
<td>Phenazopyridine, propantheline bromide, or NSAIDs</td>
</tr>
<tr>
<td>If symptoms improve within a few days: continue instillations</td>
</tr>
<tr>
<td>If symptoms persist or worsen:</td>
</tr>
<tr>
<td>a. Postpone the instillation</td>
</tr>
<tr>
<td>b. Perform a urine culture</td>
</tr>
<tr>
<td>c. Start empirical antibiotic treatment</td>
</tr>
<tr>
<td>If symptoms persist even with antibiotic treatment:</td>
</tr>
<tr>
<td>d. With positive culture: antibiotic treatment according to sensitivity</td>
</tr>
<tr>
<td>e. With negative culture: quinolones and potentially analgesic anti-inflammatory instillations once daily for 5 days (repeat cycle if necessary) [205].</td>
</tr>
<tr>
<td>If symptoms persist: anti-tuberculosis drugs + corticosteroids.</td>
</tr>
<tr>
<td>If no response to treatment and/or contracted bladder: radical cystectomy.</td>
</tr>
</tbody>
</table>

| **Haematuria** | |
| Perform urine culture to exclude haemorrhagic cystitis, if other symptoms present. |
| If haematuria persists, perform cystoscopy to evaluate presence of bladder tumour. |

| **Symptomatic granulomatous prostatitis** | |
| If symptoms are present: perform urine culture. |
| Quinolones. |
| If quinolones are not effective: isoniazid (300 mg/day) and rifampicin (600 mg/day) for 3 months. |
| Cessation of intravesical therapy. |

| **Epididymo-orchitis** [206] | |
| Perform urine culture and administer quinolones. |
| Cessation of intravesical therapy. |
| Orchidectomy if abscess or no response to treatment. |

<table>
<thead>
<tr>
<th>Management options for systemic side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>General malaise, fever</td>
</tr>
<tr>
<td>Arthralgia and/or arthritis</td>
</tr>
<tr>
<td>Arthralgia: treatment with NSAIDs.</td>
</tr>
<tr>
<td>Arthritis: NSAIDs.</td>
</tr>
<tr>
<td>If no/partial response, proceed to corticosteroids, high-dose quinolones or anti-tuberculosis drugs [207].</td>
</tr>
<tr>
<td>Persistent high-grade fever (> 38.5°C for > 48 h)</td>
</tr>
<tr>
<td>Immediate evaluation: urine culture, blood tests, chest X-ray.</td>
</tr>
<tr>
<td>Prompt treatment with > two antimicrobial agents while diagnostic evaluation is conducted.</td>
</tr>
<tr>
<td>Consultation with an infectious diseases specialist.</td>
</tr>
</tbody>
</table>
BCG sepsis

<table>
<thead>
<tr>
<th>Prevention: initiate BCG at least 2 weeks post-TURB (if no signs and symptoms of haematuria).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cessation of BCG.</td>
</tr>
<tr>
<td>For severe infection:</td>
</tr>
<tr>
<td>• High-dose quinolones orisoniazid, rifampicin and ethambutol 1.2 g daily for 6 months.</td>
</tr>
<tr>
<td>• Early, high-dose corticosteroids as long as symptoms persist.</td>
</tr>
<tr>
<td>Consider an empirical non-specific antibiotic to cover Gram-negative bacteria and/or Enterococcus.</td>
</tr>
</tbody>
</table>

Allergic reactions

- Antihistamines and anti-inflammatory agents.
- Consider high-dose quinolones orisoniazid and rifampicin for persistent symptoms.
- Delay therapy until reactions resolve.

BCG = bacillus Calmette-Guérin; IBCG = International Bladder Cancer Group; NSAID = non-steroidal antiinflammatory drug; TURBT = transurethral resection of bladder tumour.

7.2.2.4 Optimal BCG schedule

Induction BCG instillations are given according to the empirical 6-weekly schedule introduced by Morales [208]. For optimal efficacy, BCG must be given in a maintenance schedule [174-176, 188] (LE: 1a). Many different maintenance schedules have been used, ranging from a total of 10 instillations given in 18 weeks to 27 over 3 years [209]. The EORTC meta-analysis was unable to determine which BCG maintenance schedule was the most effective [175]. In their meta-analysis, Böhle et al. concluded that at least one year of maintenance BCG is required to obtain superiority of BCG over MMC for prevention of recurrence or progression [174] (LE: 1a).

The optimal number of induction instillations and optimal frequency and duration of maintenance instillations is not fully known. Moreover, it can be different in each individual patient [210]. In a RCT of 1,355 patients, the EORTC has shown that when BCG is given at full dose, 3 years’ maintenance (three-weekly instillations 3, 6, 12, 18, 24, 30 and 36 months) reduces the recurrence rate compared to one year in high- but not in intermediate-risk patients. There were no differences in progression or OS. In the 3-year arm, however, 36.1% of patients did not complete the 3-years schedule [211] (LE: 1b). In a RCT of 397 patients CUETO suggested that in high-risk tumours, the maintenance schedule with only 1 instillation every 3 months for 3 years may be suboptimal [212] (LE: 1b).

7.2.2.5 Optimal dose of BCG

To reduce BCG toxicity, instillation of a reduced dose was proposed. However, it has been suggested that a full dose of BCG is more effective in multifocal tumours [213, 214] (LE: 1b). The CUETO study compared one-third dose to full-dose BCG and found no overall difference in efficacy. One-third of the standard dose of BCG might be the minimum effective dose for intermediate-risk tumours. A further reduction to one-sixth dose resulted in a decrease in efficacy with no decrease in toxicity [215] (LE: 1b).

The EORTC did not find any difference in toxicity between one-third and full-dose BCG, but one-third dose BCG was associated with a higher recurrence rate, especially when it was given only for one year [196, 211] (LE: 1b). Moreover, the routine application is complicated by potential technical difficulties in preparing the reduced dose reliably.

7.2.2.6 Indications for BCG

Although BCG is a very effective treatment, there is a consensus that not all patients with NMIBC should be treated with BCG due to the risk of toxicity. Ultimately, the choice of treatment depends upon the patient’s risk (Table 6.2). The recommendation for individual risk groups is provided in Section 7.5.

A statement by the panel on BCG shortage can be accessed on line: https://uroweb.org/guideline/non-muscle-invasive-bladder-cancer/?type=appendices-publications.

7.2.2.7 Summary of evidence - BCG treatment

<table>
<thead>
<tr>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with intermediate- and high-risk tumours, intravesical BCG after TURB reduces the risk of tumour recurrence, it is more effective than TURB alone or TURB + intravesical chemotherapy. 1a</td>
</tr>
<tr>
<td>For optimal efficacy, BCG must be given in a maintenance schedule. 1a</td>
</tr>
<tr>
<td>Three-year maintenance is more effective than one year in patients with high-risk tumours, but not in patients with intermediate-risk tumours. 1a</td>
</tr>
</tbody>
</table>

BCG = bacillus Calmette-Guérin; TURBT = transurethral resection of the bladder.
7.2.3 **Combination therapy**

In one RCT, a combination of MMC and BCG reduced recurrences but was more toxic compared to BCG monotherapy. Using similar BCG schedules in both groups, each BCG instillation in the combination group was preceded a day before by one MMC instillation [216]. Another RCT demonstrated that in frequently recurrent NMIBC significantly higher efficacy of weekly MMC followed by monthly BCG in reduction of the recurrence rate when compared to BCG and interferon [217]. In the RCT using MMC with EMDA, a combination of BCG and MMC with EMDA showed an improved recurrence-free interval and reduced progression rate compared to BCG monotherapy [183].

7.2.4 **Specific aspects of treatment of CIS**

7.2.4.1 **Treatment strategy**

The detection of concurrent CIS increases the risk of recurrence and progression of Ta, T1 tumours [136, 137], further treatment according to the criteria summarised in Sections 7.2.1, 7.2.2, 7.3 and 7.4 is mandatory.

CIS cannot be cured by an endoscopic procedure alone. Histological diagnosis of CIS must be followed by further treatment, either intravesical BCG instillations or radical cystectomy (RC) (LE: 4). Tumour-specific survival rates after immediate RC for CIS are excellent, but as many as 40-50% of patients might be overtreated [145] (LE: 3).

7.2.4.2 **Cohort studies on intravesical BCG or chemotherapy**

In retrospective evaluations of patients with CIS, a complete response rate of 48% was achieved with intravesical chemotherapy and 72-93% with BCG [145-148, 218] (LE: 2a). Up to 50% of complete responders might eventually show recurrence with a risk of invasion and/or extravesical recurrence [148, 209, 218, 219] (LE: 3).

7.2.4.3 **Prospective randomised trials on intravesical BCG or chemotherapy**

Unfortunately, there have been few randomised trials in patients with CIS alone. A meta-analysis of clinical trials comparing intravesical BCG to intravesical chemotherapy in patients with CIS has shown a significantly increased response rate after BCG and a reduction of 59% in the odds of treatment failure with BCG [220] (LE: 1a).

In an EORTC-GUCG meta-analysis of tumour progression (a subgroup of 403 patients with CIS), BCG reduced the risk of progression by 35% as compared to intravesical chemotherapy or different immunotherapy [175] (LE: 1b). The combination of BCG and MMC was not superior to BCG alone [221]. In summary, compared to chemotherapy, BCG treatment of CIS increases the complete response rate, the overall percentage of patients who remain disease free, and reduces the risk of tumour progression (LE: 1b).

7.2.4.4 **Treatment of CIS in prostatic urethra and upper urinary tract**

Patients with CIS are at high risk of extravesical involvement in the UUT and in the prostatic urethra. Solsona et al. found that 63% of 138 patients with CIS developed extravesical involvement initially or during follow-up [222]. Patients with extravesical involvement had worse survival than those with bladder CIS alone [222] (LE: 3).

In the prostate, CIS might be present only in the epithelial lining of the prostatic urethra or in the prostatic ducts [36]. These situations should be distinguished from tumour invasion into the prostatic stroma (stage T4a in bladder tumours), and for which immediate radical cystoprostatectomy is mandatory. Patients with CIS in the epithelial lining of the prostatic urethra can be treated by intravesical instillation of BCG. Transurethral resection of the prostate can improve contact of BCG with the prostatic urethra [95, 223] (LE: 3).

In patients with prostatic duct involvement, there are promising results after BCG instillation, but only from small series, so the data are insufficient to provide clear treatment recommendations and radical surgery should be considered [223, 224] (LE: 3). Treatment of CIS that involves the UUT is discussed in the Guidelines on Urothelial Tumours of the Upper Urinary Tract [1].

7.2.4.5 **Summary of evidence – treatment of CIS**

<table>
<thead>
<tr>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 1b</td>
</tr>
<tr>
<td>CIS cannot be cured by an endoscopic procedure alone.</td>
</tr>
<tr>
<td>Compared to intravesical chemotherapy, BCG treatment of CIS increases the complete response rate, the overall percentage of patients who remain disease free, and reduces the risk of tumour progression.</td>
</tr>
</tbody>
</table>

BCG = *bacillus Calmette-Guérin*; **CIS** = carcinoma in situ.
Flowchart 7.1: Treatment strategy in primary or recurrent tumour(s) without previous BCG

TURB

Consider tumour appearance and early postoperative situation

- Presumably low- or intermediate-risk tumour with low previous recurrence rate (≤ 1 recurrence per year) and EORTC recurrence score < 5
 - No perforation, no extensive resection, no bleeding with clots after TURB
 - Single installation of chemotherapy (GR: A)

- Apparently muscle-invasive or high-risk tumour (sessile appearance etc.)
 - Bladder perforation, bleeding with clots

Consider completeness of the resection and pathological report:

- Incomplete resection or no muscle (except for monofocal TaG1/LG or T1 or G3/HG except for primary CIS)
 - second TURB (GR: A) in 2-6 weeks (GR: C)

- Macroscopically complete resection and TaG1-2/LG with muscle in the specimen or in TaG1/LG even without muscle or in primary CIS

Stratify patients into risk groups (GR: B)

- • Previous history
- • Endoscopic appearance (number and size of tumours)
- • Pathological report the worst stage and grade from either or second TURB (GR: B)

Low-risk tumour (primary solitary TaG1/LG < 3 cm)

- Cystoscopy (GR: A) at 3 mo
 - If negative, cystoscopy (GR: A) at 12 mo and then yearly for 5 yr (GR: C)

Intermediate-risk tumour

- Primary or recurrent tumour without previous chemotherapy: Intravesical BCG for 1 yr (6 weekly and 3 weekly at 3, 6 and 12 mo) or intravesical chemotherapy for up to 12 mo (GR: A)
 - Recurrent tumour with previous chemotherapy: Intravesical BCG for 1 yr (6 weekly and 3 weekly at 3, 6 and 12 mo) (GR: A), in late recurrence of small TaG1/LG consider repeating intravesical Chemotherapy
 - In all cases: Cystoscopy (GR: A) and cytology (GR: B) at 3 mo and then yearly (GR: C)

High-risk tumour (T1 or Tis or G3/HG or multiple and recurrent and > 3 cm TaG1-2/LG)

- Cystoscopy (GR: A) and cytology (GR: B) at 3 mo
 - If negative, cystoscopy and cytology at 3-6 mo intervals until 5 yr and then yearly (GR: C)

- Intravesical BCG for 1-3 yr (GR: A)
 - Cystoscopy (GR: A) and cytology (GR: B) at 3 mo
 - If negative, cystoscopy and cytology every 3 mo for 2 yr, every 6 mo thereafter until 5 yr and then yearly (GR: C), CT-IVU or IVU yearly (GR: C)

Consider pathological report

Consider previous history and pathological report (see flow-chart II)

Non-muscle invasive recurrence

- See previous history and pathological report (see flow-chart II)

Muscle invasive recurrence

- Consider tumour appearance and early postoperative situation
 - Presumably low- or intermediate-risk tumour with low previous recurrence rate (≤ 1 recurrence per year) and EORTC recurrence score < 5
 - No perforation, no extensive resection, no bleeding with clots after TURB
 - Single installation of chemotherapy (GR: A)

- Apparently muscle-invasive or high-risk tumour (sessile appearance etc.)
 - Bladder perforation, bleeding with clots

See MIBC guidelines

*For details and explanations see the text of the guidelines

BCG = bacillus Calmette-Guérin; GR = grade of recommendation; MIBC = muscle-invasive bladder cancer; PDD = photodynamic diagnosis; TURB = transurethral resection of the bladder.
7.3 Treatment of failure of intravesical therapy

7.3.1 Failure of intravesical chemotherapy
Patients with non-muscle-invasive recurrence of BC after a chemotherapy regimen can benefit from BCG instillations. Prior intravesical chemotherapy has no impact on the effect of BCG instillation [176] (LE: 1a).

7.3.2 Recurrence and failure after intravesical BCG immunotherapy
Categories of unsuccessful treatment with intravesical BCG are presented in Table 7.2.

Table 7.2: Categories of unsuccessful treatment with intravesical BCG

<table>
<thead>
<tr>
<th>BCG failure</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whenever a MIBC is detected during follow-up.</td>
<td></td>
</tr>
<tr>
<td>BCG-refractory tumour:</td>
<td></td>
</tr>
<tr>
<td>1. If high-grade, non-muscle-invasive papillary tumour is present at 3 months [225]. Further conservative treatment with BCG is associated with increased risk of progression [149, 226] (LE: 3).</td>
<td></td>
</tr>
<tr>
<td>2. If CIS (without concomitant papillary tumour) is present at both 3 and 6 months. If patients with CIS present at 3 months, an additional BCG course can achieve a complete response in > 50% of cases [36] (LE: 3).</td>
<td></td>
</tr>
<tr>
<td>3. If high-grade tumour appears during BCG therapy*.</td>
<td></td>
</tr>
<tr>
<td>High-grade recurrence after BCG. Recurrence of high-grade/grade 3 (WHO 2004/1973) tumour after completion of BCG maintenance, despite an initial response [227] (LE: 3).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BCG intolerance</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe side effects that prevent further BCG instillation before completing induction [204].</td>
<td></td>
</tr>
</tbody>
</table>

* Patients with low-grade recurrence during or after BCG treatment are not considered to be a BCG failure.

BCG = bacillus Calmette-Guérin; CIS = carcinoma in situ; WHO = World Health Organization.

7.3.3 Treatment of BCG failure and recurrences after BCG
Treatment recommendations are provided in Section 7.5 and Table 7.7. They reflect the categories mentioned in Table 7.2 and tumour characteristics at the time of recurrence.

Patients with BCG failure are unlikely to respond to further BCG therapy; RC is therefore the preferred option. Various studies suggest that repeat BCG therapy is appropriate for non-high-grade and even for some high-grade recurrent tumours [228, 229] (LE: 3). Additionally, there are now several bladder preservation strategies available that can be categorised as immunotherapy [230] chemotherapy, device-assisted therapy (see 7.2.1.3.2), and combination therapy (see 7.2.3) [231]. Changing from BCG to these options can yield responses in selected cases with BCG treatment failure [228, 232-239] (LE: 3).

Treatments other than RC must be considered oncologically inferior in patients with BCG failure at the present time [149, 225, 226] (LE: 3).

Little is known about the optimal treatment in patients with high-risk tumours who could not complete BCG instillations because of intolerance.

Non-high-grade recurrence after BCG is not considered as BCG failure. Treatment decision should be individualised according to tumour characteristics. It could include chemotherapy or repeat BCG instillations, but the published evidence is very low.

7.3.4 Summary of evidence - treatment failure of intravesical therapy

| Prior intravesical chemotherapy has no impact on the effect of BCG instillation. | LE: 1a |
| Treatments other than radical cystectomy must be considered oncologically inferior in patients with BCG failure. | LE: 3 |

BCG = bacillus Calmette-Guérin.
Flowchart 7.2: Treatment strategy in recurrence during or after intravesical BCG*

For details and explanations, see the text of the guidelines.

BCG = bacillus Calmette-Guérin; HG = high-grade; IVU = intravenous urography; LG = low-grade; PDD = photodynamic diagnosis; TURB = transurethral resection of the bladder.

7.4 Radical cystectomy for NMIBC

If RC is indicated before progression to muscle-invasive tumour, it can be performed as an immediate (immediately after NMIBC diagnosis) or early (after BCG failure) procedure.

There are several reasons to consider immediate RC for selected patients with NMIBC:

- The staging accuracy for T1 tumours by TURB is low with 27-51% of patients being upstaged to muscle-invasive tumour at RC [111, 131, 240-245] (LE: 3).
- Some patients with NMIBC experience disease progression to muscle-invasive disease (Table 6.2).

The potential benefit of RC must be weighed against the risk, morbidity, and impact on quality of life. It is reasonable to propose immediate RC in those patients with NMIBC who are at highest risk of progression (see
The benefits and risks of immediate and delayed RC should be discussed with patients. Individual additional prognostic factors in T1 tumours mentioned in Sections 6.1 and 4.6 should be considered. Early RC is strongly recommended in patients with BCG-refractory tumours, as mentioned above. A delay in RC might lead to decreased disease-specific survival [247] (LE: 3). In patients in whom RC is performed at the time of pathological NMIBC, the 5-year disease-free survival rate exceeds 80% [248-252] (LE: 3).

7.5 Recommendations for adjuvant therapy in Ta, T1 tumours and for therapy of CIS

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers with confirmed NMIBC should be counseled to stop smoking.</td>
<td>B</td>
</tr>
<tr>
<td>The type of further therapy after TURB should be based on the risk groups shown in Table 6.3 and Section 7.6.</td>
<td>A</td>
</tr>
<tr>
<td>In patients with tumours presumed to be at low risk and in those presumed to be at intermediate risk with previous low recurrence rate (less than or equal to one recurrence per year) and expected EORTC recurrence score < 5, one immediate chemotherapy instillation is recommended.</td>
<td>A</td>
</tr>
<tr>
<td>In patients with intermediate-risk tumours (with or without immediate instillation), 1-year full-dose BCG treatment (induction plus 3 weekly instillations at 3,6 and 12 months), or instillations of chemotherapy (the optimal schedule is not known) for a maximum of 1 year is recommended. The final choice should reflect the individual patient’s risk of recurrence and progression as well as the efficacy and side effects of each treatment modality.</td>
<td>A</td>
</tr>
<tr>
<td>In patients with high-risk tumours, full-dose intravesical BCG for 1-3 years (induction plus 3 weekly instillations at 3.6, 12, 18, 24, 30 and 36 months), is indicated. The additional beneficial effect of the second and third years of maintenance should be weighed against its added costs and inconveniences.</td>
<td>A</td>
</tr>
<tr>
<td>In patients with CIS in the epithelial lining of the prostatic urethra, TUR of the prostate followed by intravesical instillation of BCG can be offered.</td>
<td>C</td>
</tr>
<tr>
<td>In patients at highest risk of tumour progression (Section 7.6), immediate radical cystectomy should be considered.</td>
<td>C</td>
</tr>
<tr>
<td>In patients with BCG failure, radical cystectomy is indicated.</td>
<td>B</td>
</tr>
</tbody>
</table>

Intravesical chemotherapy

- One immediate instillation of chemotherapy should be administered within 24 hours after TURB, preferably within 2 hours. | C |
- One immediate instillation of chemotherapy should be omitted in any case of overt or suspected intra-or extra-peritoneal perforation (after extensive TURB, or bleeding requiring bladder irrigation). | C |
- Give clear instructions to the nursing staff to control the free flow of the bladder catheter at the end of the immediate instillation. | C |
- The optimal schedule of further intravesical chemotherapy instillation and its duration is not defined, it should not exceed 1 year. | C |
- If intravesical chemotherapy is given, it is advised to use the drug at its optimal pH and to maintain the concentration of the drug by reducing fluid intake before and during instillation. | B |
- The length of individual instillation should be 1-2 hours. | C |

BCG intravesical immunotherapy

Absolute contraindications of BCG intravesical instillation are:

- during the first 2 weeks after TURB;
- in patients with visible haematuria;
- after traumatic catheterisation;
- in patients with symptomatic urinary tract infection.

The management of side effects after BCG intravesical instillation should reflect their type and grade (Table 7.1).

BCG = bacillus Calmette-Guérin; CIS = carcinoma in situ; TUR = transurethral resection; TURB = transurethral resection of the bladder.
7.6 Treatment recommendations in Ta, T1 tumours and CIS according to risk stratification

<table>
<thead>
<tr>
<th>Risk category</th>
<th>Definition</th>
<th>Treatment recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-risk tumours</td>
<td>Primary, solitary, Ta, G1/PUNLMP, LG, < 3 cm, no CIS</td>
<td>One immediate instillation of intravesical chemotherapy after TURB.</td>
</tr>
<tr>
<td>Intermediate-risk tumours</td>
<td>All cases between categories of low and high risk</td>
<td>In patients with previous low recurrence rate (less than or equal to one recurrence per year) and expected EORTC recurrence score < 5, one immediate instillation of intravesical chemotherapy after TURB. In all patients either 1-year full-dose BCG treatment (induction plus 3-weekly instillations at 3,6 and 12 months), or instillations of chemotherapy (the optimal schedule is not known) for a maximum of 1 year.</td>
</tr>
<tr>
<td>High-risk tumours</td>
<td>Any of the following: • T1 tumours; • HG/G3 tumours; • CIS; • Multiple and recurrent and large (> 3 cm) Ta G1G2 tumours (all these conditions must be presented).</td>
<td>Intravesical full-dose BCG instillations for 1-3 years or cystectomy (in highest-risk tumours - see below).</td>
</tr>
<tr>
<td></td>
<td>T1G3/HG associated with concurrent bladder CIS, multiple and/or large T1G3/ HG and/or recurrent T1G3/HG,T1G3/HG with CIS in the prostatic urethra, unusual histology of urothelial carcinoma, LVI (see Sections 4.6 and 6.2).</td>
<td>Radical cystectomy should be considered, in those who refuse intravesical full-dose BCG instillations for 1-3 years.</td>
</tr>
</tbody>
</table>

Subgroup of highest-risk tumours

BCG = bacillus Calmette-Guérin; CIS = carcinoma in situ; HG = high-grade; LG = low-grade; LVI = lymphovascular invasion; TURB = transurethral resection of the bladder.

7.7 Treatment recommendations for BCG failure and recurrences after BCG

<table>
<thead>
<tr>
<th>Category</th>
<th>Treatment recommendation</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG-refractory tumour</td>
<td>1. Radical cystectomy</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>2. Bladder-preserving strategies in patients unsuitable for cystectomy</td>
<td></td>
</tr>
<tr>
<td>HG recurrence after BCG</td>
<td>1. Radical cystectomy</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>2. Repeat BCG course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Bladder-preserving strategies</td>
<td></td>
</tr>
<tr>
<td>Non-HG recurrence after BCG for primary intermediate-risk tumour</td>
<td>1. Repeat BCG or intravesical chemotherapy</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>2. Radical cystectomy</td>
<td></td>
</tr>
</tbody>
</table>

BCG = bacillus Calmette-Guérin; HG = high-grade.
8. FOLLOW-UP OF PATIENTS WITH NMIBC

As a result of the risk of recurrence and progression, patients with NMIBC need to be followed up. However, the frequency and duration of cystoscopy and imaging should reflect the individual patient’s degree of risk. Using risk tables (see Tables 6.1 and 6.2), the short- and long-term risks of recurrence and progression in individual patients may be predicted and the follow-up schedule adapted accordingly [136, 137].

When planning the follow-up schedule and methods, the following aspects should be considered:

- The prompt detection of muscle-invasive and HG/G3 non-muscle-invasive recurrence is crucial because a delay in diagnosis and therapy can be life-threatening.
- Tumour recurrence in the low-risk group is nearly always low stage and LG/G1. Small, Ta LG/G1 papillary recurrence does not present an immediate danger to the patient and early detection is not essential for successful therapy [253-257] (LE: 2b). Fulguration of small papillary recurrences on an outpatient basis could be a safe option that reduces the therapeutic burden [101] (LE: 3). Some authors have even defended temporary surveillance in selected cases [256-258] (LE: 3).
- The first cystoscopy after TURB at 3 months is an important prognostic indicator for recurrence and progression [143, 149, 259-261] (LE: 1a). Therefore, the first cystoscopy should always be performed 3 months after TURB in all patients with Ta, T1 tumours and CIS.
- In tumours at low-risk, the risk of recurrence after 5 recurrence-free years is low [260] (LE: 3). Discontinuation of cystoscopy or its replacement with less-invasive methods can be considered [261].
- In tumours originally intermediate- or high-risk, recurrences after 10 years tumour-free are not unusual [262] (LE: 3). Therefore, life-long follow-up is recommended [261].
- The follow-up strategy must reflect the risk of extravesical recurrence (prostatic urethra in men and UUT)
- The risk of UUT recurrence increases in patients with multiple- and high-risk tumours [65] (LE: 3).
- Positive urine test results have a positive impact on the quality of performed follow-up cystoscopy [93] (LE: 1b). It supports the adjunctive role of urine tests during follow-up.

No non-invasive method can replace endoscopy. Follow-up is therefore based on regular cystoscopy (see Section 5.7). There is a lack of randomised studies that have investigated the possibility of safely reducing the frequency of follow-up cystoscopy.

As CIS is often not visible, multiple biopsies may be necessary in selected cases to confirm the efficacy of intravesical treatment in patients treated for CIS [94]. The following recommendations are based mostly on retrospective data.

8.1 Summary of evidence - follow-up of patients with NMIBC

<table>
<thead>
<tr>
<th>LE</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>The first cystoscopy after TURB at 3 months is an important prognostic indicator for recurrence and progression.</td>
</tr>
<tr>
<td>3</td>
<td>The risk of UUT recurrence increases in patients with multiple- and high-risk tumours.</td>
</tr>
</tbody>
</table>

TURB = transurethral resection of the bladder; UUT = upper urinary tract.
8.2 Recommendations for follow-up in patients after TURB of NMIBC

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The follow-up of Ta, T1 tumours and CIS is based on regular cystoscopy.</td>
<td>A</td>
</tr>
<tr>
<td>Patients with low-risk Ta tumours should undergo cystoscopy at 3 months. If</td>
<td>C</td>
</tr>
<tr>
<td>negative, subsequent cystoscopy is advised 9 months later, and then yearly.</td>
<td></td>
</tr>
<tr>
<td>Patients with high-risk tumours should undergo cystoscopy and urinary cytology</td>
<td>C</td>
</tr>
<tr>
<td>at 3 months. If negative, subsequent cystoscopy and cytology should be</td>
<td></td>
</tr>
<tr>
<td>repeated every 3 months for a period of 2 years, and every 6 months thereafter</td>
<td></td>
</tr>
<tr>
<td>and then yearly.</td>
<td></td>
</tr>
<tr>
<td>Patients with intermediate-risk Ta tumours should have an in-between follow-up</td>
<td>C</td>
</tr>
<tr>
<td>scheme using cystoscopy and cytology, which is adapted according to personal</td>
<td></td>
</tr>
<tr>
<td>and subjective factors.</td>
<td></td>
</tr>
<tr>
<td>Regular (yearly) upper tract imaging (CT-IVU or IVU) is recommended for high-</td>
<td>C</td>
</tr>
<tr>
<td>risk tumours.</td>
<td></td>
</tr>
<tr>
<td>Endoscopy under anaesthesia and bladder biopsies should be performed when</td>
<td>B</td>
</tr>
<tr>
<td>office cystoscopy shows suspicious findings or if urinary cytology is</td>
<td></td>
</tr>
<tr>
<td>positive.</td>
<td></td>
</tr>
<tr>
<td>Consider R-biopsies or biopsies with PDD after intravesical treatment (at 3</td>
<td>C</td>
</tr>
<tr>
<td>or 6 months) in patients with CIS.</td>
<td></td>
</tr>
<tr>
<td>During follow-up in patients with positive cytology and no visible tumour in</td>
<td>B</td>
</tr>
<tr>
<td>the bladder, R-biopsies or PDD-guided biopsies (if equipment is available)</td>
<td></td>
</tr>
<tr>
<td>and investigation of extravesical locations (CT urography, prostatic urethra</td>
<td></td>
</tr>
<tr>
<td>biopsy) are recommended.</td>
<td></td>
</tr>
</tbody>
</table>

CIS = carcinoma in situ; CT-IVU = computed tomography intravenous urography; IVU = intravenous urography; PDD = photodynamic diagnosis; R-biopsies = random biopsies.

9. REFERENCES

29. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th edn. 2016, Lyon, France.

http://www.ncbi.nlm.nih.gov/pubmed/25043942

http://www.ncbi.nlm.nih.gov/pubmed/22980442

10. CONFLICT OF INTEREST

All members of the Non-Muscle-Invasive Bladder Cancer guidelines working group have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publically accessible through the European Association of Urology website: https://uroweb.org/guideline/non-muscle-invasive-bladder-cancer/?type=panel. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.