Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibition Is the New Backbone in First-line Treatment of Metastatic Clear-cell Renal Cell Carcinoma

a Department of Cancer Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France; b The Royal Free NHS Trust and Barts Cancer Institute, Queen Mary University of London, London, UK; c Department of Urology, Ludwig-Maximilians University, Munich, Germany; d Department of Urology, University of Rennes, Rennes, France; e Patient Advocate, International Kidney Cancer Coalition (IKCC), Duivendrecht, The Netherlands; f Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Centre Utrecht, Utrecht, The Netherlands; g Department of Urology, University Hospital Plzeň, Plzeň, Czech Republic; h Faculty of Medicine in Plzeň, Charles University, Prague, Czech Republic; i Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany; j Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK; k Academic Urology Unit, University of Aberdeen, Aberdeen, UK; l Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden; m Department of Urology, Coimbra University Hospital, Coimbra, Portugal; n Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany; o Division of Urology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; p Division of Urology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; q Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden; r Department of Urology, Cabueñes Hospital, Gijón, Spain; s Department of Urology, Sunderby Hospital, Sunderby, Sweden; t Department of Urology, Royal Free Hospital, Pond Street, London, UK; u Department of Urology, Elbe Kliniken Stade, Stade, Germany; v Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; w Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK; x UCL Division of Surgery and Interventional Science, London, UK

Abstract

Recent randomised trials have demonstrated a survival benefit for a front-line ipilimumab and nivolumab combination therapy, and pembrolizumab and axitinib combination therapy in metastatic clear-cell renal cell carcinoma. The European Association of Urology Guidelines Panel has updated its recommendations based on these studies. Patient summary: Pembrolizumab plus axitinib is a new standard of care for patients diagnosed with kidney cancer spread outside the kidney and who did not receive any prior treatment for their cancer (treatment naïve). This applies to all risk groups as determined by the International Metastatic Renal Cell Carcinoma Database Consortium criteria.

© 2019 European Association of Urology. Published by Elsevier B.V. All rights reserved.

* Corresponding author. Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands. Tel. +31 205 122 553; Fax: +31 205 122 554. E-mail address: a.bex@nki.nl (A. Bex).
Immune checkpoint inhibitors, including programmed death 1 (PD-1) inhibitors, programmed death ligand 1 (PD-L1) inhibitors, and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors, have activity in metastatic clear-cell renal cell carcinoma (cc mRCC). Four studies investigating these combinations in the front-line cc mRCC setting have recently been published (Table 1) [1–4]. These have had a major impact on the European Association of Urology (EAU) guidelines that are updated in this article.

The CheckMate 214 study was the first of these trials to report superiority of nivolumab and ipilimumab over sunitinib. The primary endpoint focused on the intermediate- and poor-risk population according to the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC), where the combination demonstrated an overall survival (OS) benefit (hazard ratio [HR] 0.63; 95% confidence interval [CI] 0.44–0.89) and led to regulatory approval [1]. This led to a paradigm shift in the treatment of the disease and a change in the EAU guidelines in 2019 [5]. Results from CheckMate 214 further established that the combination of ipilimumab and nivolumab was associated with higher response rates (RRs; 42%), complete response (CR) rates (9%), and duration of response compared with sunitinib. Progression-free survival (PFS) did not achieve the predefined endpoint. The exploratory analysis of data in the PD-L1-positive population revealed an OS HR of 0.45 (95% CI 0.29–0.71). Frequency of grade 3–4 adverse events and quality of life (QoL) data favoured the immune combination. The frequency of steroid use has generated controversy, and further analysis and real-world data are required. A recent update with 30 mo of data showed on-going benefits for the immune combination with investigator-assessed CR rates of 11% and an OS HR in the IMDC intermediate- and poor-risk group of 0.66 (95% CI 0.54–0.80) [6]. The IMDC good-risk group continues to perform better with sunitinib, although this appears less pronounced than in earlier analysis (HR for OS 1.22; 95% CI 0.73–2.04). For these reasons, the guideline panel continues to recommend ipilimumab and nivolumab in the intermediate- and poor-risk population (Supplementary material).

The Keynote-426 trial (NCT02853331) has recently reported results for the combination of pembrolizumab

Table 1 – Immune checkpoint inhibition combination trials that reported results for the front-line treatment of clear-cell mRCC

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Experimental arm</th>
<th>Primary endpoint</th>
<th>Risk groups</th>
<th>PFS Median (95% CI) Hazard ratio</th>
<th>OS Median (95% CI) Hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYNOTE-426</td>
<td>861</td>
<td>Pembrolizumab</td>
<td>PFS and OS in the ITT by BICR</td>
<td>IMDC</td>
<td>(ITT) Pembro + Axi: 15.1 (12.6–17.7)</td>
<td>(ITT) Pembro + Axi: NR SUN: NR</td>
</tr>
<tr>
<td>NCT02853331</td>
<td></td>
<td>200 mg IV Q3W plus axitinib 5 mg PO BID Vs Sunitinib 50 mg PO QD 4/2 wk</td>
<td>IMDC</td>
<td>FAV: 31% IMD: 56% Poor: 13%</td>
<td>HR 0.69 (95% CI: 0.57, 0.84) p = 0.0001</td>
<td>HR 0.53 (95% CI: 0.38, 0.74) p ≤ 0.0001</td>
</tr>
<tr>
<td>JAVELIN 101</td>
<td>886</td>
<td>Avelumab 10 mg/kg IV Q2W plus axitinib, 5 mg PO BID Vs Sunitinib 50 mg PO QD 4/2 wk</td>
<td>PFS in the PD-L1+ population and OS in the ITT by BICR</td>
<td>IMDC</td>
<td>(PD-L1+) AVE + AXI: 13.8 (11.1–17.7)</td>
<td>(ITT) AVE + AXI: NR SUN: NR</td>
</tr>
<tr>
<td>NCT02684006</td>
<td></td>
<td>20 mg PO BID</td>
<td>IMDC</td>
<td>FAV: 22% IMD: 62% Poor: 16%</td>
<td>HR 0.61 (95% CI: 0.475, 0.790) p < 0.0001</td>
<td>HR 0.78 (95% CI: 0.554, 1.084) p = 0.0679</td>
</tr>
<tr>
<td>Immotion 151</td>
<td>915</td>
<td>Atezolizumab 1200 mg fixed dose IV plus bevacizumab 15 mg/kg IV on days 1 and 22 of each 42-d cycle Vs Sunitinib 50 mg PO QD 4/2 wk</td>
<td>PFS in the PD-L1+ population and OS in the ITT by IR</td>
<td>IMDC</td>
<td>(PD-L1+) ATEZ0 + BEV: 11.2 (8.9–15.0)</td>
<td>(ITT) ATEZ0 + BEV: NR SUN: NR</td>
</tr>
<tr>
<td>NCT02420821</td>
<td></td>
<td>100 mg/kg IV</td>
<td>IMDC</td>
<td>FAV: 20% IMD: 70% Poor: 10%</td>
<td>HR 0.74 (95% CI: 0.57, 0.96) p = 0.02</td>
<td>HR 0.81 (95% CI: 0.63, 1.03) p = 0.09</td>
</tr>
<tr>
<td>Checkmate 214</td>
<td>1096</td>
<td>Nivolumab 3 mg/kg plus ipilimumab 1 mg/kg IV Q3W Q4W 4 doses then nivolumab 3 mg/kg IV Q2W Vs Sunitinib 50 mg PO QD 4/2 wk</td>
<td>PFS, OS and ORR in IMDC intermediate and poor population by BICR</td>
<td>IMDC</td>
<td>(IMDC intermediate/poor) NIVO + IPI: 11.8 (8.7–15.5)</td>
<td>(IMDC intermediate/poor) NIVO + IPI: NR (28.2–NE) SUN: 26.0 (22.1–NE)</td>
</tr>
<tr>
<td>NCT02231749</td>
<td></td>
<td>21%</td>
<td>IMDC</td>
<td>FAV: 23% IMD: 61% Poor: 17%</td>
<td>HR 0.82 (99.1% CI: 0.64, 1.05) p = 0.03</td>
<td>HR 0.63 (99.8% CI: 0.44, 0.89) p ≤ 0.0001</td>
</tr>
</tbody>
</table>

Note: PFS and OS results in **bold** indicate that the primary endpoint has been met.
plus axitinib versus sunitinib in 861 treatment-naive cc mRCC patients [3]. OS and PFS (assessed by a central independent review) in the intention-to-treat (ITT) population were the coprimary endpoints. RR and subgroup analyses of the PD-L1-positive patient population were secondary endpoints. The first interim analysis was triggered after at least 7 mo of follow-up and 305 events. The trial was ended at the first interim analysis (median follow-up = 12.8 mo) as both primary endpoints were achieved. The median PFS was 15.1 mo in the pembrolizumab plus axitinib arm versus 11.1 mo in the sunitinib arm (HR 0.69; 95% CI 0.57–0.84; p < 0.001). Median OS has not been reached in either arm, but the risk of death was 47% lower in the pembrolizumab plus axitinib arm than in the sunitinib arm (OS HR 0.53; 95% CI 0.38–0.74; p < 0.0001). RRs were also higher in the experimental arm (59.3% vs 35.7%), with efficacy being demonstrated irrespective of IMDC group and PD-L1 status. Treatment-related adverse events (grade ≥3) occurred in 63% of patients receiving pembrolizumab and axitinib versus 58% of patients receiving sunitinib. Treatment-related deaths occurred in approximately 1% in both arms.

The JAVELIN 101 trial, an 886-patient phase 3 randomised controlled trial of avelumab plus axitinib versus sunitinib, was simultaneously published [2]. It met one of its coprimary endpoints (PFS in the PD-L1-positive population at the first interim analysis; median follow-up 11.5 mo). HRs for PFS and OS in the ITT population were 0.69 (95% CI 0.56–0.84) and 0.78 (95% CI 0.55–1.08), respectively. Treatment-related adverse events (grade ≥3) occurred in 55% in both arms. The trial is on-going and OS results are awaited. It is premature to recommend this combination in the absence of a survival signal. The same applies regarding recommendations for the well-tolerated combination of atezolizumab and bevacizumab [4]. This combination has also achieved a PFS advantage over sunitinib in the PD-L1-positive population at interim analysis and ITT (HR 0.74; 95% CI 0.57–0.96), but does not yet have a significant OS advantage (HR 0.81; 95% CI 0.63–1.03) in the ITT population. Since OS results are awaited, even this combination cannot currently be recommended.

Cross-trial comparison is not recommended and should be done with caution (Table 1). However, there were some inconsistencies across trials, which should be discussed. The proportions of patients across risk groups in the trials were inconsistent, as the ipilimumab plus nivolumab trial focused on intermediate- and poor-risk populations. The geography of recruitment may have an effect on subsequent therapy, and the pembrolizumab plus axitinib trial had a large proportion of patients from outside the USA and Western Europe. RRs and PFS appeared higher for the avelumab plus axitinib and pembrolizumab plus axitinib studies than in the ipilimumab plus nivolumab trial. It is possible that CR rates for ipilimumab plus nivolumab may be higher than those for pembrolizumab plus axitinib (9% vs 6% at interim analysis), but follow-up remains short and numbers are too small to draw any conclusions at this stage. More mature data from the two most recent studies will address some, but not all, of these issues.

This leaves, to date, two immune checkpoint inhibitor-based combinations with proven OS benefit as new standards of care for first-line cc mRCC patients (Fig. 1 and Table 2). Pembrolizumab plus axitinib was active irrespective of IMDC risk group and PD-L1 status. The combination achieved all three endpoints of RR, PFS, and OS (47% reduced risk of death). The adverse event profile was in line with the control arm, while QoL data are awaited. This combination can therefore be recommended as a new standard of care in the first-line setting in all IMDC risk groups.

For treatment-naive IMDC intermediate- and poor-risk patients, ipilimumab plus nivolumab remains the other standard, with positive RR and OS endpoints (37% reduced risk of death). High CR rates, positive QoL data, and OS enrichment in the PD-L1-positive population (HR 0.45; 95% CI 0.29–0.71) are attractive features of this combination [7].

The role of vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) alone in front-line

Fig. 1 – Guideline recommendations for first-line therapy. IMDC = International Metastatic Renal Cell Carcinoma Database Consortium; OS = overall survival; [] = Oxford level of evidence [14]; [1b] = based on one randomised controlled phase 3 trial; [2a] = based on one randomised controlled phase 2 trial; [2b] = subgroup analysis of a randomised controlled phase 3 trial; [4] = expert opinion. *No OS benefit proven.
mRCC has been superseded. Sunitinib, pazopanib, and cabozantinib (IMDC intermediate- and poor-risk disease) remain alternative treatment options for patients who cannot receive or tolerate immune checkpoint inhibition in this setting (Fig. 1).

There are no randomised trials to support the use of single-agent pembrolizumab or nivolumab in the front-line setting. This is a major shortcoming, which delayed the approval of the combination of ipilimumab and nivolumab by the European Medicine Agency. Randomised phase II data for atezolizumab versus sunitinib showed an HR of 1.19 (95% CI 0.82–1.71), which did not justify further development as single agents in the first-line setting [8]. Single-arm phase II data for pembrolizumab showed high RRs of 38% (up to 50% in PD-L1+ patients) but PFS of 8.7 (95% CI 6.7–12.2) [9]. Based on these results and in the absence of a randomised phase III study, a single-agent checkpoint inhibitor is presently not recommended as an alternative in the first-line setting.

CLEAR NCT02811861 (pembrolizumab plus lenvatinib vs lenvatinib plus everolimus vs sunitinib) and CHECKMATE 9ER NCT03141177 (nivolumab plus cabozantinib vs sunitinib) are on-going randomised phase III trials with sunitinib as a comparator and may place new VEGFR TKI immune-oncology (IO) combinations in the discussion [10].

The impact of front-line immune-checkpoint inhibition on subsequent therapies is unclear. Randomised data on patients with disease refractory to either nivolumab plus ipilimumab or pembrolizumab plus axitinib in a first-line setting are lacking, and available cohorts are limited [11]. Prospective data on cabozantinib and axitinib are available for patients progressing on immune therapy, but these studies do not focus on the front-line setting and merely involve subset analysis, and are too small for definitive conclusions [12,13]. Retrospective data on VEGFR TKI therapy after progression on front-line immune combinations exist but have significant limitations. When considering these data in totality, it is reasonable to conclude that there is some activity, but it remains to be defined. It is therefore not possible to recommend one VEGFR TKI above another after IO-based therapy (Fig. 2). After pembrolizumab plus axitinib combination, changing the VEGFR TKI at progression is recommended, which may be cabozantinib or any other TKI not previously used (Table 3). Data on sequencing of immune checkpoint inhibitors after failure of immune checkpoint inhibitors are lacking, and thus these inhibitors are presently not recommended.

Table 2 – New recommendations for front-line treatment of metastatic clear-cell RCC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer pembrolizumab plus axitinib to treatment-naïve patients with any IMDC risk metastatic clear-cell RCC.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer ipilimumab plus nivolumab to treatment-naïve patients with IMDC intermediate- and poor-risk metastatic clear-cell RCC.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer sunitinib and pazopanib to treatment-naïve patients with IMDC favourable-, intermediate-, and poor-risk metastatic clear-cell RCC who cannot receive or tolerate immune checkpoint inhibition.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer cabozantinib to treatment-naïve patients with IMDC intermediate- and poor-risk metastatic clear-cell RCC who cannot receive or tolerate immune checkpoint inhibition.</td>
<td>Stronga</td>
</tr>
</tbody>
</table>

IMDC = International Metastatic Renal Cell Carcinoma Database Consortium; RCC = renal cell carcinoma.

*a While this is based on a randomised phase II trial, cabozantinib (weak) looks at least as good as sunitinib in this population. This justified the same recommendation under exceptional circumstances.

Table 3 – New recommendations for treatment after immune checkpoint combination therapy in the front-line setting

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer any vascular endothelial growth factor–targeted therapy that has not been used previously in combination with IO [4]</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Fig. 2 – Guideline recommendations for later-line therapy. IO = immune oncology; TKI = tyrosine kinase inhibitor; OS = overall survival; VEGF = vascular endothelial growth factor; [□] = Oxford level of evidence [14]; [1b] = based on one randomised controlled phase 3 trial; [2b] = subgroup analysis of a randomised controlled phase 3 trial; and [4] = expert opinion. * No OS benefit proven.
Author contributions: Axel Bex had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Bex, Albige, Powles, Ljungberg.

Acquisition of data: Bex, Albige, Powles.

Analysis and interpretation of data: Bex, Powles, Ljungberg, Albige, Bensalah, Giles, Hora, Kuczyk, Lam, Marconi, Merseburger, Staehler, Volpe.

Drafting of the manuscript: Bex.

Critical revision of the manuscript for important intellectual content: Albige, Bensalah, Giles, Hora, Kuczyk, Lam, Marconi, Merseburger, Staehler, Volpe, Hofmann, Babestani, Tabbaz, Fernandez-Pello, Abu-Ghanem, Kuusk.

Statistical analysis: None.

Obtaining funding: None.

Administrative, technical, or material support: None.

Supervision: Bex, Albige, Ljungberg, Powles.

Other: None.

Financial disclosures: Axel Bex certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (e.g., employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: Professor Dr. Laurence Albige has received consulting/advisory fees from BMS, Pfizer, Novartis, Sanofi, Amgen, Bristol-Myers Squibb, Bayer, and Cerulean; and research funding from Pfizer and Novartis. Professor Dr. Tom Powles is a company consultant for Novartis, Pfizer, and GlaxoSmithKline; has received company speaker honoraria from Novartis, Pfizer, GlaxoSmithKline, and Genentech; has participated in trials for GlaxoSmithKline, Pfizer, BMS, Genentech, and Genetech; and has received grants/research support from GlaxoSmithKline, Pfizer, and Novartis. Professor Dr. Michael Staehler is a company consultant for Pfizer, Novartis, GlaxoSmithKline, Roche, Astellas, and Bayer; has received company speaker honoraria from Pfizer, Novartis, GlaxoSmithKline, Roche, Astellas, and Bayer, and Aveo; has participated in trials for Pfizer, Novartis, GlaxoSmithKline, Roche, Bayer, Aveo, Wilcox, and Immatics; has received fellowships and travel grants from Pfizer, Novartis, GlaxoSmithKline, Roche, and Bayer; and has received grants/research support from Pfizer, Novartis, GlaxoSmithKline, Roche, Bayer, and Aveo; and, in addition, took part in the S-TRAC trial as an investigator and is an author of the S-TRAC publication. Professor Dr. Karim Bensalah has received grants/research support from Pfizer, and honoraria or consultation fees from Intuitive Surgical. Professor Dr. Milan Hora has received company speaker honoraria from Covidien, Olympus, Janssen, and Astellas; has participated in trials for Janssen; and has received grants/research support from Ipsen. Professor Dr. Markus A. Kuczyk is a stock shareholder of Bayer Healthcare, Astellas, Storz, Pfizer, Wyeth, and Novartis; is a company consultant for Karl Storz, Coloplast, AstraZeneca, Astellas, Storz, and Hexal; has received company speaker honoraria from Pfizer, Astellas, Bayer, GlaxoSmithKline, Pierre Fabre, Janssen Cilag, and Hexal; has participated in trials for the Protect Study, Milenium Study C21004, Milenium Study C21005, Astellas, Ipsen, and Janssen; and has received grants/research support from Wyeth and Pfizer. Dr. Thomas B. Lam is a company consultant for and has received company speaker honoraria from Pfizer, GlaxoSmithKline, Astellas, and Ipsen. Professor Dr. Börje Ljungberg has received company speaker honoraria from GlaxoSmithKline, Roche, Pfizer, and Novartis; has participated in trials for GlaxoSmithKline, Medivation, Pfizer, and Janssen R&D; and has been on advisory boards for Pfizer and GlaxoSmithKline. Professor Dr. Axel S. Merseburger is a company consultant for Ipsen Pharma, Bayer, Astellas, Janssen Cilag, Novartis, and Pfizer; has received company speaker honoraria from Ipsen Pharma, Wyeth, Astellas, Novartis, Pfizer, and SEP; has participated in trials for AstraZeneca, Bayer, Pfizer, TEVA, Novartis, and Astellas; has received grants/research support from Wyeth; and has participated in a company-sponsored speakers bureau for TEVA, Janssen, Pfizer, Astellas, Ferring, and Novartis. Professor Dr. Axel Bex has received company speaker honoraria from Pfizer; has participated in trials for Pfizer Europe; has participated in advisory boards for GlaxoSmithKline and Novartis; is a company consultant for Pfizer and Novartis; and has received grants/research support from Pfizer. Professor Dr. Rachel H. Giles, Professor Dr. Alessandro Volpe, Dr. Saeid Babestani, Dr. Fabian Hofmann, Dr. Lorenzo Marconi, Dr. Sergio Fernandez-Pello, Dr. Rana Tabbaz, and Dr. Yasmin Abu-Ghanem have nothing to disclose.

Funding/Support and role of the sponsor: None.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.eururo.2019.05.022.

References

