TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 The Guideline</td>
<td>6</td>
</tr>
<tr>
<td>1.1.1 Methodology</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Publication history</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Level of evidence and grade of guideline recommendations</td>
<td>6</td>
</tr>
<tr>
<td>1.4 References</td>
<td>7</td>
</tr>
<tr>
<td>2. BACKGROUND</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Definition of pain</td>
<td>7</td>
</tr>
<tr>
<td>2.2 What is suffering?</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Nociception and innervation</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Neuropathic pain</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Innervation of the urogenital system</td>
<td>8</td>
</tr>
<tr>
<td>2.6 Pain evaluation and measurement</td>
<td>8</td>
</tr>
<tr>
<td>2.6.1 Pain evaluation</td>
<td>8</td>
</tr>
<tr>
<td>2.6.2 Assessing pain intensity and quality of life (QoL)</td>
<td>9</td>
</tr>
<tr>
<td>2.7 References</td>
<td>10</td>
</tr>
<tr>
<td>3. CANCER PAIN MANAGEMENT (GENERAL)</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Classification of cancer pain</td>
<td>11</td>
</tr>
<tr>
<td>3.1.1 References</td>
<td>11</td>
</tr>
<tr>
<td>3.2 General principles of cancer pain management</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Non-pharmacological therapies</td>
<td>12</td>
</tr>
<tr>
<td>3.3.1 Surgery</td>
<td>12</td>
</tr>
<tr>
<td>3.3.1.1 References</td>
<td>12</td>
</tr>
<tr>
<td>3.3.2 Radionuclides</td>
<td>13</td>
</tr>
<tr>
<td>3.3.2.1 Clinical background</td>
<td>13</td>
</tr>
<tr>
<td>3.3.2.2 Radiopharmaceuticals: physical characteristics</td>
<td>13</td>
</tr>
<tr>
<td>3.3.2.3 Indications and contraindications</td>
<td>13</td>
</tr>
<tr>
<td>3.3.2.4 Contraindications</td>
<td>14</td>
</tr>
<tr>
<td>3.3.2.5 References</td>
<td>14</td>
</tr>
<tr>
<td>3.3.3 Radiotherapy for metastatic bone pain</td>
<td>15</td>
</tr>
<tr>
<td>3.3.3.1 Clinical background</td>
<td>15</td>
</tr>
<tr>
<td>3.3.3.2 Mechanism of pain relief by radiotherapy</td>
<td>16</td>
</tr>
<tr>
<td>3.3.3.3 Imaging</td>
<td>16</td>
</tr>
<tr>
<td>3.3.3.4 Radiotherapy scheme</td>
<td>16</td>
</tr>
<tr>
<td>3.3.3.5 Spinal cord compression</td>
<td>16</td>
</tr>
<tr>
<td>3.3.3.6 Pathological fractures</td>
<td>17</td>
</tr>
<tr>
<td>3.3.3.7 Side-effects</td>
<td>17</td>
</tr>
<tr>
<td>3.3.3.8 References</td>
<td>17</td>
</tr>
<tr>
<td>3.3.4 Physical/psychological therapy</td>
<td>20</td>
</tr>
<tr>
<td>3.3.4.1 Physical therapies</td>
<td>20</td>
</tr>
<tr>
<td>3.3.4.2 Psychological therapies</td>
<td>21</td>
</tr>
<tr>
<td>3.3.4.3 References</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Pharmacotherapy</td>
<td>21</td>
</tr>
<tr>
<td>3.4.1 Antibiotics</td>
<td>21</td>
</tr>
<tr>
<td>3.4.1.1 Reference</td>
<td>21</td>
</tr>
<tr>
<td>3.4.2 Chemotherapy</td>
<td>21</td>
</tr>
<tr>
<td>3.4.2.1 Reference</td>
<td>21</td>
</tr>
<tr>
<td>3.4.3 Bisphosphonates</td>
<td>21</td>
</tr>
<tr>
<td>3.4.3.1 Mechanisms of action</td>
<td>21</td>
</tr>
<tr>
<td>3.4.3.2 Effects and side-effects</td>
<td>22</td>
</tr>
<tr>
<td>3.4.3.3 References</td>
<td>22</td>
</tr>
<tr>
<td>3.4.4 Systemic analgesic pharmacotherapy - the analgesic ladder</td>
<td>22</td>
</tr>
<tr>
<td>3.4.4.1 Non-opioid analgesics</td>
<td>23</td>
</tr>
<tr>
<td>3.4.4.2 Opioid analgesics</td>
<td>23</td>
</tr>
<tr>
<td>3.4.4.3 References</td>
<td>27</td>
</tr>
<tr>
<td>3.4.5 Treatment of neuropathic pain</td>
<td>29</td>
</tr>
</tbody>
</table>

UPDATE MARCH 2009
4.6 Pain management in testicular cancer patients

4.6.1 Clinical presentation

4.6.2 Pain due to local impairment

4.6.3 Pain due to metastases

4.6.4 References

4.7 Recommendations at a glance

5. POST-OPERATIVE PAIN MANAGEMENT

5.1 Background

5.2 The importance of effective post-operative pain management

5.2.1 Aims of effective post-operative pain management:

5.3 Pre- and post-operative pain management methods

5.3.1 Pre-operative patient preparation:

5.3.2 Pain assessment

5.3.3 Pre-emptive analgesia

5.3.4 Systemic analgesic techniques

5.3.4.1 Non-steroidal anti-inflammatory drugs (NSAIDs)

5.3.4.2 Paracetamol

5.3.4.3 Metamizole (dipyrone)

5.3.4.4 Opioids

5.3.4.5 Patient-controlled analgesia (PCA)

5.3.4.6 Opioid equi-analgesic doses

5.3.5 Regional analgesic techniques

5.3.5.1 Local anaesthetic agents

5.3.5.2 Epidural analgesia

5.3.5.3 Patient-controlled epidural analgesia (PCEA)

5.3.5.4 Neural blocks

5.3.5.5 Wound infiltration

5.3.5.6 Continuous wound instillation

5.3.6 Multi-modal analgesia

5.3.7 Special populations

5.3.7.1 Ambulatory surgical patients

5.3.7.2 Geriatric patients

5.3.7.3 Obese patients

5.3.7.4 Other groups

5.3.8 Post-operative pain management teams

5.4 Specific pain treatment after different urological operations

5.4.1 Extracorporeal shock wave lithotripsy (ESWL)

5.4.2 Endoscopic procedures

5.4.2.1 Transurethral procedures

5.4.2.2 Percutaneous endoscopic procedures

5.4.2.3 Laparoscopic procedures

5.4.3 Open surgery

5.4.3.1 Minor operations of the scrotum/penis and the inguinal approach

5.4.3.2 Transvaginal surgery

5.4.3.3 Perineal open surgery

5.4.3.4 Transperitoneal laparotomy

5.4.3.5 Suprapubic/retropubic extraperitoneal laparotomy

5.4.3.6 Retroperitoneal approach - flank incision - thoracoabdominal approach

5.5 Dosage and method of delivery of some important analgesics

5.5.1 NSAIDs

5.5.2 Drugs with antipyretic effect

5.5.3 Selective COX-2 inhibitor

5.5.4 Opioids

5.6 Peri-operative pain management in children

5.6.1 Peri-operative problems

5.6.2 Post-operative analgesia

5.7 References
6. NON-TRAUMATIC ACUTE FLANK PAIN 74
 6.1 Background 74
 6.2 Initial diagnostic approach 74
 6.2.1 Symptomatology 74
 6.2.2 Laboratory evaluation 74
 6.2.3 Diagnostic imaging 75
 6.2.3.1 Ultrasonography 75
 6.2.3.2 Intravenous urography (IVU) 75
 6.2.3.3 Unenhanced helical CT (UHCT) 75
 6.3 Initial emergency treatment 77
 6.3.1 Systemic analgesia 77
 6.3.2 Local analgesia 77
 6.3.3 Supportive therapy 77
 6.3.4 Upper urinary tract decompression 78
 6.4 Aetiological treatment 78
 6.4.1 Urolithiasis 78
 6.4.2 Infectious conditions 78
 6.4.3 Other conditions 78
 6.4.3.1 Uretero-pelvic junction obstruction 78
 6.4.3.2 Papillary necrosis 78
 6.4.3.3 Renal infarction 78
 6.4.3.4 RVT 78
 6.4.3.5 Intra- or peri-renal bleeding 78
 6.4.3.6 Testicular cord torsion 78
 6.5 References 79

7. ABBREVIATIONS USED IN THE TEXT 82
1. INTRODUCTION

1.1 The Guideline
The European Association of Urology (EAU) Guidelines Working Group for Pain Management have prepared this guidelines document to assist medical professionals in appraising the evidence-based management of pain in urological practice. These guidelines include general advice on pain assessment, with a focus on treatment strategies relating to common medical conditions and painful procedures. No attempts have been made to exhaustingly cover the topic of pain.

The multidisciplinary panel of experts responsible for this document include three urologists, two radiotherapists and two anaesthesiologists.

1.1.1 Methodology
The recommendations provided in the current guidelines are based on systematic literature search using Medline, the Cochrane Central Register of Controlled Trials, and reference lists in publications and review articles.

It has to be emphasised that the current guidelines contain information for the treatment of an individual patient according to a standardised general approach.

1.2 Publication history
The Pain Management Guidelines were first published in 2003, with a partial update in 2007, followed by a full text update in 2009. In 2010 two new topics were added, Section 5.6 “Peri-operative pain management in children” and Chapter 6 “Non-traumatic acute flank pain”. The quick reference guide was completely reworked. In the current 2011 print all chapters have been abridged.

A quick reference document presenting the main findings of the General Pain Management guidelines is also available. All texts can be viewed and downloaded for personal use at the EAU website: http://www.uroweb.org/guidelines/online-guidelines/.

1.3 Level of evidence and grade of guideline recommendations*
References used in the text have been assessed according to their level of scientific evidence (Table 1) and guideline recommendations have been graded (Table 2) according to the Oxford Centre for Evidence-based Medicine Levels of Evidence (1). The aim of grading recommendations is to provide transparency between the underlying evidence and the recommendation given.

Table 1: Level of evidence (LE)*

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Evidence obtained from meta-analysis of randomised trials</td>
</tr>
<tr>
<td>1b</td>
<td>Evidence obtained from at least one randomised trial</td>
</tr>
<tr>
<td>2a</td>
<td>Evidence obtained from one well-designed controlled study without randomisation</td>
</tr>
<tr>
<td>2b</td>
<td>Evidence obtained from at least one other type of well-designed quasi-experimental study</td>
</tr>
<tr>
<td>3</td>
<td>Evidence obtained from well-designed non-experimental studies, such as comparative studies, correlation studies and case reports</td>
</tr>
<tr>
<td>4</td>
<td>Evidence obtained from expert committee reports or opinions or clinical experience of respected authorities</td>
</tr>
</tbody>
</table>

*Modified from Sackett et al. (1)

It should be noted that when recommendations are graded, the link between the level of evidence and grade of recommendation is not directly linear. Availability of randomised controlled trials (RCTs) may not necessarily translate into a grade A recommendation where there are methodological limitations or disparity in published results.

Alternatively, absence of high level evidence does not necessarily preclude a grade A recommendation, if there is overwhelming clinical experience and consensus. In addition, there may be exceptional situations where corroborating studies cannot be performed, perhaps for ethical or other reasons and in this case unequivocal recommendations are considered helpful for the reader. The quality of the underlying scientific evidence - although a very important factor - has to be balanced against benefits and burdens, values and preferences and cost when a grade is assigned (2-4).

The EAU Guidelines Office do not perform cost assessments, nor can they address local/national preferences.
in a systematic fashion. But whenever this data is available, the expert panels will include the information.

Table 2: Grade of recommendation (GR)*

<table>
<thead>
<tr>
<th>Grade</th>
<th>Nature of recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Based on clinical studies of good quality and consistency addressing the specific recommendations and including at least one randomised trial</td>
</tr>
<tr>
<td>B</td>
<td>Based on well-conducted clinical studies, but without randomised clinical trials</td>
</tr>
<tr>
<td>C</td>
<td>Made despite the absence of directly applicable clinical studies of good quality</td>
</tr>
</tbody>
</table>

Modified from Sackett et al. (1)

References

2. BACKGROUND

2.1 Definition of pain

Pain is the most common symptom of any illness, and is defined by the International Association for the Study of Pain (IASP) as ‘an unpleasant sensory and emotional experience associated with either actual or potential tissue damage, or described in terms of such damage’ (1).

The alerting function of pain evokes protective responses, and is intended to keep tissue damage to a minimum. The capacity to experience pain has a protective role. If tissue damage is unavoidable, a cascade of changes occurs in the peripheral and central nervous system responsible for the perception of pain (2).

Acute pain - usually occurring in response to an identifiable noxious event with stimulation of the nociceptive system - has a time-limited course during which treatment, if necessary, is aimed at correcting the underlying pathological process. In contrast, maladaptive (pathological) pain offers no biological advantage because it is uncoupled from a noxious stimulus or tissue healing, and is usually persistent or recurrent. It may occur in response to damage to the nervous system. It is known as neuropathic pain, and is pain as a disease (3-5).

2.2 What is suffering?

Pain is a complex experience entailing physiological, sensory, affective, cognitive, and behavioural components. An individual’s perception of the intensity of pain relates to the interactions of physical, psychological, cultural and spiritual factors (6).

Pain and suffering are closely identified, but are nevertheless distinct. Patients can experience severe pain without suffering (e.g. during childbirth), and suffering can include physical pain, but it is by no means limited to it. Patient distress also results from factors other than pain that add to suffering, such as anxiety, depression, nightmares, change in body perception, and changes in professional and social function.

The differences between pain and suffering are most pronounced in cancer pain patients. Cancer is one of the medical conditions patients fear most, because of the expectation that it will end in death, and that that death will be while in excruciating pain (7,8).
2.3 Nociception and innervation

Structure of the peripheral neural apparatus

Sensory information from the skin is transmitted to the central nervous system (dorsal horn of the spinal cord) via three different types of primary sensory neurones: Aβ-, Aδ-, and C-fibres.

These primary afferent neurones are responsible for transducing mechanical, chemical, and thermal information into electrical activity. Although all three classes can transmit non-nociceptive information, under physiological circumstances only C-fibres (dull pain) and Aδ-fibres (sharp pain) are capable of transmitting nociceptive information from the periphery to the dorsal horn of the spinal cord. Thus, under normal circumstances, Aβ-fibres are responsive only to non-noxious mechanical stimuli, including touch, vibration and pressure (9-12). Nociceptive information for the viscera reaches the central nervous system along the sympathetic chains and pelvic parasympathetic chain. However, the density of visceral afferents is low compared with the skin, which can explain the poor localisation of noxious stimuli in the viscera (responsible for the diffuse nature of visceral pain) (13).

2.4 Neuropathic pain

Definition of neuropathic pain

Neuropathic pain is defined by the IASP as ‘pain initiated or caused by a primary lesion or dysfunction of the nervous system’ (2). Both negative and positive sensory symptoms may be present. Positive signs include pain, paraesthesia, dysesthesia, hyperalgesia, and allodynia. Negative signs involve sensory deficits (hypoesthesia and hypoalgesia), weakness, and reflex changes. Clinically, patients may complain of spontaneous ongoing pain (stimulus-independent pain) that is burning, with intermittent shooting or electric shock-like (lancinating) sensations, and/or have pain hypersensitivity evoked in response to stimuli (stimulus-evoked pain) such as hyperalgesia and allodynia (14,15).

Mechanisms of neuropathic pain

A change in function, chemistry, and the structure of neurones (neural plasticity) leads to the production of the altered sensitivity characteristics of neuropathic pain. Peripheral sensitisation acts on the nociceptors, and central sensitisation takes place at various levels ranging from the dorsal horn to the brain. In addition, abnormal interactions between the sympathetic and sensory pathways contribute to mechanisms mediating neuropathic pain (16,17).

2.5 Innervation of the urogenital system

There are differences in the response properties of visceral afferents in the urinary tract (18-20).

Ureter

The only sensation that can be evoked from the ureter is pain, whereas other organs such as the bladder can give rise to several sensations ranging from mild fullness to pain.

Urinary bladder

Two distinct groups of afferent fibres capable of signalling noxious stimuli have been identified in the urinary bladder. Most visceral afferents from the urinary bladder are unmyelinated fibres, although a population of myelinated A-fibres is also present (18). The majority of visceral primary afferents from the bladder, urethra, and reproductive and other pelvic organs encode for both noxious and non-noxious stimuli (18-20).

Male reproductive organs

The sensory innervation of the testes (dog model) shows that more than 95% of the fibres of the superior spermatic nerve are unmyelinated, with the great majority having polymodal properties (i.e. responding to mechanical, chemical and thermal stimuli) (21). Myelinated and unmyelinated afferent fibres form a homogeneous group with polymodal receptors in testis and/or epididymis. Prostaglandins do not excite but sensitise the afferents to other stimuli (22).

2.6 Pain evaluation and measurement

2.6.1 Pain evaluation

Health professionals should ask about pain, and the patient’s self-report should be the primary source of assessment. Clinicians should assess pain with easily administered rating scales, and should document the efficacy of pain relief at regular intervals after starting or changing treatment.

Systematic evaluation of pain involves the following steps.

- Evaluate its severity.
- Take a detailed history of the pain, including an assessment of its intensity and character.
• Evaluate the psychological state of the patient, including an assessment of mood and coping responses.
• Perform a physical examination, emphasising the neurological examination.
• Perform an appropriate diagnostic work-up to determine the cause of the pain, which may include tumour markers.
• Perform radiological studies, scans, etc.
• Re-evaluate therapy.

The initial evaluation of pain should include a description of the pain using the PQRST characteristics:

- **P** Palliative or provocative factors: ‘What makes it less intense?’
- **Q** Quality: ‘What is it like?’
- **R** Radiation: ‘Does it spread anywhere else?’
- **S** Severity: ‘How severe is it?’
- **T** Temporal factors: ‘Is it there all the time, or does it come and go?’

Pain in patients with cancer is a complex phenomenon. Not all pains will be of malignant origin, they will often have more than one pain problem, and each pain must be individually assessed and evaluated. A key principle is constantly to re-evaluate pain and the effect and side-effects of analgesic therapy.

Pain in cancer patients could be caused by the cancer itself, be due to secondary muscular spasm, be secondary to cancer treatments, or have no relation to the cancer, e.g. arthritis.

In general, cancer pain consists of two broad diagnostic types: nociceptive and neuropathic pain. When evaluating pain, it is useful to try to determine whether the pain is one of these types or a mixture of the two. Nociceptive pain includes bone pain and soft tissue pain. Typically it is described as a dull, aching pain. This type of pain will be largely sensitive to non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. Neuropathic pain results from damage to the peripheral or central nervous system. It is usually described as a burning or sharp, shooting pain. Neuropathic pain is usually not particularly responsive to NSAIDs or opioids. Adjuvant analgesics such as anti-depressants and anti-convulsants should be used in the first instance.

2.6.2 Assessing pain intensity and quality of life (QoL)

There are several rating scales available to assess pain. Rating pain using a visual analogue scale (VAS, Figure 1) or collection of VAS scales (such as the brief pain inventory) is an essential part of pain assessment. Its ease of use and analysis has resulted in its widespread adoption. It is, however, limited for the assessment of chronic pain.

Figure 1: Visual analogue scale

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No pain</td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
<td>Worst possible pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Visual analogue scale

Describe your pain on a scale of 0 to 10
To study the effects of both physical and non-physical influences on patient well-being, an instrument must assess more dimensions than the intensity of pain or other physical symptoms. Several validated questionnaires to assess various QoL dimensions are available, including the Medical Outcomes Short-Form Health Survey Questionnaire 36 (SF-36), and the European Organisation for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) (23-27).

2.7 References

3. CANCER PAIN MANAGEMENT (GENERAL)

3.1 Classification of cancer pain
The physical causes of pain are either nociceptive or neuropathic. In cancer patients, nociceptive pain tends to be caused by invasion of the bone, soft tissues or viscera (e.g. bowel, bladder), and neuropathic pain by nerve compression or infiltration.

Urogenital neoplasms frequently metastasise to bone (e.g. spine, pelvis, skull). Bone metastases are associated with pathological fractures, hypercalcaemia and neurological deficits, leading to substantial impairment of QoL. The release of algogenic substances in the tissue, microfractures and periosteal tension are the main mechanism for pain sensation (1).

Pain caused by bone metastasis is nociceptive, but can become neuropathic if the tumour invades or compresses a nerve, neural plexus or spinal cord. One-third of patients with tumour-related pain are affected by neuropathic pain components (2). Nociceptive pain is well localised. Initially it occurs on physical movement, but later might also occur at rest.

Neuropathic pain frequently has a constant ‘burning’ character. The efficacy of opioids may be diminished in neuropathic pain, making co-analgesia necessary (3). Patients with severe neuropathic pain are a special challenge. Psychological changes frequently occur, and specific therapeutic intervention may be necessary (4).

The World Health Organization (WHO) recommends a stepwise scheme for the treatment of cancer pain syndromes and neoplastic bone pain. Bisphosphonates and calcitonin are helpful for stabilising bone metabolism. Epidural and intrathecal opioids are sometimes useful in managing metastatic bone pain. Selected patients with neuropathic pain sometimes benefit from nerve destruction by intrathecal or epidural phenol (5).

3.1.1 References

3.2 General principles of cancer pain management
The four goals of care are:
- prolonging survival;
• optimising comfort;
• optimising function;
• relieving pain.

Pain leads to a vicious cycle of sleeplessness, worry, despair, isolation, hopelessness, depression, and escalation of pain. The following hierarchy of general treatment principles is useful in guiding the selection of pain management choices.
1. Individualised treatment for each patient.
2. Causal therapy to be preferred over symptomatic therapy.
3. Local therapy to be preferred over systemic therapy.
4. Systemic therapy with increasing invasiveness (the WHO ladder).
5. Conformance with palliative guidelines.
6. Both psychological counselling and physical therapy from the very beginning.

The fundamental principle is the individualisation of therapy. Repeated evaluations allow the selection and administration of therapy to be individualised in order to achieve and maintain a favourable balance between pain relief and adverse effects.

The next steps in the hierarchy, especially points 2–4, necessitate a continuing risk-to-benefit assessment between therapeutic outcome versus tolerability and willingness to accept adverse effects.

The more invasive the therapy, the more difficult the decisions become. This is particularly true with palliative medicine, where the prospects of healing are limited and there is the problem of working against time.

If local therapy is not feasible or cannot be well tolerated, then symptomatic measures are appropriate, although local therapy is to be preferred over systemic treatment. In simple cases, measures such as drainage and stenting can make analgesic medication redundant, e.g. gastric probe, ureteral stent, percutaneous nephrostomy, bladder catheter. Patients with recurrent subileus caused by peritoneal carcinomatosis are immediately relieved of their pain when they are given an artificial anus.

The indication is in direct relation to the severity of the disease and the operation, especially if the aim is palliative, although such cases are sometimes in particular need of invasive measures, not only to relieve pain in the terminal phase, but also to improve the general QoL, despite the potential for surgery to have a negative impact on patients’ wellbeing. Examples include evisceration to prevent cloaca in cervical carcinoma, or implanting a prosthetic hip due to a pathological fracture originating in metastasised bladder or kidney cancer.

When dose escalation of a systemically administered opioid proves unsatisfactory, the following gradual strategy can be considered (LE: 4):
• Switch to another opioid.
• Intervene with an appropriate primary therapy or other non-invasive analgesic approach.
• Pursue psychological, rehabilitative and neurostimulatory techniques (e.g. transcutaneous electrical nerve stimulation).
• Use invasive analgesic techniques after careful evaluation of the likelihood and duration of the analgesic benefit, the immediate risks, and the morbidity of the procedure (epidural infusion).
• Use neurodestructive procedures (chemical or surgical neurolysis, coeliac plexus blockade).
• Some patients with advanced cancer where comfort is the overriding goal can elect to be deeply sedated.

The importance of physiotherapy and psychological counselling cannot be emphasised too strongly.

3.3 Non-pharmacological therapies

3.3.1 Surgery

Surgery may have a role in the relief of symptoms caused by specific problems, such as obstruction of a hollow viscus, unstable bony structures and compression of neural tissues or draining of symptomatic ascites (1-3). The potential benefits must be weighed against the risks of surgery, the anticipated length of hospitalisation and convalescence, and the predicted duration of benefit. Radical surgery to excise locally advanced disease in patients with no evidence of metastatic spread may be palliative, and potentially increase the survival of some patients (4) (LE: 2b).

3.3.1.1 References

3.3.2 Radionuclides
3.3.2.1 Clinical background
Bone metastases are the most frequent source of pain during the evolution of cancers (1). Approximately 30% of patients with osseous metastases have pain that requires analgesia, interfering with QoL, causing anxiety, isolation, immobility, depression, and sleeplessness (1). In single lesions, bone stability and pain reduction can be achieved by external beam radiotherapy (LE: 1b) (GR: A). About 80-90% of patients will experience durable pain relief, but many will develop further multiple painful metastases (1).

3.3.2.2 Radiopharmaceuticals: physical characteristics
- Strontium-89 chloride (89Sr) emits a beta particle with a maximum energy of 1.46 MeV, a mean energy of 0.58 MeV, an average soft-tissue range of 2.4 mm and 0.01% abundant gamma emission with a 0.91 MeV photopeak. The physical half-life is 50.5 days (2,3).
- Samarium-153 lexidronam (153Sm) emits a beta particle with a maximum energy of 0.81 MeV, a mean energy of 0.23 MeV, an average soft-tissue range of 0.6 mm and 28% abundant 0.103 MeV gamma emission with a 0.103 MeV photopeak. The physical half-life is 1.9 days (4).
- Renium-186 etidronate (186Re) emits a beta particle with a maximum energy of 1.07 MeV, a mean energy of 0.349 MeV, an average soft-tissue range of 1.1 mm and a 9% abundant gamma emission with a 0.137 MeV photopeak. The physical half-life is 3.7 days (5).
- Therapy in this context means the intravenous administration of 89Sr or 153Sm (153Sm ethylenediaminetetramethylenephosphonate [EDTMP]).

The most important radiopharmaceuticals are 89Sr, 153Sm and, to a lesser extent, 186Re. There is no clear difference in treatment response between them (2), but, because of the differences in half-life, there is a difference in onset and duration of response, and in toxicity. For 153Sm and 186Re, the onset of response is rapid but duration is shorter (6,7). Note that 186Re is no longer used in many European countries.

3.3.2.3 Indications and contraindications
89Sr and 153Sm are indicated for the treatment of bone pain resulting from skeletal metastases involving more than one site and associated with an osteoblastic response on bone scan but without spinal cord compression (1,8-15) (LE: 2, GR: B).
89Sr and 153Sm have no place in the management of acute or chronic spinal cord compression or in treating pathological fracture (1,8,11) (LE: 2, GR: B).

Some 60-80% of patients presenting with osteoblastic metastases benefit from 89Sr and/or 153Sm (1) (LE: 2). The choice between the two depends solely on practical considerations. 89Sr and/or 153Sm should be administered by a slow (89Sr) or bolus (153Sm) injection using an intravenous (iv) catheter. The recommended doses are 148 MBq (89Sr) (16) and 37 MBq/kg (153Sm) (1,16) (LE: 2).

About 10% of patients experience a temporary increase in bone pain (pain flare) (3,6,7,17), generally 2-4 days after 153Sm, and 1-2 weeks after 89Sr (acute side-effect) (1,4,8,11,12,15,18). Pain flare is associated with a good clinical response (LE: 2) (3,6,7,17), and sometimes requires a transient increase in analgesia. Pain reduction is unlikely to occur within the first week, and can occur as late as 1 month after injection. Analgesics should therefore be continued until bone pain improves (GR: B). Late side-effects include temporary myelosuppression (platelets, white blood cells), Recovery occurs 4-6 weeks later depending on bone marrow reserve. There is generally no significant effect on haemoglobin.

The patient can pose a radiation exposure risk for 2-4 days after 153Sm, and 7-10 days after 89Sr (4,8,11,13-15,18,19,20-23) (LE: 2). Information about radioprotection should be provided (GR: B).

If the pain responds to the initial treatment, administration of 153Sm can be repeated at intervals of 8-12 weeks in the presence of recurrent pain (1,2,23) (LE: 2, GR: B). The response rate for second and subsequent treatments may be lower than for the first (1,8,12,23) (LE: 2).
3.3.2.4 Contraindications

Absolute contraindications:

- During or within 4 weeks of myelotoxic chemotherapy (all compounds except cisplatin), or within 12 weeks of hemibody external radiation therapy. The delay between these treatments and metabolic radiotherapy is necessary to avoid severe haematopoietic toxicity. However, treatment can be safely combined with limited local field external beam radiotherapy (LE: 3, GR: C).
- Known hypersensitivity to EDTMP or similar phosphonate compounds for 153Sm (1).
- Glomerular filtration rate (GFR) < 30 mL/min (1, 2).
- Pregnancy; continued breastfeeding (2).

Relative contraindications:

- Not recommended for women of child-bearing age (negative pregnancy test and contraception mandatory).
- In acute or chronic severe renal failure (GFR 30-60 mL/min), the dose administered should be adapted: if the GFR is > 60 mL/min, reduce the normal dosage by 25%; if the GFR is 30-60 mL/min, reduce the normal dosage by 50% (LE: 4). GFR should be measured if creatinine is > 20 mg/L.
- With a single painful lesion: external limited field radiotherapy should be performed (16,24) (LE: 1b).

Caution:

Caution must be used in the following circumstances.

- Risk of fracture.
- Nerve or spinal cord compression that requires other treatments in an emergency: external radiotherapy or surgery, or a combination of the two.
- Urinary incontinence: special recommendations including catheterisation before administration of the radionuclide. The catheter should remain in place for 4 days (89Sr), 3 days (186Re), and 24 hours (153Sm), respectively (2) (GR: A).
- Compromised bone marrow reserve.
- White blood cell count of < 2500/μL (LE: 4) (preferably > 3500/μL according to European Association of Nuclear Medicine guidelines) (2).
- Platelets < 80,000/μL (LE: 4) (preferably > 100,000/μL according to the European Association of Nuclear Medicine guidelines) (2).
- Haemoglobin < 90 g/L (2).

3.3.2.5 References

3.3.3 Radiotherapy for metastatic bone pain

3.3.3.1 Clinical background

Radiotherapy is particularly useful in treating metastatic bone pain, alleviating it efficiently in the majority of patients (1-5) (LE: 1a). Studies show that complete pain relief is obtained in 20-50% of patients, with partial relief in 50-80% (LE: 1a). The onset of pain relief varies from a few days to 4 weeks. Re-irradiation should therefore not be considered sooner than 4-6 weeks after the first radiotherapy (6) (LE: 2b). Pain relief can be obtained for 3-6 months (3,4,7) (LE: 1a).
3.3.3.2 Mechanism of pain relief by radiotherapy

Tumour shrinkage and inhibition of the release of chemical pain mediators are the main mechanisms by which radiotherapy relieves pain (LE: 3). Tumour shrinkage is unlikely to account for early pain relief, which is hypothesised to involve early reacting and very sensitive cells, plus the molecules they produce. Obvious candidates are the inflammatory cells present in the bone metastasis microenvironment: reduction of these cells by ionising radiation inhibits the release of chemical pain mediators and is probably responsible for the rapid reaction seen in some patients (8-10) (LE: 3).

3.3.3.3 Imaging

The detection of bone metastases is usually based on ⁹⁹ᵐTc bone scintigraphy, which lacks diagnostic specificity (11) (LE: 3), but the addition of single photon emission computed tomography (SPECT) to planar acquisition has been reported to improve its diagnostic accuracy (12-14) (LE: 2b). Regions of increased uptake need further investigation. Plain films have a false-negative rate of 10-17% (LE: 3). At least 50% erosion must be present for a change to be seen on plain films (15) (LE: 3). The combination of bone scintigraphy and plain films results in specificity of 64% and sensitivity of 63% (16) (LE: 3). Because of the complex anatomy of the vertebrae, computed tomography (CT) is more useful than conventional radiography for evaluating the location of lesions and analysing bone destruction and condensation (17). When combined with myelography, excellent information about the bony anatomy and an accurate view of the compressed neural elements is provided (18-19) (LE: 3). However, CT myelography is invasive and time-intensive, and so, particularly when spinal cord compression is suspected, magnetic resonance imaging (MRI) is currently the gold standard for detection and therapeutic management (20-24) (LE: 2b), with sensitivity of 93% (25) (LE: 3) and specificity of 96% (25) (LE: 3).

3.3.3.4 Radiotherapy scheme

Single-fraction radiotherapy is as effective as multifraction radiotherapy in relieving metastatic bone pain (4-5) (LE: 1a). However, the rates of retreatment and pathological fractures are higher after single fraction radiotherapy (4-5) (LE: 1a).

A single fraction is the treatment of choice for alleviating bone pain because of its greater convenience for the patient (4-5) (LE: 1a), as well as the faster patient turn-over for the radiotherapy unit and lower cost (26) (LE: 3). The recommended dose is 8 Gy (LE: 1a) (4-6, 26-30). Pain relief can be achieved in a significant number of patients with lower doses (LE: 1b), but studies have indicated that 4 Gy is less effective than 8 Gy (31-32) (LE: 1b). A dose of 6 Gy gives similar results to those obtained with 8 Gy, but has been insufficiently studied (32) (LE: 1b). These lower doses should be borne in mind if a third retreatment is necessary, or if there is concern about radiation tolerance (31-32) (LE: 2b).

In cases of oligometastases (< 5 metastases), a case can be made for aggressive therapy, such as radiosurgery or high-dose radiotherapy, in order to improve survival (33-35) (LE: 3).

3.3.3.5 Spinal cord compression

Metastatic epidural spinal cord compression is a common, severe complication of malignancy affecting 5-10% of patients (36). The most common symptom is back pain (83-95%); weakness is present in 35-75% (37).

The level of neurological function at the start of treatment determines the functional outcome. A delay in treatment, surgery or external radiotherapy is the most common cause of an unfavourable outcome (24,38) (LE: 3).

Corticosteroids reduce oedema and might have an oncolytic effect on certain tumours, e.g. lymphoma, breast cancer, leukemia. However, both the extent of the benefit obtained from corticosteroids, and what the optimal dosage is, are unclear. High-dose corticosteroids carry a significant risk of adverse affects. One randomised controlled trial of patients with carcinomatous metastatic spinal cord compression compared radiotherapy with or without dexamethasone, and showed significantly better functional outcome when dexamethasone was added (39) (LE: 1b).

Radiotherapy is recommended as the primary treatment for patients who do not fulfil the recommendations for surgery listed below. For patients whose chances of survival are estimated to be poor, a short course of radiotherapy is advised (e.g. 1 x 8 Gy [40] or 2 x 8 Gy [41]) (LE: 3).

There have not been any trials comparing radiotherapy doses in patients with a good prognosis, so no conclusions can be drawn about the optimal dose of radiotherapy for those patients. However, in general, a multifraction regimen (10 x 3 Gy) is preferable in these patients as it allows for a higher dose and thus greater reduction in tumour size (42-43) (LE: 2a).
Until the mid-1980s, posterior decompressive laminectomy was viewed as the only surgical option for patients with spinal cord compression. However, several studies have shown that decompressive laminectomy offers no additional benefit over conventional radiotherapy in terms of maintaining and recovering neurological function and pain control (44) (LE: 2b). In addition, laminectomies are associated with important complications, most significantly wound infections, and new or worsened pre-existing spinal instability (44-45) (LE: 2b).

Several uncontrolled surgical trials (46-48) and one meta-analysis (49-51) have since indicated that direct decompressive surgery is superior to radiotherapy alone with regard to regaining ambulatory and sphincter function, and obtaining pain relief (LE: 1a). However, the decision to pursue surgery must be tempered by awareness of the attendant significant morbidity and mortality risks. Careful patient selection is of utmost importance; the criteria are shown in Table 3 (42-43,52) (LE: 3).

Table 3: Criteria for selecting patients for primary therapy for spinal cord compression

<table>
<thead>
<tr>
<th>Absolute criteria</th>
<th>Surgery</th>
<th>Radiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operability</td>
<td>Medically operable</td>
<td>Medically inoperable</td>
</tr>
<tr>
<td>Duration of paraplegia</td>
<td>< 48 h</td>
<td>≥ 48 h</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>> 3 months</td>
<td>< 3 months</td>
</tr>
<tr>
<td>Radiosensitivity</td>
<td></td>
<td>Highly sensitive</td>
</tr>
</tbody>
</table>

Relative criteria

Diagnosis of primary tumour	Unknown	Known
Bone fragments with compression	Present	Absent
Number of foci of compression	1 focus	> 1 foci

A randomised, prospective trial has demonstrated that patients treated with a combination of surgery followed by radiotherapy can remain ambulatory longer, and those who are not ambulatory at presentation have a better chance of regaining ambulatory function than those treated with radiotherapy alone (52) (LE: 1b).

3.3.3.6 Pathological fractures

In patients with impending pathological fracture, a prophylactic orthopaedic procedure should be considered. Several publications advise post-operative radiotherapy after (prophylactic) orthopaedic procedures for bone metastases (53) (LE: 3). Some authors argue that if bone cement is used for fixation, post-operative radiotherapy is not needed (53-55) (LE: 3).

3.3.3.7 Side-effects

Side-effects are related to the total dose, fractionation size, and the localisation of the metastases (56) (LE: 3). They are mostly transient, lasting a few days (56), and include:

- pain flare (within 24 h and due to oedema);
- symptoms depend on the treatment field and location and can include:
 - nausea (especially with larger fields);
 - diarrhoea;
 - irritation of the throat and oesophagus.

3.3.3.8 References

3.3.4 Physical/psychological therapy

3.3.4.1 Physical therapies

Physical techniques such as electrical stimulation, heat or cryotherapy can be used to optimise function or enhance analgesia in patients with chronic cancer pain. The treatment of lymphoedema with wraps, pressure stockings or pneumatic pump devices can improve function, and relieve pain and the feeling of heaviness. The use of orthotic devices can immobilise and support painful or weakened structures, and assistive devices can...
be of great value to patients with pain precipitated by weight-bearing or ambulation (LE: 4).

3.3.4.2 Psychological therapies
The perception of pain and the suffering it causes derive from a combination of physical, emotional, spiritual, and social constructs. Psychological assessment and support are an integral and beneficial part of treating pain in cancer patients (1,2). Therapies include:

- Cognitive-behavioural interventions can help patients to develop new coping skills and modify the thoughts, feeling and behaviours engendered by the pain.
- Relaxation methods may be able to reduce muscular tension and emotional arousal, or enhance pain tolerance (3).
- Other approaches reduce anticipatory anxiety, which can lead to avoidant behaviours, or lessen the distress associated with the pain.

3.3.4.3 References

3.4 Pharmacotherapy
The successful treatment of cancer pain depends on the clinician’s ability to assess the presenting problems, identify and evaluate pain syndromes, and formulate a plan for comprehensive continuing care. This requires familiarity with a range of therapeutic options and responsiveness to the changing needs of the patient. The treatment of pain must be part of the broader therapeutic agenda, in which tumour control, symptom palliation (physical and psychological), and functional rehabilitation are addressed concurrently.

3.4.1 Antibiotics
Antibiotics may be analgesic when the source of the pain involves infection (e.g. pyonephrosis, abscess, osteitis pubis). In some cases, infection may be occult and confirmed only by the symptomatic relief provided by empirical treatment with these drugs (1) (LE: 2b).

3.4.1.1 Reference

3.4.2 Chemotherapy
A successful effect on pain is generally related to tumour response. There is a strong clinical impression that tumour shrinkage is generally associated with relief of pain, although there are some reports of analgesic value even in the absence of significant tumour shrinkage (1) (LE: 1a).

3.4.2.1 Reference

3.4.3 Bisphosphonates
Bisphosphonates are pyrophosphate analogues.

3.4.3.1 Mechanisms of action
- Inhibition of bone resorption: beginning 24-48 hours after administration, the target cells are the osteoclasts. There are three different mechanisms of inhibition of bone resorption corresponding to the three generations of bisphosphonates. There are four distinct effects on osteoclasts:
 - reduction of osteoclastic activity;
 - inhibition of osteoclast adhesion;
 - decrease in number of osteoclasts;
 - induction of osteoclast apoptosis.
• Inhibition of crystallisation and mineralisation: clinically not relevant.
• Promotion of osteoblastic bone formation and production of osteoclast resorption inhibitor.
• Anti-angiogenic effect and effect on tumour cells.

3.4.3.2 Effects and side-effects
The main effects are:
• decrease of the risk of skeleton-related events, e.g. hormone-refractory prostate cancer with bone metastasis (1) (LE: 1b, GR: A);
• pain response in 60-85% of patients (1-3) (LE: 1b, GR: A).

The main side-effects are:
• flu-like symptoms (20-40%), bone pain, fever, fatigue, arthralgia and myalgia (all < 10%);
• hypocalcaemia (caution: rapid infusion – older patients with vitamin D deficiency);
• acute renal failure (rapid infusion); always check renal function (GFR);
• osteonecrosis of the jaw bones (only after iv therapy);
• gastrointestinal symptoms can occur after oral administration (2-10%).

Some remarks (all grade B recommendations):
• Recognise and treat dehydration before administration of bisphosphonates.
• Reduce the dose in the event of impaired renal function when using zoledronate (4) (LE: 2).
• Avoid simultaneous administration of aminoglycosides (5).
• Perform clinical examination of the patient’s mouth and jaws; avoid oral/dental surgery during administration of iv bisphosphonates (6-10) (LE: 2).

3.4.3.3 References
 http://www.ncbi.nlm.nih.gov/pubmed/16533874

3.4.4 Systemic analgesic pharmacotherapy - the analgesic ladder
Analgesic pharmacotherapy is the mainstay of cancer pain management (1-3). Although concurrent use of other interventions is valuable in many patients, and essential in some, analgesic drugs are needed in almost every case. Based on clinical convention, analgesic drugs can be separated into three groups:
• non-opioid analgesics;
• opioid analgesics;
• adjuvant analgesics.

Emphasising that pain intensity should be the prime consideration (LE: 1a), the WHO has proposed a three-step approach to analgesic selection for cancer pain (1,3). Known as the analgesic ladder, when combined with appropriate dosing guidelines it can provide adequate relief in 70-90% of patients (4,5).

• **Step 1: non-opioid analgesic** Patients with mild to moderate cancer-related pain should be treated with a non-opioid analgesic.

• **Step 2: non-opioid analgesic + weak opioid** Patients who present with moderate to severe pain or who fail to achieve adequate relief after a trial of a non-opioid analgesia should be treated with a weak opioid (e.g. codeine or tramadol), typically by using a combination product containing a non-opioid (e.g. aspirin or paracetamol) and an opioid (e.g. codeine, tramadol or propoxyphene).

• **Step 3: non-opioid analgesic + strong opioid** Patients who present with severe pain or who fail to achieve adequate relief with step 2 drugs, should receive a strong opioid (e.g. morphine, fentanyl, oxycodone, methadon, buprenorphine, or hydromorphone).

3.4.4.1 Non-opioid analgesics

- Non-opioid analgesics are aspirin, paracetamol and non-steroidal anti-inflammatory drugs (NSAIDs).
- Can be useful alone for mild to moderate pain (step 1 of the analgesic ladder).
- May be combined with opioids.
- Have a ceiling effect of analgesic efficacy.
- No tolerance or physical dependence.
- Inhibit the enzyme cyclo-oxygenase and block the synthesis of prostaglandins.
- Involvement of central mechanisms is also likely in paracetamol analgesia (6).
- Potential adverse effects (7): bleeding diathesis due to inhibition of platelet aggregation, gastroduodenopathy (including peptic ulcer disease) and renal impairment are the most common; less common adverse effects include confusion, precipitation of cardiac failure and exacerbation of hypertension. Particular caution must be used in elderly patients and those with blood-clotting disorders, predisposition to peptic ulceration, impaired renal function and concurrent corticosteroid therapy.
- Non-acetylated salicylates (choline magnesium trisalicylate and salsalate) are preferred in patients who have a predilection to bleeding; these drugs have less effect on platelet aggregation and no effect on bleeding time at the usual clinical doses.
- Rarely, paracetamol produces gastrointestinal toxicity, but with no adverse effect on platelet function. Hepatic toxicity is possible, however, and patients with chronic alcoholism and liver disease can develop severe hepatotoxicity at the usual therapeutic doses (8).

3.4.4.2 Opioid analgesics

Cancer pain of moderate or severe intensity should generally be treated with a systemically administered opioid analgesic (9). Classification is based on interaction with the various receptor subtypes:

- **Agonist**: most commonly used in clinical pain management, no ceiling effect.
- **Agonist-antagonist** (pentazocine, nalbuphine and butorphanol): ceiling effect for analgesia.

By convention, the relative potency of each of the commonly used opioids is based on a comparison with 10 mg of parenteral morphine. Equi-analgesic dose information provides guidelines for dose selection when the drug or route of administration is changed (10).

A trial of systemic opioid therapy should be administered to all cancer patients with moderate or severe pain (10-13). Patients who present with severe pain should be treated with a strong opioid from the outset. Patients with moderate pain are commonly treated with a combination drug containing paracetamol or aspirin plus codeine, tramadol, or propoxyphene, the dose of which can be increased until the maximum dose of the non-opioid co-analgesia is attained (e.g. 4000 mg paracetamol).

Factors to consider when selecting an opioid include:

- pain intensity;
- patient age;
- response to previous trials of opioid therapy;
- co-existing disease;
- influence of underlying illness, characteristics of the opioid and concurrent medications.
Routes of administration
Opioids should be administered by the least invasive and safest route that can provide adequate analgesia. In a survey of patients with advanced cancer, more than half required two or more routes of administration prior to death, and almost a quarter required three or more.

Non-invasive routes

• Oral routes are the preferred approach in routine practice. Alternative routes are necessary for patients who have impaired swallowing, gastrointestinal dysfunction, require a very rapid onset of analgesia, or cannot tolerate the oral route.

• Rectal suppositories containing oxycodone, hydromorphone, oxycodone and morphine in combination are available, and controlled-release morphine tablets can also be administered per rectum. The potency of rectally administered opioids is believed to approximate to oral dosing (14).

• Transdermal routes: fentanyl and buprenorphine have been demonstrated to be effective in post-operative and cancer pain (15). The fentanyl transdermal therapeutic system dosing interval is usually 72 h, but some patients require a 48 h schedule. There is some interindividual variability in fentanyl bioavailability by this route, which, combined with large differences in elimination pharmacokinetics, necessitates dose titration in most cases (16). The efficacy of transdermal fentanyl is equal to morphine. The incidence of side-effects such as sedation and constipation are lower than for morphine (17,18) (LE: 1b).
 – Transdermal patches able to deliver 12,25,50,75 and 100 mg/h are available. Multiple patches can be used simultaneously for patients who require higher doses. Current limitations of the transdermal delivery system include cost, and the need for an alternative short-acting opioid for breakthrough pain.
 – Recently, buprenorphine has become available for transdermal administration. A high affinity partial μ-opioid agonist, it is in clinical use for the treatment of acute and chronic pain (19). Its analgesic effect is comparable with that of other opioids, and it shows no relevant analgesic ceiling effect throughout the therapeutic dose range (20). Unlike full μ-opioid agonists, buprenorphine’s physiological and subjective effects, including respiratory depression and euphoria, reach a plateau at higher doses. This ceiling may limit the abuse potential, and might result in a wider safety margin (21).

• Sublingual absorption of any opioid is potentially clinically beneficial, but bioavailability is very poor with drugs that are not highly lipophilic, so the chances of an adequate response are low (22). Sublingual buprenorphine, a relatively lipophilic partial agonist, can provide adequate relief for mild to moderate cancer pain. Overall, this route has limited value due to the lack of formulations, poor absorption of most drugs, and the inability to deliver high doses or prevent swallowing of the dose. An oral transmucosal formulation of fentanyl (incorporated into a sugar base) is useful for the rapid relief of breakthrough pain (23,24). Fentanyl delivered by this means is more effective than oral morphine at relieving pain (LE: 2).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral transmucosal administration of fentanyl should be used to provide rapid relief of breakthrough pain. The starting dose is 400 μg, or 200 μg in the elderly and those with a history of opioid sensitivity or underlying pulmonary disease.</td>
</tr>
</tbody>
</table>

Invasive routes

For patients undergoing a trial of systemic drug administration, a parenteral route must be considered when the oral route is not available. Repeated parenteral bolus injections, which can be administered iv, intramuscularly (im) or subcutaneously (sc), may be useful in some patients, but are often compromised by the occurrence of prominent bolus effects (toxicity at peak concentration and/or pain breakthrough at the trough). Repeated im injections are common, but are painful and offer no pharmacokinetic benefit; their use is not recommended (25).

• Intravenous bolus administration provides the most rapid onset and shortest duration of action. Time to peak effect correlates with the lipid solubility of the opioid, and ranges from 2-5 minutes for methadone, to 10-15 minutes for morphine (26). This approach is appropriate in two settings:
 – To provide parenteral opioids, usually transiently, to patients who already have venous access and are unable to tolerate oral opioids.
 – To treat very severe pain, for which iv doses can be repeated at an interval as brief as that determined by the time to peak effect until adequate relief is achieved.
Continuous parenteral infusions is mainly used in patients who are unable to swallow, absorb opioids or otherwise tolerate the oral route, but is also employed in patients whose high opioid requirement renders oral treatment impractical (27). Long-term infusions can be administered iv or sc.

– Ambulatory patients can easily receive a continuous sc infusion using a 27-gauge butterfly needle, which can be left in place for up to a week. A recent study demonstrated that the bioavailability of hydromorphone by this route is 78% (28), and clinical experience suggests that dosing can be identical to that for continuous iv infusion. A range of pumps is available to provide patient-controlled rescue doses (supplemental doses offered on an as-needed basis to treat pain that breaks through the regular schedule) as an adjunct to continuous basal infusion.

– Opioids suitable for continuous sc infusion must be soluble, well absorbed and non-irritant. Extensive experience has been reported with hydromorphone, oxycodone and morphine (29). Methadone appears to be relatively irritating and is not preferred (30). To maintain the comfort of an infusion site, the sc infusion rate should not exceed 5 cc/h.

– The infraclavicular and anterior chest sites provide the greatest freedom of movement for patients, but other sites can be used. A single infusion site can usually be maintained for 5-7 days.

Changing the route of administration

Switching between oral and parenteral routes should be guided by a knowledge of relative potency to avoid subsequent over- or underdosing. In calculating the equi-analgesic dose, the potencies of the iv, sc and im routes are considered equivalent. Perform changes slowly in steps, e.g. gradually reducing the parenteral dose and increasing the oral dose over a 2-3 day period (LE: 3).

Dosing

• Around-the-clock dosing Patients with continuous or frequent pain generally benefit from scheduled around-the-clock dosing, which provides continuous relief by preventing recurrence of the pain. This approach should be used only in patients with no previous opioid exposure. Patients should also be provided with a rescue dose. This combination offers gradual, safe and rational dose escalation that is applicable to all routes of opioid administration.

• Controlled-release drug formulations These preparations of oral opioids can lessen the inconvenience of around-the-clock administration of drugs with a short duration of action. Numerous studies have demonstrated the safety and efficacy of these preparations in cancer patients with pain (31,32).

• As-needed (prn) dosing This strategy is beneficial if rapid dose escalation is necessary or when beginning therapy with opioids with a long half-life (e.g. methadone or levorphanol). As-needed dosing may also be appropriate for patients who have rapidly decreasing analgesic requirements, or intermittent pains separated by pain-free intervals.

• Patient-controlled analgesia (PCA) This is a technique of parenteral drug administration in which the patient controls an infusion device that delivers a bolus of analgesic drug on demand according to parameters set by the physician. Long-term PCA in cancer patients is most commonly sc using an ambulatory infusion device. PCA is usually added to a basal infusion rate and acts, in effect, as a rescue dose.

Adverse effects and their management

• Tolerance There is great variation in the opioid dose required to manage pain (400-2000 mg of im morphine per 24 hours) (33). The induction of true analgesic tolerance that could compromise the utility of treatment can only be said to occur if a patient manifests the need for increasing opioid doses in the absence of other factors (e.g. progressive disease) that would be capable of explaining the increase in pain. Extensive clinical experience suggests that most patients who require dose escalation to manage increasing pain do have demonstrable disease progression (34). This suggests that true pharmacological tolerance to the analgesic effects of opioids is not a common clinical problem, and has two important implications:

 - Concern about tolerance should not impede the use of opioids early in the course of the disease.
 - Worsening pain in patients receiving a stable dose of opioids should not be attributed to tolerance, but be assessed as evidence of disease progression or, less commonly, increasing psychological distress.

• Adverse drug interactions There is potential for cumulative side-effects and serious toxicity to arise from combinations of drugs. The sedative effect of an opioid may add to that of other centrally acting
Drugs, such as anxiolytics, neuroleptics and antidepressants. Likewise, constipation produced by opioids is probably worsened by anticholinergic drugs.

- **Respiratory depression** This is the most serious adverse effect of opioid therapy, which can impair all phases of respiratory activity (rate, minute volume and tidal exchange). Clinically significant respiratory depression is always accompanied by other signs of central nervous system depression, including sedation and mental clouding. Repeated administration of opioid drugs appears to produce a rapid tolerance to their respiratory depressant effects, however, so these drugs can be used in the management of chronic cancer pain without significant risk of respiratory depression. When this does occur in patients on chronic opioid therapy, administration of the specific opioid antagonist naloxone usually improves ventilation.

- **Sedation** Tolerance to this effect usually develops within a period of days to weeks. Patients should be warned about it, to reduce anxiety and discourage activities that could be dangerous if sedation occurs (e.g. driving). Some patients have a persistent problem with sedation, particularly if other sedating drugs are also being taken or if there is co-morbidity such as dementia, metabolic encephalopathy or brain metastases.

- **Confusion and delirium** Confusion is a greatly feared effect of opioid drugs, and mild cognitive impairment is common (35). However, similar to sedation, pure opioid-induced encephalopathy appears to be transient in most patients, persisting from days to 1-2 weeks. Although persistent confusion attributable to opioids alone does occur, it is usually related to the combined effect of the opioid and other factors, including electrolyte disorders, neoplastic involvement of the central nervous system, sepsis, vital organ failure and hypoxaemia (36). A stepwise approach to management often culminates in a trial of a neuroleptic drug, haloperidol in low doses (0.5-1.0 mg orally or 0.25-0.5 mg iv or im) is most commonly recommended because of its efficacy and low incidence of cardiovascular and anticholinergic effects.

- **Constipation** This is the most common adverse effect of chronic opioid therapy (37-39), and laxative medication should be prescribed prophylactically. There are no controlled comparisons of the performance of the various laxatives in opioid-induced constipation. Combination therapy is frequently used, particularly co-administration of a softening agent (e.g. docusate) and a cathartic (e.g. senna, bisacodyl or phenolphthalein). The doses should be increased as necessary, and an osmotic laxative (e.g. magnesium sulphate) should be added if required. Chronic lactulose therapy is an alternative that some patients prefer, and the occasional patient is managed with intermittent colonic lavage using an oral bowel preparation.

- **Nausea and vomiting** Opioids may produce nausea and vomiting via both central and peripheral mechanisms. These drugs stimulate the medullary chemoreceptor trigger zone, increase vestibular sensitivity, and affect the gastrointestinal tract (increased gastric antral tone, diminished motility, delayed gastric emptying). The incidence of nausea and vomiting in ambulatory patients is estimated to be 10-40%, and 15-40%, respectively (40), with the effects greatest at the start of therapy. Metoclopramide is the most reasonable initial treatment. Tolerance typically develops within weeks. Routine prophylactic administration of an anti-emetic is not necessary. Serotonin antagonists (e.g. ondansetron) are not likely to be effective with opioid-induced symptoms as they do not eliminate apomorphine-induced vomiting and motion sickness, which appear to be appropriate models for opioid effects. Clinical trials are needed to confirm this.

- **Addiction and dependence** Confusion about physical dependence and addiction augments the fear of opioids and contributes substantially to the undertreatment of pain (41). Patients with chronic cancer pain have a so-called therapeutic dependence on their analgesic pharmacotherapy, which may or may not be associated with the development of physical dependence, but is seldom associated with addiction. The medical use of opioids is rarely associated with the development of addiction (42). There are no prospective studies in patients with chronic cancer pain, but extensive clinical experience affirms the low risk of addiction in this population (LE: 3). Healthcare providers, patients and families often require vigorous and repeated reassurance that the risk of addiction is small.

Adjuvant analgesics

Defined as a drug that has a primary indication other than pain but is analgesic in some conditions, these drugs may be combined with primary analgesics on any of the three steps of the analgesic ladder to improve the outcome for patients who cannot otherwise attain an acceptable balance between relief and side-effects.

In the management of cancer pain, adjuvant analgesics are conventionally categorised as follows.

- **Corticosteroids** Widely used as adjuvant analgesics (43,44), this group has been demonstrated to have analgesic effects, to improve QoL significantly (45), and to have beneficial effects on appetite, nausea, mood and malaise in patients with cancer (46). The mechanism of analgesia may involve...
anti-oedemic and anti-inflammatory effects, plus a direct influence on the electrical activity in damaged nerves. (i.e. reduction of neuropathic pain). Patients with advanced cancer who experience pain and other symptoms may respond favourably to a relatively small dose of corticosteroids (e.g. dexamethasone 1-2 mg twice daily) (LE: 2a).

- **Benzodiazepines** These drugs have a small analgesic effect (47), and must be balanced by the potential for side-effects, including sedation and confusion. Benzodiazepines are generally used only if another indication exists, such as anxiety or insomnia (LE: 2b).

3.4.4.3 References

 http://apps.who.int/bookorders/anglais/detart1.jsp?sesslan=1&codlan=1&codcol=10&codcch=804

3.4.5 Treatment of neuropathic pain
Numerous options are available for relieving neuropathic pain, including opioids, which give patients significant pain reduction with greater satisfaction than antidepressants (1,2). However, the potential complications of opioids mean that they are not always a satisfactory option (3). Beside opioids, effective therapies for managing neuropathic pain include antidepressants, anticonvulsants, topical treatments (lidocaine patch, capsacin), N-methyl-D-aspartate (NMDA) receptor antagonists, baclofen, local anaesthetics, and clonidine (4,5).

3.4.5.1 Antidepressants
There is clear evidence for the effectiveness of antidepressants in the treatment of neuropathic pain (5), which work primarily via interaction with pathways running through the spinal cord from serotonergic and noradrenergic structures in the brain stem and mid-brain.

Tricyclic antidepressants (TCAs) such as amitriptyline, nortriptyline (metabolite of amitriptyline), imipramine, and desipramine (metabolite of imipramine) are often the first drugs selected to alleviate neuropathic pain (6,7) (LE: 1a). The mechanism of action is predominantly by blocking the reuptake of norepinephrine and serotonin (dual acting), together with a blockade of neuronal membrane ion channels (reducing neuronal influx of Ca2+ or Na+), and interaction with adenosine and NMDA receptors. However, treatment with these analgesics may be compromised (and outweighed) by their side-effects. TCAs must be used cautiously in patients with a history of cardiovascular disorders, glaucoma, and urine retention. In addition, combination therapy with monoamine-oxidase inhibitors could result in the development of serotonin syndrome.

Duloxetine enhances both serotonin and norepinephrine function in descending modulatory pathways. It has weak affinity for the dopamine transporter and insignificant affinity for several neurotransmitters, including muscarinic, histamine, glutamate, and gamma-aminobutyric acid (GABA) receptors. Duloxetine has demonstrated a significant pain-relieving effect with a generally favourable side-effect profile in painful diabetic
neuropathy (7) (LE: 1b).

Selective serotonin reuptake inhibitors (SSRIs) – sertraline, paroxetine, fluoxetine and citalopram – selectively inhibit the reuptake of serotonin. These antidepressants have a more favourable side-effect profile than TCAs, but their effectiveness in neuropathic pain is disputed in the literature (second-line pharmacological treatment).

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline and nortriptyline are the first line treatment for neuropathic pain; nortriptyline has fewer side-effects. A</td>
</tr>
<tr>
<td>TCAs must be used cautiously in patients with a history of cardiovascular disorders, glaucoma, and urine retention.</td>
</tr>
<tr>
<td>Duloxetine is the first-line treatment for neuropathic pain due to diabetic polyneuropathy. A</td>
</tr>
<tr>
<td>Duloxetine may be tried as an analgesic in other neuropathic pain syndromes. GCP</td>
</tr>
</tbody>
</table>

GCP = good clinical practice.

3.4.5.2 *Anticonvulsant medication*

The rationale for the use of anti-epileptic drugs in treating neuropathic pain is the reduction of neuronal hyperexcitability, one of the key processes in the development and maintenance of neuropathic pain (8). Different anticonvulsants have demonstrated pain relief by a blockade of neuronal membrane ion channels (reducing neuronal influx of Ca2+ or Na+), and effects on neurotransmitters (enhancement of GABA, inhibition of glutamate release) and/or neuromodulation systems (blocking the NMDA receptor) (9,10). Carbamazepine and phenytoin were initially used for the treatment of trigeminal neuralgia. Although both drugs reduce neuropathic pain, their attendant side-effects and complicated pharmacokinetic profile limit their use for this.

Despite the introduction of newer anticonvulsants with better side-effect profiles, carbamazepine remains the drug of choice for treating trigeminal neuralgia (11) (LE: 1a). However, oxcarbazepine (10-keto analogue of carbamazepine), a new anticonvulsant with a similar mechanism of action to that of carbamazepine but with a better side-effect profile, may replace carbamazepine for this (12).

Gabapentin and pregabalin are first-line treatments for neuropathic pain (reducing elements of central sensitisation), especially in post-zoster neuralgia and diabetic polyneuropathy (13-15) (LE: 1a). The combination of gabapentin with opioids seems to display synergistic effects in relieving neuropathic pain (16,17).

Gabapentin has a favourable safety profile with minimal concern for drug interactions and no interference with hepatic enzymes. However, renal failure results in higher gabapentin concentrations and a longer elimination half-life, making dose adjustments necessary. Pregabalin (3-isobutyl GABA) is a structural analogue of gabapentin, but shows greater analgesic activity in rodent models of neuropathic pain than did gabapentin (18). Recent studies confirm the effectiveness of pregabalin in peripheral (including post-herpetic neuralgia and diabetic polyneuropathy) and central neuropathic pain (19).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabapentin and pregabalin are first line treatments for neuropathic pain, especially if TCAs are contraindicated. A</td>
</tr>
</tbody>
</table>

3.4.5.3 *Topical analgesics*

Neuropathic pain syndromes are typically associated with touch-evoked allodynia and hyperalgesia that impair patients’ QoL. As well as treatment with anticonvulsants and antidepressants, a topical drug can be effective in treating ongoing pain and allodynia, supporting the idea that peripheral actions are of key importance in the initiation and maintenance of neuropathic pain.

Topical treatments for neuropathic pain include the 5% lidocaine patch, and capsaicin. The 5% lidocaine patch, a targeted peripheral analgesic, is effective in the treatment of post-herpetic neuralgia and a variety of other focal peripheral neuropathies (20,21) (first-line pharmacological treatment; LE: 1b). Once a day, up to three patches are applied to the painful skin, covering as much of the affected area as possible.

Capsaicin causes pain due to release of substance P from the nociceptive terminals, initiating nociceptive firing. An analgesic response follows because prolonged exposure to capsaicin desensitises the nociceptive terminals and elevates the pain threshold. Capsaicin (third-line pharmacological treatment) reduces
pain in a variety of neuropathic pain conditions (including post-herpetic neuralgia, diabetic neuropathy and painful polyneuropathy). It is applied in a 0.075% concentration (22) (LE: 3).

Recommendations

| Topical lidocaine 5% should be used as an adjuvant in patients suffering from post-herpetic neuralgia. | A |
| Transdermal capsaicin may be used as an adjuvant in patients with neuropathic pain. | C |

3.4.5.4 NMDA receptor antagonists

Within the dorsal horn, ionotropic glutamate receptors (NMDA, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate [AMPA], kainate) and metabotropic glutamate receptors are all involved in neuropathic pain (23). However, the actions of excitatory amino acids (glutamate) on the NMDA receptor is considered a pivotal event in the phenomenon of wind-up and neuronal hyperexcitability (enhancement and prolongation of sensory transmission) that eventually leads to allodynia, and primary and secondary hyperalgesia.

Subanaesthetic doses of ketamine, and its active enantiomer S(+)-ketamine, given parenterally, neuraxially, nasally, transdermally or orally, alleviate pain post-operatively and in a variety of neuropathic pain syndromes, including central pain (24) (LE: 2b). However, ketamine may result in unwanted changes in mood, conscious perception, and intellectual performance, as well as psychomimetic side-effects (including visual and auditory hallucinations, dissociation and nightmares), limiting its use for neuropathic pain (25). It must therefore be reserved as a third-line option for when other standard analgesic treatments are exhausted (26,27).

Recommendation

| Ketamine is effective as an analgesic in neuropathic pain, but may be responsible for severe life-threatening side-effects and should be reserved for specialised pain clinics and as a last resort (third-line treatment). | B |

3.4.5.5 Other drug treatments

Baclofen, a muscle relaxant, is analgesic due to its agonistic effect on the inhibitory GABAB receptors. Baclofen is efficacious in patients with trigeminal neuralgia, but not in those with other neuropathic pain conditions (28). However, this analgesic also has antispasticity properties and may induce analgesia by relieving muscle spasms, a frequent accompaniment of acute neuropathic pain. Baclofen can be considered a second-line agent for trigeminal neuralgia, or a third-line agent in neuropathic pain syndromes (LE: 3).

Clonidine, an α2-adrenoreceptor agonist, is available as a patch for transdermal administration and has been used in neuropathic pain states. When used topically, it seems to enhance the release of endogenous encephalin-like substances, but its use in the treatment of neuropathic pain is focused on intrathecal or epidural administration in combination with opioids and/or local anaesthetics. This delivery improves pain control because of a possible supra-additive effect during neuropathic pain treatment (30) (LE: 2b).

Summary: treatment of neuropathic pain

- **First-line agent:**
 - nortriptyline, pregabalin, gabapentin;
 - duloxetine (first-line treatment in diabetic polyneuropathy only);
 - lidocaine 5% patch (first-line treatment in post-herpetic neuralgia only).
- **Second-line agent:**
 - opioids/tramadol (first-line treatment in patients with neuropathic cancer pain only).
- **Third-line agent:**
 - baclofen;
 - transdermal capsaicin 0.075%;
 - ketamine (an anaesthetic).

3.4.5.6 Invasive analgesic techniques

Studies suggest that 10-30% of patients with cancer pain do not achieve a satisfactory balance between relief and side-effects using systemic pharmacotherapy alone without unacceptable drug toxicity (31,32).
Anaesthetic and neurosurgical techniques may reduce the need for systemically administered opioids, while achieving relief.

Peripheral nerve catheterisation in the management of cancer pain
Tumour infiltration or compression of a peripheral nerve or plexus can result in severe neuropathic pain resistant to pharmacological treatment. In these patients invasive analgesic techniques may be emphasised 33,34).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversible regional anaesthetic techniques must be considered for the management of neuropathic pain.</td>
</tr>
</tbody>
</table>

GCP = good clinical practice.

Neurolytic blocks to control visceral cancer pain
Visceral cancer pain is mainly treated with NSAIDs and opioids, but neurolytic blockade can be used to optimise palliative treatment for cancer in the viscera.

Different neurolytic blockades have been described (35,36). A coeliac plexus block is indicated to treat pain secondary to malignancies of the retroperitoneum or upper abdomen (distal part of the stomach, pancreas, liver, gall bladder) (37) (LE: 1b). A superior hypogastric plexus block has proven utility for pelvic pain (rectum, vaginal fundus, bladder, prostate, testes, seminal vesicles, uterus and ovaries) due to a neoplasm that is refractory to pharmacological treatment (LE: 3) (38-40).

Neuraxial administration of opioids
The delivery of low-dose opioids near the sites of action in the spinal cord may decrease supraspinally mediated adverse effects. Compared with neuroablative therapies, spinal opioids have the advantage of preserving sensation, strength and sympathetic function (41,42). Contraindications include bleeding diathesis, profound leucopenia and sepsis. A temporary trial of spinal opioid therapy should be performed to assess the potential benefits of this approach before implantation of a permanent catheter.

The addition of a low concentration of a local anaesthetic, such as 0.125-0.25% (levo)bupivacaine, to an epidural/ intrathecal opioid increases the analgesic effect without increasing toxicity (43,44). The potential morbidity of these procedures requires well-trained clinicians and long-term monitoring (LE: 2).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous intrathecal or epidural administration of morphine may be considered in patients with inadequate pain relief despite escalating doses with sequential strong opioids, or the development of side-effects (nausea, vomiting, constipation, drowsiness, sedation) limiting further dose increase.</td>
</tr>
</tbody>
</table>

Chemical rhizotomy
Chemical rhizotomy, produced by the instillation of a neurolytic solution into the epidural or intrathecal space, can be an effective method of pain control for patients with otherwise refractory localised pain syndromes (45, 46). The technique is most commonly used in chest-wall pain due to tumour invasion of somatic and neural structures. Other indications include refractory upper limb, lower limb, pelvic or perineal pain (lower end block).

Because of the significant risk of increased disability through weakness, sphincter incompetence and loss of positional sense, chemical rhizotomy of lumbosacral nerve roots is best reserved for patients with limited function and pre-existing urinary diversion. Adverse effects can be related to the injection technique (spinal headache, mechanical neural damage, infection and arachnoiditis) or to the destruction of non-nociceptive nerve fibres (47) (LE: 4).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower end block may be considered in patients with intractable perineal pain (bladder, rectum) that has responded insufficiently to more conservative therapy. This technique may only be performed in patients with loss of sphincter function (rectum and/or bladder).</td>
</tr>
</tbody>
</table>
Cordotomy
During cordotomy, the anterolateral spinothalamic tract is sectioned to produce contralateral loss of pain and temperature sensitivity. The patient with severe unilateral pain arising in the torso or lower extremity is most likely to benefit from this procedure. Significant pain relief is achieved in more than 90% of patients during the period immediately following cordotomy (48). Of surviving patients, 50% have recurrent pain after 1 year. Repeated cordotomy can sometimes be effective. The neurological complications of cordotomy include paresis, ataxia and bladder dysfunction (49) (LE: 3).

3.4.5.7 References
13. Spina E, Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004 Jun;6(2);57-75.

UPDATE MARCH 2009 33

3.5 Quality of life

- **Anxiety** is a common symptom in patients near the end of life. There is currently insufficient evidence on the role of drugs in the treatment of anxiety associated with terminal illness, and it is therefore not possible to draw any conclusions about the effectiveness of pharmacotherapy for it (1).

- **Cancer-related fatigue** is a significant problem. It can occur because of the side-effects of treatment or because of the disease itself, and can have a significant impact on a person’s ability to function. The causes of fatigue are not fully understood and so it is very difficult to treat it appropriately. Trials of erythropoietin and darbopoeitin (for anaemic patients on chemotherapy) and psychostimulants (amphetamines) provide evidence for improvement in cancer-related fatigue at a clinically meaningful level. There are no data to support the use of paroxetine or progestational steroids for the treatment of cancer-related fatigue. Methylphenidate is an obvious candidate for a large-scale cancer-related fatigue study (2).

- **Sexual dysfunction** The proportion of people surviving and living with cancer is growing, which has led to an increased awareness of the importance of QoL, including sexual function, to people with...
cancer. Sexual dysfunction is a potential long-term complication of cancer treatment. Following treatment for prostate cancer, there is evidence that transurethral alprostadil and vacuum constriction devices reduce sexual dysfunction, although negative effects were fairly common. Vaginal lubricating creams are also effective, as are PDE5 inhibitors for sexual dysfunction secondary to prostate cancer treatment (3).

- **Selenium** is necessary for human health. It acts against cell damage in the body and might help to alleviate treatment side-effects such as nausea, diarrhoea or lymphoedema in cancer patients, although there is insufficient evidence to demonstrate this (4).

3.5.1 **References**

3.6 **Conclusions**

The goal of analgesic therapy in cancer patients is to optimise analgesia with the minimum of side-effects. Current techniques can provide adequate relief for the large majority of patients. Most will need ongoing analgesic therapy, and requirements often change as the disease progresses. Patients with refractory pain should have access to specialists in pain management or palliative medicine who can provide an integrated multidisciplinary approach.

4. PAIN MANAGEMENT IN UROLOGICAL CANCERS

4.1 Pain management in prostate cancer patients

Clinical presentation

Pain in both early and advanced prostate cancer (PCa) can be caused directly by the cancer (77%), be related to the treatment (19%), or be unrelated to either (3%) (1). Management must focus on symptomatic patients with locally advanced disease or metastases.

The overall incidence of chronic pain in PCa patients is about 30-50%, but as patients enter the terminal phase this rises to 90% (2). Pain may be directly attributable to tumour infiltration of and growth in three main areas: bone, nerve or a hollow viscus.

4.1.2 Pain due to local impairment

4.1.2.1 Invasion of soft tissue or a hollow viscus

Pain caused by invasion of a hollow viscus is treated with surgery or minimally invasive procedures (e.g. catheter, stent or nephrostomy tube).

4.1.2.2 Bladder outlet obstruction

Continuous growth of the prostate can lead to an outlet obstruction. Lower urinary tract symptoms (LUTS) can occur, especially stranguria and an inability to void. Acute pain requires prompt relief. The best method is to insert a suprapubic catheter and treat the tumour according to the stage (3). If the outlet obstruction persists transurethral palliative resection (TURP) is an option if no curative therapy can be offered.

4.1.2.3 Ureteric obstruction

Ureteric obstruction is most frequently caused by tumour compression or infiltration within the true pelvis.
Less commonly, obstruction can be more proximal, associated with retroperitoneal metastases. In most cases, obstruction is primarily asymmetrical. Untreated progressive ureteric obstruction results in bilateral hydronephrosis and subsequent renal failure. It is good practice to drain symptomatic hydronephrosis at once, and to drain only one kidney (the less dilated and better appearing kidney or the one with the better function if known) in asymptomatic patients. A nephrostomy tube is superior to a double-J stent for drainage because the subsequent routine endoscopic replacement of the stent could be increasingly difficult in a continuously growing prostate gland, and a nephrostomy tube can be changed without anaesthesia.

4.1.2.4 Lymphoedema

Patients with a huge prostate mass and/or lymph node metastases in the pelvis frequently get lymphoedema of the legs. Physiatric techniques such as wraps, pressure stockings and pneumatic pumps can improve function and relieve pain and heaviness.

4.1.2.5 Ileus

Local obstruction of the rectum is a common occurrence in advanced PCa, and can lead to abdominal pain caused by obstructive ileus. Rarely, peritoneal involvement can also result in ileus. Surgery and/or rectal stenting must be performed for mechanical obstruction. Paralytic ileus due to tumour infiltration of a nerve plexus or secondary to analgesics may require laxatives for opioid-induced constipation to improve motility and reduce pain.

4.1.3 Pain due to metastases

4.1.3.1 Bone metastases

Bone metastases are the most common cause of chronic pain in patients with PCa (8,9) as a result of:
- endosteal or periosteal nociceptor activation (mechanical distortion or release of chemical mediators)
- tumour growth into adjacent soft tissues or nerves and
- other complex mechanisms (9).

Widespread bony metastases frequently cause multifocal pain. Patients with multiple bony metastases typically report pain in only a few sites.

• More than 25% of patients with bony metastases are pain-free (10).

• The factors that convert a painless lesion into a painful one are unknown.

The choice of treatment will depend on the site, histology and stage of the tumour, and on the patient’s physical and emotional condition. Although tumour-cell specific therapies are being developed, most commonly used techniques damage normal tissues, with consequent side-effects. The pros and cons of the therapeutic options should be considered in each case, those with fewest side-effects being administered first.

The options are:
- hormone therapy;
- radiotherapy;
- orthopaedic surgery;
- radioisotopes;
- bisphosphonates;
- calcitonin;
- chemotherapy;
- systemic analgesic pharmacotherapy (the analgesic ladder).

Other pain management tools such as nerve blocks are rarely used.

Hormone therapy

Huggins and Hodges (11) first noted the effect of exogenous oestrogen administration on prostatic carcinoma. Hormone changes may cause complex endocrine effects, such as pituitary inhibition of luteinising hormone (LH), follicle-stimulating hormone (FSH) and prolactin, as well as changes in endogenous corticosteroid hormone production (12). A variety of additive or ablative hormone manipulations have been employed, including oestrogen, anti-androgen (cyproterone, flutamide), oestrogen-mustine complex (estramustine), progestogens, aminoglutethimide, gonadotrophin-releasing hormone (GnRH) analogues, orchidectomy, adrenalectomy and hypophysectomy. Corticosteroids are also used for the palliation of pain, particularly that due to bone deposits.
Side-effects
Hormone therapy is generally much better tolerated than chemotherapy. It can cause a temporary exacerbation of pain (pain flare), which is generally predictive of a subsequent response (13). The side-effects are:

- GnRH analogues and orchidectomy:
 - loss of body hair;
 - testicular atrophy;
 - gynaecomastia;
 - loss of libido;
 - impotence;
 - increased cardiovascular mortality rate in long term administration;
 - psychological morbidity.

- anti-androgens:
 - gynaecomastia (more often if used alone than when used in combination with GnRH analogues);
 - hepatic impairment;
 - less sexual dysfunction than with GnRH analogues.

- cyproterone acetate:
 - fewer side-effects than oestrogens;
 - lower incidence of cardiovascular complications than with oestrogens.

- oestrogens:
 - loss of body hair;
 - testicular atrophy;
 - gynaecomastia;
 - loss of libido;
 - impotence.

- Long-term administration results in higher mortality from cardiac and cerebrovascular disease as compared to GnRH analogues.

- adrenalectomy:
 - major operative procedure.

- hypophysectomy:
 - small but significant mortality rate;
 - hormone replacement is subsequently required for life.

Efficacy
In a collected series of protocols, pain relief has been estimated at between 35% (14) and 70% (15). The differences may be due to the selection of patients and problems in pain measurement. Well-differentiated prostatic carcinoma is more likely to respond to hormones than are poorly differentiated tumours. Manipulations that include replacement corticosteroid therapy or have additional corticoid effects seem to give higher response rates. Corticosteroids are also used for the palliation of pain, particularly in bone metastases.

Problems
To date, most patients with adenocarcinoma of the prostate present in early tumour stages and undergo radical surgery or radiotherapy. In cases of disease progression and symptoms, hormone therapy can be indicated with patients remaining asymptomatic for years. Pain is associated with a hormone-resistant tumour in progression, which necessitates alternative therapeutical options.

Radiotherapy
- The role of radiotherapy in the management of pain due to bone metastases is unquestionable.
- Radiotherapy techniques vary widely, from a large dose given as a single treatment to as many as 20 smaller treatments given over 4 weeks.
- Dose-time factors: the biological effect of the radiation depends not only on the total dose delivered, but also on the number of separate treatments and the total time over which the irradiation therapy is administered.
- Palliative doses are smaller than maximum tolerance doses.
- Bear in mind that radiological evidence of a deposit may considerably underestimate the extent of disease.

In metastatic adenocarcinoma of the prostate, radiotherapy is associated with palliation of pain from bony metastases and improved quality of life. Radiation therapy is effective at treating painful sites, and might also be effective at reducing the propensity for adjuvantly treated disease to become symptomatic in most patients (16). This effect does not appear to be significantly influenced by dose-time relationships or histology. The
proportion of patients achieving complete pain relief approaches 80% (17) (see also Section 3.3.3).

Orthopaedic surgery
If more than 50% of the thickness of the cortex of a long bone is eroded by metastasis, prophylactic fixation rather than radiotherapy alone should be considered. Internal fixation should be followed by postoperative radiotherapy because there is a real danger of continued tumour growth and further structural weakness (18,19). Radiotherapy should not be withheld for fear of inhibiting bone healing and regrowth. There is good evidence that palliative doses of radiotherapy are associated with recalcification (20).

Radioisotopes
Widespread axial skeletal involvement in PCa has been successfully treated with systemically administered bone-seeking radioisotopes (see also Section 3.3.2). Commonly used radionuclides are strontium-89 chloride (89Sr) and samarium-153-ethylendiaminetetramethylene phosphonic acid (153Sm-EDTMP). The addition of 89Sr as a single injection of 10.8 mCi (399.6 MBq) is an effective adjuvant therapy to local field radiotherapy, reducing disease progression, the requirement for further radiotherapy and analgesic support (16), and improving quality of life. Some evidence suggests that radioisotopes could give complete relief from pain over 1–6 months, with no increase in analgesia, although adverse effects, specifically leucocytopenia and thrombocytopenia, have been experienced (21).

Bisphosphonates
Bisphosphonates are routine supportive care for patients with bone metastases, and in a meta-analysis of 8 randomised studies some improvement in pain control due to bone metastases could be demonstrated (22). Bisphosphonates act by inhibiting osteoclast activities. Recent studies showed no statistically significant difference between the bisphosphonate and control groups in terms of PCa death, disease progression, and radiological and PSA response, but they should be considered for treating refractory bone pain and preventing skeletal events in those with metastatic PCa (22).

Zoledronic acid is effective for treating the complications of bone metastasis. Its efficacy and safety have been established in three pivotal trials involving more than 3000 patients (23). Although they appear osteoblastic on radiographic imaging, most bone metastases are characterised by excess osteoclast volume and activity. Pathological osteoclast activation is associated with increased risk of skeletal complications. Zoledronic acid, a potent inhibitor of osteoclast activity, differentiation and survival, decreases the risk of skeletal complications in men with androgen-independent PCa and bone metastases. Other bisphosphonates, including pamidronate and clodronate, seem to be less effective (24).

Zoledronic acid administration for one year to patients with hormone-sensitive PCa and bone metastases who were on androgen-deprivation therapy was safe and prevented bone loss, as shown by significant increases in bone mineral density and sustained suppression of biochemical markers of bone turnover (25). Zoledronic acid (4 mg intravenously over 15 minutes every 3-4 weeks) decreased the frequency of skeleton-related events, delayed the time to the first occurrence, and reduced pain (23). Visual analogue scale improvement is positively correlated with a decrease of C-telopeptide and bone phosphatase alkaline (p < 0.05) serum levels (26). Studies are needed to determine the optimal timing, schedule and duration of treatment in men with bone metastases, as well as other potential roles for bisphosphonates, e.g. prevention of bone metastases (see Section 3.4.3).

Calcitonin
Current evidence does not support the use of calcitonin to control pain arising from bone metastases (27).

Chemotherapy
In about 80% of men with metastatic PCa, primary androgen ablation leads to symptomatic improvement and a reduction in the serum levels of PSA. The disease eventually becomes refractory to hormone treatment, and systemic chemotherapy should be reserved for this patient group. Recent data have shown encouraging signs in overall survival, palliation of symptoms and improvements in quality of life (28), particularly with docetaxel.

Trials using single-agent chemotherapy in advanced disease have shown poor results, but newer studies suggest multiagent chemotherapies may be more effective. A randomised trial showed that mitoxantrone plus low-dose prednisone relieved pain and improved quality of life more frequently than did prednisolone alone. Other studies have confirmed the symptomatic effect of this regimen, but none found improved survival.

A PSA-response rate and a reduction of pain were also reported with other combined chemotherapies (Table
4). Individualised therapy was necessary as side-effects were common and no regimen showed a survival benefit.

Table 4: PSA-response rates to selected combined chemotherapy regimens

<table>
<thead>
<tr>
<th>Chemotherapy agent</th>
<th>Plus agent</th>
<th>Response rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketoconazole</td>
<td>+ doxorubicin</td>
<td>55</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>+ estramustine</td>
<td>54-61</td>
</tr>
<tr>
<td>Estramustine</td>
<td>+ etoposide</td>
<td>39-58</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>+ prednisone</td>
<td>33</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>+ estramustine</td>
<td>53</td>
</tr>
</tbody>
</table>

In 2005, two studies demonstrated that docetaxel-based regimens have a very good symptomatic effect that is significantly better than that of the mitoxantrone-based approach (Table 5) (25,26). Additionally, for the first time, a significant survival benefit was shown for the docetaxel group (18.9 versus 16.5 months).

Table 5: Docetaxel-based chemotherapy versus mitoxantrone-based regimens

<table>
<thead>
<tr>
<th>Chemotherapy agent</th>
<th>Plus agent</th>
<th>Frequency</th>
<th>Response rate (29)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pain (%)</td>
</tr>
<tr>
<td>Docetaxel + prednisone</td>
<td>Every 3 weeks</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>Docetaxel + prednisone</td>
<td>Weekly</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Mitoxantrone + prednisone</td>
<td>Every 3 weeks</td>
<td>22</td>
<td>13</td>
</tr>
</tbody>
</table>

Although most of these regimens are associated with side-effects such as fatigue, mild myelosuppression and gastrointestinal irritation, they are generally well tolerated by most patients (30). The docetaxel-based regimens are now the standard of care for patients with advanced hormone-refractory PCa. Soft-tissue lesions could be influenced to a greater extent than bony metastases. Pain management by chemotherapy could be effective, although it is much more cost-intensive than the administration of opioids, and the survival advantage is limited.

4.1.4 Systemic analgesic pharmacotherapy (the analgesic ladder)

If the treatments described above provide insufficient pain relief, systemic analgesic pharmacotherapy should be administered (see Section 3.4.4). In most cases, the drug selection scheme proposed by the World Health Organization (WHO), the analgesic ladder, is to be recommended.

Short-term studies have shown that NSAIDs alone are effective in managing cancer pain, with side-effects similar to those with placebo. In about 50% of studies, increasing the dose of NSAIDs increased efficacy but not the incidence of side-effects. No large clinical difference has been demonstrated between combining an NSAID with an opioid versus either medication alone (31).

Tramadol extended-release tablets and dihydrocodeine extended-release tablets were effective for the management of chronic tumour pain associated with PCa with bone metastasis on step 2 of the WHO ladder, with the tramadol giving slightly better pain management and fewer side-effects, particularly constipation (32). The treatment of constipation in palliative care is based on experimental evidence, and uncertainty persists about its optimum management in this group of patients (33).

Oral morphine is an effective analgesic for cancer pain, with qualitative evidence showing that it compares well with other opioids. Morphine is the gold standard for moderate to severe cancer-related pain. Alternatives such as hydromorphone are now available, but no clinically significant difference has been shown between it and other strong opioids such as morphine (34). Patients with inadequate pain control and intolerable opioid-related toxicity/adverse effects may have to switch to an alternative opioid for symptomatic relief, although the evidence to support opioid switching is largely anecdotal, observational or from uncontrolled studies (35).

Breakthrough pain is a common and debilitating problem for patients with cancer. Evidence suggests that oral transmucosal fentanyl citrate is effective for breakthrough pain (36), giving more rapid relief than morphine (37).
4.1.5 **Spinal cord compression**
Spinal cord compression can occur due to the collapse of a vertebral body or to pressure from an extradural tumour within the spinal canal. Prodromal pain is a feature in 96% of these patients. The overall incidence in PCa patients is less than 10% (38). Thoracic cord compression is the most common area (70%), and the incidence of multiple extradural sites can be as high as 18% (39). Definitive treatment with surgery (anterior decompression with spinal stabilisation) or radiotherapy should be considered. The symptom of local back pain sometimes disappears, despite an increase in motor deficits, because of the evolving sensory component of the paraplegia.

Corticosteroids (typically dexamethasone 16 mg daily) are of only temporary use in cord oedema. There is evidence that decompressive surgery benefits ambulant patients with poor prognostic factors for radiotherapy, and non-ambulant patients with a single area of compression, paraplegia of < 48 hours’ duration, non-radiosensitive tumours and predicted survival of > 3 months. There is a significant risk of serious adverse effects from high-dose corticosteroids (40).

4.1.6 **Hepatic invasion**
Hepatic invasion by secondary tumour is a common cause of severe hypochondrial pain, often radiating to the back and shoulder blade. The mechanism may be the stretching of nerve endings in the liver capsule, diaphragmatic irritation, or haemorrhage into a necrotic area of tumour. Liver pain can often be controlled by conventional titration of appropriate analgesics or with corticosteroids.

Whole-liver palliative radiotherapy can also be useful in carefully selected patients with refractory pain, giving far fewer side-effects than the alternatives of intra-arterial chemotherapy or hepatic artery embolisation. Hepatic irradiation can improve abdominal pain with little toxicity in more than half of patients (41). Doses should not exceed 30 Gy in 15 daily fractions or its equivalent if radiation hepatitis is to be avoided.

4.1.7 **Pain due to cancer treatment**
4.1.7.1 **Acute pain associated with hormonal therapy**
Luteinising hormone-releasing hormone (LHRH) tumour flare in PCa
Initiation of LHRH therapy for PCa produces a transient symptom flare in 5-25% of patients (42,43), presumably caused by an initial stimulation of LH release before suppression is achieved (43,44). The syndrome typically presents as an exacerbation of bone pain or urinary retention. Spinal cord compression and sudden death have also been reported (42). Symptom flare is usually observed within the first week of therapy, and lasts 1-3 weeks. Co-administration of an androgen antagonist at the start of LHRH agonist therapy can prevent this (45).

4.1.7.2 **Chronic pain associated with hormonal therapy**
Gynaecomastia
Chronic gynaecomastia and breast tenderness are common complications of anti-androgen therapies for PCa, the incidence varying between drugs. Frequently associated with diethylstilboestrol (46), it is less common with flutamide and cyproterone (47-49), and uncommon in patients receiving LHRH agonist therapy (49). In elderly patients, it must be distinguished from primary breast cancer or secondary cancer in the breast (50).

4.1.8 **Conclusions**
Radio-, chemo- and hormone therapy are all valuable options for relieving cancer pain. The side-effects of inappropriate anticancer treatments can be very distressing, and so the disadvantages of treatments must be balanced against the palliative benefits. In many patients, the best approach to pain relief is through interdisciplinary co-operation.

Surgery, radio-, chemo- and hormone therapy are mainly used as antitumour treatment in the relief of pain. The rational use of any of these treatments demands knowledge not only of tumour biology, but also of the mechanisms of action of these specific oncological techniques. The therapeutic aim should be clearly understood prior to starting treatment.

Radical treatment should be given if the disease is potentially curable, but the intent should be symptomatic or palliative if the tumour is advanced or widely disseminated (29). The importance of early intervention needs to be emphasised, and education is crucial: patients must be aware of the early signs and symptoms of metastatic disease, which does not necessarily involve pain.
4.1.9 Recommendations at a glance (stage M1) (51-56)

ANTICANCER TREATMENT

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal therapy (orchiectomy, LHRH analogues, diethylstilboestrol equivalent)</td>
<td>1a</td>
<td>A</td>
</tr>
<tr>
<td>Total androgen blockade: flare prevention, second-line</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>Intermittent androgen suppression experimental</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>monotherapy with anti-androgen is an option</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>First-line treatment controls disease for 12-18 months, second-line individualised</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

Supportive care

<table>
<thead>
<tr>
<th>Therapy</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-dose glucocorticoids</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

Chemotherapy

<table>
<thead>
<tr>
<th>Therapy</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitoxantrone plus prednisolone</td>
<td>1b</td>
<td>B</td>
</tr>
<tr>
<td>Estramustine + vinblastine or etoposide or paclitaxel</td>
<td>2b</td>
<td>B</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

PAIN MANAGEMENT

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain assessment (localisation, type, severity, overall distress)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain due to painful or unstable bony metastases (single lesions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External beam irradiation</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>Pain due to painful bony metastases (widespread)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioisotopes (89Sr or 153Sm-EDTMP)</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>Pain due to painful metastases (many spots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisphosphonates</td>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

Systemic pain management

<table>
<thead>
<tr>
<th>Therapy</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO analgesic ladder step 1: NSAID or paracetamol</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

Opioid administration

<table>
<thead>
<tr>
<th>Therapy</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose titration</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>Access to breakthrough analgesia</td>
<td>1b</td>
<td>A</td>
</tr>
<tr>
<td>Tricyclic antidepressant and/or anticonvulsant in case of neuropathic pain</td>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

4.1.10 References

4.2 Pain management in transitional cell carcinoma patients

4.2.1 Clinical presentation

Globally, urothelial cancer is the fourth most common cancer in men and the ninth in women (1). Transitional cell carcinoma (TCC) is the most frequent cancer of the bladder and upper urinary tract. It arises much more frequently in the bladder than in the collecting system (calices, renal pelvis and ureter).

From the perspective of pain, there are no differences between TCC and other histotypes of urothelial malignant tumour. In bladder carcinoma, pain can be present early on as a burning pain together with irritative symptoms, or late in advanced disease due to local invasion of neighbouring tissues or metastatic organ invasion.

TCC of the renal collecting system represents 5-10% of all kidney tumours and 5% of all TCC of the urinary tract (2). TCC of the ureter accounts for only 3% of all TCC (3). In upper urinary tract TCC, pain is an initial symptom in around 30% of cases.

4.2.2 Origin of tumour-related pain

4.2.2.1 Bladder TCC

The main causes of tumour-related pain in bladder TCC are:

- obstruction of the upper urinary tract due to growth of bladder tumour close to the ureteral orifices.
- invasion of the surrounding areas by a locally advanced tumour (pelvic wall, nerve roots, other organs such as bowel, rectum)
- bone metastases
- soft tissue metastases (seldom painful)

4.2.2.2 Upper urinary tract TCC

The main causes of tumour-related pain in upper urinary tract TCC are:

- obstruction of the upper urinary tract (presenting symptom in around 30% of cases)
- acute obstruction due to blood clots
- invasion of the surrounding areas by a locally advanced tumour (posterior abdominal wall, nerve roots, paraspinous muscles, other organs such as bowel, spleen, liver)
- bone metastases
- soft tissue metastases (seldom painful)

4.2.3 Pain due to local impairment

4.2.3.1 Bladder TCC

Obstruction of the ureteral orifices by tumour infiltration may lead to hydroureter and consecutive flank pain due to ureteral distension (visceral pain). Transurethral resection of the tumour is often effective in eliminating
ureteral obstruction. Hydronephrosis is treated by temporary or permanent ureteral stenting or percutaneous/ open nephrostomy.

In locally advanced disease, infiltration of the contiguous soft tissue and neighbouring organs can cause acute burning pain by infiltration of the pelvic nerves (neuropathic pain), sometimes associated with paraesthesia irradiating to the lower limb, or motor deficit. If the tumour invades adjacent organs (small bowel, rectum) there can be obstruction, plus visceral pain due to distension of hollow organs. Growing bladder tumour can cause complete bladder outlet obstruction with hypogastric abdominal pain from bladder distension. Obstruction of the lymphatic vessels by lymphadenopathy can cause lymphoedema of the lower limbs with pain due to distension of muscle fascia (somatic pain).

In infiltrating and advanced bladder cancer, radical or debulking cystectomy and urinary diversion have a positive impact on pain, removing the neoplastic mass invading the surrounding tissues. Extended operations including excision of involved bowel are sometimes indicated. Palliative surgery may be necessary in occlusive intestinal syndromes (4).

Chemotherapy has some effect in 40-75% of patients with advanced disease (see guidelines on bladder cancer). It relieves pain by decreasing the neoplastic mass in respondent patients (5-9) (LE: 1a).

Radiotherapy can be effective in controlling pelvic pain due to local disease progression. Using 40-45 Gy on target volume, radiotherapy can reduce the local painful symptoms, but it can also worsen the irritative bladder symptoms and induce proctitis (10) (LE: 2b).

4.2.3.2 Upper urinary tract TCC
Locally advanced primary tumours are usually managed by surgery. Extended operations including excision of involved bowel, spleen or abdominal wall muscle are sometimes indicated. With regard to chemotherapy, the same considerations are valid for upper urinary tract TCC as for that of the bladder.

4.2.4 Pain due to metastases
Haematogenous metastases to the bone are often found in advanced bladder or upper urinary tract TCC. No data are available in the literature concerning the specific effect of chemotherapy on bone metastases alone. Radiotherapy has a palliative analgesic role in bone metastases: ten fractionated doses of 30-35 Gy, rapidly reduces, if not eliminates, pain in 80-90% of cases (10) (LE: 2b). Hemibody irradiation can also be used in diffuse bone metastases (10). There are no studies of radioisotope therapy for bone metastasis in TCC.

Orthopaedic surgery can stabilise pathological fractures (4). Neurosurgery may have a place in the palliation of pain derived from compression of the spinal cord.

4.2.5 References

4.3. Pain management in renal cell carcinoma patients

4.3.1 Clinical presentation
Renal cell carcinoma (RCC) is mainly diagnosed incidentally. There is no pain unless tumour invades adjacent areas or obstructs urine outflow due to haemorrhage and blood clot formation. Some 20-30% of patients present with metastases, and 30% of patients primarily presenting with a localised kidney tumour develop them during follow-up. RCC metastasises mainly to lung, bone, brain, liver and ipsilateral or contralateral adrenergic glands. Such patients have a maximal 2-year survival rate of 20%. Overall 50-60% of patients may need treatment for the symptoms of metastatic disease, mainly pain.

The main origins of tumour-related pain are:
- invasion of the surrounding areas by a locally advanced tumour (posterior abdominal wall, nerve roots, paraspinal muscles, other organs such as bowel, spleen, liver)
- obstruction of the upper urinary tract due to haemorrhage and subsequent formation of blood clots
- bone metastases
- soft tissue metastases (seldom painful).

4.3.2 Pain due to local impairment
Patients with invasion of surrounding areas (e.g. the posterior abdominal wall, nerve roots, paraspinal muscles, other organs such as bowel, spleen, liver) by a locally advanced primary tumour without metastases usually present with pain. Surgical management is the only effective option for this type of tumour. Extended operations that include excision of involved bowel, spleen or abdominal wall muscle are sometimes indicated.

Adjuvant immunotherapy or radiotherapy is without proven benefit with regard to recurrence. Even in cases of metastatic disease, palliative nephrectomy is indicated for the control of severe symptoms such as haemorrhage, pain or paraneoplastic syndromes (GCP). The frequency with which each of these symptoms is controlled, however, is unclear and there are no data in the literature comparing efficacy of nephrectomy in palliative situations with other therapies such as angioinfarction of the tumour.

Standard pre-operative (30 Gy) or post-operative radiotherapy offers no survival benefit, and its role in delaying local progression is questionable (1). Radiotherapy of soft tissue has no proven benefit for pain and tumour control.

In metastatic disease, the European Organisation for Research and Treatment of Cancer (EORTC) Genitourinary Group study 30947 demonstrated a significant increase in survival with palliative nephrectomy plus immunotherapy compared with immunotherapy (interferon-alpha) alone (median survival of 17 compared with 7 months) (2) (LE: 2b). There is no special effect on pain relief from immunotherapy.

Obstruction of the upper urinary tract due to haemorrhage and subsequent formation of blood clots is effectively treated by radical nephrectomy in non-metastatic tumour (GCP). If the patient is physically fit for surgery, this should be done to increase the quality of life, e.g. palliative nephrectomy in cases of metastatic tumour (GCP).

There are no data in the literature about the efficacy of other therapies such as angioinfarction of the tumour with regard to haemorrhage and pain relief in palliative situations. WHO guidelines recommend analgesic therapy and/or palliative drainage of the urinary tract if patients are not fit for major surgery.

4.3.3 Pain due to metastases
Patients with bone metastases have a significantly better life expectancy (30 months) than those with visceral metastases (11.6 months) (3).
Surgery is indicated for solitary bone metastases that can be resected completely, intractable bone pain, and impending or demonstrable pathological fracture. In bone metastases with extensive soft tissue involvement and severe pain, amputation of a limb is sometimes required to maintain quality of life. Surgery for bone metastases achieves a significant decrease in pain in 89-91% of patients (4-6) (LE: 2b/3). Additionally, surgery prevents pathological fractures and spinal compression, and there is a significant impact on survival.

Pre-operative embolisation of bone metastases or embolisation alone achieves good pain relief in hypervascular bone metastases (7,8) (LE: 3).

High dose radiation therapy for palliation of painful bony metastases has been shown to be effective in 50-75% of all renal cancer patients (9-11) (LE: 3), and in 67% with general bone metastases (12) (LE: 2b). There is no impact on survival. Small studies of radionuclide therapy (e.g. with 89Sr) have shown good pain relief in bony metastases from RCC (13) (LE: 3).

Bone metastases show poor response to immunotherapy, and there is no proven benefit in pain relief. Hormonal therapy and chemotherapy are even less effective, and have no room in pain control.

Standard pre-operative (30 Gy) or post-operative radiotherapy offers no survival benefit; its role in delaying local progression is questionable (1); there is no proven benefit for pain and tumour control for soft tissue metastases.

Immunotherapy alone achieved an overall response in 15-27% of patients (14). Immunotherapy in combination with chemotherapy (interleukin-2 + interferon-alpha + 5-fluorouracil) is the most effective therapy, achieving partial tumour response in up to 46% of patients and complete response in a maximal 15%, although these rates are mainly for lung/lymph node metastases (15).

Pain due to soft tissue metastases probably behaves analogous to tumour response, but there are no data on immunotherapy for pain control. Hormonal therapy has no proven benefit for survival or pain relief.

4.3.4 References

4.4 Pain management in patients with adrenal carcinoma

Adrenal carcinoma is a rare disease and has a poor prognosis. Non-functional adrenal lesions of more than 5 cm in diameter should be removed because there is a high probability of malignancy (1).

4.4.1 Malignant phaeochromocytoma

Phaeochromocytomas result from phaeochromocytes, which are the predominant cells of the adrenal medulla and are also found in the paraganglia near the aorta and in lesser numbers in the ganglia of the sympathetic nervous system (2). When correctly diagnosed and treated, the disease is curable, unless there are metastases.

Computed tomography (CT) and magnetic resonance imaging (MRI) have the highest sensitivity in detecting the tumour, achieving 94-100%. A 131I-metaiodobenzylguanidine (131I-MIBG) scan is positive in approximately 87% of cases (3).

Chemotherapy with cyclophosphamide, vincristine and dacarbazine has little effect on metastases (4) (LE: 2b), but therapeutic doses of 131I-MIBG (33 GBq = 900 mCi) may produce some results (5, 6) (LE: 2b). The hormone response rate is 50%. There are no data on pain relief with 131I-MIBG in metastatic phaeochromocytoma, but a response rate that is at least the same as for hormone levels should be expected.

Malignant phaeochromocytomas are considered radioresistant, although there are some cases in which radiation therapy induced partial remission (7) (LE: 3). There is no information about the efficacy of radiation concerning pain relief in cases of bone or soft tissue metastases.

4.4.2 Treatment of pain

- Soft tissue and/or bone pain due to metastases are best treated by therapeutic doses of 131I-MIBG, if the phaeochromocytoma takes up this radionuclide (8) (LE: 2b). There is no literature concerning chemotherapy or radiotherapy and pain relief in metastatic phaeochromocytoma.

- Treat the pain symptomatically following the recommendations made in Section 3.4.

4.4.2.1 Adrenocortical carcinomas

Carcinoma of the adrenal cortex is highly malignant, with local and haematogenous metastasis, and 5-year survival rates of 25-43% for all treatments. Patients with distant metastases have a mean survival of only 4 months (9). An autopsy study showed metastasis to lung (60%), liver (50%), lymph nodes (48%), bone (24%) and pleura/heart (10%) (10). These tumours often extend directly into adjacent structures, especially the kidney.

Chemotherapy is of low efficacy. The most effective drug is mitotane, an adrenolytic. The tumour-response rate is 25-35% (9, 11) (LE: 2a). It remains to be proven whether chemotherapy prolongs survival. Radiation therapy has not been useful except for palliation and pain management (12) (LE: 2b).

4.4.2.2 Treatment of the pain depending on its origin

- Abdominal symptoms are typical on first presentation of the tumour. The treatment is surgical removal of the primary tumour, with attempts to remove the entire lesion even if resection of adjacent structures is necessary, as well as resection of local lymph nodes.
Soft tissue and/or bone metastases causing local symptoms can be treated by radiotherapy (8,12). There are no data on chemotherapy or radiotherapy for pain relief in metastatic adrenocortical carcinomas.

Treat the pain symptomatically following the recommendations given in Section 3.4.

4.4.3 References

4.5 Pain management in penile cancer patients

4.5.1 Clinical presentation

In Europe, penile cancer is a relatively rare disease, with an incidence of < 2/100,000 per year, accounting for < 1% of all cancers in men. It is a disease of older men, increasing in incidence around the age of 60 years, peaking at around 80 years. The penile lesion itself usually alerts the patient to the presence of a penile cancer, which in most cases occurs on the glans (48%) and prepuce (21%). Patients with cancer of the penis tend to delay seeking medical attention (embarrassment, guilt, fear, ignorance and neglect). Pain does not develop in proportion to the extent of the local tumour, and is not usually a presenting complaint (1).

To date there is no consensus on the therapeutic management of metastatic disease, and few controlled studies of statistical significance have looked at both penile carcinoma and cancer-related pain. Most of the principles for pain management in prostatic carcinoma are valid here, but the following should also be borne in mind. Pain can occur in both early and advanced penile cancer. In the early stages, acute pain could indicate a voiding dysfunction (infravesical obstruction) (see Section 4.1.2.2). In advanced disease, pain is usually caused by metastases or lymph node involvement, especially inguinal lymph nodes. Positive lymph nodes are relatively common in penile cancer, inguinal or pelvic lymph nodes being most frequently affected. Positive nodes may be present in > 50% of cases. Systematic lymphadenectomy is curative in about 50% of these patients, but
permanent and disabling lymphoedema of the scrotum and lower limbs is a frequent complication.

Pain can result from:

- local pressure from the tumour mass or infiltration of hollow viscus organs;
- lymphoedema of the scrotum and lower limbs.

4.5.2 Pain due to local impairment

4.5.2.1 Soft-tissue and hollow-viscus invasion

Bladder outlet and ureteric obstruction is managed in the same manner as that described in Section 4.1.2.2.

4.5.3 Lymphoedema

Patients with a huge inguinal tumour mass, or scarred inguinal tissue after lymph node dissection, very often show lymphoedema of the lower limbs. This is more frequent in cases involving both inguinal and iliac nodes. Lymphoedema is treated with physiatric techniques (wraps, pressure stockings or pneumatic pumps), which can both improve function, and relieve pain and heaviness. Orthotics can immobilise and support painful or weakened structures, and assistive devices can benefit patients with pain on weight-bearing or ambulation.

4.5.4 Pain due to metastases

4.5.4.1 Anticancer management for pain relief

Pain management begins with antitumour treatment, usually surgery (partial/total penectomy or emasculation and lymphadenectomy), radiotherapy (not as effective; for palliation), and chemotherapy. If this is unsuccessful or not feasible, the next step is systemic analgesic pharmacotherapy (WHO ladder). Experience of combining chemotherapy with surgery or radiotherapy is very limited because of the relative rarity of penile carcinomas (1).

4.5.5 Conclusions

No conclusive or universally applicable recommendations can be given for managing pain related to metastatic penile carcinoma treatment, other cancer treatment regimes must be adapted. Attention should be paid to the guidelines appropriate for treating the metastases and organs involved (see also guidelines on penile cancer).

4.5.6 References

4.6 Pain management in testicular cancer patients

4.6.1 Clinical presentation

Testicular cancer generally affects men in the third or fourth decade of life. It is mainly diagnosed causally as an intrascrotal mass. Approximately 20% of patients present with scrotal or inguinal pain, which disappears after orchiectomy. Only 11% of patients complain of back or flank pain at first presentation (1). Primary advanced tumour with pain due to bone metastases is very rare, maximally 3% at first presentation. It should be treated causally by primary chemotherapy and adjuvant analgesics.

4.6.2 Pain due to local impairment

Orchiectomy is an effective treatment for local pain due to the scrotal mass.

4.6.3 Pain due to metastases

- Back or flank pain due to retroperitoneal lymphadenopathy slowly disappears as chemotherapy causes the mass to decrease (LE: 2b) (see guidelines on testicular cancer). Temporary analgesia is advisable (see Section 3.4.4).
- Retroperitoneal lymph node metastases can also cause obstruction of the ureter, leading to a symptomatic hydronephrosis with back or flank pain and perhaps additional fever. The therapy of choice is the immediate treatment of the hydronephrosis by ureteral stenting or the insertion of a percutaneous nephrostomy.
- Bone pain due to bony metastases is very rare and occurs mainly in patients with primary advanced disease and relapse after chemotherapy (2,3). Treatment with chemotherapy or second-line chemotherapy may be possible (see guidelines on testicular cancer). There is no literature on radiotherapy in cases of relapse and limitation of further chemotherapy.
- Back pain and neurological symptoms due to spinal cord compression by vertebral metastases may require urgent surgery (4) (LE: 3).
4.6.4 References

4.7 Recommendations at a glance

Table 6: Efficacy of the therapeutic options in pain relief (expert opinion)

<table>
<thead>
<tr>
<th>Origin of pain/therapeutic options</th>
<th>RCC</th>
<th>TCC</th>
<th>PCa</th>
<th>Penile cancer</th>
<th>Adrenergic cancer</th>
<th>Testicular cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>+++</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Radiation</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>?</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Radionuclide</td>
<td>+</td>
<td>?</td>
<td>+++</td>
<td>?</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>-</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hormone therapy</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analgesics</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Soft tissue infiltration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Radiation</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>?</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>?</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hormone therapy</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analgesics</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Nerve compression/nerve infiltration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>?</td>
<td>?</td>
<td>++</td>
</tr>
<tr>
<td>Radiation</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>?</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+++</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hormone therapy</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analgesics</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

RCC = renal cell carcinoma; TCC = transitional cell carcinoma; PCa = prostate cancer; ? = no conclusive data on pain control; – = no pain control; + = low pain control; ++ = moderate pain control; +++ = good pain control.
5. POST-OPERATIVE PAIN MANAGEMENT

5.1 Background
Post-operative pain is an expected, inevitable symptom in a surgical patient associated with surgical tissue damage, the presence of drains and tubes, post-operative complications or a combination of the above mentioned (1,2).

Approximately 70% of surgical patients experience a certain degree (moderate, severe or extreme) of post-operative pain (3,4) (LE: 1a). That is usually underestimated and undertreated (1,3), leading to increased morbidity and mortality, mostly due to respiratory and thromboembolic complications, increased hospital stay, impaired QoL, and development of chronic pain (1,3,5-7) (LE: 1a).

5.2 The importance of effective post-operative pain management
The physiological consequences of post-operative pain are shown in Table 7. All could delay or impair post-operative recovery and increase economic cost of surgery (longer hospitalisation) (13,14) (LE: 3). Inadequate post-operative pain control may also lead to development of chronic pain after surgery (15,16) (LE: 2b).

Table 7: Physiological consequences of post-operative pain

<table>
<thead>
<tr>
<th>Condition</th>
<th>Consequences</th>
<th>Ref.</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress response to surgery</td>
<td>Tissue trauma results in release of mediators of inflammation and stress hormones</td>
<td>8</td>
<td>2a</td>
</tr>
<tr>
<td></td>
<td>Activation of this 'stress response' leads to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- retention of water and sodium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- increase in metabolic rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory complications</td>
<td>Shallow breathing</td>
<td>9</td>
<td>2b</td>
</tr>
<tr>
<td></td>
<td>Cough suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lobular collapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retention of pulmonary secretions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infections</td>
<td>11</td>
<td>2a</td>
</tr>
<tr>
<td>Cardiovascular complications</td>
<td>Hypertension</td>
<td>10</td>
<td>2b</td>
</tr>
<tr>
<td></td>
<td>Tachycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased myocardial work,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- myocardial ischaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- angina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- infarction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolic complications</td>
<td>Reduced mobility due to inadequate pain management can lead to thromboembolic episodes</td>
<td>12</td>
<td>2b</td>
</tr>
<tr>
<td>Gastrointestinal complications</td>
<td>Gastric stasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paralytic ileus mostly after open urological operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal complications</td>
<td>Prolonged confinement to bed:</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- reduced mobility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- muscle atrophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological complications</td>
<td>Peri-operative pain may provoke fear and anxiety, which can lead to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- anger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- resentment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- hostility to medical and nursing personnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- insomnia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.1 Aims of effective post-operative pain management:
• to improve the comfort and satisfaction of the patient;
• to facilitate recovery and functional ability;
• to reduce morbidity;
• to promote rapid discharge from hospital (1-3) (LE: 1a).
Recommendation

| GR | Post-operative pain should be treated adequately, to avoid post-operative complications and the development of chronic pain. |

5.3 Pre- and post-operative pain management methods

5.3.1 Pre-operative patient preparation:
- patient evaluation;
- adjustment or continuation of medication in order to avoid abstinence syndrome;
- pre-medication as part of multi-modal analgesia;
- behavioural-cognitive interventions for the patient and family to alleviate anxiety and fear of post-operative pain reduce the post-operative analgesic requirement and result in better pain management (1) (LE: 1a).

Recommendation

| GR | Pre-operative assessment and preparation of the patient allow more effective pain management. |

5.3.2 Pain assessment
Careful pain assessment by the surgeon or the acute pain team before and after treatment can lead to more efficient pain control, and diminished morbidity and mortality (1,4) (LE: 2a). In the post-anaesthesia care unit pain should be evaluated, treated and re-evaluated initially every 15 minutes and then every 1-2 hours. After discharge to the surgical ward, pain should be assessed every 4-8 hours before and after treatment (17,18). Various rating scales have been described to measure post-operative pain, but their major disadvantage is that they are all subjective, making their results difficult to evaluate, especially in patients with communication difficulties (18).

Recommendation

| GR | Adequate post-operative pain assessment can lead to more effective pain control and fewer post-operative complications. |

5.3.3 Pre-emptive analgesia
Pre-emptive or preventive analgesia is defined as the administration of analgesia before surgical incision to prevent establishment of central sensitisation from incision or inflammatory injury in order to achieve optimal post-operative pain control (19). The results of clinical trials on its efficacy are controversial (19,20) (LE: 2b).

5.3.4 Systemic analgesic techniques
5.3.4.1 Non-steroidal anti-inflammatory drugs (NSAIDs)
These drugs act by inhibiting cyclo-oxygenase (COX) and the subsequent production of prostaglandins (Table 8). The main advantages of NSAIDs are that they do not produce respiratory depression or sedation, and seem to decrease the need for opioids (21). However, their analgesic effect is not strong enough for the management of severe post-operative pain (22).
Table 8: NSAIDs: drugs, dosage and administration

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage per day</th>
<th>Route of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional NSAIDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(non-selective COX inhibitors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketorolac</td>
<td>10-30 mg four times daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>400 mg three times daily</td>
<td>Orally</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>50 mg four times daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>75 mg twice daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td></td>
<td>50 mg three times daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td></td>
<td>100 mg twice daily</td>
<td>Rectally</td>
</tr>
<tr>
<td>COX-2 selective inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meloxicam</td>
<td>15 mg once per day</td>
<td>Orally</td>
</tr>
<tr>
<td>Lornoxicam</td>
<td>4-8 mg twice daily</td>
<td>Orally or iv</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>200 mg once per day</td>
<td>Orally</td>
</tr>
<tr>
<td>Parecoxib</td>
<td>40 mg once or twice daily</td>
<td>iv form only</td>
</tr>
</tbody>
</table>

iv = intravenous.

Intravenous administration of NSAIDs should start 30-60 min before the estimated end of surgery, and oral administration should start as soon as possible. Intramuscular administration of analgesic drugs for post-operative pain control is generally avoided because of variability of serum drug concentrations. (23).

Their main adverse effects are (22):
- gastric irritation, ulcer formation, bleeding;
- renal impairment;
- bronchospasm, deterioration of asthma;
- platelet dysfunction, inhibition of thromboxane A2;
- peri-operative bleeding;
- inhibition of bone healing and osteogenesis.

COX-2 selective inhibitors are associated with fewer gastrointestinal complications and better bone healing. In addition they cause minimal platelet inhibition compared with non-selective COX inhibitors (24). However, COX-2 inhibitors are contraindicated for long-term use in patients with cardiovascular problems. The use of COX-2 inhibitors is approved only for short-term post-operative pain therapy.

Recommendations

<table>
<thead>
<tr>
<th></th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAIDs are not sufficient as the sole analgesic agent after major surgery.</td>
<td>B</td>
</tr>
<tr>
<td>NSAIDs are often effective after minor or moderate surgery.</td>
<td>B</td>
</tr>
<tr>
<td>NSAIDs often decrease the need for opioids.</td>
<td>B</td>
</tr>
<tr>
<td>Avoid long-term use of COX inhibitors in patients with atherosclerotic cardiovascular disease.</td>
<td>B</td>
</tr>
</tbody>
</table>

5.3.4.2 Paracetamol

Paracetamol (acetaminophen) is a relatively safe and effective antipyretic and analgesic for mild to moderate post-operative pain. In cases of severe post-operative pain, the co-administration of paracetamol with strong opioids seems to reduce the consumption of opioids (26) (LE: 2). Its exact mode of action is unclear, although it may act by centrally inhibiting COX production (27).

Dosage and routes of administration
- 1 g four times daily (orally, iv or rectally). Dose should be reduced to 1 g three times daily in patients with hepatic impairment.
- Intravenous administration of paracetamol should start 30 min before the end of surgery, and oral administration as soon as possible.
Adverse effects
No significant adverse effects have been observed in patients receiving paracetamol for acute post-operative pain. Caution should be taken when administered to patients with chronic alcoholism or hepatic failure. A dose > 6 g/24 h can cause acute renal failure.

Combinations of paracetamol with opioids
Paracetamol in combination with an opioid (Table 9) provides adequate post-operative analgesia for mild to moderate pain without the adverse effects of strong opioids.

Table 9: Dosage and administration of paracetamol/opioid combinations

<table>
<thead>
<tr>
<th>Paracetamol</th>
<th>Opioid</th>
<th>Times per day</th>
<th>Route of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol 1 g</td>
<td>Codeine 60 mg</td>
<td>x 4</td>
<td>Orally or rectally</td>
</tr>
<tr>
<td>Paracetamol 600-650 mg</td>
<td>Codeine 60 mg</td>
<td>x 4</td>
<td>Orally or rectally</td>
</tr>
<tr>
<td>Paracetamol 500 mg</td>
<td>Codeine 30 mg</td>
<td>x 4</td>
<td>Orally or rectally</td>
</tr>
<tr>
<td>Paracetamol 300 mg</td>
<td>Codeine 30 mg</td>
<td>x 4</td>
<td>Orally or rectally</td>
</tr>
<tr>
<td>Paracetamol 650 mg</td>
<td>Dextropropoxyphene 65 mg</td>
<td>x 4</td>
<td>Orally</td>
</tr>
<tr>
<td>Paracetamol 600-650 mg</td>
<td>Tramadol 75-100 mg</td>
<td>x 4</td>
<td>Orally</td>
</tr>
<tr>
<td>Paracetamol 325 mg</td>
<td>Oxycodone 5 mg</td>
<td>x 4</td>
<td>Orally</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Grading</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Paracetamol can be very useful for post-operative pain management as it reduces the consumption of opioids.</td>
</tr>
<tr>
<td>B</td>
<td>Paracetamol can alleviate mild post-operative pain as a single therapy without major adverse effects.</td>
</tr>
</tbody>
</table>

5.3.4.3 Metamizole (dipyrone)
Metamizole is an effective antipyretic and analgesic drug used for mild to moderate post-operative pain and renal colic. Its use is prohibited in the USA and some European countries because of single reported cases of neutropenia and agranulocytosis. Elsewhere, it is considered to be a useful analgesic and antipyretic drug for moderate pain. Long-term use of metamizole is best avoided (28,29) (LE: 2b).

Dosage and route of administration
The dose is 500-1000 mg qds (orally, iv or rectally).

Adverse effects
Apart from single sporadic cases of neutropenia and agranulocytosis, metamizole can cause minor side-effects such as nausea, light hypotension and allergic reactions. Allergic reactions and the rare complication of agranulocytosis have been described only after direct iv administration, and so iv metamizole should therefore be administered as a drip (1 g in 100 mL normal saline).

5.3.4.4 Opioids
Opioids are the first-line treatment for severe acute post-operative pain (Table 10), Correct dose titration can minimise their unwanted effects (30).
Table 10: Opioids: drugs, dosage and administration

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage per day</th>
<th>Route of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong opioids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphine* 5-10 mg</td>
<td>six to eight times</td>
<td>orally</td>
</tr>
<tr>
<td>Morphine* 10-15 mg</td>
<td>six to 12 times</td>
<td>sc or im</td>
</tr>
<tr>
<td>Pethidine (meperidine) 50-100 mg</td>
<td>six to eight times</td>
<td>iv, sc or im</td>
</tr>
<tr>
<td>Oxycodone 5-10 mg</td>
<td>four to six times</td>
<td>orally, iv or sc</td>
</tr>
<tr>
<td>Weak opioids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tramadol 50-100 mg</td>
<td>four to six times</td>
<td>orally, iv or im</td>
</tr>
<tr>
<td>Codeine 30-60 mg (combined with paracetamol)</td>
<td>four times</td>
<td>orally or rectally</td>
</tr>
</tbody>
</table>

*A simple way of calculating the daily dosage of morphine for adults (20-75 years) is: 100 - patient’s age = morphine per day in mg; sc = subcutaneous; im = intramuscularly; iv = intravenously.

5.3.4.5 Patient-controlled analgesia (PCA)

Systemic administration of opioids may follow the ‘as needed’ schedule or ‘around-the-clock’ dosing. The most effective mode is patient-controlled analgesia (PCA) (31,32) (LE: 1a) (Table 11).

Table 11: Typical PCA dosing schedule

<table>
<thead>
<tr>
<th>Drug (concentration)</th>
<th>Bolus size</th>
<th>Lockout interval (min)</th>
<th>Continuous infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine (1 mg/mL)</td>
<td>0.5-2.5 mg</td>
<td>5-10</td>
<td>0.01-0.03 mg/kg/h</td>
</tr>
<tr>
<td>Fentanyl (0.01 mg/mL)</td>
<td>10-20 μg</td>
<td>5-10</td>
<td>0.5-0.1 μg/kg/h</td>
</tr>
<tr>
<td>Pethidine (10 mg/mL)</td>
<td>5-25 mg</td>
<td>5-10</td>
<td>-</td>
</tr>
</tbody>
</table>

Recommendation

Intravenous PCA provides superior post-operative analgesia, improving patient satisfaction and decreasing the risk of respiratory complications. **A**

Opioids adverse effects are:
- respiratory depression, apnoea;
- sedation;
- nausea, vomiting;
- pruritus;
- constipation;
- hypotension.

5.3.4.6 Opioid equi-analgesic doses

The commonest parenteral and oral equi-analgesic doses of opioids are shown in Table 12.
Table 12: Common equi-analgesic dosages for parenteral and oral administration of opioids*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Parenteral (mg)</th>
<th>Oral (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Pethidine</td>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>15</td>
<td>20-30</td>
</tr>
<tr>
<td>Dextropropoxyphene</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Tramadol</td>
<td>37.5</td>
<td>150</td>
</tr>
<tr>
<td>Codeine</td>
<td>130</td>
<td>200</td>
</tr>
</tbody>
</table>

*All listed opioid doses are equivalent to parenteral morphine 10 mg. The intrathecal opioid dose is 1/100th, and the epidural dose 1/10th, of the dose required systemically.

5.3.5 Regional analgesic techniques
5.3.5.1 Local anaesthetic agents
The most commonly used local anaesthetics are:
- bupivacaine;
- L-bupivacaine;
- ropivacaine.

Bupivacaine is considered to be cardiotoxic in high doses. L-bupivacaine and ropivacaine appear to be safer, but the degree of motor blockage they provide is not as good as that of bupivacaine. Ropivacaine has the longest duration of action.

5.3.5.2 Epidural analgesia
Epidural analgesia provides excellent post-operative pain relief for extended periods after major surgical operations, reducing post-operative complications and the consumption of opioids (1,2) (LE: 1a) (Table 13).

Table 13: Typical epidural dosing schemes*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Single dose</th>
<th>Continuous infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>1-5 mg</td>
<td>0.1-1 mg/h</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>50-100 μg</td>
<td>25-100 μg/h</td>
</tr>
<tr>
<td>Sufentanil</td>
<td>10-50 μg</td>
<td>10-20 μg/h</td>
</tr>
<tr>
<td>Pethidine</td>
<td>10-30 mg</td>
<td>10-60 mg/h</td>
</tr>
<tr>
<td>Bupivacaine 0.125% or ropivacaine 0.2% + fentanyl 2 μg/mL</td>
<td>10-15 mL</td>
<td>2-6 mL/h</td>
</tr>
</tbody>
</table>

* L-bupivacaine doses are equivalent to those of bupivacaine.

5.3.5.3 Patient-controlled epidural analgesia (PCEA)
PCEA has become very common because it allows individualisation of dosage, decrease in the use of drugs and greater patient satisfaction. It also seems to provide better analgesia than intravenous PCA (35,36) (LE: 1a) (Table 14).
Table 14: Typical PCEA dosing schemes

<table>
<thead>
<tr>
<th>Drug</th>
<th>Demand dose</th>
<th>Lockout interval (min)</th>
<th>Continuous rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>100-200 μg</td>
<td>10-15</td>
<td>300-600 μg/h</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>10-15 μg</td>
<td>6</td>
<td>80-120 μg/h</td>
</tr>
<tr>
<td>Pethidine</td>
<td>30 mg</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Bupivacaine 0.125% + fentanyl 4 μg/mL</td>
<td>2 mL</td>
<td>10</td>
<td>4 mL/h</td>
</tr>
<tr>
<td>Ropivacaine 0.2% + fentanyl 5 μg/mL</td>
<td>2 mL</td>
<td>20</td>
<td>5 mL/h</td>
</tr>
</tbody>
</table>

Recommendation

Epidural analgesia, especially PCEA, provides superior post-operative analgesia, reducing complications and improving patient satisfaction, and is therefore preferable to systemic techniques (2).

5.3.5.4 Neural blocks

Local anaesthetic blocks (intermittent and continuous) can be used after urological surgical operations to supplement post-operative analgesia (37) (LE: 2a) (Table 15).

Table 15: Examples of neural blocks

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Drug/dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iliohypogastric or ilioinguinal nerve infiltration after hernia repair</td>
<td>10-20 mL bupivacaine or ropivacaine 0.25-0.5%</td>
</tr>
<tr>
<td>Intercostal nerve infiltration</td>
<td>5-10 mL bupivacaine or ropivacaine 0.25-0.5%</td>
</tr>
<tr>
<td>Continuous intrapleural infusion</td>
<td>10 mL/h bupivacaine or ropivacaine 0.1-0.2%</td>
</tr>
</tbody>
</table>

5.3.5.5 Wound infiltration

Intra-operative wound infiltration with local anaesthetic (usually 10-20 mL of ropivacaine or bupivacaine 0.25-0.5%) can provide some post-operative analgesia and may reduce the requirement for systemic analgesia (38) (LE: 2b).

5.3.5.6 Continuous wound instillation

Continuous post-operative wound instillation of a local anaesthetic via a multi-hole catheter placed intraoperatively by the surgeon has been proven to provide satisfactory analgesia for moderate to severe post-operative pain, reducing consumption of systemic analgesics (39-41) (LE: 2b).

5.3.6 Multi-modal analgesia

The concept of multi-modal ('balanced') analgesia is that combining different closes and routes of administration of analgesics improves the effectiveness of pain relief after surgery and reduces the maximal dosage and adverse effects (42) (LE: 2b). It seems to be more effective when different drugs are administered via different routes than when different drugs are administered via a single route (1) (LE: 2b).

Recommendation

Multi-modal pain management should be employed whenever possible since it helps to increase efficacy while minimising adverse effects.

5.3.7 Special populations

5.3.7.1 Ambulatory surgical patients

A multi-modal analgesic plan uses a combination of NSAIDs or paracetamol plus local anaesthetics used as
peripheral nerve blocks, tissue infiltration, or wound instillation so as to avoid the use of opioids, which can prolong hospital stay (43,44) (LE: 2a), (45) (LE: 2b).

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For post-operative pain control in outpatients, multi-modal analgesia with a combination of NSAIDs or paracetamol plus local anaesthetics should be used.</td>
<td>B</td>
</tr>
<tr>
<td>If possible, avoid opioids.</td>
<td>B</td>
</tr>
</tbody>
</table>

5.3.7.2 Geriatric patients

Pain perception appears to be reduced in geriatric patients, and requirement for analgesia generally decreases with increasing age (46,47). Geriatric patients can also suffer from emotional and cognitive impairment such as depression and dementia, which could affect adequate pain management (48). Post-operative delirium in the elderly is a fairly common complication and is often multi-factorial. It may be associated with the administration of pethidine (49). Multi-modal post-operative analgesia may be the pain management technique of choice in elderly patients, as the dosages of medication required are lower. However, it is important to be vigilant for adverse reactions, as they tend to increase in number in the geriatric population (50) (LE: 2b). Epidural analgesia might diminish the risk of post-operative delirium and respiratory complications in elderly patients (51) (LE: 2b).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-modal and epidural analgesia are preferable for post-operative pain management in elderly patients because these techniques are associated with fewer complications.</td>
<td>B</td>
</tr>
</tbody>
</table>

5.3.7.3 Obese patients

Obese patients appear to be at higher risk for certain post-operative complications, including respiratory, cardiovascular, thromboembolic episodes, and wound infections (52,53). Because the administration of opioids to obese patients is associated with sudden respiratory arrest, a combination of NSAIDs or paracetamol with an epidural local anaesthetic might be the safest analgesic solution (54,55) (LE: 2b).

If absolutely necessary, opioids should be used with caution under careful titration to avoid depression of the respiratory drive (55). Oxygen therapy should also be applied post-operatively to increase oxygen saturation (56).

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The post-operative use of opioids should be avoided in obese patients unless absolutely necessary.</td>
<td>B</td>
</tr>
<tr>
<td>An epidural local anaesthetic in combination with NSAIDs or paracetamol is preferable.</td>
<td>B</td>
</tr>
</tbody>
</table>

5.3.7.4 Other groups

Critically ill or cognitively impaired patients present special difficulties. Regional or multi-modal analgesia might be more effective in such patients because drug dosages are reduced and behavioural interventions and patient-controlled methods are unsuitable (1) (LE: 3).

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no sufficient data to support a specific post-operative pain management plan for critically ill or cognitively impaired patients.</td>
<td>C</td>
</tr>
</tbody>
</table>

5.3.8 Post-operative pain management teams

The importance of efficient post-operative pain management has led to the development of acute post-operative pain management teams, which generally consist of nursing and pharmacy personnel led by an
They have been shown to improve pain relief, decrease analgesic medication-related side-effects, improve patient satisfaction, and decrease overall costs and morbidity rates (57-59) (LE: 2b). Improved pain control can lead to a shorter period of hospitalisation and fewer unscheduled re-admissions after day-case surgery (60) (LE: 3).

5.4 Specific pain treatment after different urological operations

5.4.1 Extracorporeal shock wave lithotripsy (ESWL)

This is a minimally invasive treatment, during and after which 33-59% of patients do not need any analgesia (61-63) (LE: 2b). Post-treatment pain is unlikely to be severe and oral analgesics are usually sufficient.

Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operatively: experience exists for alfentanil (0.5-1.0 mg/70 kg iv), given on demand during ESWL. NSAIDs or midazolam given 30-45 min before treatment reduces the need for opioids during the procedure (LE: 2b). With pre-medication of diclofenac (100 mg rectally), only 18% of patients needed pethidine during lithotripsy (64). After pre-medication with midazolam (5 mg orally), 70% of patients were completely free of pain during the treatment, and if buprenorphine was added this proportion rose to 87% (65). After pre-medication with midazolam (2 mg iv, 5 min before the treatment), diclofenac or tramadol proved to be safe and effective analgesics with fewer side-effects than fentanyl (66) (LE: 1b). Other effective regimes for intra-operative pain treatment are fentanyl (1 μ g/kg iv [67]), sufentanil or remifentanil. These drugs are usually given by the anaesthesiologist because of the risk of respiratory depression, which was significantly lower (20% vs 53%) after the procedure if remifentanil was used instead of sufentanil (68,69) (LE: 1b).
- Post-operative: NSAIDs, metamizole, paracetamol, codeine and paracetamol combination preparations or tramadol could all be used on an ‘as needed’ or time-contingent basis (Table 16). If pain is more severe or persistent, examination is generally necessary to exclude hydronephrosis or renal haematoma.

Table 16: Analgesic drug options after ESWL

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg)</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>50</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics should be given on demand during and after ESWL because not all patients need pain-relief.</td>
</tr>
<tr>
<td>Pre-medication with NSAIDs or midazolam often decreases the need for opioids during the procedure.</td>
</tr>
<tr>
<td>iv opioids and sedation can be used in combination during ESWL; dosage is limited by respiratory depression.</td>
</tr>
</tbody>
</table>

Post-ESWL, analgesics with a spasmyolytic effect are preferable (C).

5.4.2 Endoscopic procedures

5.4.2.1 Transurethral procedures

These operations are usually performed under spinal anaesthesia (epidural or subarachnoid block) with the patient awake or mildly sedated, and will usually provide analgesia for 4-6 h following surgery. Pain is generally caused by the indwelling catheter or the double-J (ureteral stent following ureterorenoscopy), which mimics overactive bladder syndrome. Drugs with an antimuscarinic effect have been proven to be useful in addition to the opioids (70) (LE: 1b).
Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operative: spinal (intra-thecal or epidural) anaesthesia will provide intra-operative analgesia and last for 4-6 h post-operatively.
- Post-operative: after 4-6 h, mild oral analgesics such as NSAIADs or paracetamol +/- codeine, or stronger opioids, also orally. In the case of bladder discomfort from the indwelling catheter, metamizole (orally or iv), pethidine (iv) or piritramid (iv) would also be effective. Antimuscarinic drugs such as oxybutynin (5 mg orally three times daily) are useful and reduce the need for opioids (70) (LE: 1b) (Table 17).

Table 17: Analgesic drug options after transurethral procedures

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg)</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>50</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100</td>
<td>Orally, im, sc or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Pethidine</td>
<td>25-100</td>
<td>Orally, im, sc or iv</td>
<td>Four to six times daily</td>
</tr>
<tr>
<td>Morphine</td>
<td>10</td>
<td>im</td>
<td>Eight times daily</td>
</tr>
</tbody>
</table>

Recommendations

- Post-operative analgesics with spasmolytic effect or mild opioids are preferable. C
- Antimuscarinic drugs could be helpful in reducing discomfort resulting from the indwelling catheter. B
- Antimuscarinic drugs may reduce the need for opioids. B

5.4.2.2 Percutaneous endoscopic procedures

The analgesic plan is nearly the same as that for transurethral procedures. Local anaesthetic (such as 10 mL of 0.5% bupivacaine) could be infiltrated locally into the skin incision. General anaesthesia is required for the procedure because of the uncomfortable decubitus (prone position) and the prolonged duration of the operation.

5.4.2.3 Laparoscopic procedures

These procedures are performed under general anaesthesia. Therefore patients cannot take oral medication for at least 4-6 h post-operatively, so parenteral analgesia should be used. Then, oral or systemic analgesia can be given, depending on bowel motility.

A particular problem after laparoscopic cholecystectomy is the development of shoulder pain as a result of diaphragmatic irritation following pneumoperitoneum. This seems to be dependent on the intra-abdominal pressure used during the procedure, as reduced carbon dioxide insufflation reduces post-operative shoulder pain (71-73) (LE: 1b). The same could apply for some transabominal urologic laparoscopic interventions.

Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operative: iv opioids +/- NSAIADs, paracetamol or metamizole administered by the anaesthesiologist. The infiltration of local anaesthetic into the port incisions reduces pain after laparoscopy (74).
- Post-operative: the administration of systemic opioids iv (im or sc), is very effective in the immediate post-operative period. NSAIADs (e.g. paracetamol and/or metamizole) and incisional local anaesthetics (multi-modal concept) can be given to reduce the need for opioids (74,75) (Table 18).
Table 18: Analgesic drug options after laparoscopic surgery

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg)</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metamizole</td>
<td>500-1000</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100</td>
<td>Orally, im, sc or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Morphine</td>
<td>10</td>
<td>Intermittent im</td>
<td>Eight times daily</td>
</tr>
<tr>
<td>Morphine</td>
<td>1 mg bolus</td>
<td>iv or sc</td>
<td>PCA, 5 min lockout</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
</tbody>
</table>

PCA = patient-controlled analgesia

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>B</td>
</tr>
</tbody>
</table>

5.4.3 Open surgery
5.4.3.1 Minor operations of the scrotum/penis and the inguinal approach

These two types of surgical operations are relatively minor and nearly all patients will be able to take oral analgesia afterwards (Table 19). The operation is often performed as an ambulatory procedure under local anaesthesia or with the aid of an ilioinguinal or iliohypogastric nerve block.

Table 19: Analgesic drug options after minor surgery of the scrotum, penis, and inguinal region

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg)</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>50</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>1000</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

5.4.3.2 Transvaginal surgery

General, local or regional anaesthesia can be used for these operations. The post-surgical analgesic options are listed in Table 20.
Table 20: Analgesic drug options after transvaginal urological surgery

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg)</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>50</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>1000</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100</td>
<td>Orally</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Pethidine</td>
<td>25-100</td>
<td>Orally, im, sc or iv</td>
<td>Four to six times daily</td>
</tr>
<tr>
<td>Morphine</td>
<td>10</td>
<td>im</td>
<td>Eight times daily</td>
</tr>
</tbody>
</table>

Recommendations

| NSAIDS are often sufficiently effective after minor or moderate surgery. | B |
| NSAIDs decrease the need for opioids. | B |

5.4.3.3 Perineal open surgery

Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operative: general anaesthesia is usually used, particularly for perineal radical prostatectomy, because of the uncomfortable exaggerated lithotomy position. Sometimes an intrathecal catheter (epidural) can be sited for intra-operative and post-operative pain control.
- Post-operative: continuous epidural infusion of a combination of opioids and local anaesthetic or PCA is usually used (Table 21). When systemic opioids are required, it is advisable to use them in combination with NSAIDs so as to reduce their dose and side-effects. When the patient is able to take oral analgesics oral metamizole or paracetamol +/- codeine can be used.

Table 21: Analgesic options after major perineal open surgery

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine 0.25% + fentanyl 2 μg/mL</td>
<td>5-15 mL/h</td>
<td>Continuous epidural infusion</td>
<td>n.a.</td>
</tr>
<tr>
<td>Morphine</td>
<td>1 mg bolus</td>
<td>iv</td>
<td>PCA, 5 min lockout</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100 mg</td>
<td>Orally, im, sc or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15 mg</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50 mg</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100 mg</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
</tbody>
</table>

PCA = patient-controlled analgesia.
n.a.: not applicable

5.4.3.4 Transperitoneal laparotomy

Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operative: general anaesthetic and regional technique; sometimes an intrapleural catheter can be sited.
- Post-operative: continuous epidural infusion of a combination of opioids and local anaesthetic.
(Table 22). Once the patient is able to take oral analgesics (depending on bowel motility) metamizole, paracetamol +/- codeine or tramadol can be used. Multi-modal concepts (combining NSAIDs with opioids, fast-track strategies, keeping abdominal and urinary drainage as short as possible) are useful in reducing the need for analgesia (76).

Table 22: Analgesic options after transperitoneal laparotomy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine 0.25% + fentanyl 2 µg/mL</td>
<td>5-15 mL/h</td>
<td>Continuous epidural infusion</td>
<td>n.a.</td>
</tr>
<tr>
<td>Morphine</td>
<td>1 mg bolus</td>
<td>iv</td>
<td>PCA, 5 min lockout</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100 mg</td>
<td>Orally, im, sc or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15 mg</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50 mg</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100 mg</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
</tbody>
</table>

PCA = patient-controlled analgesia.
n.a.: not applicable

Recommendations

<table>
<thead>
<tr>
<th>GR</th>
<th>The most effective method for systemic administration of opioids is PCA (see section 5.3.4.5), which improves patient satisfaction and decreases the risk of respiratory complications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Epidural analgesia, especially PCEA, provides superior post-operative analgesia, reducing complications and improving patient satisfaction and is preferable to systemic techniques (see sections 5.3.5.2 and 5.3.5.3).</td>
</tr>
</tbody>
</table>

5.4.3.5 Suprapubic/retropubic extraperitoneal laparotomy

Post-operatively, it is possible to use the oral route for analgesia earlier than after a transperitoneal procedure. Oral opioids, metamizole and/or paracetamol +/- NSAIDs can be used.

Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operative: general anaesthetic and regional technique.
- Post-operative: continuous epidural infusion of a combination of opioids and local anaesthetic (Table 23). Once the patient is able to take oral analgesics metamizole, paracetamol +/- codeine, +/- NSAIDs can be used.

Table 23: Analgesic options after suprapubic/retropubic extraperitoneal laparotomy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine 0.25% + fentanyl 2 µg/mL</td>
<td>5-15 mL/h</td>
<td>Continuous epidural infusion</td>
<td>n.a.</td>
</tr>
<tr>
<td>Morphine</td>
<td>1 mg bolus</td>
<td>iv</td>
<td>PCA, 5 min lockout</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100 mg</td>
<td>Orally, im, sc or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15 mg</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50 mg</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100 mg</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
</tbody>
</table>

PCA = patient-controlled analgesia.
n.a.: not applicable
5.4.3.6 Retroperitoneal approach - flank incision - thoracoabdominal approach

Analgesic plan

- Pre-operative assessment: see section 5.3.2.
- Intra-operative: general anaesthetic and regional technique; sometimes an intrapleural catheter can be inserted.
- Post-operative: continuous epidural infusion of a combination of opioids and local anaesthetic gives significantly better pain control compared with iv analgesics (77,78) (Table 24). If epidural analgesia is not possible or refused, PCA should be provided. Once the patient is able to take oral analgesics (depending on bowel motility) paracetamol +/- codeine or metamizole can be associated (to reduce the need for opioids) or used alone.

Table 24: Analgesic options after retroperitoneal approach - flank incision

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Method of administration</th>
<th>Frequency (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine 0.25% + fentanyl 2 μg/mL</td>
<td>5-15 mL/h</td>
<td>Continuous epidural infusion</td>
<td>n.a.</td>
</tr>
<tr>
<td>Morphine</td>
<td>1 mg bolus</td>
<td>iv</td>
<td>PCA, 5 min lockout</td>
</tr>
<tr>
<td>Metamizole</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>500-1000 mg</td>
<td>Orally or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Tramadol</td>
<td>50-100 mg</td>
<td>Orally, im, sc or iv</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Piritramid</td>
<td>15 mg</td>
<td>iv or sc</td>
<td>Four times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50 mg</td>
<td>Orally</td>
<td>Three times daily</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>100 mg</td>
<td>Rectally</td>
<td>Every 16 h</td>
</tr>
</tbody>
</table>

PCA, patient-controlled analgesia.

n.a.: not applicable

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Epidural analgesia, especially PCEA, provides superior post-operative analgesia, reducing complications and improving patient satisfaction and is therefore preferable to systemic techniques (see sections 5.3.5.2 and 5.3.5.3).

5.5 Dosage and method of delivery of some important analgesics

5.5.1 NSAIDs

Table 25: Dosage and delivery of NSAIDs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Single dosage (mg)</th>
<th>Maximal dosage (mg) per 24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>Orally</td>
<td>50-75</td>
<td>150</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>Rectally</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>Orally</td>
<td>200-800</td>
<td>2400</td>
</tr>
</tbody>
</table>
5.5.2 **Drugs with antipyretic effect**

Table 26: Dosage and delivery of antipyretics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Single dosage (mg)</th>
<th>Maximal dosage (mg/24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>Orally</td>
<td>500-1000</td>
<td>4000 (50 mg/kg)</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>Iv</td>
<td>1000-4000</td>
<td>(50 mg/kg)</td>
</tr>
<tr>
<td>Metamizole</td>
<td>Orally</td>
<td>500-1000</td>
<td>4000</td>
</tr>
<tr>
<td>Metamizole</td>
<td>Iv</td>
<td>1000-2500</td>
<td>5000</td>
</tr>
</tbody>
</table>

5.5.3 **Selective COX-2 inhibitor**

Table 27: Dosage and delivery of selective COX-2 inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Single dosage (mg)</th>
<th>Maximal dosage (mg/24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celecoxib</td>
<td>Orally</td>
<td>100-200</td>
<td>400</td>
</tr>
</tbody>
</table>

5.5.4 **Opioids**

Table 28: Dosage and delivery of opioids

<table>
<thead>
<tr>
<th>Drug</th>
<th>Method of administration</th>
<th>Common single dosage (mg)</th>
<th>Maximal dosage (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramadol</td>
<td>Orally</td>
<td>50</td>
<td>400-600</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Iv</td>
<td>50-100</td>
<td>400-600</td>
</tr>
<tr>
<td>Dihydrocodeine</td>
<td>Orally</td>
<td>60-120</td>
<td>240</td>
</tr>
<tr>
<td>Piritramid</td>
<td>Iv</td>
<td>7.5-22.5</td>
<td>90</td>
</tr>
<tr>
<td>Piritramid</td>
<td>sc/im</td>
<td>15-30</td>
<td>120</td>
</tr>
<tr>
<td>Pethidine</td>
<td>Orally</td>
<td>25-150</td>
<td>500</td>
</tr>
<tr>
<td>Pethidine</td>
<td>Rectally</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Pethidine</td>
<td>sc/im</td>
<td>25-150</td>
<td>500</td>
</tr>
<tr>
<td>Pethidine</td>
<td>Iv</td>
<td>25-100</td>
<td>500</td>
</tr>
<tr>
<td>Morphine*</td>
<td>Orally</td>
<td>Starting with 10</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>Rectally</td>
<td>Starting with 10</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>sc/im</td>
<td>Starting with 5</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>Iv</td>
<td>Starting with 2</td>
<td>No maximal dose</td>
</tr>
<tr>
<td>Morphine*</td>
<td>Iv (PCA)</td>
<td>0.5-2.5 mg bolus</td>
<td>No maximal dose</td>
</tr>
</tbody>
</table>

Strong opioids have no real upper limit in dosage (except buprenorphine). The dose must be titrated in correlation with pain relief and depending on the individual strength of unwanted effects such as respiratory depression (see section 5.3.4.4).

5.6 **Peri-operative pain management in children**

5.6.1 **Peri-operative problems**
The main pre-operative problems in children are fear of surgery, anxiety about separation from their parents, and the pain of procedures such as venepuncture. Contrary to the popular belief, the presence of parents during anaesthesia induction does not alleviate children’s anxiety (79) (LE: 1a). The pre-operative use of oral morphine sulfate, 0.1 mg/kg, can help to prevent crying in children and thereby reduce oxygen consumption.
and pulmonary vasoconstriction (Table 29). The prior application of EMLA (lidocaine 2.5%, prilocaine 2.5%) cream helps to reduce the pain of venepuncture (80) (LE: 1a). Atropine, 0.01-0.02 mg/kg iv, im, orally or rectally, prevents bradycardia during anaesthesia induction.

Table 29: Pre-medication drugs in children

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosing</th>
<th>Route of administration</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamine</td>
<td>6 mg/kg</td>
<td>Oral, intranasal, intramuscular</td>
<td>NMDA antagonist</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0.5 mg/kg</td>
<td>Oral, intranasal, rectally</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>4 μg/kg</td>
<td>Oral, intranasal</td>
<td>α2- receptor agonist</td>
</tr>
<tr>
<td>Clonidine</td>
<td>4 μg/kg</td>
<td>Oral</td>
<td>α2- receptor agonist</td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>4-6 mg/kg</td>
<td>Intramuscular</td>
<td>Barbiturate</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>50-100 mg/kg</td>
<td>Oral</td>
<td>Barbiturate</td>
</tr>
<tr>
<td>Methohexital</td>
<td>25-30 mg/kg</td>
<td>Rectally</td>
<td>Barbiturate</td>
</tr>
</tbody>
</table>

Recommendation

<table>
<thead>
<tr>
<th></th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMLA local application</td>
<td>A</td>
</tr>
</tbody>
</table>

5.6.2 Post-operative analgesia

Post-operatively, paracetamol, NSAIDs, opioids and their combinations are used according to the severity of the surgical procedure (Table 30).

Table 30: Dosage of analgesics in children for post-operative analgesia

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Route of administration</th>
<th>Severity of surgical procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>10-15 mg/kg every 4 hours 20-30 mg/kg every 6 hours</td>
<td>Oral, Rectally</td>
<td>Minor, Minor</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>10-15 mg/kg every 6 hours</td>
<td>Oral, iv, rectally</td>
<td>Minor, medium</td>
</tr>
<tr>
<td>Naproxen</td>
<td>6-8 mg/kg every 8-12 hours</td>
<td>Oral, iv, rectally</td>
<td>Minor, medium</td>
</tr>
<tr>
<td>Codeine</td>
<td>0.5-1 mg/kg every 3-4 hours</td>
<td>Oral</td>
<td>Minor, medium</td>
</tr>
<tr>
<td>Morphine</td>
<td>0.1 mg/kg every 2-4 hours</td>
<td>iv, sc</td>
<td>Medium, major</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>0.1-0.2 mg/kg every 3-4 hours</td>
<td>Oral</td>
<td>Medium</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>0.04-0.08 mg/kg every 3-4 hours</td>
<td>Oral</td>
<td>Medium</td>
</tr>
<tr>
<td>Tramadol</td>
<td>1 mg/kg every 4-6 hours</td>
<td>iv</td>
<td>Medium, major</td>
</tr>
<tr>
<td>Pethidine</td>
<td>2-3 mg/kg every 3-4 hours</td>
<td>iv</td>
<td>Medium, major</td>
</tr>
</tbody>
</table>

The post-operative use of COX-2 inhibitors in children is still controversial. PCA can be used safely in children older than 6 years. Nurse-controlled analgesia is effective in infants and children unable to use PCA (81). Locoregional techniques such as wound infiltration, nerve blocks, caudal and epidural analgesia are also successful (82,83). Most common drugs used are bupivacaine and ropivacaine (Table 31). Higher volumes of lower drug concentrations appear to be more effective than lower volumes of higher concentrations (84) (LE: 1a). The addition of opioids, ketamine or clonidine increases the duration of pain relief and reduces the need for rescue analgesia, so providing more effective pain relief than local anaesthesia alone in caudal analgesia (85-87) (LE: 1a).
Table 31: Epidural dosage of local anaesthesia

<table>
<thead>
<tr>
<th>Drug</th>
<th>Bolus 0-12 months</th>
<th>Bolus > 1 year</th>
<th>Infusion for 0-12 months</th>
<th>Infusion > 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine</td>
<td>2 mg/kg</td>
<td>2.5 mg/kg</td>
<td>0.2 mg/kg/hour</td>
<td>0.4 mg/kg/hour</td>
</tr>
<tr>
<td>Ropivacaine</td>
<td>2.5 mg/kg</td>
<td>3.5 mg/kg</td>
<td>0.3 mg/kg/hour</td>
<td>0.6 mg/kg/hour</td>
</tr>
</tbody>
</table>

5.7 References

38. Mulroy MF, Burgess FW, Emanuelsson BM. Ropivacaine 0.25% and 0.5%, but not 0.125% provide effective wound infiltration analgesia after outpatient hernia repair, but with sustained plasma drug levels. Reg Anesth Pain Med 1999 Mar-Apr;24(2):136-41.

6. NON-TRAUMATIC ACUTE FLANK PAIN

6.1 Background
Acute flank pain is a frequently occurring and complex medical problem. Ureterolithiasis is the most common non-traumatic cause. However, half of all renal colics are not caused by urolithiasis (1-3) (Table 32).

Table 32: Main urological and non-urological causes of flank pain

<table>
<thead>
<tr>
<th>Urological causes</th>
<th>Non-urological causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal or ureteral stones</td>
<td>Aortic aneurysm</td>
</tr>
<tr>
<td>Urinary tract infection (pyelonephritis, pyonephrosis, renal abscess)</td>
<td>Gallbladder disorder</td>
</tr>
<tr>
<td>Uretero-pelvic junction obstruction</td>
<td>Gastrointestinal disorders</td>
</tr>
<tr>
<td>Renal vascular disorders (renal infarction, renal vein thrombosis)</td>
<td>Pancreatic disease</td>
</tr>
<tr>
<td>Papillary necrosis</td>
<td>Gynaecological disorders</td>
</tr>
<tr>
<td>Intra- or peri-renal bleeding</td>
<td>Musculoskeletal disease</td>
</tr>
<tr>
<td>Testicular cord torsion</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Initial diagnostic approach

6.2.1 Symptomatology
History and physical examination, including body temperature, can be very helpful in the differential diagnosis of acute flank pain (4).

- **Acute renal colic** is indicated by pain of short duration (< 12 hours), nausea, vomiting, loin tenderness and haematuria (erythrocytes > 10,000/mm³) (4).

- Because the signs and symptoms can be very similar, **acute uncomplicated pyelonephritis** should be immediately differentiated from complicated renal colic:
 - concomitant fever (> 38°C) makes imaging obligatory (5). A radiological evaluation of the upper urinary tract should be offered to every patient presenting with flank pain and fever to rule out urinary tract obstruction irrespective of the accompanying symptoms, duration of the episode and urine macroscopic or microscopic findings.
 - imaging is also imperative in patients with acute flank pain and a solitary kidney (LE: 4).

- Acute flank pain in patients with an increased risk for thromboembolic events should raise the suspicion of **renal infarction** (6).

- Careful abdominal examination can reveal an abdominal **aortic aneurysm** (misdiagnosed in 30% of patients).

- **Renal vein thrombosis** (RVT) may often present with symptoms of acute flank pain, proteinuria, haematuria, hypotension and renal insufficiency.

- **Obstruction of the UPJ** can result in acute flank or abdominal pain after a high fluid volume intake, especially in paediatric patients.

- **Renal papillary necrosis** is not uncommon in the course of systemic diseases such as diabetes mellitus or analgesic nephropathy; the passage of sloughed papillae down the ureter may cause flank pain and haematuria.

- **Testicular torsion** should always be excluded in children with acute abdominal/flank pain.

- **Torsion of the appendix testis** can also result in abdominal pain or radiate to the flank.

- **Spontaneous bleeding** either within the kidney or to the retroperitoneum can be caused by kidney tumours (including angiomylipomas), bleeding disorders or anticoagulation; acute flank pain is sometimes the presenting symptom.

Recommendation

<table>
<thead>
<tr>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile patients (> 38°C) with acute flank pain and/or with a solitary kidney need urgent imaging.</td>
</tr>
</tbody>
</table>

6.2.2 Laboratory evaluation
All patients with acute flank pain require a urine test (red and white cells, bacteria or urine nitrite), blood cell count, and serum creatinine measurement. In addition, febrile patients with flank pain require C-reactive protein and urine culture. Pyelonephritis ± obstructive uropathy should be suspected when the white blood count exceeds 15,000/mm³.
6.2.3 **Diagnostic imaging**

6.2.3.1 **Ultrasonography**
Unenhanced helical computed tomography has high sensitivity and specificity for the evaluation of acute flank pain (7,8) (LE: 1a). Unenhanced helical computed tomography is superior because it detects ureteral stones with a sensitivity and specificity of 94-100%, regardless of stone size, location and chemical composition, and identifies extraurinary causes of flank pain in about one-third of all patients presenting with it. In addition, it does not need contrast agent, and is a time-saving technique (8,9) (LE: 1a).

6.2.3.2 **Intravenous urography (IVU)**
The use of US in the management of acute flank pain has been increasing. If the findings of pelvic and/or ureteral dilatation, stone visualisation and the absence of ureteral ejaculation are combined, sensitivity to ureteral dilatation can be 96% (7,10,11) (LE: 2a). Together with a plain abdominal radiograph, US can be accepted when computed tomography (CT) is not available (7,12-16) (LE: 1b). The disadvantages of US include inability to differentiate dilatation from true obstruction and the need for highly specialised personnel (12). Sensitivity varies from 58-96% in untrained staff in emergency rooms (15), but evidence suggests that, with even short training, non-specialists can be highly effective at excluding disorders such as abdominal aortic aneurysm, free abdominal fluids, gallstones and obstructive uropathy (15) (LE: 2b). US is the diagnostic imaging modality of choice during pregnancy.

6.2.3.3 **Unenhanced helical CT (UHCT)**
IVU reliably provides information on the anatomy of the urinary collecting system (ureteral and renal pelvic dilatation) in 80-90% of cases and can identify ureteral calculi in 40-60% of cases. Direct identification of ureteral calculi can be achieved in 40-60% of cases, whereas indirect signs (e.g., ureteral and renal pelvic dilatation) allows detection in 80-90% of cases. Drawback is that IVU results can be hampered by poor quality related to suboptimal bowel preparation, toxicity of contrast agents, allergic and anaphylactic reactions, and by significant radiation exposure. In emergency cases, IVU should be avoided due to the risk of fornix rupture.

UHCT or IVU should be considered in patients initially evaluated by other means who are still febrile after 72 h of treatment to rule out further complicating factors (renal, perinephric or prostatic abscesses) (8,9).

Table 33 shows comparative results of UHCT US and IVU in assessing acute flank pain and suspicion of ureterolithiasis (17-19). Figure 2 summarises the diagnostic approach to non-traumatic acute flank pain.
Acute flank pain

History, physical examination, temperature, urinalysis → pain treatment

If not conclusive

Ultrasonography and/or unenhanced CT scan

Normal + normal urinalysis

Non-urological flank pain

Refer patient

Normal + abnormal urinalysis (leucocyturia, haematuria or bacteriuria)

Further investigation and appropriate treatment

Genitourinary abnormality

Non-genitourinary abnormality

Refer patient

No hydrenephrosis

No stone

Check for:
- renal infarct
- renal abscess
- renal vein thrombosis
- tumour
- cyst
- haematoma
- urinoma
- extrarenal mass

Stone

Ureteral obstruction

Check for:
- ureteral tumour
- papillary necrosis
- upj obstruction
- retroperitoneal fibrosis

No UTI

Stone management

Treat infection

Management to relieve pain or obstruction

Stone management

No UTI

UTI

Stone

Hydrenephrosis

No stone

No UTI

UTI

Management to relieve pain or obstruction

Stone management

Urinary drainage and infection treatment

CT = computed tomography; UTI = urinary tract infection.
Recommendation

<table>
<thead>
<tr>
<th>Imaging modality</th>
<th>Performance</th>
<th>Ref. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHCT</td>
<td>Sensitivity 100%, specificity 96%, accuracy 98%</td>
<td>17</td>
</tr>
<tr>
<td>Abdominal radiograph + US versus UHCT</td>
<td>UHCT: sensitivity and specificity of 100% US: sensitivity 100%, specificity 90%</td>
<td>18</td>
</tr>
<tr>
<td>Low-dose UHCT versus IVU</td>
<td>UHCT: sensitivity 97%, specificity 96% Low-dose UHCT is superior to IVU</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 33: Comparative results of UHCT, US and IVU in assessment of acute flank pain and suspected ureterolithiasis (12)

6.3 Initial emergency treatment
6.3.1 Systemic analgesia
Pain relief is usually the first, most urgent, therapeutic step (20, 21):

- Intravenous (iv) non-steroidal anti-inflammatory drugs (nsaids) are very effective in most cases, e.g. a bolus of diclofenac sodium, 75 mg (le: 1a) (21); a slow iv injection of ketorolac, 30 mg, 4 times daily, is equivalent to diclofenac in the treatment of renal colic (22).
- Tests have shown a single dose of dipyprone to be less effective than diclofenac, 75 mg (23) (le: 1a), but a slow iv infusion of dipyridamol, 1 g or 2 g, is just as effective as diclofenac (24).
- In cases of unresponsiveness to diclofenac (25) (le: 1b), or contraindication of NSAIDs (24) (le: 1b), iv papaverine hydrochloride (120 mg) is a safe and effective alternative.
- Large-scale studies have shown that NSAIDs and opiiods are both effective analgesics, but vomiting is more prevalent with opioids (particularly pethidine) (21).
- The combination of iv morphine + ketorolac seems superior to either drug alone, and appears to be associated with a decrease in the need for rescue doses of analgesia (26).
- Antimuscarinics are often used in acute renal colic; there is no evidence that hyoscine butylbromide reduces opioid requirements in this condition (26) (LE: 1b).

The origin of the pain should be immediately clarified in febrile patients and those with a solitary kidney.

Recommendation

| In patients presenting with acute flank pain NSAIDs such as diclofenac (75 mg bolus) and dipyprone (1-2 g slow iv injection) are the drugs of first choice. | A |

6.3.2 Local analgesia
A number of manipulations have been tested in the field of acute renal colic.

- Local warming of the abdomen and lower back region seems to decrease pain in patients with acute renal colic (27) (LE: 1a).
- Trigger-point injection of lidocaine can provide effective pain relief in 50% of patients with renal colic (28); it is significantly better than iv butylscopolamine bromide + sulpyrine (28) (LE: 1a). There are no comparative studies with NSAIDs.

6.3.3 Supportive therapy
Patients with acute flank pain often present with moderate to severe dehydration. Fever, vomiting and anorexia produce serious discomfort and should be treated from the outset. If possible, iv fluids should be generous (60 mL/h normal saline and 60 mL/h 5% glucose solution), but maintenance iv fluids (20 mL/h normal saline) can be as effective as forced hydration with regard to pain perception and analgesic use (29) (LE: 1b). No clear evidence supports using diuretics to treat acute ureteral colic (30). Metoclopramide chloride (0.5 mg/kg/24 h in three divided doses) can be effective in controlling nausea and vomiting irrespective of aetiology (infectious, obstructive, oncological).
6.3.4 **Upper urinary tract decompression**
If pain relief cannot be achieved using medical therapy and there are signs of infection and impaired renal function, upper urinary tract drainage should be undertaken. The main indications for stenting for urgent relief of obstruction include (31):

- urine infection with urinary tract obstruction
- urosepsis
- intractable pain and/or vomiting
- obstruction of a solitary or transplanted kidney
- bilateral obstructing stones
- ureteral calculus obstruction in pregnancy.

6.4 **Aetiological treatment**

6.4.1 **Urolithiasis**
General concepts for treating urolithiasis have been defined in the *EAU Guidelines on Urolithiasis* (32).

6.4.2 **Infectious conditions**
Infectious uncomplicated conditions (i.e. acute pyelonephritis in otherwise healthy individuals) should be treated with appropriate antibiotics and analgesics according to the *EAU Guidelines on Urological Infections* (33).

The first-line treatment of mild cases should be an oral fluoroquinolone (twice daily for 7 days) in areas with low rates of fluoroquinolone-resistant *Escherichia coli*. In areas with raised resistance rates, or in pregnancy, lactation or adolescence, a second- or third-generation oral cephalosporin is recommended. Pain can usually be controlled with oral NSAIDs (diclofenac 75 mg, three times daily, or dipyrone 500 mg three times daily) except in pregnant or lactating women.

6.4.3 **Other conditions**

6.4.3.1 **Uretero-pelvic junction obstruction**
Uretero-pelvic junction obstruction can result in intermittent flank or abdominal pain. Symptoms may worsen during brisk diuresis (after consumption of caffeine or alcohol). Dismembered or non-dismembered pyeloplasty is standard. A ureteral stent can help to relieve pain in very symptomatic patients prior to definitive surgery. Outcomes are excellent, with resolution of the obstruction in 90-95% of cases, including newborns (34).

6.4.3.2 **Papillary necrosis**
Papillary necrosis commonly presents as painless macroscopic haematuria, but can be complicated by ureteral obstruction. As well as symptomatic treatment, treatment should be given for the underlying cause of papillary necrosis, such as interstitial nephritis, acute pyelonephritis, diabetes mellitus, analgesic abuse or sickle cell disease. Ureteral obstruction due to sloughed papillae can be successfully treated with ureteroscopy or temporary ureteral stenting (35).

6.4.3.3 **Renal infarction**
There is no specific treatment for acute renal infarction, but the underlying disease (atrial fibrillation, left ventricular thrombus or a hypercoagulable state) may require anticoagulation with iv heparin followed by warfarin to prevent future events (36).

6.4.3.4 **RVT**
RVT is often clinically silent, but can present with acute flank pain. Systemic anticoagulation with heparin to prevent further propagation of thrombus or other thromboembolic phenomena (37) is standard, but the successful use of fibrinolytic agents in selected patients without clinical contraindications has been reported (38). Thrombectomy or nephrectomy is reserved for cases refractory to medical therapy.

6.4.3.5 **Intra- or peri-renal bleeding**
Acute spontaneous intra- or peri-renal bleeding often results in acute flank pain. Spontaneous renal haemorrhage (Wunderlich’s syndrome), is an unusual and life-threatening cause of acute abdomen. Nephrectomy is usually the only therapeutic alternative (39,40).

6.4.3.6 **Testicular cord torsion**
Testicular cord torsion can produce lower abdomen and flank pain; it should be treated surgically at once.
6.5 References

http://www.uroweb.org/nc/professional-resources/guidelines/online/

http://www.uroweb.org/nc/professional-resources/guidelines/online/

http://www.uroweb.org/nc/professional-resources/guidelines/online/

http://www.uroweb.org/nc/professional-resources/guidelines/online/

7. **ABBREVIATIONS USED IN THE TEXT**

This list is not comprehensive for the most common abbreviations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate</td>
</tr>
<tr>
<td>ATC</td>
<td>around-the-clock</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COX</td>
<td>cyclo-oxygenase</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>EDTMP</td>
<td>ethylenediaminetetramethylene phosphonate</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organisation for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>ESWL</td>
<td>extracorporeal shock wave lithotripsy</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GCP</td>
<td>good clinical practice</td>
</tr>
<tr>
<td>IASP</td>
<td>International Association for the Study of Pain</td>
</tr>
<tr>
<td>im</td>
<td>intramuscular</td>
</tr>
<tr>
<td>iv</td>
<td>intravenous</td>
</tr>
<tr>
<td>IVU</td>
<td>intravenous urography</td>
</tr>
<tr>
<td>131J-MIBG</td>
<td>131J-metaiodobenzylguanidine</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NRS</td>
<td>numerical rating scale</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>PACU</td>
<td>post-anaesthesia care unit</td>
</tr>
<tr>
<td>PCA</td>
<td>prostate cancer</td>
</tr>
<tr>
<td>PCA</td>
<td>patient-controlled analgesia</td>
</tr>
<tr>
<td>PCEA</td>
<td>patient-controlled epidural analgesia</td>
</tr>
<tr>
<td>prn</td>
<td>as needed</td>
</tr>
<tr>
<td>PRPE</td>
<td>perineal radical prostatectomy</td>
</tr>
<tr>
<td>RCC</td>
<td>renal cell carcinoma</td>
</tr>
<tr>
<td>RLND</td>
<td>retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>sc</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>153Sm</td>
<td>samarium-153</td>
</tr>
<tr>
<td>89Sr</td>
<td>strontium-89</td>
</tr>
<tr>
<td>SRI</td>
<td>selective serotonin reuptake inhibitors</td>
</tr>
<tr>
<td>SPECT</td>
<td>single photon emission computed tomography</td>
</tr>
<tr>
<td>TCA</td>
<td>tricyclic antidepressants</td>
</tr>
<tr>
<td>TCC</td>
<td>transitional cell carcinoma</td>
</tr>
<tr>
<td>TURB</td>
<td>transurethral resection of bladder tumour</td>
</tr>
<tr>
<td>TURP</td>
<td>transurethral resection of prostate</td>
</tr>
<tr>
<td>UHCT</td>
<td>unenhanced helical CT</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
<tr>
<td>VRS</td>
<td>verbal rating scale</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>

Conflict of interest

All members of the General Pain Management Guidelines working group have provided disclosure statements on all relationships that they have and that might be perceived to be a potential source of conflict of interest. This information is kept on file in the European Association of Urology Central Office database. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.