Guidelines on Testicular Cancer


© European Association of Urology 2007
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1  BACKGROUND</td>
<td>4</td>
</tr>
<tr>
<td>1.1  Methods</td>
<td>4</td>
</tr>
<tr>
<td>2  DIAGNOSIS, PATHOLOGY AND CLASSIFICATIONS</td>
<td>4</td>
</tr>
<tr>
<td>2.1  Scrotal ultrasound</td>
<td>4</td>
</tr>
<tr>
<td>2.2  Serum tumour markers</td>
<td>5</td>
</tr>
<tr>
<td>2.3  Inguinal exploration and orchidectomy</td>
<td>5</td>
</tr>
<tr>
<td>2.3.1  Organ-sparing surgery</td>
<td>5</td>
</tr>
<tr>
<td>2.4  Pathological examination of the testis</td>
<td>5</td>
</tr>
<tr>
<td>2.5  Staging and clinical classification</td>
<td>5</td>
</tr>
<tr>
<td>3  DIAGNOSIS AND TREATMENT OF TESTICULAR INTRAEPITHELIAL NEOPLASIA (TIN)</td>
<td>8</td>
</tr>
<tr>
<td>4  IMPACT ON FERTILITY AND FERTILITY-ASSOCIATED ISSUES</td>
<td>8</td>
</tr>
<tr>
<td>5  TREATMENT: STAGE I GERM CELL TUMOURS</td>
<td>9</td>
</tr>
<tr>
<td>5.1  Stage I seminoma</td>
<td>9</td>
</tr>
<tr>
<td>5.1.1  Adjuvant radiotherapy</td>
<td>9</td>
</tr>
<tr>
<td>5.1.2  Surveillance</td>
<td>9</td>
</tr>
<tr>
<td>5.1.3  Adjuvant chemotherapy</td>
<td>9</td>
</tr>
<tr>
<td>5.1.4  Retroperitoneal lymph node dissection (RPLND)</td>
<td>9</td>
</tr>
<tr>
<td>5.1.5  Risk-adapted treatment</td>
<td>10</td>
</tr>
<tr>
<td>5.1.6  Guidelines for the treatment of seminoma stage I</td>
<td>10</td>
</tr>
<tr>
<td>5.2  NSGCT stage I</td>
<td>10</td>
</tr>
<tr>
<td>5.2.1  Prognostic factors</td>
<td>10</td>
</tr>
<tr>
<td>5.2.2  Risk-adapted treatment</td>
<td>10</td>
</tr>
<tr>
<td>5.2.2.1  Surveillance</td>
<td>10</td>
</tr>
<tr>
<td>5.2.2.2  Adjuvant chemotherapy</td>
<td>10</td>
</tr>
<tr>
<td>5.2.3  Retroperitoneal lymph node dissection</td>
<td>11</td>
</tr>
<tr>
<td>5.3  CS1S with (persistently) elevated serum tumour markers</td>
<td>11</td>
</tr>
<tr>
<td>5.3.1  Guidelines for the treatment of non-seminomatous germ cell tumour (NSGCT) stage I</td>
<td>11</td>
</tr>
<tr>
<td>6  TREATMENT: METASTATIC GERM CELL TUMOURS</td>
<td>11</td>
</tr>
<tr>
<td>6.1  Stage II A/B seminoma</td>
<td>11</td>
</tr>
<tr>
<td>6.2  NSGCT Stage II A/B</td>
<td>12</td>
</tr>
<tr>
<td>6.3  Advanced metastatic disease</td>
<td>12</td>
</tr>
<tr>
<td>6.3.1  Primary chemotherapy</td>
<td>12</td>
</tr>
<tr>
<td>6.4  Restaging and further treatment</td>
<td>13</td>
</tr>
<tr>
<td>6.4.1  Restaging</td>
<td>13</td>
</tr>
<tr>
<td>6.4.2  Residual tumour resection</td>
<td>13</td>
</tr>
<tr>
<td>6.4.3  Consolidation chemotherapy after secondary surgery</td>
<td>13</td>
</tr>
<tr>
<td>6.5  Systemic salvage treatment for relapse or refractory disease</td>
<td>13</td>
</tr>
<tr>
<td>6.5.1  Seminoma</td>
<td>13</td>
</tr>
<tr>
<td>6.5.2  Non-seminoma</td>
<td>13</td>
</tr>
<tr>
<td>6.6  Salvage surgery</td>
<td>14</td>
</tr>
<tr>
<td>6.7  Treatment of brain metastases</td>
<td>14</td>
</tr>
<tr>
<td>6.8  Guidelines for the treatment of metastatic germ cell tumours</td>
<td>15</td>
</tr>
<tr>
<td>7  FOLLOW-UP AFTER CURATIVE THERAPY</td>
<td>15</td>
</tr>
<tr>
<td>7.1  General considerations</td>
<td>15</td>
</tr>
<tr>
<td>7.2  Follow-up of stage I non-seminoma</td>
<td>16</td>
</tr>
<tr>
<td>7.2.1  Follow-up after surveillance</td>
<td>16</td>
</tr>
<tr>
<td>7.2.2  Follow-up after nerve-sparing RPLND</td>
<td>17</td>
</tr>
<tr>
<td>7.2.3  Follow-up after adjuvant chemotherapy</td>
<td>17</td>
</tr>
</tbody>
</table>

UPDATE MARCH 2005
7.3 Follow-up of stage I seminoma
   7.3.1 Follow-up after radiotherapy
   7.3.2 Follow-up after surveillance
   7.3.3 Follow-up after adjuvant chemotherapy

7.4 Follow-up of stage II and advanced (metastatic) disease
   7.4.1 Clinical and pathological stage II NSGCT
      7.4.1.1 Relapse after primary RPLND
      7.4.1.2 Relapse after primary chemotherapy
   7.4.2 Clinical stage II seminoma
   7.4.3 Clinical stage IIc and III seminoma and non-seminoma

8 TESTICULAR STROMAL TUMOURS
   8.1 Background
   8.2 Methods
   8.3 Classification
   8.4 Leydig cell tumours
      8.4.1 Epidemiology
      8.4.2 Pathology of Leydig cell tumours
      8.4.3 Diagnosis
      8.4.4 Treatment
      8.4.5 Follow-up
   8.5 Sertoli cell tumour
      8.5.1 Epidemiology
      8.5.2 Pathology of Sertoli cell tumours
      8.5.2.1 Classification
      8.5.3 Diagnosis
      8.5.4 Treatment
      8.5.5 Follow-up
   8.6 Granulosa cell tumour
   8.7 Thecoma/fibroma group of tumours
   8.8 Other sex cord/gonadal stromal tumours
   8.9 Tumours containing germ cell and sex cord/gonadal stromal (gonadoblastoma)
   8.10 Miscellaneous tumours of the testis
      8.10.1 Tumours of ovarian epithelial types
      8.10.2 Tumours of the collecting ducts and rete testis
      8.10.3 Tumours (benign and malignant) of non-specific stroma

9 REFERENCES
   9.1 Germ cell tumours
   9.2 Non germ cell tumours

10 ABBREVIATIONS USED IN THE TEXT
1. BACKGROUND

Testicular cancer represents between 1% and 1.5% of male neoplasms and 5% of all urological tumours, with 3-6 new cases occurring per 100,000 males/per year in Western society and up to 10 new cases per 100,000 males/per year in Denmark and Norway. An increased incidence over the last 30 years has clearly been observed in industrialized countries (1-3).

Up to 5% of cases are bilateral. In 95% of patients, the histology reveals a germ cell tumour which is characterized by a specific genetic marker (supernumerical copies of the short arm of chromosome 12, isochromosome i(12p) (1,4). Intratubular germ cell neoplasia (testicular intraepithelial neoplasia, TIN) has been shown to be a precursor lesion in the majority of germ cell tumours (5-7).

Epidemiological risk factors for the development of testicular tumours are: a history of cryptorchidism or undescended testis, a hypotrophic (< 12 ml) or atrophic testicle, Klinefelter's syndrome, familial history of testicular tumours among first-grade relatives (brothers, father), the presence of a contralateral tumour or TIN and infertility (8-12).

Currently, testicular tumours show excellent cure rates in the order of 95% for low stages and somewhat less for the more advanced stages of disease. The main factors contributing to this are: careful staging at the time of diagnosis; adequate early treatment based on an interdisciplinary management including chemotherapy, radiotherapy and surgery; and very strict follow-up and salvage therapies. For the treatment of testicular cancer, the choice of the treatment centre is of paramount importance. Although early stages can be successfully treated in a non-reference centre, the relapse rate is higher, suggesting that the high survival rate is due to the chemo- and radiosensitivity of the early stages rather than the compliance achieved in the non-reference centre (13). In poor-prognosis, non-seminomatous, germ cell tumours, it has been shown that overall survival within a clinical trial depended upon the number of patients treated at the participating centre (worse survival: < 5 patients enrolled) (14).

1.1 Methods

The present guidelines represent an implementation of previously published texts; the latest edition of the European Association of Urology (EAU) guideline text was formally published in 2001 (15), and the latest update was distributed among EAU members in March 2005. A multidisciplinary team of urologists, medical oncologists, radiotherapists and a pathologist were involved in producing the present text, which is based on a non-structured review of the literature by using the MEDLINE database through 2005. In addition, data from meta-analysis studies, Cochrane evidence and the recommendations of the European Germ Cell Cancer Collaborative Group, as well as other available guidelines, have been included (16-23). Whenever possible, references have been labelled according to the principles of evidence-based medicine (EBM). The nature of the recommendations in the present guidelines is labelled according to grade of evidence. This text focuses on changes in diagnosis and treatment compared to the previously published version (15).

2. DIAGNOSIS, PATHOLOGY AND CLASSIFICATIONS

Testicular cancer is usually diagnosed by physical examination and generally appears as a painless, unilateral intrascrotal mass. A correct diagnosis must be established in all patients with an intrascrotal mass. In addition to the clinical examination, the following investigations are therefore mandatory.

2.1 Scrotal ultrasound

A 7.5 MHz transducer is necessary to image the testis correctly. The sensitivity of scrotal ultrasound to detect a testicular tumour is almost 100%, and ultrasound has an important role in determining whether a mass is intra- or extratesticular (24). In young men with either a retroperitoneal mass, visceral metastasis or elevated human chorionic gonadotrophin (hCG) and/or alpha-fetoprotein (AFP), an ultrasound of the testes is mandatory. Magnetic resonance imaging (MRI) of the scrotum offers a sensitivity of 100% and a specificity of 95-100% (25), but its use for diagnosis cannot be justified because of its high cost.
2.2 Serum tumour markers

Serum tumour markers are prognostic factors and contribute to diagnosis and staging (26). The mean serum half-life of AFP is 5-7 days and that of hCG approximately 2-3 days. Therefore, the following markers should be determined before orchidectomy and thereafter at weekly intervals until normalization:

- AFP (produced by yolk sac cells)
- hCG (expression of trophoblasts)
- lactate dehydrogenase (LDH) (marker of tissue destruction).

Overall, there is an increase in these markers in 51% of cases of testicular cancer (26). The level of AFP increases in 50-70% of patients with non-seminomatous germ cell tumour (NSGCT) and a rise in hCG occurs in 40-60% of patients with NSGCT. About 90% of NSGCTs present with a rise in the levels of either AFP and/or hCG markers. Up to 30% of seminomas can present or develop an elevated hCG level during the course of the disease (27). Lactate dehydrogenase is a less specific marker, and its concentration is proportional to tumour volume. Its level may be elevated in 80% of patients with advanced testicular cancer. It should be noted that negative marker levels do not exclude the diagnosis of a germ cell tumour. Other markers studied include neuro-specific enolase (NSE) and placental alkaline phosphatase (PLAP). NSE and/or PLAP may be of limited value in monitoring patients with pure seminoma. The measurement of serum AFP, hCG and LDH is mandatory, while NSE and PLAP are optional.

2.3 Inguinal exploration and orchidectomy

Every patient with a suspected testicular mass must undergo inguinal exploration with exteriorization of the testis within its tunics. Immediate orchidectomy with division of the spermatic cord at the internal inguinal ring has to be performed if a tumour is found. If the diagnosis is not clear, an intra-operative testicular biopsy or the completely resected tumour is taken for frozen section histological examination before orchidectomy to avoid unnecessary orchidectomy in benign tumours. In the case of disseminated disease and life-threatening metastases, up-front chemotherapy can be started and orchidectomy delayed until clinical stabilization.

2.3.1 Organ-sparing surgery

Although organ-sparing surgery is not generally indicated, it can be attempted in the following special situations with all the necessary precautions (28,29):

- in suspicion of a benign lesion
- in synchronous, bilateral testicular tumours
- in metachronous, contralateral tumours, with normal preoperative testosterone levels
- in a tumour in a solitary testis, with normal preoperative testosterone levels.

The tumour volume in these cases should be less than about 30% of the testicular volume. In all patients, remaining TIN can safely be treated with adjuvant radiotherapy using a dose of 20 Gy (29). A few studies have tried to reduce the radiation dose to 16 Gy. However, recurrences have been seen with 14 Gy in a Danish trial (30) and with 16 Gy in a German trial (31). Infertility will result after radiotherapy. The option has to be carefully discussed with the patient and surgery performed in a centre with experience (29).

2.4 Pathological examination of the testis

Mandatory pathological requirements (32) are:

- Macroscopic features: size, testis size, tumoural maximum size and macroscopic features of epididymis, spermatic cord and tunica vaginalis.
- Sampling: 1 cm² section for every centimetre of maximal tumoural diameter, including normal macroscopic parenchyma (if present), albuginea and epididymis selection of suspected areas. At least one proximal and one distal section of spermatic cord plus any suspected area.
- Microscopic features and diagnosis: histological type according to WHO 2004 (specify individual components and estimate amount as percentage).
- Presence or absence of peri-tumoural venous and/or lymphatic invasion.
- Presence or absence of albuginea, tunica vaginalis, rete testis, epididymis or spermatic cord invasion.
- Presence or absence of TIN in non-tumoural parenchyma.
- pT category according to TNM 2002 (Table 1).
- Immunohistochemical studies: in seminoma and mixed germ cell tumour, AFP and hCG.

2.5 Staging and clinical classification

Staging represents the cornerstone on which testicular cancer treatment is based. To determine the presence of metastatic or occult disease, half-life kinetics of serum tumours markers have to be assessed (see section 2.2 and section 5.3), the nodal pathway has to be screened and the presence of visceral metastases excluded.
Consequently, in addition to tumour marker half-life kinetics, it is mandatory to assess:

- status of abdominal and supraclavicular nodes, and the liver
- presence or absence of mediastinal nodal involvement and lung metastases
- status of brain and bone if any suspicious symptoms are present.

Abdominal and pulmonary, extra-pulmonary, and mediastinal nodes are best assessed by means of a computerized tomography (CT) scan. The supraclavicular nodes are best assessed by physical examination and CT scan if suspicious. CT scanning offers a sensitivity of 70-80% in the determination of the state of retroperitoneal nodes. Its accuracy depends on the size of the nodes; sensitivity and negative predictive value increase using a 3-mm threshold to define metastatic nodes in the landing zones (33). MRI produces similar results to CT scanning in the detection of retroperitoneal nodal enlargement (34). Again, the main objections to its routine use are high cost and limited access. MRI is a test for special indications; there are currently no indications for its systematic use in the staging of testicular cancer. A chest CT scan is mandatory in all patients with NSGCT and in those with seminoma and a positive abdominal CT scan (35).

There is not enough evidence to support the use of the fluorodeoxyglucose-positron emission tomography (FDG-PET) scan in early testicular tumour stages. It can, however, be recommended in the follow-up of seminoma post-chemotherapy residual masses in order to decide for watchful waiting (WW) or active treatment therapy (36-39).

Other examinations, such as brain or spinal CT, bone scan or liver ultrasound, should be performed if there is a suspicion of metastases in these organs. CT scan or MRI of the skull are advisable in patients with NSGCT and widespread lung metastases.

Based on the tumour marker level and the results of CT scanning, patients have to be classified according to the 2002 TNM classification of the UICC (International Union Against Cancer) (Table 1) (40). Patients with metastatic disease (TNM stage ≥2) have to be classified additionally according to the International Germ Cell Cancer Collaborative Group (IGCCCG) staging system, defined as a prognostic-factor based staging system for metastatic testicular tumour (Table 2). This staging system has been incorporated into the TNM classification and uses histology, location of the primary tumour, location of metastases and serum marker levels as prognostic factors to categorize patients into “good”, “intermediate” or “poor” prognosis (41).

**Table 1: TNM classification for testicular cancer (UICC, 2002, 6th ed) (40)**

<table>
<thead>
<tr>
<th>pT</th>
<th>Primary tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTX</td>
<td>Primary tumour cannot be assessed</td>
</tr>
<tr>
<td>pT0</td>
<td>No evidence of primary tumour (e.g. histological scar in testis)</td>
</tr>
<tr>
<td>pTis</td>
<td>Intratubular germ cell neoplasia (carcinoma in situ)</td>
</tr>
<tr>
<td>pT1</td>
<td>Tumour limited to testis and epididymis without vascular/lymphatic invasion: tumour may invade tunica albuginea but not tunica vaginalis</td>
</tr>
<tr>
<td>pT2</td>
<td>Tumour limited to testis and epididymis with vascular/lymphatic invasion, or tumour extending through tunica albuginea with involvement of tunica vaginalis</td>
</tr>
<tr>
<td>pT3</td>
<td>Tumour invades spermatic cord with or without vascular/lymphatic invasion</td>
</tr>
<tr>
<td>pT4</td>
<td>Tumour invades scrotum with or without vascular/lymphatic invasion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Regional lymph nodes clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis with a lymph node mass 2 cm or less in greatest dimension or multiple lymph nodes, none more than 2 cm in greatest dimension</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension, or multiple lymph nodes, any one mass more than 2 cm but not more than 5 cm in greatest dimension</td>
</tr>
<tr>
<td>N3</td>
<td>Metastasis with a lymph node mass more than 5 cm in greatest dimension</td>
</tr>
</tbody>
</table>

UPDATE MARCH 2005
pN Pathological

pNX Regional lymph nodes cannot be assessed
pN0 No regional lymph node metastasis
pN1 Metastasis with a lymph node mass 2 cm or less in greatest dimension and 5 or fewer positive nodes, none more than 2 cm in greatest dimension
pN2 Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence of extranodal extension of tumour
pN3 Metastasis with a lymph node mass more than 5 cm in greatest dimension

M Distant metastasis

MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis
M1a Non-regional lymph node(s) or lung
M1b Other sites

S Serum tumour markers

Sx Serum marker studies not available or not performed
S0 Serum marker study levels within normal limits

<table>
<thead>
<tr>
<th>LDH (U/l)</th>
<th>hCG (mIU/ml)</th>
<th>AFP (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 &lt; 1.5 x N and</td>
<td>&lt; 5,000 and</td>
<td>&lt; 1,000</td>
</tr>
<tr>
<td>S2 1.5-10 x N or</td>
<td>5,000-50,000 or</td>
<td>1,000-10,000</td>
</tr>
<tr>
<td>S3 &gt; 10 x N or</td>
<td>&gt; 50,000 or</td>
<td>&gt; 10,000</td>
</tr>
</tbody>
</table>

N indicates the upper limit of normal for the LDH assay.

‘Except for pTis and pT4, where radical orchiectomy is not always necessary for classification purposes, the extent of the primary tumour is classified after radical orchiectomy; see pT. In other circumstances, TX is used if no radical orchiectomy has been performed.

According to the 2002 TNM classification, stage I testicular cancer includes the following substages:

<table>
<thead>
<tr>
<th>Stage</th>
<th>pT</th>
<th>N</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>pT1</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>IB</td>
<td>pT2, pT3 or pT4</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>IS</td>
<td>Any pT/TX</td>
<td>N0</td>
<td>M0</td>
<td>S1-3</td>
</tr>
</tbody>
</table>

Table 2: Prognostic-based staging system for metastatic germ cell cancer (IGCCCG) (41)

Good-prognosis group

Non-seminoma (56% of cases)

- 5-year PFS 89%
- 5-year survival 92%

All of the following criteria:
- Testis/retroperitoneal primary
- No non-pulmonary visceral metastases
- AFP < 1,000 ng/ml
- hCG < 5,000 IU/l (1,000 ng/ml)
- LDH < 1.5 x ULN

Seminoma (90% of cases)

- 5-year PFS 82%
- 5-year survival 86%

All of the following criteria:
- Any primary site
- No non-pulmonary visceral metastases
- Normal AFP
- Any hCG
- Any LDH

Intermediate-prognosis group

Non-seminoma (28% of cases)

- 5-year PFS 75%
- 5-year survival 80%

All of the following criteria:
- Testis/retroperitoneal primary
- No non-pulmonary visceral metastases
- AFP > 1,000 and < 10,000 ng/ml or
- hCG > 5,000 and < 50,000 IU/l or
- LDH > 1.5 and < 10 x ULN

UPDATE MARCH 2005
Seminoma (10% of cases)
- 5-year PFS 67%
- 5-year survival 72%

Poor-prognosis group
Non-seminoma (16% of cases)
- 5-year PFS 41%
- 5-year survival 48%

Any of the following criteria:
- Any primary site
- Non-pulmonary visceral metastases
- Normal AFP
- Any hCG
- Any LDH

Seminoma
No patients classified as poor prognosis

PFS: progression-free survival; AFP: alpha-fetoprotein; hCG: human chorionic gonadotrophin; LDH: lactate dehydrogenase; ULN: upper limit of normal range.

3. DIAGNOSIS AND TREATMENT OF TIN

Contralateral biopsy has been advocated to rule out the presence of TIN (42). Although this is routine policy in some countries, the low incidence of TIN and contralateral asynchronic testicular tumours (up to 5% and approximately 2.5%, respectively), the morbidity of TIN treatment and the fact that most of these asynchronic tumours are at a low stage at presentation make it controversial to recommend a systematic contralateral biopsy (43,44). It is still difficult to reach a consensus about whether the existence of contralateral TIN has to be identified in all cases. However, biopsy of the contralateral testis should be offered to all patients and is advised for exclusion of contralateral TIN in high-risk patients with a testicular volume less than 12 ml, a history of cryptorchidism and age under 30 years (44).

Once TIN is diagnosed, local radiotherapy (20 Gy in single fractions of 2 Gy) is the treatment of choice. Because this will produce infertility, the patient must be carefully counselled before treatment commences (45, 46). In addition to infertility, Leydig cell function and testosterone production may be impaired long-term after radiotherapy of TIN (30).

4. IMPACT ON FERTILITY AND FERTILITY-ASSOCIATED ISSUES

Sperm abnormalities are not infrequent in patients with testicular tumours. Furthermore chemotherapy treatment can also impair fertility. In patients of reproductive age, pre-treatment and preferably pre-orchiectomy fertility assessment (testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels) and sperm analysis with cryopreservation should be offered. Cryopreservation should be performed before or after orchiectomy, but in any case prior to chemotherapy treatment (47-51). In cases of bilateral orchiectomy or low testosterone levels after treatment of TIN, life-long testosterone supplementation is recommended (51). For more detailed information the reader is referred to the EAU Male Infertility Guidelines.
5. TREATMENT: STAGE I GERM CELL TUMOURS

5.1 Stage I seminoma
After modern staging procedures, about 15-20% of stage I seminoma patients have subclinical metastatic disease, usually in the retroperitoneum, and will relapse after orchidectomy alone (52).

5.1.1 Adjuvant radiotherapy
Seminoma cells are extremely radiosensitive. Adjuvant radiotherapy to a para-aortic (PA) field with a total target volume of 20 Gy will reduce the relapse rate to only 1-3% (53,54).

After modern radiotherapy, nearly all relapses will first occur outside the irradiated field (supradiaphragmatic lymph nodes or in the lungs) (55,56). Based upon the results of a large randomized Medical Research Council (MRC) trial, Fossa et al. (53) recommended radiotherapy to a PA field as standard treatment for patients with testicular seminoma stage I, T1-T3 and with undisturbed lymphatic drainage. The relapse rate to the iliac nodes was 2% with para-aortic (PA) field irradiation only. The acute toxicity was reduced and the sperm count within the first 18 months was significantly higher after PA irradiation. Para-aortic irradiation should be tailored according to the site of the primary tumour. Adjuvant irradiation of supradiaphragmatic lymph nodes is not indicated in seminoma stage I.

Concerning the dose of irradiation, the MRC has recently finished a large randomized trial of 20 Gy versus 30 Gy PA irradiation in stage I seminoma that showed equivalence for both doses regarding recurrence rates (54). The rate of severe radiation-induced long-term toxicity is less than 2%. Moderate chronic gastrointestinal (GI) side effects are seen in about 5% of patients and moderate acute GI toxicity in about 60%. The main concern surrounding adjuvant radiotherapy is the potentially increased risk of radiation-induced secondary non-germ-cell malignancies (57-59). At this point, it is difficult to evaluate the long-term risks after adjuvant radiotherapy for stage I seminoma since former treatment procedures included larger fields, higher doses of radiotherapy and/or the use of alkylating chemotherapy (59,60).

5.1.2 Surveillance
Several prospective non-randomized studies of surveillance have been conducted during the last decade, several of which comprised more than 100 patients (61-63). Meta-analysis of the four largest studies shows an actuarial 5 years’ relapse-free rate of 82.3%. On multivariate analysis, tumour size (> 4 cm) and invasion of the rete testis remained the most important predictors for relapse (64).

The actuarial relapse rate is of the order of 15-20% at 5 years. Most relapses are first detected in infra-diaphragmatic lymph nodes (64). About 70% of the patients relapsing after surveillance are suitable for treatment with radiotherapy alone. Only about 20% of these patients relapse after salvage radiotherapy and need salvage chemotherapy. The overall cancer-specific survival rate reported by experienced centres is 97-100% for seminoma stage I after surveillance (61,62,64). The main drawback of surveillance is the need for more intensive follow-up, especially with repeated imaging examinations of the retroperitoneal lymph nodes, for at least 5 years after orchidectomy. About 70% of the relapses seen during surveillance occur within 2 years after orchidectomy; however, about 7% occur more than 6 years after diagnosis (64).

5.1.3 Adjuvant chemotherapy
A joint Medical Research Council (MRC) and European Organization for Research and Treatment of Cancer (EORTC) trial (MRC TE19 trial, EORTC Trial 30942) comparing one cycle of carboplatin (AUC 7) to adjuvant radiotherapy has recently been finished. Single-agent carboplatin therapy showed no significant difference to radiotherapy concerning recurrence rate, time to recurrence and survival after a median follow-up of 3 years (65). Thus, adjuvant carboplatin therapy is an alternative to radiotherapy or surveillance in stage I seminoma. Two courses of adjuvant carboplatin seem to reduce the relapse rate further to the order of 1-3%, but further experience and long-term observations are needed (66-68).

5.1.4 Retroperitoneal lymph node dissection (RPLND)
In a prospective, non-randomized study comparing radiotherapy and RPLND in stage I seminoma, there was a trend towards a higher incidence of retroperitoneal relapses (9.5%) after RPLND as primary treatment. This policy should therefore not be recommended in stage I seminoma (69).
5.1.5 Risk-adapted treatment

Using tumour size > 4 cm and rete testis invasion, patients with seminoma stage I may be subdivided in a low- and high-risk group of occult metastatic disease. However, these risk factors have only been assessed in a meta-analysis of retrospective trials (64). Patients with, and without, both risk factors have a risk of occult disease of 32% and 12%, respectively.

5.1.6 Guidelines for the treatment of seminoma stage 1

1. Adjuvant radiotherapy to a para-aortic field to a total dose of 20 Gy (grade A recommendation).
2. Surveillance (if available facilities) (grade B recommendation).
3. Carboplatin-based chemotherapy (one course at AUC 7) can be recommended as an alternative to radiotherapy and surveillance (grade A recommendation).

5.2 NSGCT stage I

If stage IS cases are excluded, up to 30% of NSGCT patients with clinical stage I (CS1) disease have subclinical metastases and will relapse if surveillance alone is applied after orchiectomy. However, patients can be stratified according to risk factors into different prognostic groups with different recurrence rates.

5.2.1 Prognostic factors

The main predictor of relapse in CS1 NSGCT managed by surveillance, and both for having pathological stage II (PS2) disease and for relapse in pathological stage I (PS1) after RPLND, is histopathological evidence of vascular invasion by tumour cells in, or near, the primary tumour in the testis (70-76). The presence of vascular invasion seems to be a very robust parameter and is clinically usable even without centralized review by an expert panel.

Vascular invasion was found to be most predictive of stage in a multifactorial analysis. The absence of vascular invasion has a negative predictive value of 77%, thus allowing for surveillance in low-risk compliant patients (70). The combination of the absence of vascular invasion with a low MIB-1 score (proliferation rate < 70) improves the negative predictive value to 87%. However, the presence of vascular invasion has a positive predictive value of 53% for occult metastatic disease. Combining the presence of vascular invasion with a proliferation rate of > 70% MIB-1 positive tumour cells and with > 50% embryonal carcinoma within the tumour increases the patient's risk for occult metastatic disease to 64% (high risk) (70).

5.2.2 Risk-adapted treatment

Risk-adapted treatment is recommended as treatment of first choice in NSGCT I. Risk assessment is currently based on the risk factor of vascular invasion alone. Stratifying patients with CS1 NSGCT according to their presumed risk of relapse is a rational option since several studies have reported similar survival rates and a final cure rate close to 100% with all available treatment options using the risk-stratifying approach (77-80). Patients with vascular invasion are recommended to undergo adjuvant chemotherapy with two cycles of cisplatin, etoposide and bleomycin (PEB) and patients without vascular invasion are recommended to undergo surveillance. Only if patients or doctors are not willing to accept the relevant risk-adapted treatment or if there are conditions against the risk-adapted treatment option, the remaining treatments should be considered. Thus, the treatment decision should be based on a thorough discussion with the patient, taking into account the described advantages and disadvantages, as well as the individual situation of the patient and/or the treatment centre.

5.2.2.1 Surveillance

Eighty per cent of relapses occur during the first 12 months of follow-up, 12% during the second year and 6% during the third year, decreasing to 1% during the fourth and fifth years, and occasionally even later (76,81-86). About 35% of relapsing patients have normal levels of serum tumour markers at relapse. About 60% of the relapses are in the retroperitoneum. Despite very close follow-up, 11% of relapsing patients presented with large-volume recurrent disease.

5.2.2.2 Adjuvant chemotherapy

Several studies involving two courses of chemotherapy with PEB as primary treatment for high-risk patients (having about 50% risk of relapse) have been reported (77-80,87). In these series, involving more than 200 patients, some with a median follow-up of nearly 8 years, a relapse rate of only 2.7% was reported, with very little long-term toxicity. Two cycles of cisplatinum-based adjuvant chemotherapy do not seem to adversely affect fertility or sexual activity (80,88). It is important to be aware of the risk of slow-growing retroperitoneal teratomas after chemotherapy and of the risk of chemoresistant cancer relapse.
5.2.3 Retroperitoneal lymph node dissection

If RPLND is performed without risk assessment, about 30% of patients are found to have retroperitoneal lymph node metastases (PS2 disease) (89-91). If no retroperitoneal metastases are found at RPLND (PS1), approximately 10% of the PS1 patients relapse at distant sites.

If CS1 patients with PS2 are only followed up after RPLND, about 30% relapse, mainly at sites outside the abdomen and pelvis. The risk of relapse depends upon the amount of retroperitoneal disease resected (92-95). If two (or more) courses of cisplatin-based chemotherapy are given adjuvant to RPLND in the PS2 cases, the relapse rate is reduced to less than 2%, including teratoma relapse (96). The risk of retroperitoneal relapse after a properly performed nerve-sparing RPLND is very low (less than 2%), as is the risk of ejaculatory disturbance or other significant side effects (90,97). The follow-up after RPLND is much simpler and less costly than that carried out during post-orchiectomy surveillance due to the reduced need for abdominal CT scans. In experienced hands, a laparoscopic RPLND may become an alternative staging procedure to an open RPLND, but cannot currently be recommended as a standard diagnostic tool (98-101).

5.3 CS1S with (persistently) elevated serum tumour markers

Serum tumour markers should be followed closely until it is clear whether or not levels are falling according to the expected half-time values for AFP and ß-hCG. If the marker level increases after orchiectomy, the patient has residual disease. If RPLND is performed, up to 87% of these patients have pathologically documented nodes in the retroperitoneum (102,103). An ultrasound examination of the contralateral testicle must be performed if this has not been done initially.

The treatment of true CS1S patients is still in debate. Currently, three courses of primary PEB chemotherapy seem appropriate since all of these patients will present with metastatic disease if followed up only (104).

5.3.1 Guidelines for the treatment of NSGCT stage I

<table>
<thead>
<tr>
<th>CS1A (pT1, no vascular invasion); low risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If the patient is willing and able to comply with a surveillance policy and long-term (at least 5 years), close follow-up should be recommended (grade B recommendation).</td>
</tr>
<tr>
<td>2. Adjuvant chemotherapy or nerve-sparing RPLND in low-risk patients remain options for those not willing to undergo surveillance. If RPLND reveals PN+ (nodal involvement) disease, chemotherapy with two courses of PEB should be considered (grade A recommendation).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS1B (pT2-pT4); high risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Primary chemotherapy with two courses of PEB should be recommended (grade B recommendation).</td>
</tr>
<tr>
<td>2. Surveillance or nerve-sparing RPLND in high-risk patients remain options for those not willing to undergo adjuvant chemotherapy. If pathological stage II is revealed at RPLND, further chemotherapy should be considered (grade A recommendation).</td>
</tr>
</tbody>
</table>

6. TREATMENT: METASTATIC GERM CELL TUMOURS

6.1 Stage II A/B seminoma

The standard treatment of stage II A/B seminoma is radiotherapy. The radiation dose delivered in stage IIA and IIB is 30 Gy and 36 Gy, respectively. The standard radiation field compared to stage I will be extended from the PA region to the ipsilateral iliac field (“hockey-stick”). In stage IIB, the lateral borders should include the metastatic lymph nodes with a safety margin of 1.0-1.5 cm. This technique yields a relapse-free survival after 6 years for stage IIA and IIB of 95% and 89%, respectively. Overall survival is almost 100% (105,106).

In stage IIB, chemotherapy with three cycles of PEB or four cycles of EP (“good prognosis”) is an alternative for patients not willing to undergo radiotherapy (107).
6.2 NSGCT stage II A/B
There is a general consensus that treatment should start with initial chemotherapy in all advanced cases of NSGCT except for stage II NSGCT disease without elevated tumour markers, which alternatively can be treated with primary RPLND or surveillance (16). These rare cases of stage IIA/B without marker elevation may represent metastatic differentiated teratoma.

Stage II A/B non-seminoma with elevated markers should be treated according to IGCCCG “good or intermediate prognosis” NSGCT according to marker levels (three or four cycles PEB for good- and intermediate-prognosis patients, respectively, followed by residual tumour resection). About 30% of patients will not achieve a complete remission after chemotherapy and will need a residual tumour resection.

Patients not willing to undergo primary chemotherapy have the option of primary nerve-sparing RPLND with adjuvant chemotherapy (two cycles PEB) in case of metastatic disease (pII A/B). Primary chemotherapy and primary RPLND are comparable options in terms of outcome but side effects and toxicity are different, allowing for involvement of the patient in selecting the treatment of choice.

The cure rate with either approach will be close to 98% (96,108,109).

6.3 Advanced metastatic disease

6.3.1 Primary chemotherapy
The primary treatment of choice for advanced disease is three or four cycles of PEB combination chemotherapy (Table 3) depending on IGCCCG risk classification (see Table 2). This regimen has proven superiority to cisplatin, vinblastine and bleomycin (PVB) in patients with advanced disease (110-112). Data support that a 3-day regimen of administering combination chemotherapy is equally effective as a 5-day regimen but associated with increased toxicity (113).

Table 3: PEB regimen (every 3 weeks)

<table>
<thead>
<tr>
<th>Drug</th>
<th>PEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>20 mg/m², days 1-5*</td>
</tr>
<tr>
<td>Etoposide</td>
<td>100 mg/m², days 1-5</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>30 mg, days 1,8,15</td>
</tr>
</tbody>
</table>

PEB = cisplatin, etoposide and bleomycin.
+Plus hydration.

For patients with a “good prognosis” according to the IGCCCG, standard treatment consists of three cycles of PEB or, where bleomycin is contraindicated, four cycles of PE (112-114). Therapy should be given without reduction of the doses at 22-day intervals; delaying the following chemotherapy cycle is justified only in cases of fever, neutrophils < 1,000/µl or platelets < 100,000/µl at day one of the subsequent cycle. There is no indication for prophylactic application of haematopoetic growth factor such as granulocyte-colony stimulating factor (G-CSF). However, if infectious complications have occurred during chemotherapy, prophylactic administration of G-CSF is recommended for the following cycles (115,116).

With the “intermediate-prognosis” group in the IGCCCG, a group of patients has been defined that achieves a 5-year survival rate of about 80%. The available data support four cycles of PEB as standard treatment (117). Due to the generally less favourable prognosis of this patient group, in comparison to patients with a “good prognosis”, they may be treated in prospective trials such as the EORTC GU Group trial with PEB versus PEB plus paclitaxel (118).

For patients with a “poor prognosis”, standard treatment consists of four cycles of PEB. Four cycles of PEI (cisplatin, etoposide, ifosfamide) have the same effect but are more toxic (119). The 5-year progression-free survival is between 45% and 50%. It has not yet been proven that high-dose chemotherapy increases the survival rate (120-122). Since a matched-pair analysis resulted in a better survival rate (121), these patients should be treated in the ongoing prospective randomized trials investigating the value of high-dose chemotherapy, e.g. EORTC trial 30974. Patients meeting “poor-prognosis” criteria should therefore be transferred to a reference centre. General recommendations for treatment modifications for patients with a poor general condition (Karnofsky performance status < 50%), extended liver infiltration (> 50%) and extended pulmonary infiltration do not exist.
6.4 Restaging and further treatment

6.4.1 Restaging
After termination of two courses of chemotherapy, re-evaluation is performed by imaging investigations and determination of tumour markers. At marker decline and stable or regressive tumour manifestation, chemotherapy will be completed (three or four cycles depending on the initial stage) (123,124). In cases of marker decline, but growing metastases, resection of the tumour is obligatory after termination of induction therapy, unless in the case of emergency according to local tumour growth (125).

An early crossover of therapy is indicated only with documented marker growth after two courses of chemotherapy. These patients are usually candidates for new drugs trials (126). Patients with a low-level marker plateau post treatment will be observed whether or not complete normalization occurs. Salvage chemotherapy is indicated for documented marker rise only (127,128).

6.4.2 Residual tumour resection
A residual mass of seminoma will not be resected, irrespective of the size, but controlled by imaging investigations and tumour markers (16,129-134). Positron emission tomography scan (PET) in metastatic seminoma after chemotherapy is a valid tool with which to detect vital residual tumour (135,136). In cases of vital tumour after first-line chemotherapy, salvage chemotherapy is given, if necessary including surgery and radiotherapy.

In cases of non-seminoma and complete remission after chemotherapy, residual tumour resection is not indicated (16). In cases of residual mass (greater than 1 cm in transverse CT diameter) and marker normalization, surgical resection is indicated (137-149). Overall, following PEB induction chemotherapy, only 10% of residual masses contain viable cancer, 50% contain mature teratoma and 40% contain necrotic-fibrotic tissue. As yet no imaging investigations, including PET or prognosis models, are able to predict histological differentiation of the non-seminomatous residual tumour. Thus, residual tumour resection is mandatory (150-158).

The extent of surgery should be based on the risk of relapse of an individual patient and quality-of-life issues. If possible, all the masses have to be resected because a complete resection, in the setting of viable malignant cells, is more critical than recourse to post-operative chemotherapy (159). Histology in different organ sites may diverge.

6.4.3 Consolidation chemotherapy after secondary surgery
After resection of necrosis or mature teratoma, no further treatment is required. In the case of complete resection of vital carcinoma or immature teratoma, two adjuvant cycles of conventionally dosed cisplatinum-based chemotherapy may be given in certain subgroups (e.g. “poor prognosis” patients, [160]) (cave: cumulative doses of bleomycin). The prognosis will definitely deteriorate if vital carcinoma is found in resection specimens after second- and third-line chemotherapy. In the latter situation, post-operative chemotherapy is not indicated and is unable to improve the prognosis (159). In general, a co-operative retrospective study (159) has demonstrated that, in patients with vital cancer in residual specimens, the major success factors are complete surgical resection and percentage of viable cancer in the residual mass, with the effect of adjuvant chemotherapy being borderline.

6.5 Systemic salvage treatment for relapse or refractory disease

6.5.1 Seminoma
Cisplatin-based combination salvage chemotherapy will result in long-term remissions for about 50% of patients who relapse after first-line chemotherapy (161). Regimens of choice are: four cycles of PEI/VIP (cisplatin, etoposide, ifosfamide), or four cycles of VeIP (vinblastin, ifosfamide, cisplatin). At present it is impossible to determine whether conventionally dosed cisplatin-based combination chemotherapy is sufficient as first salvage treatment or whether early intensification of first salvage treatment with high-dose chemotherapy should be attempted. Thus, treatment of these rare patients within clinical trials and at experienced centres is of utmost importance.

6.5.2 Non-seminoma
Standard salvage treatment after first-line chemotherapy (Table 4) consists of four cycles of PEI/VIP. Conventionally dosed salvage chemotherapy may achieve long-term remissions in 15-40% of patients, depending on individual risk factors.
Prognostic indicators of response to salvage therapy are:

- location and histology of the primary tumour
- response to first line treatment
- duration of remissions
- level of AFP and ß-hCG at relapse.

Salvage therapy with VeIP is probably not superior to other conventionally dosed cisplatin-based combination regimens. The use of conventionally dosed combination regimens with more than three agents will increase toxicity without improving treatment outcome.

Depending on the presence of adverse prognostic factors, the results of salvage therapy after first-line cisplatin-based treatment are unsatisfactory (162,163). Although some phase II trials have indicated a 10% improvement in survival with early intensification of first salvage treatment using high-dose chemotherapy, other trials have failed to demonstrate such improvement (164-166). New agents such as paclitaxel, docetaxel, gemcitabine, irinotecan, and oxaliplatin have been tested in the salvage setting. Recently, paclitaxel and gemcitabine have shown to be active in the treatment of refractory germ cell tumours; both drugs are synergistic with cisplatin (167,168). Oxaliplatin seems to have activity even in truly cisplatin-refractory patients. For patients with good performance status and adequate bone marrow function, combination regimens of these new agents (e.g. gemcitabine plus oxaliplatin [169]) are currently recommended, since at least a small percentage of patients may again reach long-lasting remissions. However, all of these patients should be entered into ongoing multicentre studies to define the optimal approach to salvage treatment and should be referred to centres experienced in caring for relapse and/or refractory patients.

Table 4: Standard PEI/VIP and VelP chemotherapy

<table>
<thead>
<tr>
<th>PEI/VIP</th>
<th>Dosage</th>
<th>Duration of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>20 mg/m², days 1-5</td>
<td>21 days</td>
</tr>
<tr>
<td>Etoposide</td>
<td>75-100 mg/m², days 1-5</td>
<td></td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>1.2 g/m², days 1-5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VelP</th>
<th>Dosage</th>
<th>Duration of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinblastin</td>
<td>0.11 mg/kg, days 1 + 2</td>
<td>21 days</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>1.2 g/m², days 1-5</td>
<td></td>
</tr>
<tr>
<td>Cisplatin</td>
<td>20 mg/m², days 1-5</td>
<td></td>
</tr>
</tbody>
</table>

PEI/VIP = cisplatin, eposide, ifosfamide; VelP = vinblastin, ifosfamide, cisplatin.

6.6 Salvage surgery

Residual tumours after salvage chemotherapy should be resected within 4-6 weeks after marker normalization or when a marker plateau is reached. In the case of marker progression after salvage treatment and lack of other chemotherapeutic options, resection of residual tumours (“desperation surgery”) should be considered if complete resection of all tumour seems feasible (about 25% long-term survival may be achieved) (170-179).

6.7 Treatment of brain metastases

Brain metastases occur in the frame of a systemic relapse and rarely as an isolated relapse. The long-term survival of patients presenting with brain metastasis at initial diagnosis is poor (30-40%), but even poorer with the development of brain metastasis as recurrent disease (5-year survival 2-5%) (180-182). Chemotherapy is the initial treatment in this case and some data support the use of consolidation radiotherapy even in the case of a total response after chemotherapy. Surgery can be considered in the case of a persistent solitary metastasis depending on the systemic state, the histology of the primary tumour and the location of the metastasis.
### 6.8 Guidelines for the treatment of metastatic germ cell tumours

1. Low-volume NSGCT stage IIA/B with elevated markers should be treated like “good” or “intermediate prognosis” advanced NSGCT with three and four cycles of PEB, respectively. Stage II without marker elevation (in suspicion of differentiated teratoma) can be treated either by RPLND or close surveillance with delayed surgery.

2. In metastatic NSGCT (> stage IIC) with a good prognosis, three courses of PEB is the primary treatment of choice (grade A recommendation).

3. In metastatic NSGCT with an intermediate or poor prognosis, the primary treatment of choice is four courses of standard PEB (grade A recommendation).

4. Surgical resection of residual masses after chemotherapy in NSGCT is indicated in the case of a residual mass > 1 cm and when serum levels of tumour markers are normal or normalizing (grade B recommendation).

5. Metastatic seminoma with less than N3M1 disease can be treated initially with radiotherapy. When necessary, chemotherapy can be used as a salvage treatment with the same schedule as for the corresponding prognostic groups of NSGCT (grade A recommendation).

6. Advanced seminoma (N3 or M1) should be treated with primary chemotherapy according to the same principles used for NSGCT (grade A recommendation).

### 7. FOLLOW-UP AFTER CURATIVE THERAPY

#### 7.1 General considerations

In spite of the fact that relatively limited information exists on the value of follow-up testing of asymptomatic patients after potentially curative therapy, testis cancer, the most curable human tumour, is an excellent model for post curative therapy surveillance. The selection of the tests to be performed in follow-up should adhere to the following principles (183):

- **A** The interval between examinations and duration of testing should be consistent with the time of maximal risk of recurrence and the natural history of the tumour.

- **B** The tests should be directed at the most likely sites of recurrence and should have a high predictive value, both positive and negative.

- **C** Therapy should be available that will result in cure of the recurrence, significant prolongation of life or palliation of symptoms. The initiation of earlier therapy should improve the outcome compared with therapy given when the patient becomes symptomatic from the tumour recurrence.

- **D** The increased risk of second malignancy, both at the primary site and in other tissues that may have been exposed to the same carcinogens or in which there is epidemiological evidence of increased risk, should also guide the selection of the tests. Malignant and non-malignant complications of therapy must also be considered. Such testing should also be performed with a frequency and duration consistent with the nature of the risk and include only tests with high positive and negative predictive values.

The following considerations apply in a general manner to selecting an appropriate schedule and investigations in the follow-up of all stages of testicular tumours.

- Most recurrences after curative therapy will occur in the first 2 years; consequently surveillance should be most frequent and intensive during this time.

- Late relapses can occur beyond 5 years; annual follow-up for life may therefore be advocated (184-187).

- After RPLND, relapse in the retroperitoneum is rare, the most likely site of recurrence being the chest.

- The value of chest X-ray has been recently questioned in the follow-up of patients with disseminated disease after complete remission (188).

- CT of the chest has a higher predictive value than chest X-ray (188).

- The results of therapy are dependent on the bulk of disease, thus an intensive strategy to detect presymptomatic disease may be justifiable (189,190).

- After chemotherapy or radiotherapy, there is a small long-term risk of secondary malignancies (59,191).
In testis tumour the aims of follow-up are:

- to detect relapse as early as possible in all stages
- to detect an asynchronous contralateral carcinoma of the testis in an early phase
- to avoid unnecessary treatment in stage I.

Since different treatment policies are available for stage I and low-volume metastatic disease (resulting in the same survival but different recurrence rate), in these stages the intensity of the follow-up should be determined by the rate and timing of relapse. The site of relapse for each one of the policies should dictate the tests to be performed during follow-up.

Whether in early or advanced stages, the tests to be performed during follow-up are:

- physical examination (search for neck and abdominal masses, gynaecomastia, examination of groins, superficial nodes and the remaining testis).
- serum tumour markers determination (AFP, hCG and LDH).
- chest X-ray and/or chest CT, abdominal and pelvic CT or abdominal ultrasound.
- brain CT in case of neurological symptoms, and bone scan in case of bone pain.

Currently, insufficient evidence is available in the literature to provide strict recommendations on timing and testing during follow-up. The nature of the recommendations on follow-up is grade B or C with a consistent lack of randomized studies. Therefore, the authors wish to emphasize that the following recommendations represent the minimum standard of follow-up. Any other tests (e.g., hormonal determinations, spermiograms, neurological examinations) or more frequent schedules of evaluation may be performed on the basis of a clinical protocol or for investigational purposes.

7.2 Follow-up of stage I non-seminoma

Approximately 5% of patients with clinical stage I NSGCT present with elevated levels of tumour markers after orchiectomy and up to 25-30% relapse during the first 2 years (4, 77, 80, 84, 85, 87, 192-194). The follow-up schedule will differ depending on which of the three possible treatment strategies was chosen: surveillance, nerve-sparing RPLND or primary chemotherapy.

7.2.1 Follow-up after surveillance

The results of a surveillance policy depend on a careful pre-operative staging procedure and follow-up management. Half of the relapses will occur in the first 6 months; however, recurrent disease has been detected as late as 6 years after orchiectomy. In a ‘wait and see’ policy, relapses will occur in 30% of cases. Of these relapses, 80% will occur in the first 12 months after orchiectomy and approximately 12% during the second year. The median time to relapse is 6 months (range 1-62 months), but relapses after 3-5 years, and even later, may still occur, with an annual rate of 4% (76, 81). Relapse occurs mainly in the retroperitoneum; approximately 20% of patients have evident metastases in the retroperitoneum and 10% in the mediastinum and lungs (86). Sometimes the only indication is an elevated level of tumour markers.

Careful observation during the first 6-12 months after orchiectomy is mandatory; thereafter, the interval may be longer. Surveillance should continue for a minimum of 6 years and indefinite yearly follow-up is advocated by some. There is no universally accepted protocol for surveillance. A recommended follow-up schedule is shown in Table 5. It is particularly difficult to establish recommendations for those patients with negative pre-operative tumour markers levels.

| Table 5: Recommended follow-up schedule in a surveillance policy - stage I non-seminoma |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Procedure       | Year 1          | 2               | 3-5             | 6-10            |
| Physical examination | Monthly         | 4-6 times       | Twice/year      | Once/year       |
| Tumour markers  | 9-12 times      | 4-6 times       | Twice/year      | Once/year       |
| Chest X-ray     | 9-12 times      | 4-6 times       | Twice/year      | Once/year       |
| Abdominal CT scan | 3-4 times       | Twice           | Once/year       | If indicated    |

UPDATE MARCH 2005
7.2.2 Follow-up after nerve-sparing RPLND

Retroperitoneal relapse after a properly performed nerve-sparing RPLND is extremely rare. RPLND should eliminate the retroperitoneal nodes as a site of relapse, and thus the need for repeated abdominal CT scans. The USA Intergroup data show retroperitoneal relapse in 7/264 patients with pathological stage I disease (and 20 pulmonary relapses); four of these seven had no marker elevation (95). In the Indiana series, only one relapse in 559 cases was reported (195). If a relapse occurs, it is generally in the chest, neck or at the margins of the surgical field. Pulmonary relapses occur in 10-12% of patients and more than 90% of those relapses occur within 2 years of RPLND (196,197). The recommended follow-up schedule is shown in Table 6.

Table 6: Recommended follow-up schedule after retroperitoneal lymphadenectomy or adjuvant chemotherapy - stage I non-seminoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3-5</th>
<th>Year 6-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>6 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year a</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>6 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year a</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>6 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year a</td>
</tr>
<tr>
<td>Abdominal CT scan</td>
<td>Twice</td>
<td>Once</td>
<td>If indicated a</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>Twice a</td>
<td>Twice a</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
</tbody>
</table>

a Grade C recommendation.

b Due to a risk of late, slow-growing teratoma in the retroperitoneum after adjuvant chemotherapy once a year.

c Alternating with abdominal CT scan.

7.2.3 Follow-up after adjuvant chemotherapy

Although the number of patients treated using adjuvant chemotherapy is still small, some prospective reports with long-term follow-up show a very low relapse rate (77,78,80,87) of about 3%. The need for repeated and long-term assessment of the retroperitoneum is still not clear. Primary chemotherapy in the treatment of NSGCT cannot be regarded as investigational, but still has to be offered in the setting of clinical trials. The follow-up schedule will depend on the results of these studies, but will probably be similar to that recommended for RPLND (Table 6). Owing to the risk of developing a late, slow-growing teratoma in the retroperitoneum after adjuvant chemotherapy, an abdominal CT or an ultrasound examination should also be performed (at least) annually during the third to fifth year.

7.3 Follow-up of stage I seminoma

The majority of patients with seminoma (70-80%) present with clinical stage I disease at diagnosis (198). In 15-20% of cases, there is nodal radiological involvement at the level of the retroperitoneum and only 5% of patients present with distant metastasis (198). The relapse rate varies between 1% and 20%, depending on the post-orchiectomy therapy chosen. Only up to 30% of seminomas present with elevation of β-hCG at diagnosis or in the course of the disease. Consequently, in most cases, measurement of blood markers will not be a reliable test for follow-up (189). The treatment options post-orchiectomy in stage I seminoma are retroperitoneal radiotherapy, surveillance and adjuvant chemotherapy. Due to extreme radio- and chemosensitivity, high cure rates of almost 100% are reached with each of the approaches, even in cases of relapse. The costs of the different therapies vary, as do the expected side effects (61,199,200).

The optimal schedule of follow-up has yet to be defined and will vary depending on the treatment chosen. Different tests have to be performed according to the relapse time and pattern of relapse.

7.3.1 Follow-up after radiotherapy

Low doses of radiotherapy (20-24 GY) limited to the retroperitoneal or the hockey stick field achieve an overall survival rate of approximately 99% at 5-10 years (53,55,201-203). The rate of relapse is 1-2% and the most common time of presentation is within 18 months after treatment (53,56,200,204,205), although late relapses have also been described (185). The site of relapse is mainly at the supradiaphragmatic lymph nodes, mediastinum, lungs or bones. In a small proportion of cases, the tumour will relapse in the inguinal or external iliac nodes (198).

The side effects of radiotherapy include impaired spermatogenesis, gastrointestinal symptoms (peptic ulceration) and induction of second malignancies (200,206,207). Up to 50% of patients can develop moderate toxicity grade I-II (202). The schedule of follow-up is described in Table 7.
Table 7: Follow-up for post-orchiectomy radiotherapy or chemotherapy - stage I seminoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>2</th>
<th>3</th>
<th>4-5</th>
<th>6-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal CT scan</td>
<td>Once</td>
<td>Once</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>Once*</td>
<td>Once</td>
<td>Once</td>
<td>Once</td>
<td>If indicated</td>
</tr>
</tbody>
</table>

* Alternating with abdominal CT scan.

7.3.2 Follow-up after surveillance

It must be recognized that there is a somewhat higher need for salvage chemotherapy if prophylactic radiotherapy is omitted. Alternatively, at least 80% of patients will receive unnecessary radiotherapy if this is given prophylactically to all those with seminoma stage I. There are already prospective, but not randomized, studies of surveillance showing that the actuarial risk of relapse at 5 years ranges between 15% and 20% (208-212). Nevertheless, there is no increased risk of death. The median time to relapse ranges from 12-18 months, but up to 29% of relapses can develop later (198). The sites of relapse are the PA lymph nodes in up to 82% of cases; the pelvic lymph nodes, inguinal nodes and lungs can also be affected (198). Due to the high and often late rate of relapse, close and active follow-up is mandatory for at least 5 years. The major disadvantages of this policy are lack of long-term follow-up data, high costs and patient compliance. The schedule of follow-up is described in Table 8.

Table 8: Follow-up in surveillance policy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>2</th>
<th>3</th>
<th>4-5</th>
<th>6-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal CT scan</td>
<td>4 times</td>
<td>4 times</td>
<td>Twice</td>
<td>Once/year</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>*</td>
<td>*</td>
<td>Twice*</td>
<td>Once/year*</td>
<td>If indicated</td>
</tr>
</tbody>
</table>

* Not required.

* Alternating with abdominal CT scan.

7.3.3 Follow-up after adjuvant chemotherapy

One or two courses of carboplatin-based chemotherapy is an effective alternative treatment in stage I seminoma. The relapse rate is less than 2%, but the number of patients treated in a prospective setting is still low and the length of follow-up is also limited in most studies. In general, this treatment is well tolerated, with only mild, acute and intermediate-term toxicity (67,68). As the relapse rate is low, the follow-up schedule may be the same as the one proposed for post-orchiectomy radiotherapy (Table 7).

7.4 Follow-up of stage II and advanced (metastatic) disease

The more advanced the nodal stage of the disease, the higher the likelihood of recurrence (96). In general, the primary tumour bulk governs the outcome for patients with NSGCT (213). In stage II NSGCT, regardless of the treatment policy adopted, excellent survival rates of 97% are reached provided that relapse is identified as soon as possible (109,193,214).

In advanced metastatic germ cell tumours, the extent of the disease is correlated with the response to therapy and with survival. The combination of cisplatin-based chemotherapy and surgery (aggressive multimodality) achieves cure rates between 65% and 85%, depending on the initial extent of disease (213,215). Complete response rates to chemotherapy are in the order of 50-60% (213); another 20-30% of patients could be rendered disease-free with post-chemotherapy surgery (216).
The main reasons for failure of therapy in advanced NSGCT are (213,217,218):
- The presence of bulky disease not responding completely to chemotherapy.
- Unresectable residual teratoma after chemotherapy.
- Presence or development of chemoresistant non-germ cell elements, which account for 8.2% of cases.

There is a lack of randomized trial results from which to plan evidence-based follow-up, and the different schedules used by various centres have a higher variability and are more individualized than for stage IA.

7.4.1 Clinical and pathological stage II NSGCT
As previously stated in this guideline, low-volume stage II NSGCT can be treated by primary RPLND or primary chemotherapy.

7.4.1.1 Relapse after primary RPLND
Two different situations can occur:
1. About 23-28% of clinical stage II patients will have pathological stage I disease and should be followed up accordingly (see follow-up for NSGCT stage I) (219,220).
2. Between 72% and 77% of clinical stage II patients will be pathological stage II, having a different relapse rate depending on the type of treatment. Whatever the treatment policy chosen, the majority of relapses occur within the first 2 years and outside the surgical field.

Relapse after primary RPLND followed by two immediate cycles of chemotherapy
The relapse rate for this group is 6% at 4 years (96,215). In non-randomized series, with a mean follow-up ranging from 30-72 months, this treatment policy results in a high overall disease-free survival rate of 98-100% (214,221).

The main disadvantage of adjuvant chemotherapy is that it represents an overtreatment in approximately 50% of patients with stage II disease.

Relapse after primary RPLND followed by surveillance
The average relapse rate in this group is 35% (range 8-49%) at a mean of 4 years (96,190,222). Nevertheless, the relapse rate depends on pathological stage; pathological stage IIa presents a risk of relapse of less than 50%, while pathological stage IIb presents a risk of relapse of at least 50% (96,214,215,223). Following primary RPLND the retroperitoneal CT scan can be replaced by a less expensive abdominal ultrasound, although a baseline post-RPLND CT scan is recommended (Table 12). When primary RPLND is followed by surveillance (generally in cases of low-volume lymph node involvement or pathological stage IIa), a stricter schedule of follow-up is needed than with adjuvant chemotherapy. A physical examination, tumour marker assessment and chest X-ray are performed more frequently than in the former treatment policy.

The follow-up outlined in Table 9 can be used, but the tests have to be performed:
- monthly during the first year
- bimonthly during the second year
- quarterly during the third year
- every 4 months during the fourth year
- twice in the fifth year
- annually thereafter.
Table 9: Follow-up of NSGCT stage IIa-IIb after RPLND plus chemotherapy or primary chemotherapy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Thereafter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td></td>
<td>6 times</td>
<td>4 times</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td></td>
<td>6 times</td>
<td>4 times</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td></td>
<td>6 times</td>
<td>4 times</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal CT&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td>Baseline, then as indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td></td>
<td>Twice</td>
<td>Twice</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
</tbody>
</table>

<sup>a</sup> After RPLND, a baseline CT scan of the abdomen and pelvis is obtained, and repeated if clinically indicated thereafter.

<sup>b</sup> After primary chemotherapy, the retroperitoneum has to be monitored by means of CT scan at least twice during the first 2 years.

7.4.1 Relapse after primary chemotherapy

Between 68% and 78% of patients (average 75%) will reach a complete clinical response (85,109,224). The relapse rate is around 5%, and most relapses occur in the first 8 months after chemotherapy, continuing up to 2 years. Nevertheless, later relapses in the range 2-5% may occur depending on several prognostic factors (e.g. whether the metastasis is > 3 cm or < 3 cm in size and the histology of the primary tumour/teratoid elements). Mature teratomas have been described at 5-8 years of follow-up (214). Generally, the relapse rate at a median follow-up of 5.5 years is approximately 8%. The progression-free survival rate is approximately 92% and the overall survival rate is 97% (109).

Although this treatment policy avoids RPLND in 68-78% of patients, depending on whether the clinical stage is IIa or IIb (109,156,224), it requires extended follow-up. After primary chemotherapy, retroperitoneal CT scans cannot be omitted from the follow-up schedule. The follow-up schedule is basically the same as that for primary RPLND plus adjuvant chemotherapy, although after primary chemotherapy an abdominal and pelvic CT scan has to be performed at least twice during the first 2 years (Table 9).

7.4.2 Clinical stage II seminoma

Relapse rates following radiotherapy for clinical stages IIa and IIb are in the range of 5-15%. Most relapses occur within the first 2 years and present with a supraclavicular or mediastinal mass, while relapses in the irradiated field are rare (215). The recommend follow-up schedule is outlined in Table 10.

Table 10: Follow-up of seminoma stage IIa-IIb after radiotherapy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>&gt;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td></td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td></td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td></td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>CT abdomen and pelvis&lt;sup&gt;a&lt;/sup&gt;</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td></td>
</tr>
<tr>
<td>CT chest&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> Baseline CT of the abdomen/pelvis post-treatment and repeated only if indicated.

<sup>b</sup> Only if there is an abnormal chest X-ray or if clinical symptoms indicate.
7.4.3 Clinical stage IIc and III seminoma and non-seminoma

In advanced disease following the IGCCCG classification, the overall survival rate is in the order of 92% for patients in the good prognostic category, 80% for those in the intermediate category and 48% for those in the poor prognostic category (41). Stage IIc is generally grouped in the subset of patients with good prognosis (214).

After chemotherapy, careful follow-up is recommended if there is a decrease of at least 90% in the volume of retroperitoneal masses, provided there is no evidence of teratomatous elements in the primary tumour. Nevertheless, to date there are no reliable CT scan criteria to distinguish tumour or teratoma from necrotic debris in the post-chemotherapy setting; false-negative CT scan rates range from 8-37% (217).

In advanced NSGCT, despite statistical correlation with a variety of factors (e.g., degree of shrinkage, size of residual mass, pre-chemotherapy tumour marker levels, teratomatous components in orchiectomy specimen), the risk of a false-negative prediction based on a CT scan is currently still approximately 20% (217).

In advanced seminoma, the rate of “in-site” failure is 3% when the CT scan is normal or shows a residual abnormality less than 3 cm in diameter (130-132,225). The follow-up schedule for advanced disease (seminoma and non-seminoma) is presented in Table 11.

In advanced disease, routine estimation of serum tumour markers (hCG and AFP) seems to be the single most important follow-up procedure, followed by physical examination and clinical history (188,226). Some recent studies question the value of routine chest X-ray (188).

A brain CT has to be performed during follow-up if neurological symptoms are present, because up to 5% of patients with advanced disease present with or develop brain metastases (215). An abdominal CT scan has to be performed at least annually, because of the ominous significance of teratoma, if found in the retroperitoneum.

Table 11: Follow-up of advanced NSGCT and seminoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Thereafter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>12 times</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>12 times</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>12 times</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal CT&lt;sup&gt;a&lt;/sup&gt;</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
</tr>
<tr>
<td>Chest CT&lt;sup&gt;b&lt;/sup&gt;</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
</tr>
<tr>
<td>Brain CT&lt;sup&gt;c&lt;/sup&gt;</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
</tr>
</tbody>
</table>

<sup>a</sup> Abdominal CT scan has to be performed at least annually if teratoma is found in retroperitoneum.

<sup>b</sup> If the post-chemotherapy evaluation shows any mass > 3 cm, the appropriate CT scan should be repeated 2 and 4 months later to ensure that the mass is continuing to regress.

<sup>c</sup> Chest CT is indicated if abnormality is detected on chest X-ray and after pulmonary resection.

<sup>d</sup> In patients with headaches, focal neurological findings or any central nervous system symptoms.

8. TESTICULAR STROMAL TUMOURS

8.1 Background

Testicular stromal tumours are rare and account for only 2-4% of adult testicular tumours. However, only Leydig cell and Sertoli cell tumours are of clinical relevance. As no general recommendations are published to date, the Testicular Cancer Working Group of the EAU decided to include these tumours in the EAU Germ Cell Tumour Guidelines. Recommendations for diagnosis and treatment are given only for Leydig and Sertoli cell tumours.
8.2 Methods
A Medline search for Leydig cell tumours (synonym: interstitial cell tumour) and Sertoli cell tumours (synonym: androblastoma) was performed. Approximately 850 papers were found. After excluding pure laboratory work without clinical data, female and paediatric tumours and animal cases, 371 papers and abstracts were reviewed. Double publications and papers with unclear histology or missing data on clinical course were excluded. The majority of the remaining 285 publications were case reports, with only a few papers reporting series of more than 10 cases, most of them published in the pathology literature. The true incidence of stromal tumours remains therefore uncertain and the proportion of metastatic tumours can only be given approximately.

Nevertheless, the symptoms for pre-operative suspicion of testicular stromal tumours and the characteristics of tumours at high risk for metastases are sufficiently well established (EBM IIA and EBM IIB) to enable recommendations to be made regarding diagnosis and surgical approach. However, no recommendations for appropriate follow-up can be given due to the absence of follow-up data in most reported cases and the fatal outcome of metastatic tumours, irrespective of the therapy chosen.

The individual publications have been rated according to EBM categories (see above).

The literature research for clinical data on Leydig cell tumours resulted in 193 publications dealing with more than 480 tumours in adults, including three publications (1-3) reporting larger series on a total of 90 patients. Follow-up data of more than 2 years are available for about 80 patients.

The literature research for clinical data on Sertoli cell tumours resulted in 93 publications dealing with more than 260 tumours in adults, including three publications (from the same group) (4-6) reporting on a total of 80 patients. Follow-up data of more than 2 years are available in fewer than 40 patients.

8.3 Classification
The non-germ cell tumours of the testicle include the sex cord/gonadal stromal tumours and the miscellaneous non-specific stromal tumours.

The different histological subtypes of testicular tumours are defined according to the WHO classification 2004 (adapted) (7).

8.4 Leydig cell tumours

8.4.1 Epidemiology
Leydig cell tumours constitute about 1-3% of adult testicular tumours (2,8) and 3% of testicular tumours in infants and children (8). The tumour is most common in the third to sixth decade in adults with a similar incidence observed in every decade. Another peak incidence is seen in children between 3 and 9 years. 3% of Leydig cell tumours are bilateral (2). Occasionally, they occur in patients with Klinefelter’s syndrome (8).

8.4.2 Pathology of Leydig cell tumours
Leydig cell tumours are the most common type of sex cord/gonadal stromal tumours. Histopathologically, they are well outlined and usually up to 5 cm in diameter. They are also solid, coloured yellow to tan, with haemorrhage and/or necrosis present in 30% of cases. Microscopically, the cells are polygonal, with eosinophilic cytoplasm with occasional Reinke crystals, regular nucleus, solid arrangement and capillary stroma. The cells express vimentin, inhibin, protein S100, steroid hormones, calretinin and cytokeratin (focally) (7).

About 10% of Leydig cell tumours are malignant tumours, which present with the following parameters:
- large size (> 5 cm)
- cytological atypia
- increased mitotic activity (> 3 per 10 high-power field [HPF])
- increased MIB-1 expression (18.6% vs 1.2% in benign)
- necrosis
- vascular invasion (1)
- infiltrative margins
- extension beyond the testicular parenchyma
- DNA aneuploidy (1,9).

8.4.3 Diagnosis
Patients either present with a painless enlarged testis or the tumour is an incidental ultrasound finding. In up to
80%, hormonal disorders with high oestrogen and oestradiol levels and low testosterone, increased levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are reported (10,11), while negative results are always obtained for the testicular germ cell tumour markers, AFP, HCG, lactate dehydrogenase (LDH) and PLAP. Approximately 30% of patients present with gynaecomastia (12,13). 3% of tumours are bilateral (2).

Leydig cell tumours must be distinguished from the multinodular tumour-like and often bilaterally occurring lesions of the androgenital syndrome (14). Diagnostic work-up must include markers, hormones (at least testosterone, LH and FSH, if not conclusive: additionally oestrogen, oestradiol, progesterone and cortisol), ultrasound of both testes and CT scan of chest and abdomen.

On ultrasound, it may be possible to observe well-defined, small, hypoechoic lesions with hypervascularization, but the appearance is variable and is indistinguishable from germ cell tumours (15,16). The proportion of metastatic tumours in all published case reports is only 10%. Within three larger series with longer follow-up, 18 metastatic tumours were found in a total of 83 cases (21.7%) (1-3). Histopathological signs of malignancy have been listed above (see 8.4.2) (1,9). In addition, patients of older age have a greater risk of harbouring a tumour of malignant potential.

8.4.4 Treatment
Asymptomatic testicular tumours of small volume are often misinterpreted as germ cell tumours and inguinal orchietomy is performed. It is highly recommended to perform an organ-sparing procedure in every small intraparenchymal lesion to gain the histological diagnosis. Especially in patients with symptoms of gynaecomastia or hormonal disorders, a non-germ-cell tumour should be considered and immediate orchietomy should be avoided (17). In cases of germ cell tumour in either frozen section or paraffin histology, orchietomy is recommended as long as a contralateral normal testicle is present.

In stromal tumours with histological signs of malignancy, especially in patients of older age, orchietomy and retroperitoneal lymphadenectomy is recommended to prevent metastases (18). Without histological signs of malignancy an individualized surveillance strategy after orchietomy is recommended (CT follow-up may be most appropriate since specific tumour markers are not available).

Tumours that have metastasized to lymph nodes, lung, liver or bone respond poorly to chemotherapy or radiation and survival is poor (18).

8.4.5 Follow-up
Recommendations for appropriate follow-up cannot be given because of the lack of follow-up data in most reported cases and the lethal outcome of metastatic tumours, irrespective of the therapy chosen.

8.5 Sertoli cell tumour

8.5.1 Epidemiology
Sertoli cell tumours account for less than 1% of testicular tumours, the mean age at diagnosis is around 45 years with rare cases under the age of 20 (4,19). On rare occasions, these tumours may develop in patients with the androgen insensitivity syndrome and Peutz-Jeghers syndrome.

8.5.2 Pathology of Sertoli cell tumours
The tumour is well circumscribed, yellow, tan or white, with an average diameter of 3.5 cm (4). Microscopically, the cells are eosinophilic to pale with vacuolated cytoplasm. The nuclei are regular with grooves and there may be inclusions. The arrangement of the cells is tubular or solid; a cord-like or retiform pattern is possible. The stroma is fine and capillary but in some cases a sclerosing aspect predominates. The cells express vimentin, cytokeratins, inhibin (40%) and protein S-100 (30%) (4).

The rate of malignant tumours ranges between 10% and 22% and fewer than 50 cases are reported (20-22).

Signs of a malignant Sertoli tumour are:
- large size (> 5 cm)
- pleomorphic nuclei with nucleoli
- increased mitotic activity (> 5 per 10 HPF)
- necrosis
- vascular invasion.
8.5.2.1 Classification

Three subtypes have been described (19):

- the classic Sertoli cell tumour (4)
- the large cell calcifying form with characteristic calcifications (5,23)
- the rare sclerosing form (6,24).

8.5.3 Diagnosis

Patients present either with an enlarged testis or the tumour is an incidental ultrasound finding (25). Most classic Sertoli tumours are unilateral and unifocal. Hormonal disorders are infrequent, though gynaecomastia is sometimes seen (4). The testicular tumour-markers, AFP, HCG, LDH and PLAP are always negative.

Diagnostic work-up has to include tumour markers, hormones (at least testosterone, LH and FSH, if not conclusive: additionally oestrogen, oestradiol, progesterone and cortisol, ultrasound of both testes and CT scan of chest and abdomen.

Sertoli cell tumours are generally hypoechoic on ultrasound but they can be of variant appearance and therefore cannot be safely distinguished from germ cell tumours (19). Only the large cell calcifying form has a characteristic image with brightly echogenic foci due to calcification (26,27).

The large cell calcifying form is diagnosed in younger men and is associated with genetic syndromes (Carney’s complex (28) and Peutz-Jeghers syndrome (29)) or, in about 40% of cases, endocrine disorders. 44% are bilateral, either synchronous or metachronous, and 28% show multifocality (21).

The large cell calcifying form is diagnosed in younger men and is associated with genetic syndromes (Carney’s complex (28) and Peutz-Jeghers syndrome (29)) or, in about 40% of cases, endocrine disorders. 44% are bilateral, either synchronous or metachronous, and 28% show multifocality (21).

The characteristics of metastatic tumours have been depicted above (21,22). However, among patients whose tumours have been histopathologically classified as “malignant” using these or similar characteristics (i.e. 18.8% of tumours in all reported cases), only 7% showed metastatic disease during follow-up.

In the largest series with the longest follow-up, 7.5% of patients had been classified as “malignant” at primary diagnosis and 11.7% showed metastatic disease long-term (4). In general, affected patients are of higher age, tumours are nearly always palpable and show more than one sign of malignancy (4).

Up to 20% of the large cell sclerosing form are malignant. There are some hints that discrimination between an early and a late onset type may define a different risk for metastatic disease (5.5% compared with 23%) (19). Metastases in the infrequent sclerosing subtype are rare.

8.5.4 Treatment

Testicular tumours of small volume, otherwise asymptomatic, are often misinterpreted as germ cell tumours and inguinal orchietomy is performed. It is highly recommended to proceed with an organ-sparing approach in small intraparenchymal testicular lesions until final histology is available. Especially, in patients with symptoms of gynaecomastia or hormonal disorders or typical imaging on ultrasound (calcifications, small circumscribed tumours), organ-sparing surgery should be considered. Secondary orchietomy can be performed, if final pathology reveals a non-stromal (e.g. germ cell) tumour. Organ-sparing surgical approaches are justified as long as the remaining testicular parenchyma is sufficient for endocrine (and in stromal tumours also exocrine) function.

In tumours with histological signs of malignancy, especially in patients of older age, orchietomy and retroperitoneal lymphadenectomy are recommended to prevent metastases (18). Without signs of malignancy, an individualized surveillance strategy after orchietomy is recommended (CT scans may be most appropriate since specific tumour markers are not available). Tumours metastasizing to lymph nodes, lung or bone respond poorly to chemotherapy or radiation and survival is poor.

8.5.5 Follow-up

Recommendations for appropriate follow-up cannot be given because of the lack of follow-up data in most reported cases and the lethal outcome of metastatic tumours, irrespective of the therapy chosen.

8.6 Granulosa cell tumour

This is a rare tumour, with two variants - juvenile and adult.

The juvenile type is benign. It is the most frequent congenital testicle tumour and represents 6.6% of all prepuberal testicular neoplasms. The cystic appearance is characteristic of this tumour type (30).
With the adult type, the average age at presentation is 44 years. The typical morphology is of a homogeneous, yellow-grey tumour, with elongated cells, with grooves in micro-follicular and Call-Exner bodies’ arrangement.

Malignant tumours represent around 20% of cases. They are usually > 7 cm diameter. Vascular invasion and necrosis are features suggestive of malignant biology (31).

8.7  Thecoma/fibroma group of tumours
These tumours are very rare and benign (7).

8.8  Other sex cord/gonadal stromal tumours
Sex cord/gonadal stromal tumours may be incompletely differentiated or mixed forms.

There is limited experience with incompletely differentiated sex cord/gonadal stromal tumours and no cases of reported metastasis (7). In mixed tumour forms, all the histological components should be reported. However, the clinical behaviour is most likely to reflect the predominant pattern or the most aggressive component of the tumour (32).

8.9  Tumours containing germ cell and sex cord/gonadal stromal (gonadoblastoma)
If the arrangement of the germ cells are in nested pattern and the rest of the tumour is composed of sex cord/gonadal stroma, the term gonadoblastoma is used. It is most frequent in gonadal dysgenesis with ambiguous genitalia. Bilateral tumours are present in 40% of cases. The prognosis is correlated with the invasive growth of the germinal component (33).

In case of a diffuse arrangement of the different components, there are some doubts about the neoplastic nature of the germinal cells and some authors consider them to be entrapped rather than neoplastic (34).

8.10  Miscellaneous tumours of the testis

8.10.1  Tumours of ovarian epithelial types
These tumours resemble the epithelial tumours of the ovary. Cystic appearance with occasional mucinous material can be observed. Microscopically, the aspect is identical to their ovarian counterparts and their evolution is similar to the different epithelial ovarian subtypes. Some Brenner types can be malignant (7).

8.10.2  Tumours of the collecting ducts and rete testis
These tumours are very rare. Benign (adenoma) and malignant (adenocarcinoma) have been reported, with malignant tumours showing local growth with a mortality rate of 56% (17).

8.10.3  Tumours (benign and malignant) of non-specific stroma
These are very uncommon and have a similar criteria, prognosis and treatment as the soft tissue sarcomas.

9.  REFERENCES

9.1  Germ cell tumours


UPDATE MARCH 2005 25


UPDATE MARCH 2005


UPDATE MARCH 2005


78. Oliver RTD, Raja MA, Ong J, Gallagher CJ. Pilot study to evaluate impact of a policy of adjuvant chemotherapy for high risk stage I malignant teratoma on overall relapse rate of stage I cancer patients. J Urol 1992;148:1453-1456. EBM III.


128. Fossa AD, Stenning SP, Gerl A, Horwich A, Clark PI, Wilkinson PM, Jones WG, Williams MV, Oliver RT,
Newlands ES, Mead GM, Cullen MH, Kaye SB, Rustin GJ, Cook PA. Prognostic factors in patients
progressing after cisplatin-based chemotherapy for malignant non-seminomatous germ cell tumours.
Abstract

129. Herr HW, Bosl G. Residual mass after chemotherapy for seminoma: changing concepts of
management. J Urol 1987;137:1234-1235. EBM III.
Abstract

130. Loehrer PJ Sr, Birch R, Williams SD, Greco FA, Einhorn LH. Chemotherapy of metastatic seminoma:
Abstract

indication for further therapy in patients with advanced seminoma following systemic chemotherapy.
J Clin Oncol 1987;5:1064-1070. EBM III.
Abstract

132. Peckham MJ, Horwich A, Hendry WF. Advanced seminoma treatment with cisplatinum based
combination chemotherapy or carboplatin (JM8). Br J Cancer 1985;52:7-13. EBM III.
Abstract

133. Duchesne GM, Stenning SP, Aass N, Mead GM, Fossa SD, Oliver RT, Horwich A, Read G, Roberts IT,
Rustin G, Cullen MH, Kaye SB, Harland SJ, Cook PA. Radiotherapy after chemotherapy for metastatic
seminoma - a diminishing role. Eur J Cancer 1997;33:829-835. EBM III.
Abstract

134. Mosharafa AA. Foster RS, Leibovich BC, Bihre R, Donahue JP. Is the post-chemotherapy resection of
EBM III.

BM, Dittrich C, Pont J. 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable
predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric
8

136. Becherer A, Santis MD, Karanikas G, Szabo M, Bokemeyer C, Dohmen BM, Pont J, Dudczak R,
Dittrich C, Kletter K. FDG PET is superior to CT in the prediction of viable tumour in post-
Abstract

137. Fossa SD, Ous S, Lien HH, Stenwig AE. Post-chemotherapy lymph node histology in radiologically
Abstract

138. Toner GC, Panicek DM, Heelan RT, Geller NL, Lin SY, Bajorin D, Motzer RJ, Scher HI, Herr HW, Morse
MJ et al. Adjunctive surgery after chemotherapy for nonseminomatous germ cell tumors:
Abstract

139. Donohue JP, Rowland RG, Kopecky K, Steidle CP, Geier G, Ney KG, Einhorn L, Williams S, Loehrer P.
Correlation of computerized tomographic changes and histological findings in 80 patients having
radical retroperitoneal lymph node dissection after chemotherapy for testis cancer. J Urol
1987;137:1176-1179. EBM III.
Abstract

Abstract


151. Hartmann JT, Candelaria M, Kuczyk MA, Schmoll HJ, Bokemeyer C. Comparison of histological results from the resection of residual masses at different sites after chemotherapy for metastatic non-seminomatus germ cell tumours. Eur J Cancer 1997;33:843-847. EBM III. 


UPDATE MARCH 2005


UPDATE MARCH 2005 39


188. Gietema JA, Meinardi MT, Sleifer DT, Hoekstra HJ, van der Graaf WT. Routine chest X-rays have no additional value in the detection of relapse during routine follow-up of patients treated with chemotherapy for disseminated non-seminomatous testicular cancer. Ann Oncol 2002;13:1616-1620. EBM III. 


197. Schmoll HJ, Weissbach L. [Diagnostics and therapy of testicular tumours], Interdisziplinäre Konsensus-Konferenz, Halle (Saale), 1996. [German] EBM IIa-IIb-III.


9.2 Non-germ cell tumours


8. Ulbright TM, Amin MB, Young RH. Tumours of the testis, adnexia, spermatic cord and scrotum. AFIP 1999. EMB III.


UPDATE MARCH 2005


10. ABBREVIATIONS USED IN THE TEXT

This list is not comprehensive for the most common abbreviations.

AFP [alpha-fetoprotein]
β-hCG [beta-human chorionic gonadotrophin]
CNS [central nervous system]
CT [computed tomography]
EBM [evidence-based medicine]
EGCCCG [European Germ Cell Cancer Collaborative Group]
EORTC [European Organization for Research and Treatment of Cancer]
FDG-PET [fluorodeoxyglucose-positron-emission tomography]
FSH [follicle-stimulating hormone]
G-CSF [granulocyte - colony stimulating factor]
GI [gastrointestinal]
HPF [high-power field]
IGCCCG [International Germ Cell Cancer Collaborative Group]
LDH [lactate dehydrogenase]
LH [luteinizing hormone]
MRC [Medical Research Council]
MRI [magnetic resonance imaging]
NSE [neuro-specific enolase]
NSGCT [non-seminomatous germ cell tumour]
PA [para-aortic]
PEB [cisplatin, etoposide, bleomycin]
PEI/VIP [cisplatin, etoposide, ifosfamide]
PET [positron emission tomography]
PFS [progression-free survival]
PLAP [placental alkaline phosphatase]
PVB [cisplatin, vinblastine, bleomycin]
RPLND [retroperitoneal lymph node dissection]
TIN [intratubular germ cell neoplasia]
TNM [Tumour Node Metastasis]
UICC [International Union Against Cancer]
ULN [upper limit of normal range]
VelP [vinblastine, ifosfamide and cisplatin]
VIP/PEI [cisplatin, etoposide, ifosfamide]
WW [watchful waiting]