EAU Guidelines on Upper Urinary Tract Urothelial Carcinoma

M. Rouprêt, M. Babjuk (Chair), M. Burger (Vice-chair), E. Compérat, N.C. Cowan, P. Gontero, A.H. Mostafid, J. Palou, B.W.G. van Rhijn, S.F. Shariat, R. Sylvester, R. Zigeuner

© European Association of Urology 2019
TABLE OF CONTENTS

1. INTRODUCTION 4
 1.1 Aim and objectives 4
 1.2 Panel composition 4
 1.3 Available publications 4
 1.4 Publication history & summary of changes 4
 1.4.1 Summary of changes 4

2. METHODS 5
 2.1 Data identification 5
 2.2 Review 5

3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY 6
 3.1 Epidemiology 6
 3.2 Risk factors 7
 3.3 Histology and classification 8
 3.3.1 Histological types 8

4. STAGING AND CLASSIFICATION SYSTEMS 8
 4.1 Classification 8
 4.2 Tumour Node Metastasis staging 8
 4.3 Tumour grade 8
 4.4 Future developments 8

5. DIAGNOSIS 9
 5.1 Symptoms 9
 5.2 Imaging 9
 5.2.1 Computed tomography urography 9
 5.2.2 Magnetic resonance urography 9
 5.3 Cystoscopy and urinary cytology 9
 5.4 Diagnostic ureteroscopy 10
 5.5 Distant metastasis 10
 5.6 Summary of evidence and guidelines for the diagnosis of urothelial carcinoma of the upper urinary tract 10

6. PROGNOSIS 11
 6.1 Prognostic factors 11
 6.2 Pre-operative factors 11
 6.2.1 Age and gender 11
 6.2.2 Ethnicity 12
 6.2.3 Tobacco consumption 12
 6.2.4 Tumour location 12
 6.2.5 Surgical delay 12
 6.2.6 Other 12
 6.3 Post-operative factors 12
 6.3.1 Tumour stage and grade 12
 6.3.2 Lymph node involvement 12
 6.3.3 Lymphovascular invasion 12
 6.3.4 Surgical margins 12
 6.3.5 Pathological factors 12
 6.4 Molecular markers 12
 6.5 Predictive tools 13
 6.5.1 Bladder recurrence 13
 6.6 Risk stratification 13
 6.7 Summary of evidence and guideline for prognosis 14

7. DISEASE MANAGEMENT 14
 7.1 Localised disease 14
 7.1.1 Kidney-sparing surgery 14
7.1.1 Guidelines for kidney-sparing management of upper urinary tract urothelial cell carcinoma 14
7.1.2 Ureteroscopy 14
7.1.3 Percutaneous access 14
7.1.4 Segmental ureteral resection 14
7.1.5 Upper urinary tract instillation of topical agents 15
7.1.2 Radical nephroureterectomy 15
7.1.2.1 Surgical approach 15
7.1.2.1.1 Open radical nephroureterectomy 15
7.1.2.1.2 Laparoscopic radical nephroureterectomy 15
7.1.2.2 Lymph node dissection 15
7.1.2.3 Summary of evidence and guidelines for radical nephroureterectomy 16
7.1.3 Perioperative chemotherapy as an adjunct to radical nephroureterectomy 16
7.1.3.1 Neoadjuvant chemotherapy 16
7.1.3.2 Adjuvant chemotherapy 16
7.1.4 Adjuvant Radiotherapy after radical nephroureterectomy 16
7.1.5 Adjuvant bladder instillation 16
7.2 Metastatic disease 19
7.2.1 Radical nephroureterectomy 19
7.2.2 Metastasectomy 19
7.2.3 Systemic treatments 19
8. FOLLOW-UP 19
8.1 Summary of evidence and guidelines for the follow-up of UTUC 20
9. REFERENCES 20
10. CONFLICT OF INTEREST 32
11. CITATION INFORMATION 32
1. INTRODUCTION

1.1 Aim and objectives
The European Association of Urology (EAU) Non-muscle-invasive Bladder Cancer (NMIBC) Guidelines Panel has compiled these clinical guidelines to provide urologists with evidence-based information and recommendations for the management of upper urinary tract urothelial carcinoma (UTUC). Separate EAU guidelines documents are available addressing non-muscle-invasive bladder cancer [1], muscle-invasive and metastatic bladder cancer (MIBC) [2], and primary urethral carcinoma [3].

It must be emphasised that clinical guidelines present the best evidence available to the experts but following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients, but rather help to focus decisions - also taking personal values and preferences/individual circumstances of patients into account. Guidelines are not mandates and do not purport to be a legal standard of care.

1.2 Panel composition
The European Association of Urology (EAU) Guidelines Panel on NMIBC consists of an international multidisciplinary group of clinicians, including urologists, uro-oncologists, a radiologist, a pathologist and a statistician. Members of this panel have been selected based on their expertise and to represent the professionals treating patients suspected of harbouring urothelial carcinoma. All experts involved in the production of this document have submitted potential conflict of interest statements, which can be viewed on the EAU website Uroweb: http://uroweb.org/guideline/upper-urinary-tract-urothelial-cell-carcinoma/.

1.3 Available publications
A quick reference document (Pocket guidelines) is available in print and as an app for iOS and Android devices, presenting the main findings of the UTUC Guidelines. These are abridged versions which may require consultation together with the full text version. Several scientific publications are available as are a number of translations of all versions of the EAU UTUC Guidelines, the most recent scientific summary was published in 2018 [4]. All documents are accessible through the EAU website Uroweb: http://uroweb.org/guideline/upper-urinary-tract-urothelial-cell-carcinoma/.

1.4 Publication history & summary of changes
The first EAU Guidelines on UTUC were published in 2011. The 2019 EAU UTUC Guidelines present a limited update of the 2018 version.

1.4.1 Summary of changes
The literature for the complete document has been assessed and updated, whenever relevant. Conclusions and recommendations have been rephrased and added to throughout the current document.

Key changes for the 2019 print:
• Section 3.2 – Risk factors, has been expanded
• Section 4.4 – Future developments, was added
• Section 5.6 - Summary of evidence and guidelines for the diagnosis of urothelial carcinoma of the upper urinary tract - two recommendations were added.

5.6 Summary of evidence and guidelines for the diagnosis of urothelial carcinoma of the upper urinary tract

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use CT for staging the chest.</td>
<td>Strong</td>
</tr>
<tr>
<td>If CT is contra-indicated, magnetic resonance imaging may be used for imaging the abdomen and pelvis.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

• Section 7.2.2 – Metastasectomy, has been added
• Section 7.2.3 – Systemic treatments, has been expanded to include immune checkpoint inhibitors.
2. METHODS

2.1 Data identification

Standard procedure for EAU Guidelines includes an annual assessment of newly published literature in the field to guide future updates. For the 2019 UTUC Guidelines, new and relevant evidence has been identified, collated and appraised through a structured assessment of the literature. The search was restricted to articles published between July 12th 2017 and June 26th 2018 (Cochrane)/June 26th 2018 (Embase). Databases searched included Pubmed, Ovid, EMBASE and both the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews. After deduplication, a total of 478 unique records were identified, retrieved and screened for relevance.

Excluded from the search were basic research studies, case series, reports and editorial comments. Only articles published in the English language, addressing adults were included. The publications identified were mainly retrospective, including some large multicentre studies. Owing to the scarcity of randomised data, articles were selected based on the following criteria: evolution of concepts, intermediate- and long-term clinical outcomes, study quality, and relevance. Older studies were only included if they were historically relevant. A detailed search strategy is available online: http://uroweb.org/guideline/upper-urinary-tract-urothelial-cell-carcinoma/?type=appendicespublications.

For Chapters 3-6 (Epidemiology, Aetiology and Pathology, Staging and Classification systems, Diagnosis and Prognosis) references used in this text are assessed according to their level of evidence (LE) based on the 2009 Oxford Centre for Evidence-Based Medicine (CEBM) Levels of Evidence [5]. For the Disease Management and Follow-up chapters (Chapters 7 and 8) a system modified from the 2009 CEBM LEs has been used [5].

For each recommendation within the guidelines there is an accompanying online strength rating form, based on a modified GRADE methodology [6, 7]. These forms address a number of key elements, namely:

1. The overall quality of the evidence which exists for the commendation references used in this text are graded according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence (see above) [5];
2. the magnitude of the effect (individual or combined effects);
3. the certainty of the results (precision, consistency, heterogeneity and other statistical or study related factors);
4. the balance between desirable and undesirable outcomes;
5. the impact of patient values and preferences on the intervention;
6. the certainty of those patient values and preferences.

These key elements are the basis which panels use to define the strength rating of each recommendation. The strength of each recommendation is represented by the words ‘strong’ or ‘weak’. The strength of each recommendation is determined by the balance between desirable and undesirable consequences of alternative management strategies, the quality of the evidence (including certainty of estimates), and nature and variability of patient values and preferences [8]. The strength rating forms will be available online.

Additional information can be found in the general Methodology section of this print, and online at the EAU website; http://www.uroweb.org/guidelines/.

A list of Associations endorsing the EAU Guidelines can also be viewed online at the above address.

2.2 Review

The UTUC Guidelines have been peer-reviewed prior to publication in 2016. The summary paper published in 2018 was peer-reviewed prior to publication [4].
3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY

3.1 Epidemiology

Urothelial carcinomas (UCs) are the fourth most common tumours in developed countries [9]. They can be located in the lower (bladder and urethra) or the upper (pyelocaliceal cavities and ureter) urinary tract. Bladder tumours account for 90-95% of UCs and are the most common urinary tract malignancy [1]. Upper urinary tract urothelial carcinomas are uncommon and account for only 5-10% of UCs [9, 10] with an estimated annual incidence in Western countries of almost two cases per 100,000 inhabitants. This rate has risen in the past few decades as a result of improved detection and improved bladder cancer survival [11]. Pyelocaliceal tumours are approximately twice as common as ureteral tumours whilst multifocal tumours are found in 10-20% of cases. The presence of concomitant carcinoma in situ of the upper tract is between 11 and 36% [11]. In 17% of cases, concurrent bladder cancer is present [12] whilst a prior history of bladder cancer is found in 41% of American men but in only 4% of Chinese men [13]. This, along with genetic and epigenetic factors, may explain why Asian patients present with more advanced and higher grade disease compared to other ethnic groups [11]. Following treatment, recurrence in the bladder occurs in 22-47% of UTUC patients [14] compared with 2-6% in the contralateral upper tract [15].

With regards to UTUC occurring following an initial diagnosis of bladder cancer, a series of 82 patients treated with bacillus Calmette-Guérin (BCG) that had regular upper tract imaging between years 1 and 3 showed a 13% incidence of UTUC, all of which were asymptomatic [16] whilst in another series of 307 patients without routine upper tract imaging the incidence was 25% [17]. More recently, a multicentre cohort study (n = 402) with a 50 month follow-up has demonstrated an UTUC incidence of 7.5% in NMIBC receiving BCG with predictors being intravesical recurrence and nonpapillary tumour at transurethral resection of the bladder [16]. Following radical cystectomy for MIBC, 3-5% of patients develop a metachronous UTUC.

Sixty percent of UTUCs are invasive at diagnosis compared with 15-25% of bladder tumours [18] and 7% have metastasised [11]. Upper urinary tract urothelial carcinomas have a peak incidence in individuals aged 70-90 years and are three times more common in men [19].

Familial/hereditary UTUCs are linked to hereditary nonpolyposis colorectal carcinoma [20] and these patients can be screened during a short interview (Figure 3.1) [21]. Patients identified at high risk for hereditary nonpolyposis colorectal carcinoma (HNPCC) syndrome should undergo DNA sequencing for patient and family counselling [20, 22]. In Lynch-related UTUC, immunohistochemistry analysis showed loss of protein expression corresponding to the disease-predisposing MMR (mismatch repair) gene mutation in 98% of the samples (46% were microsatellite instable and 54% microsatellite stable) [23]. The majority of tumours developing in MSH2 mutation carriers [24].
3.2 Risk factors

A number of environmental factors have been implicated in the development of UTUC [25]. Published evidence in support of a role for these factors is not strong, with the exception of smoking and aristolochic acid. Tobacco exposure increases the relative risk of UTUC from 2.5 to 7.0 [26-28]. A large population-based study, including 229,251 relatives of case subjects and 1197,552 relatives of matched control subjects, assessing familial clustering in relatives of urothelial carcinoma patients, has demonstrated genetic or environmental roots independent of smoking-related behaviours. With more than a 9% of the cohort being UTUC patients, clustering was not seen in upper tract disease. This may suggest that the familial clustering of urothelial cancer is specific to lower tract cancers [29, 30].

In Taiwan, the presence of arsenic in drinking water has been tentatively linked to UTUC [31]. Aristolochic acid, a nitrophenanthrene carboxylic acid produced by Aristolochia plants, exerts multiple effects on the urinary system. Aristolochic acid irreversibly injures renal proximal tubules resulting in chronic tubulointerstitial disease, while the mutagenic properties of this chemical carcinogen lead predominantly to UTUC [32-34]. Aristolochic acid has been linked recently to bladder cancer, renal cell carcinoma, hepatocellular carcinoma and intrahepatic cholangiocarcinoma [35]. Two routes of exposure to aristolochic acid are known: (i) environmental contamination of agricultural products by Aristolochia plants, as reported for Balkan endemic nephropathy [36]; and (ii) ingestion of Aristolochia-based herbal remedies [37, 38]. Aristolochia herbs are used worldwide, especially in China and Taiwan [34]. Following bioactivation, aristolochic acid reacts with genomic DNA to form aristolactam-deoxyadenosine adducts [39]; these lesions persist for decades in target tissues, serving as robust biomarkers of exposure (9). These adducts generate a unique mutational spectrum, characterized by A>T transversions located predominately on the non-transcribed strand of DNA [35, 40]. Fewer than 10% of individuals exposed to aristolochic acid develop UTUC [33], supporting a role for genetic determinants in the aetiology of this disease.
Alcohol consumption may be an independent risk factor for UTUC. A large case-control study (1,569 cases and 506,797 controls) has evidenced a significantly higher risk of UTUC in ever-drinkers compared to never-drinkers (OR: 1.23; 95% CI: 1.08-1.40; p = 0.001). Compared to never-drinkers, the risk threshold for UTUC was > 15 gr of alcohol/day. A dose-response was observed [41].

Differences in the ability to counteract carcinogens may contribute to host susceptibility to UTUC. Some genetic polymorphisms are associated with an increased risk of cancer or faster disease progression that introduces variability in the inter-individual susceptibility to the risk factors previously mentioned.

Upper urinary tract urothelial carcinomas may share some risk factors and molecular pathways with bladder UC. So far, two UTUC-specific polymorphisms have been reported [42].

3.3 Histology and classification

3.3.1 Histological types

Upper urinary tract urothelial carcinoma with pure non-urothelial histology is rare [43, 44] but variants are present in approximately 25% of cases [45, 46]. These variants correspond to high-grade tumours with worse prognosis compared with pure UC [47]. Squamous cell carcinoma of the upper urinary tract (UUT) represents < 10% of pyelocaliceal tumours and is even rarer within the ureter. Squamous cell carcinoma of the urinary tract is often assumed to be associated with chronic inflammatory diseases and infections arising from urolithiasis [48, 49]. Other variants, although rare, include sarcomatoid and urothelial carcinomas with inverted growth [47].

However, collecting duct carcinomas, which may seem to share similar characteristics with UCs, display a unique transcriptomic signature as a renal cell cancer subtype, with a putative cell of origin in the distal convoluted tubules. Therefore, collecting duct carcinomas have to be considered as renal cell tumours [50].

4. STAGING AND CLASSIFICATION SYSTEMS

4.1 Classification

The classification and morphology of UTUC and bladder carcinoma are similar [1]. It is possible to distinguish between non-invasive papillary tumours (papillary urothelial tumours of low malignant potential and low- and high-grade papillary UC) [51], flat lesions (carcinoma in situ [CIS]), and invasive carcinoma. As in bladder tumours, non-urothelial differentiation (i.e., histologic variants) confers an adverse risk factor.

4.2 Tumour Node Metastasis staging

The tumour, node, metastasis (TNM) classification is shown in Table 1 [52]. The regional lymph nodes are the hilar and retroperitoneal nodes and, for the mid- and distal ureter, the intrapelvine nodes. Laterality does not affect N classification. Renal pelvic pT3 subclassification may discriminate between microscopic infiltration of the renal parenchyma (pT3a) and macroscopic infiltration or invasion of peripelvic adipose tissue (pT3b) [45, 53, 54]. pT3b UTUC has a higher risk of disease recurrence after radical nephroureterectomy (RNU) [45, 53].

4.3 Tumour grade

Until 2004, the 1973 World Health Organisation (WHO) classification was used for tumour grading and distinguished grades G1-G3 [55]. The 2004/2016 WHO classification distinguishes between non-invasive tumours: papillary urothelial neoplasia of low malignant potential, and low- and high-grade carcinomas (low grade vs. high grade). The current guidelines are based on the 2004/2016 WHO classification [55, 56].

4.4 Future developments

A number of recent studies focussing on molecular classification have been able to demonstrate genetically different groups of upper urinary tract urothelial cancer by evaluating DNA, RNA and protein expression. Four molecular subtypes with distinct clinical behaviours were identified, but, as yet, it is unclear whether these subtypes will respond differently to treatment [57].
Table 1: TNM classification 2017 for urothelial carcinoma of the upper urinary tract [52]

<table>
<thead>
<tr>
<th>T - Primary tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
</tr>
<tr>
<td>T0</td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>Tis</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N - Regional lymph nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>N2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M - Distant metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

5. DIAGNOSIS

5.1 Symptoms
The diagnosis of UTUC may be incidental or related to the evaluation of symptoms that are generally limited. The most common symptom is visible or nonvisible haematuria (70-80%) [58, 59]. Flank pain occurs in approximately 20% of cases, and a lumbar mass is present in approximately 10% of patients [60, 61]. Systemic symptoms (including anorexia, weight loss, malaise, fatigue, fever, night sweats, or cough) associated with UTUC should prompt more rigorous metastatic evaluation; they confer a worse prognosis [60, 61].

5.2 Imaging

5.2.1 Computed tomography urography
Computed tomography (CT) urography has the highest diagnostic accuracy of the available imaging techniques [62-65]. The sensitivity of CT urography for UTUC is 0.67–1.0 and specificity is 0.93–0.99 [66].

Rapid acquisition of thin sections allows high-resolution isotropic images that can be viewed in multiple planes to assist with diagnosis without loss of resolution. Epithelial “flat lesions” without mass effect or urothelial thickening are generally not visible with CT.

The secondary sign of hydronephrosis is associated with advanced disease and poor oncological outcome [60, 67, 68]. The presence of enlarged lymph nodes is highly predictive of metastases in UTUC [68].

5.2.2 Magnetic resonance urography
Magnetic resonance (MR) urography is indicated in patients who cannot undergo CT urography, usually when radiation or iodinated contrast media are contraindicated [69]. The sensitivity of MR urography is 0.75 after contrast injection for tumours < 2 cm [69]. The use of MR urography with gadolinium-based contrast media should be limited in patients with severe renal impairment (< 30 mL/min creatinine clearance), due to the risk of nephrogenic systemic fibrosis. Computed tomography urography is generally preferred to MR urography for diagnosing and staging UTUC.

5.3 Cystoscopy and urinary cytology
Abnormal cytology findings are suggestive of UTUC when bladder cystoscopy is normal, provided no CIS in the bladder or prostatic urethra has been detected [1, 70, 71]. Cytology is less sensitive for UTUC than bladder tumours and should be performed in situ in the renal cavities [72]. Retrograde ureteropyelography remains an option to detect UTUCs [63, 66, 73]. Urinary cytology of the renal cavities and ureteral lumina is preferred before application of a contrast agent for retrograde ureteropyelography because it may cause deterioration of
cytological specimens [67, 73]. In a recent study, barbotage cytology detected up to 91% of cancers, being as effective as biopsy histology [74].

The sensitivity of fluorescence in situ hybridisation (FISH) for molecular abnormalities characteristic of UTUCs parallels its performance in bladder cancer. However, its use may be limited by the preponderance of low-grade recurrent disease in the population undergoing surveillance and kidney-sparing therapy for UTUCs [75, 76]. Therefore, FISH has limited value in the surveillance of UTUCs [75, 76].

5.4 Diagnostic ureteroscopy
Flexible ureteroscopy (URS) is used to visualise the ureter, renal pelvis and collecting system and for biopsy of suspicious lesions. Ureteroscopic biopsies can determine tumour grade in 90% of cases with a low false-negative rate, regardless of sample size [77]. Undergrading may occur following diagnostic biopsy, making intensive follow-up necessary if kidney-sparing treatment is chosen [78]. Ureteroscopy also facilitates selective ureteral sampling for cytology in situ [73, 79, 80]. Stage assessment using ureteroscopic biopsy is notoriously difficult.

Flexible ureteroscopy is particularly useful in diagnostic uncertainty, if kidney-sparing treatment is considered, or in patients with a solitary kidney. Additional information can be provided by ureteroscopy with or without biopsy. Combining ureteroscopic biopsy grade, imaging findings such as hydronephrosis, and urinary cytology may help in the decision-making process between RNU and kidney-sparing therapy [80, 81]. However, recent studies suggest a higher rate of intravesical recurrence after RNU in patients who underwent diagnostic URS preoperatively [82, 83].

Technical developments in flexible ureteroscopes and the use of novel imaging techniques improve visualisation and diagnosis of flat lesions [84]. Narrow-band imaging is a promising technique, but results are preliminary [81, 85, 86]. Optical coherence tomography and confocal laser endomicroscopy (Cellvizio®) have been used in vivo to evaluate tumour grade and/or for staging purposes, with a promising correlation with definitive histology in high-grade UTUC [87, 88]. Recommendations for the diagnosis of UTUC are listed in Section 5.6.

5.5 Distant metastasis
Prior to any curative treatment, it is essential to evaluate the presence of distant metastases. Computed tomography and MRI are the diagnostic techniques of choice to detect lung [89] and liver metastases [90], respectively.

5.6 Summary of evidence and guidelines for the diagnosis of urothelial carcinoma of the upper urinary tract

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The diagnosis of upper tract urothelial carcinoma depends on computed tomography urography and ureteroscopy.</td>
<td>2</td>
</tr>
<tr>
<td>Selective urinary cytology has high sensitivity in high-grade tumours, including carcinoma in situ.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform cystoscopy to rule out bladder tumour.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform computed tomography (CT) of chest, abdomen and pelvis for staging.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use diagnostic ureteroscopy and biopsy only if the result will influence the type of treatment.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use CT for staging the chest.</td>
<td>Strong</td>
</tr>
<tr>
<td>If CT is contra-indicated, magnetic resonance imaging may be used for imaging the abdomen and pelvis.</td>
<td>Strong</td>
</tr>
</tbody>
</table>
6. PROGNOSIS

6.1 Prognostic factors

Upper urinary tract urothelial carcinomas that invade the muscle wall usually have a very poor prognosis. The 5-year specific survival is < 50% for pT2/pT3 and < 10% for pT4 [85, 91, 92]. The main prognostic factors are briefly listed in the text. Figure 6.1 shows an exhaustive list.

Figure 6.1: Urothelial carcinoma of the upper urinary tract: prognostic factors

ASA = American Society of Anesthesiologists; BMI = body mass index; ECOG PS = Eastern Cooperative Oncology Group performance status performance score; UTUC = upper urinary tract urothelial carcinoma.

6.2 Pre-operative factors

6.2.1 Age and gender

Age is one of the most important demographic predictors of survival in UTUC [93]. Older age at the time of RNU is independently associated with decreased cancer-specific survival [54, 92, 94] (LE: 3). Many elderly patients can be cured with RNU [95], suggesting that age alone is an inadequate indicator of outcome [94, 95]. Despite its association with survival, age alone should not prevent a potentially curable approach. Gender is no longer considered an independent prognostic factor influencing UTUC mortality [19, 68, 92, 96].
6.2.2 **Ethnicity**
One multicentre study did not show any difference in outcome between races [97], but population-based studies have indicated that African-American patients have worse outcomes than other ethnicities (LE: 3). Another study has underlined differences between Chinese and American patients at presentation (risk factor, disease characteristics and predictors of adverse oncologic outcomes) [13].

6.2.3 **Tobacco consumption**
Being a smoker at diagnosis increases the risk for disease recurrence and mortality after RNU [98, 99] and recurrence within the bladder [100] (LE: 3). There is a close relationship between tobacco consumption and prognosis; smoking cessation improves cancer control.

6.2.4 **Tumour location**
Initial location of the UTUC is a prognostic factor in some studies [101, 102] (LE: 3). After adjustment for the effect of tumour stage, patients with ureteral and/or multifocal tumours seem to have a worse prognosis than patients diagnosed with renal pelvic tumours [92, 101-105].

6.2.5 **Surgical delay**
A delay between diagnosis of an invasive tumour and its removal may increase the risk of disease progression. Once a decision regarding RNU has been made, the procedure should be carried out within twelve weeks, when possible [106-109] (LE: 3).

6.2.6 **Other**
The American Society of Anesthesiologists score also significantly correlates with cancer-specific survival after RNU [110] (LE: 3), as well as poor performance status [111]. Obesity and higher body mass index adversely affect cancer-specific outcomes in UTUCs [112] (LE: 3). The pre-treatment-derived neutrophil-lymphocyte ratio also correlates with higher cancer-specific mortality [113].

6.3 **Post-operative factors**
6.3.1 **Tumour stage and grade**
The primary recognised prognostic factors are tumour stage and grade [80, 92, 93, 114, 115].

6.3.2 **Lymph node involvement**
Lymph node metastases and extranodal extension are powerful predictors of survival outcomes in UTUC [116]. Lymph node dissection (LND) performed at the time of RNU allows for optimal tumour staging, but its curative role remains debated [117, 118] (LE: 3).

6.3.3 **Lymphovascular invasion**
Lymphovascular invasion is present in approximately 20% of UTUCs and is an independent predictor of survival [119, 120]. Lymphovascular invasion status should be specifically reported in the pathological reports of all UTUC specimens [119, 121] (LE: 3).

6.3.4 **Surgical margins**
Positive soft tissue surgical margin after RNU is a significant factor for developing disease recurrence. Pathologists should look for and report positive margins at the level of ureteral transection, bladder cuff, and around the tumour if T > 2 [122] (LE: 3).

6.3.5 **Pathological factors**
Extensive tumour necrosis (> 10% of the tumour area) is an independent prognostic predictor in patients who undergo RNU [123, 124] (LE: 3). The architecture of UTUC is also a strong prognosticator with sessile growth pattern being associated with worse outcome [125, 126] (LE: 3). Concomitant CIS in organ-confined UTUC and a history of bladder CIS are associated with a higher risk of recurrence and cancer-specific mortality [127, 128] (LE: 3).

6.4 **Molecular markers**
Several studies have investigated the prognostic impact of molecular markers related to cell adhesion (E-cadherin [129] and CD24), cell differentiation (Snail and human epidermal growth factor receptor HER-2 [130]), angiogenesis (hypoxia inducible factor 1α and metalloproteinases), cell proliferation (Ki-67), epithelial-mesenchymal transition (Snail), mitosis (Aurora A), apoptosis (Bcl-2 and survivin), vascular invasion (RON), and c-met protein (MET) [92, 131]. Microsatellite instability is an independent molecular prognostic marker [132]. Microsatellite instability typing can help detect germline mutations and hereditary cancers [20]. Interestingly,
there is a prognostic value of PD-1 and PDL-1 expression in patients with high-grade UTUC [133]. Because of the rarity of UTUC, the main limitations of molecular studies are their retrospective design and, for most studies, small sample size. None of the markers have yet fulfilled the criteria necessary to support their introduction in daily clinical decision making.

6.5 **Predictive tools**
Accurate predictive tools are rare for UTUC. There are two models in the pre-operative setting: one for predicting LND of locally advanced cancer that could guide the decision to perform an LND as well as the extent of LND at the time of RNU [134], and a second model for the selection of non-organ-confined UTUC which is likely to benefit from RNU [135]. Five nomograms are available; four predict survival rates, post-operatively, based on standard pathological features [136-140]. A fifth nomogram, based on only four variables, shows a higher prognostic accuracy and risk stratification in patients with high-grade UTUC [141].

6.5.1 **Bladder recurrence**
A recent meta-analysis of available data has identified significant predictors of bladder recurrence after RNU [142] (LE: 3). Three categories of predictors of increased risk for bladder recurrence were identified:

1. Patient-specific factors such as male gender, previous bladder cancer, smoking and pre-operative chronic kidney disease.
2. Tumour-specific factors such as positive pre-operative urinary cytology, ureteral location, multifocality, invasive pT stage, and necrosis.
3. Treatment-specific factors such as laparoscopic approach, extravesical bladder cuff removal, and positive surgical margins [142].

In addition, the use of diagnostic ureteroscopy has been associated with a higher risk of developing bladder recurrence after RNU [82, 83] (LE: 3).

6.6 **Risk stratification**
As tumour stage is difficult to assert clinically in UTUC, it is useful to “risk stratify” UTUC between low- and high-risk tumours to identify those patients who are more suitable for kidney-sparing treatment rather than radical extirpative surgery [143, 144] (Figure 6.2).

Figure 6.2: Risk stratification of upper urinary tract urothelial carcinoma

- **CTU = computed tomography urography; URS = ureteroscopy; UTUC = upper urinary tract urothelial carcinoma.**
- *All these factors need to be present.*
- **Any of these factors need to be present.*
6.7 Summary of evidence and guideline for prognosis

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, sex and ethnicity are no longer considered as independent prognostic factors.</td>
<td>3</td>
</tr>
<tr>
<td>Primary recognised post-operative prognostic factors are tumour stage and grade, extranodal extension and lymphovascular invasion.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use microsatellite instability as an independent molecular prognostic marker to help detect germline mutations and hereditary cancers.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

7. DISEASE MANAGEMENT

7.1 Localised disease

7.1.1 Kidney-sparing surgery

Kidney-sparing surgery for low-risk UTUC reduces the morbidity associated with radical surgery, without compromising oncological outcomes and kidney function, as stated in a systematic review from the EAU Non-muscle-invasive Bladder Cancer Guidelines Panel [145]. In low-risk cancers, it is the preferred approach with survival being similar after kidney-sparing surgery vs. RNU [145]. This option should therefore be discussed in all low-risk cases, irrespective of the status of the contralateral kidney. In addition, it can also be considered in select patients with serious renal insufficiency or solitary kidney (LE: 3). Recommendations for kidney-sparing management of UTUC are listed in Section 7.1.1.1.

7.1.1.1 Guidelines for kidney-sparing management of upper urinary tract urothelial cell carcinoma

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer kidney-sparing management as primary treatment option to patients with low-risk tumours.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer kidney-sparing management to patients with high-risk distal ureteral tumours.</td>
<td>Weak</td>
</tr>
<tr>
<td>Offer kidney-sparing management to patients with solitary kidney and/or impaired renal function, providing that it will not compromise survival. This decision will have to be made on a case-by-case basis with the patient.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use a laser for endoscopic management of upper tract urothelial carcinoma.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

7.1.1.2 Ureteroscopy

Endoscopic ablation can be considered in patients with clinically low-risk cancer in the following situations [146, 147]:

1. Laser generator and pliers available for biopsies [147, 148] (LE: 3);
2. In case a flexible (rather than a rigid) ureteroscope is available;
3. The patient is informed of the need for early (second look) [149], closer, more stringent, surveillance;
4. Complete tumour resection or destruction can be achieved.

Nevertheless, a risk of understaging and undergrading remains with endoscopic management [150].

7.1.1.3 Percutaneous access

Percutaneous management can be considered for low-risk UTUC in the renal pelvis [147, 151] (LE: 3). This may be offered for low-risk tumours in the lower caliceal system that are inaccessible or difficult to manage by flexible ureteroscopy. However, this approach is being used less due to the availability of improved endoscopic tools such as distal-tip deflection of recent ureteroscopes [147, 151]. A risk of tumour seeding remains with a percutaneous access.

7.1.1.4 Segmental ureteral resection

Segmental ureteral resection with wide margins provides adequate pathological specimens for staging and grading while preserving the ipsilateral kidney. Lymphadenectomy can also be performed during segmental ureteral resection [145].
Complete distal ureterectomy with neocystostomy are indicated for low-risk tumours in the distal ureter that cannot be removed completely endoscopically and for high-risk tumours when kidney-sparing surgery for renal function preservation is necessary [152-154] (LE: 3).

Segmental resection of the iliac and lumbar ureter is associated with higher failure rates than for the distal pelvic ureter [55, 152, 153] (LE: 3).

Partial pyelotomy or partial nephrectomy is extremely rarely indicated. Open resection of tumours of the renal pelvis or calices has almost disappeared.

7.1.1.5 Upper urinary tract instillation of topical agents
The antegrade instillation of BCG vaccine or mitomycin C in the UUT by percutaneous nephrostomy via a three-valve system open at 20 cm (after complete tumour eradication) is feasible after kidney-sparing management [128, 155] (LE: 3). Retrograde instillation through a ureteric stent is also used, but it can be dangerous due to possible ureteric obstruction and consecutive pyelovenous influx during instillation/perfusion. The reflux obtained from a double-J stent has been used but this approach is suboptimal because the drug often does not reach the renal pelvis [156-159].

7.1.2 Radical nephroureterectomy
7.1.2.1 Surgical approach
7.1.2.1.1 Open radical nephroureterectomy
Open RNU with bladder cuff excision is the standard for high-risk UTUC, regardless of tumour location [18] (LE: 3). Radical nephroureterectomy must comply with oncological principles, that is, preventing tumour seeding by avoidance of entry into the urinary tract during resection [18]. Section 7.1.2.3 lists the recommendations for RNU.

Resection of the distal ureter and its orifice is performed because there is a considerable risk of tumour recurrence in this area [142]. After removal of the proximal ureter, it is difficult to image or approach it by endoscopy. Removal of the distal ureter and bladder cuff is beneficial after RNU [152, 160].

Several techniques have been considered to simplify distal ureter resection, including pluck technique, stripping, transurethral resection of the intramural ureter, and intussusception. Except for ureteral stripping, none of these techniques is inferior to bladder cuff excision [15, 161, 162] (LE: 3).

7.1.2.1.2 Laparoscopic radical nephroureterectomy
Retroperitoneal metastatic dissemination and metastasis along the trocar pathway following manipulation of large tumours in a pneumoperitoneal environment have been reported in a few cases [163, 164]. Several precautions may lower the risk of tumour spillage:

1. Avoid entering the urinary tract.
2. Avoid direct contact between instruments and the tumour.
3. Laparoscopic RNU must take place in a closed system. Avoid morcellation of the tumour and use an endobag for tumour extraction.
4. The kidney and ureter must be removed en bloc with the bladder cuff.
5. Invasive or large (T3/T4 and/or N+/M+) tumours are contraindications for laparoscopic RNU as the outcome is poorer compared to an open approach as stated in a systematic review by the EAU Guidelines Panel [165].

Laparoscopic RNU is safe in experienced hands when adhering to strict oncological principles. There is a tendency towards equivalent oncological outcomes after laparoscopic or open RNU [164, 166-169] (LE: 3). Only one prospective randomised study has shown that laparoscopic RNU is not inferior to open RNU for non-invasive UTUC [170] (LE: 2). Oncological outcomes after RNU have not changed significantly over the past three decades despite staging and surgical refinements [171] (LE: 3). A robot-assisted laparoscopic approach can be considered with recent data suggesting oncologic equivalence with other approaches [172-174].

7.1.2.2 Lymph node dissection
The anatomic sites of lymph node drainage have not yet been clearly defined. The use of an LND template is likely to have a greater impact on patient survival than the number of removed lymph nodes [175].

Lymph node dissection appears to be unnecessary in cases of TaT1 UTUC because LN retrieval is reported in only 2.2% of T1 vs. 16% of pT2-4 tumours [116, 178], so it is used infrequently [177]. An increase in the probability of lymph node-positive disease is related to pT classification [118]. Lymph node dissection is performed according to an anatomical template-based approach [178].

Despite available studies evaluating templates to date, it is not possible to standardise indication or extent of LND. Lymph node dissection can be achieved following lymphatic drainage as follows: LND on the side of the affected ureter, retroperitoneal LND for higher ureteral tumour, and/or tumour of the renal pelvis (i.e., right side: border vena cava or right side of the aorta; and left side: border aorta) [116, 117].
7.1.2.3 Summary of evidence and guidelines for radical nephroureterectomy

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical nephroureterectomy is the standard in high-risk upper tract urothelial carcinoma, regardless of tumour location.</td>
<td>2</td>
</tr>
<tr>
<td>Open, laparoscopic and robotic approaches have equivalent efficacy and safety in T1-2/N0 upper tract urothelial carcinoma.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform radical nephroureterectomy in patients with high-risk tumours.</td>
<td>Strong</td>
</tr>
<tr>
<td>Technical steps of radical nephroureterectomy</td>
<td></td>
</tr>
<tr>
<td>Remove the bladder cuff</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform a lymphadenectomy in patients with high-risk tumours.</td>
<td>Weak</td>
</tr>
<tr>
<td>Offer a post-operative bladder instillation of chemotherapy to lower the intravesical recurrence rate.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

7.1.3 Perioperative chemotherapy as an adjunct to radical nephroureterectomy

7.1.3.1 Neoadjuvant chemotherapy

Several ongoing RCTs are currently accruing UTUC patients to assess the impact of neoadjuvant chemotherapy before undergoing RNU. Although level I evidence is not available yet, in high-risk patients, multimodal management has been associated with significant downstaging at surgery and ultimately survival benefit as compared to RNU alone [179-181]. A recent study showed that benefit was predominantly seen in patients with locally advanced disease [182].

7.1.3.2 Adjuvant chemotherapy

There are several platinum-based regimens [183], but not all patients can receive adjuvant chemotherapy because of comorbidities and impaired renal function after RNU. Particularly, the post-operative decrease in renal function may limit the use of cisplatin-based adjuvant chemotherapy [184, 185].

Available observational studies show heterogeneous results with regard to the effectiveness of adjuvant chemotherapy [186-188]. Nonetheless, the largest study to date found an overall survival benefit for pT3/T4 and/or pN+ UTUC [189] (LE: 3). In addition, a recent RCT conducted in the UK demonstrated that the delivery of adjuvant chemotherapy after RNU reduces the risk of recurrence by more than 50% as compared to surgery alone. The toxicity profile appears to be acceptable [190].

7.1.4 Adjuvant Radiotherapy after radical nephroureterectomy

Adjuvant radiation therapy has been suggested to help control locoregional disease after surgical removal. The data remains controversial and insufficient for conclusions [191-193]. Moreover, its additive value to chemotherapy remains to be tested [193].

7.1.5 Adjuvant bladder instillation

The rate of bladder recurrence after RNU for UTUC is 22-47%. Two prospective randomised trials and a meta-analysis [194] have demonstrated that a single post-operative dose of intravesical chemotherapy (mitomycin C, pirarubicin) soon after surgery (between 2-10 days) reduces the risk of bladder tumour recurrence within the first year post-RNU [195, 196] (LE: 2). Prior to instillation, consider a cystogram in case there are any concerns about urinary extravasation.

Whilst there is no direct evidence supporting the use of intravesical instillation of chemotherapy after kidney-sparing surgery, single-dose chemotherapy might be effective in that setting as well (LE: 4). Management is outlined in Figures 7.1 and 7.2.
Figure 7.1: Proposed flowchart for the management of upper urinary tract urothelial cell carcinoma

CTU = computed tomography urography; RNU = radical nephroureterectomy; UTUC = upper urinary tract urothelial carcinoma.

*In patients with solitary kidney, consider a more conservative approach.
Figure 7.2: Surgical treatment according to location and risk status

1 = first treatment option; 2 = secondary treatment option.

LND = lymph node dissection; RNU = radical nephroureterectomy; URS = ureteroscopy;
UTUC = upper urinary tract urothelial carcinoma.

*In case not amendable to endoscopic management.
7.2 Metastatic disease

7.2.1 Radical nephroureterectomy

The role of RNU in the treatment of patients with metastatic UTUC has recently been explored in several observational studies. Although evidence remains very limited, RNU may be associated with cancer-specific [197] and overall survival benefit in selected patients, especially those fit enough to receive cisplatin-based chemotherapy [198]. Given the high risk of bias of the observational studies addressing RNU for metastatic UTUC, indications for RNU in this setting should mainly be reserved for palliative patients, aimed at controlling symptomatic disease [17, 98] (LE: 3).

7.2.2 Metastasectomy

There is no evidence supporting the role of metastasectomy in patients with advanced disease. However, a recent report including both UTUC and bladder cancer patients, suggested that resection of metastatic lesions could be safe and oncologically beneficial in highly selected patients with a reasonable life expectancy [199]. In the absence of data from RCTs, patients should be evaluated on an individual basis.

7.2.3 Systemic treatments

Extrapolating from the bladder cancer literature and small, single-centre UTUC studies, platinum-based combination chemotherapy – especially using cisplatin – might be efficacious for first-line treatment of metastatic UTUC. A retrospective analysis of three RCTs showed that primary tumour location had no impact on progression-free or overall survival in patients with locally advanced or metastatic urothelial carcinoma treated with platinum-based combination chemotherapy [200].

In addition, the role of immune checkpoint inhibitors such as pembrolizumab [201] and atezolizumab [202] has recently been evaluated in the first-line setting for cisplatin-ineligible patients with metastatic urothelial carcinoma. Although the vast majority of included patients had bladder cancer, some UTUC-specific data showed that the objective response rate ranges between 22 and 39%.

Similar to the bladder cancer setting, second-line treatment of metastatic UTUC remains challenging. In a post-hoc subgroup analysis of metastatic/locally advanced UC, vinflunine was reported to be as effective as when used in metastatic bladder cancer progressing after cisplatin-based chemotherapy [203]. More importantly, Rosenberg et al. demonstrated that pembrolizumab could decrease the risk of death by almost 50% in UTUC patients who received prior platinum-based chemotherapy, although these results were borderline significant. Interestingly, atezolizumab was granted FDA approval as a second-line treatment option in patients with metastatic urothelial carcinoma based on the results of a phase II study [204], but the phase III study showed no significant difference in overall survival when compared to salvage chemotherapy, although the safety profile was more favourable for atezolizumab [205]. Similar results were observed when analyses were restricted to the subgroup of patients with metastatic UTUC only.

8. FOLLOW-UP

The risk of recurrence and death evolves during the follow-up period after surgery [206]. Stringent follow-up (Section 8.1) is mandatory to detect metachronous bladder tumours (probability increases over time [207]), local recurrence, and distant metastases. Section 8.1 presents the summary of evidence and recommendations for follow-up of UTUC.

Surveillance regimens are based on cystoscopy and urinary cytology for > 5 years [12, 14, 15, 142]. Bladder recurrence is not considered a distant recurrence. When kidney-sparing surgery is performed, the ipsilateral UUT requires careful follow-up due to the high risk of disease recurrence [148, 208, 209]. Despite endourological improvements, follow-up after kidney-sparing management is difficult and frequent, and repeated endoscopic procedures are necessary. As done in bladder cancer, a second look has been proposed after kidney-sparing surgery but is not yet routine practice [2, 149].
8.1 Summary of evidence and guidelines for the follow-up of UTUC

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up is more frequent and more strict in patients who have undergone kidney-sparing treatment compared to radical nephroureterectomy.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>After radical nephroureterectomy:</td>
<td></td>
</tr>
<tr>
<td>Low-risk tumours</td>
<td></td>
</tr>
<tr>
<td>Perform cystoscopy at three months. If negative, perform subsequent cystoscopy nine months later and then yearly, for five years.</td>
<td>Weak</td>
</tr>
<tr>
<td>High-risk tumours</td>
<td></td>
</tr>
<tr>
<td>Perform cystoscopy and urinary cytology at three months. If negative, repeat subsequent cystoscopy and cytology every three months for a period of two years, and every six months thereafter until five years, and then yearly.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform computed tomography (CT) urography and chest CT every six months for two years, and then yearly.</td>
<td>Weak</td>
</tr>
<tr>
<td>After kidney-sparing management:</td>
<td></td>
</tr>
<tr>
<td>Low-risk tumours</td>
<td></td>
</tr>
<tr>
<td>Perform cystoscopy and CT urography at three and six months, and then yearly for five years.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform ureteroscopy at three months.</td>
<td>Weak</td>
</tr>
<tr>
<td>High-risk tumours</td>
<td></td>
</tr>
<tr>
<td>Perform cystoscopy, urinary cytology, CT urography and chest CT at three and six months, and then yearly.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform ureteroscopy and urinary cytology in situ at three and six months.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

9. REFERENCES

10. CONFLICT OF INTEREST

All members of the Non-Muscle-Invasive Bladder Cancer Guidelines working panel have provided disclosure statements on all relationships that they have that might be perceived to be a potential source of a conflict of interest. This information is publically accessible through the European Association of Urology website:

This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation, and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.

11. CITATION INFORMATION

The format in which to cite the EAU Guidelines will vary depending on the style guide of the journal in which the citation appears. Accordingly, the number of authors or whether, for instance, to include the publisher, location, or an ISBN number may vary.

The compilation of the complete Guidelines should be referenced as:

If a publisher and/or location is required, include:

References to individual guidelines should be structured in the following way:

Contributors’ names. Title of resource. Publication type. ISBN. Publisher and publisher location, year.