EAU Guidelines on Urethral Strictures

N. Lumen (Chair), F. Campos-Juanatey, K. Dimitropoulos, T. Greenwell, F.E. Martins, N. Osman, S. Riechardt, M. Waterloos
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>Aims and scope</td>
</tr>
<tr>
<td>1.2</td>
<td>Panel composition</td>
</tr>
<tr>
<td>1.3</td>
<td>Available publications</td>
</tr>
<tr>
<td>1.4</td>
<td>Publication history</td>
</tr>
<tr>
<td>2.</td>
<td>METHODOLOGY</td>
</tr>
<tr>
<td>2.1</td>
<td>Methods</td>
</tr>
<tr>
<td>2.2</td>
<td>Review</td>
</tr>
<tr>
<td>2.3</td>
<td>Future goals</td>
</tr>
<tr>
<td>3.</td>
<td>DEFINITION, EPIDEMIOLOGY, AETIOLOGY AND PREVENTION</td>
</tr>
<tr>
<td>3.1</td>
<td>Definitions</td>
</tr>
<tr>
<td>3.2</td>
<td>Epidemiology</td>
</tr>
<tr>
<td>3.3</td>
<td>Aetiology and prevention</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Aetiology and prevention in males</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Aetiology in females</td>
</tr>
<tr>
<td>4.</td>
<td>CLASSIFICATIONS</td>
</tr>
<tr>
<td>4.1</td>
<td>According to stricture location</td>
</tr>
<tr>
<td>4.1.1</td>
<td>In males</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Anterior urethra</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Posterior urethra</td>
</tr>
<tr>
<td>4.1.2</td>
<td>In females</td>
</tr>
<tr>
<td>4.2</td>
<td>According to stricture tightness</td>
</tr>
<tr>
<td>4.3</td>
<td>Strictures in transgender men and woman</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Trans women</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Trans men</td>
</tr>
<tr>
<td>5.</td>
<td>DIAGNOSTIC EVALUATION</td>
</tr>
<tr>
<td>5.1</td>
<td>Patient history</td>
</tr>
<tr>
<td>5.2</td>
<td>Physical examination</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Further diagnostic evaluation</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Patient reported outcome measure (PROM)</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Urinalysis and urine culture</td>
</tr>
<tr>
<td>5.2.1.3</td>
<td>Uroflowmetry and post-void residual estimation</td>
</tr>
<tr>
<td>5.2.1.4</td>
<td>Urethrography</td>
</tr>
<tr>
<td>5.2.1.5</td>
<td>Cystourethroscopy</td>
</tr>
<tr>
<td>5.2.1.6</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>5.2.1.7</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>6.</td>
<td>DISEASE MANAGEMENT IN MALES</td>
</tr>
<tr>
<td>6.1</td>
<td>Conservative options</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Observation</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Suprapubic catheter</td>
</tr>
<tr>
<td>6.2</td>
<td>Endoluminal treatment of anterior urethral strictures in males</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Direct vision internal urethrotomy</td>
</tr>
<tr>
<td>6.2.1.1</td>
<td>Indications of “cold knife” direct vision internal urethrotomy</td>
</tr>
<tr>
<td>6.2.1.1.1</td>
<td>Direct vision internal urethrotomy for primary stricture treatment</td>
</tr>
<tr>
<td>6.2.1.1.2</td>
<td>Direct vision internal urethrotomy for recurrent strictures and as salvage treatment after failed urethroplasty</td>
</tr>
<tr>
<td>6.2.1.1.3</td>
<td>Predictors of failure of “cold knife” direct vision internal urethrotomy</td>
</tr>
<tr>
<td>6.2.1.3.1</td>
<td>Stricture length</td>
</tr>
<tr>
<td>6.2.1.3.2</td>
<td>Stricture tightness (calibre)</td>
</tr>
<tr>
<td>6.2.1.3.3</td>
<td>Number of strictures</td>
</tr>
<tr>
<td>6.2.1.3.4</td>
<td>Stricture aetiology</td>
</tr>
</tbody>
</table>
6.2.1.3 Complications of direct vision internal urethrotomy

6.2.1.3.1 Complications of “cold knife” direct vision internal urethrotomy

6.2.1.3.2 Complications of “hot knife” direct vision internal urethrotomy

6.2.1.3.3 Complications of “cold knife” versus “hot knife” direct vision internal urethrotomy versus dilatation

6.2.1.3.4 Complications of direct vision internal urethrotomy versus dilatation

6.2.1.3.5 Complications of “cold knife” direct vision internal urethrotomy versus urethroplasty

6.2.2 Single dilatation

6.2.2.1 Modalities of dilatation and results

6.2.2.2 Effectiveness of dilatation compared with direct vision internal urethrotomy

6.2.3 Post-dilatation/direct vision internal urethrotomy strategies

6.2.3.1 Intermittent self-dilatation

6.2.3.1.1 Results

6.2.3.1.2 Complications

6.2.3.1.3 Intermittent self-dilatation combined with intra-urethral corticosteroids

6.2.3.2 Intrallesional injections

6.2.3.2.1 Steroids

6.2.3.2.2 Mitomycin C

6.2.3.2.3 Platelet rich plasma

6.2.3.3 Urethral stents

6.2.3.3.1 Results

6.2.3.3.2 Treatment of stent failure

6.3 Open repairs (urethroplasty): Site and aetiology (clinical scenario) treatment options

6.3.1 The role of urethroplasty in the management of penile urethral strictures

6.3.1.1 Staged augmentation urethroplasty

6.3.1.2 Single-stage augmentation urethroplasty

6.3.1.3 Anastomotic urethroplasty in men with penile urethral strictures

6.3.1.4 Specific considerations for failed hypospadias repair-related strictures

6.3.1.5 Specific considerations for lichen sclerosus-related penile urethral strictures

6.3.1.6 Distal urethral strictures (meatal stenosis, fossa navicularis strictures)

6.3.2 Urethroplasty for bulbar strictures

6.3.2.1 “Short” bulbar strictures

6.3.2.1.1 Excision and primary anastomosis

6.3.2.1.1.1 Excision and primary anastomosis with transection of corpus spongiosum (transecting EPA)

6.3.2.1.1.1.1 Patency rates

6.3.2.1.1.1.2 Complications

6.3.2.1.1.2 Non-transecting excision and primary anastomosis

6.3.2.1.1.2.1 Patency rates

6.3.2.1.1.2.2 Complications

6.3.2.2 Free graft urethroplasty

6.3.2.2.1 Free graft urethroplasty

6.3.2.2.2 Augmented anastomotic repair
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2.2.3</td>
<td>Location of the graft during urethroplasty for bulbar strictures</td>
<td>41</td>
</tr>
<tr>
<td>6.3.2.3</td>
<td>Staged urethroplasty for bulbar urethral strictures</td>
<td>41</td>
</tr>
<tr>
<td>6.3.2.3.1</td>
<td>Indications</td>
<td>41</td>
</tr>
<tr>
<td>6.3.2.3.2</td>
<td>Outcomes</td>
<td>41</td>
</tr>
<tr>
<td>6.3.2.4</td>
<td>Risk factors for adverse outcomes</td>
<td>42</td>
</tr>
<tr>
<td>6.3.2.5</td>
<td>Management of recurrence after bulbar urethroplasty</td>
<td>43</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Urethroplasty for penobulbar or panurethral strictures</td>
<td>43</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Perineal urethrostomy</td>
<td>45</td>
</tr>
<tr>
<td>6.3.4.1</td>
<td>Indications</td>
<td>45</td>
</tr>
<tr>
<td>6.3.4.2</td>
<td>Types of perineal urethrostomy</td>
<td>45</td>
</tr>
<tr>
<td>6.3.4.3</td>
<td>Outcomes</td>
<td>45</td>
</tr>
<tr>
<td>6.3.4.3.1</td>
<td>Patency rates</td>
<td>45</td>
</tr>
<tr>
<td>6.3.4.3.2</td>
<td>Complications</td>
<td>45</td>
</tr>
<tr>
<td>6.3.4.3.3</td>
<td>Patient reported outcomes</td>
<td>46</td>
</tr>
<tr>
<td>6.3.4.3.4</td>
<td>Risk factors for patency failure of the perineal urethrostomy</td>
<td>46</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Posterior urethra</td>
<td>46</td>
</tr>
<tr>
<td>6.3.5.1</td>
<td>Non-traumatic posterior urethral stenosis</td>
<td>46</td>
</tr>
<tr>
<td>6.3.5.1.1</td>
<td>Treatment of non-traumatic posterior urethral stenosis</td>
<td>46</td>
</tr>
<tr>
<td>6.3.5.1.2</td>
<td>Endoluminal management of non-traumatic posterior urethral stenosis</td>
<td>46</td>
</tr>
<tr>
<td>6.3.5.1.2.1</td>
<td>Dilatation of non-traumatic posterior urethral stenosis</td>
<td>47</td>
</tr>
<tr>
<td>6.3.5.1.2.2</td>
<td>Endoscopic incision/resection of non-traumatic posterior urethral stenosis</td>
<td>47</td>
</tr>
<tr>
<td>6.3.5.1.2.3</td>
<td>Post-dilatation/direct vision internal urethrotomy strategies for non-traumatic posterior urethral stenosis</td>
<td>47</td>
</tr>
<tr>
<td>6.3.5.1.2.3.1</td>
<td>Intermittent self-dilatation for non-traumatic posterior urethral stenosis</td>
<td>49</td>
</tr>
<tr>
<td>6.3.5.1.2.3.2</td>
<td>Intralesional injections for non-traumatic posterior urethral stenosis</td>
<td>49</td>
</tr>
<tr>
<td>6.3.5.1.2.3.3</td>
<td>Urethral stent for non-traumatic posterior urethral stenosis</td>
<td>49</td>
</tr>
<tr>
<td>6.3.5.1.3</td>
<td>Lower urinary tract reconstruction for non-traumatic posterior urethral stenosis</td>
<td>49</td>
</tr>
<tr>
<td>6.3.5.1.3.1</td>
<td>Redo vesico-urethral anastomosis for vesico-urethral anastomotic stenosis after radical prostatectomy</td>
<td>50</td>
</tr>
<tr>
<td>6.3.5.1.3.2</td>
<td>Posterior stenosis after surgery for benign prostatic obstruction</td>
<td>52</td>
</tr>
<tr>
<td>6.3.5.1.3.2.1</td>
<td>Bladder neck reconstruction for bladder neck stenosis after surgery for benign prostatic obstruction</td>
<td>52</td>
</tr>
<tr>
<td>6.3.5.1.3.2.2</td>
<td>Bulbomembranous strictures after surgery for benign prostatic obstruction</td>
<td>52</td>
</tr>
<tr>
<td>6.3.5.1.3.3</td>
<td>Radiation/high-energy induced posterior strictures</td>
<td>52</td>
</tr>
<tr>
<td>6.3.5.1.3.3.1</td>
<td>Bulbomembranous strictures secondary to radiation/high energy sources</td>
<td>52</td>
</tr>
</tbody>
</table>
6.3.5.1.3 Prostatic strictures secondary to radiation/high energy sources 53
6.3.5.1.4 Extirpative surgery and urinary diversion for non-traumatic posterior urethral stricture 54
6.3.5.2 Post-traumatic posterior stricture 54
6.3.5.2.1 Endoluminal treatment for post-traumatic posterior stricture 54
 6.3.5.2.1.1 Endoluminal treatment as primary treatment for post-traumatic posterior stricture 54
 6.3.5.2.1.2 Endoluminal treatment after failed urethroplasty for post-traumatic posterior stricture 55
6.3.5.2.2 Urethroplasty for post-traumatic posterior stricture 55
 6.3.5.2.2.1 First urethroplasty for post-traumatic posterior stricture 55
 6.3.5.2.2.1.1 Indication and technique of urethroplasty for post-traumatic posterior stricture 55
 6.3.5.2.2.1.2 Patency rate after urethroplasty for post-traumatic posterior stricture 55
 6.3.5.2.2.1.3 Sexual function, urinary continence and rectal injury after urethroplasty for post-traumatic posterior stricture 56
 6.3.5.2.2.2 ReDo-urethroplasty for post-traumatic posterior stricture 56

7. DISEASE MANAGEMENT IN FEMALES 58
 7.1 Signs and symptoms of female urethral stricture 58
 7.2 Diagnosis of female urethral stricture 58
 7.3 Treatment of female urethral stricture 59
 7.3.1 Minimally Invasive Techniques for treatment of female urethral stricture 59
 7.3.1.1 Urethrotomy for treatment of female urethral stricture 59
 7.3.1.2 Urethral dilatation for treatment of female urethral stricture 59
 7.3.1.3 Meatoplasty for treatment of female urethral stricture 59
 7.3.2 Urethroplasty for treatment of female urethral stricture 59
 7.3.2.1 Vaginal graft augmentation urethroplasty for treatment of female urethral stricture 59
 7.3.2.2 Vaginal flap augmentation urethroplasty for treatment of female urethral stricture 60
 7.3.2.3 Labial/vestibular graft augmentation urethroplasty for treatment of female urethral stricture 60
 7.3.2.4 Labial/vestibular flap urethroplasty for treatment of female urethral stricture 60
 7.3.2.5 Buccal and lingual mucosal graft augmentation urethroplasty for treatment of female urethral stricture 60
 7.3.2.6 Anastomotic urethroplasty 60

8. DISEASE MANAGEMENT IN TRANSGENDER PATIENTS 62
 8.1 Treatment of strictures in trans men 62
 8.1.1 Management of strictures early after neophallic reconstruction 62
 8.1.2 Treatment of meatal stenosis in trans men 63
 8.1.3 Treatment of strictures at the neophallic urethra 63
 8.1.4 Treatment of strictures at the anastomosis neophallic urethra-fixed part of the urethra 63
 8.1.5 Treatment of strictures at the fixed part of the urethra 63
 8.1.6 Definitive perineostomy in trans men 63
8.2 Peri-operative care after treatment of strictures in trans men 64
8.3 Strictures in trans women 64

9. TISSUE TRANSFER 64
9.1 Comparison of grafts with flaps 64
9.2 Comparison of different types of flaps 65
9.3 Comparison of different types of grafts 66
9.4 Tissue engineered grafts 67
9.4.1 Cell-free tissue engineered grafts 67
9.4.2 Autologous tissue engineered oral mucosa grafts 67
9.5 Management of oral cavity after buccal mucosa harvesting 68

10. PERI-OPERATIVE CARE OF URETHRAL SURGERY 68
10.1 Urethral rest 68
10.2 Antibiotics 69
10.3 Catheter management 69

11. FOLLOW-UP 70
11.1 Rationale for follow-up after urethral surgery 70
11.2 Definition of success after urethroplasty surgery 71
11.3 Follow-up tools after urethral surgery 72
11.3.1 Diagnostic tools for follow-up after urethral surgery 72
11.3.1.1 Calibration during follow-up after urethral surgery 72
11.3.1.2 Urethrocytostoscopy during follow-up after urethral surgery 72
11.3.1.3 Retrograde urethrogram and voiding cystourethrogram during follow-up after urethral surgery 72
11.3.1.4 Urethral ultrasound – Sonourethrography during follow-up after urethral surgery 73
11.3.2 Screening tools for follow-up after urethral surgery 73
11.3.2.1 Flow-rate analysis during follow-up after urethral surgery 73
11.3.2.2 Post-void residual ultrasound measure during follow-up after urethral surgery 73
11.3.2.3 Symptoms questionnaires during follow-up after urethral surgery 73
11.3.3 Quality of life assessment, including disease specific questionnaires during follow-up after urethral surgery 74
11.4 Ideal follow-up interval after urethral surgery 74
11.5 Length of follow-up after urethral surgery 75
11.6 Risk stratified proposals during follow-up after urethral surgery 75
11.7 Follow-up protocol proposal after urethroplasty 75
11.7.1 Surgeries with low risk of recurrence 75
11.7.2 Surgical management options with standard risk of recurrence 76

12. REFERENCES 78

13. CONFLICT OF INTEREST 108

14. CITATION INFORMATION 108
1. INTRODUCTION

1.1 Aims and scope
The European Association of Urology (EAU) Urethral Strictures Guidelines aim to provide a comprehensive overview of urethral strictures in male, female and transgender patients. The Panel is aware of the geographical variations in healthcare provision.

It must be emphasised that guidelines present the best evidence available to the experts; however, following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients, but rather help to focus decisions - also taking personal values and preferences/individual circumstances of patients into account. Guidelines are not mandates and do not purport to be a legal standard of care.

1.2 Panel composition
The EAU Urethral Strictures Guidelines panel consists of an international multidisciplinary group of clinicians with particular expertise in this area. All experts involved in the production of this document have submitted potential conflict of interest statements which can be viewed on the EAU website: http://www.uroweb.org/guideline/urethral-strictures/.

1.3 Available publications
Alongside the full text version, a quick reference document (Pocket Guidelines) is available in print and as an app for iOS and Android devices. These are abridged versions which may require consultation together with the full text version. All documents can be viewed through the EAU website: http://www.uroweb.org/guideline/urethral-strictures/. A list of supplementary tables supporting this text can also be found online, along with an appendix of abbreviations specific to this text: https://uroweb.org/guideline/urethral-strictures/?type=appendices-publications.

1.4 Publication history
This document is a new Guideline first published in 2021. Additional information can be found in the general Methodology section of this print, and online at the EAU website: http://www.uroweb.org/guideline/. A list of associations endorsing the EAU Guidelines can also be viewed online at the above address.

2. METHODOLOGY

2.1 Methods
For the 2021 Urethral Strictures Guidelines, new and relevant evidence has been identified, collated and appraised through a structured assessment of the literature. A broad and comprehensive literature search, covering all sections of the Guidelines was performed. Databases searched included Medline, EMBASE, and the Cochrane Libraries, covering a time frame between 2008 and 2019 and restricted to English language publications. The panel defined by consensus inclusion and exclusion criteria for each topic before the scope search. Detailed search strategies are available online: https://uroweb.org/guideline/urethral-strictures/.

Relevant literature prior to the 2008 scope search cut-off was allowed if it was estimated to be of exceptional value by the panel. Relevant literature after the 2019 scope search cut-off was searched for by the panel member dedicated to a specific topic.

For each recommendation within the guidelines there is an accompanying online strength rating form, the basis of which is a modified GRADE methodology [1, 2]. Each strength rating form addresses a number of key elements namely:

1. the overall quality of the evidence which exists for the recommendation, references used in this text are graded according to a classification system modified from the Oxford Centre for Evidence-Based Medicine Levels of Evidence [3];
2. the magnitude of the effect (individual or combined effects);
3. the certainty of the results (precision, consistency, heterogeneity and other statistical or study related factors);
4. the balance between desirable and undesirable outcomes;
5. the impact of patient values and preferences on the intervention;
6. the certainty of those patient values and preferences.
These key elements are the basis which panels use to define the strength rating of each recommendation. The strength of each recommendation is represented by the words ‘strong’ or ‘weak’ [4]. The strength of each recommendation is determined by the balance between desirable and undesirable consequences of alternatives.

The Panel wants to highlight that “success” in urethral stricture treatment is poorly defined and subjective. “Success” is usually defined as urethral patency, either subjective by the absence of voiding symptoms or objective by imaging or urethral calibration. Despite urethral patency, the patient themselves might not consider the treatment as successful because of functional consequences (e.g., post-void dribbling, erectile/ejaculatory dysfunction, altered genital appearance). In this Guideline, the Panel agreed to avoid the term “success”. Instead, the term “patency rate” or “stricture recurrence rate” will be used to clarify that only stricture recurrence was taken into consideration (as assessed by the authors). The Panel would like to stress that patency after urethral surgery is dependent on the general principles of wound healing. These principles have stood the test of time and need to be respected at any time [5]. Some examples:

- An anastomosis should be made between healthy urethral ends and without any tension.
- A graft requires a well-vascularised graft bed with a close contact between the graft and graft bed to promote imbibition and inosculation.
- If the full circumference of the urethral mucosa is destroyed, spontaneous regeneration will not take place.
- Contraction and fibrosis in a wound stops only after it is covered by its epithelium.

The Panel conducted two systematic reviews to support guideline recommendations:

- What is the role of one-stage oral mucosa urethroplasty in the management of strictures due to male Lichen Sclerosus (LS)?
- A systematic review of various free graft urethroplasty (FGU) techniques for the management of bulbar urethral strictures.
- The results of these reviews are included in the 2021 Urethral stricture guidelines.

2.2 Review
The Urethral Strictures Guidelines were peer reviewed prior to initial publication in 2021.

2.3 Future goals
The results of the two systematic reviews will be submitted for publication in European Urology (Focus). Summary papers of the guidelines will be drafted and submitted for publication to European Urology (Focus). These papers will include the following topics:
- Diagnosis, peri-operative care and follow-up of urethral strictures
- Treatment of strictures in females and transgender patients
- Treatment of male strictures
An update of the strictures guideline will be conducted when deemed necessary, but at latest after five years. Further systematic reviews will be conducted after approval of the Guidelines Office.

3. DEFINITION, EPIDEMIOLOGY, AETIOLOGY AND PREVENTION

3.1 Definitions
In males, a urethral stricture refers to a narrowed segment of the anterior urethra due to a process of fibrosis and cicatrisation of the urethral mucosa and surrounding spongious tissue (“spongiofibrosis”) [6, 7]. In the male posterior urethra, there is no spongious tissue and at this location the terms stenosis is preferred [6, 7]. The definition of meatal stenosis is generally accepted as a short distal narrowing at the meatus, without involvement of the fossa navicularis [7].

There is no universal definition for what constitutes a female urethral stricture (FUS). Female urethral stricture is defined by most authors as a ‘fixed anatomical narrowing’ causing reduced urethral calibre [8, 9]. This reduced
urethral calibre is variously defined as between < 10 Fr to < 20 Fr [10, 11] with the majority of series defining
 < 14 Fr as diagnostic, compared with a ‘normal’ urethral calibre of 18-30 Fr.

In transgender patients, the term stricture is also used to define a narrowing of the reconstructed urethra
 despite the absence of surrounding spongious tissue.

3.2 Epidemiology

In males, a sharp increase in incidence is observed after the age of 55 years, with a mean age of 45.1 [12, 13].
 Overall, the incidence is estimated to be 229-627 per 100,000 males [12]. The anterior urethra is most
 frequently affected (92.2%), in particular the bulbar urethra (46.9%) [13].

In females, 2-29% of patients presenting with refractory lower urinary tract symptoms (LUTS) have bladder
 outflow obstruction (BOO) [14-17] of whom 4-20% will have a urethral stricture [16-18]. True FUS therefore
 occurs in 0.08-5.4% of women with refractory LUTS. There is a markedly increased incidence in women over
 64 years old [19].

In children, most strictures are traumatic: related to iatrogenic causes in 27.8-48% and external trauma in
 34-72% [20]. Less frequent congenital (13%), inflammatory (4%), or post-infectious strictures (1%) are seen.
 The bulbar urethra is the most frequently affected part of the urethra [20].

After hypospadias repair, meatal stenosis and urethral strictures are reported in 1.3-20% of cases, depending
 on the severity of the hypospadias and the technique used [21]. There is a significantly higher incidence of this
 type of strictures in well-resourced countries due to a higher surgical repair rate [22].

Up to 18% of all urethral strictures have been reported to involve the meatus or fossa navicularis usually due
 to failed hypospadias repair (FHR), lichen sclerosus (LS), trauma/instrumentation or idiopathic causes [23-26].

Meatal stenosis post-circumcision has been reported in less than 0.2% of children undergoing circumcision as
 neonates [12].

In female-to-male (FtM) transgender patients (“trans men”), approximately 51% will suffer a urethral stricture
 [27]. Strictures almost exclusively arise at the neomeatus in male-to-female (MtF) transgender patients (“trans
 women”) and occur in 14.4% of cases [28].

3.3 Aetiology and prevention

Stricture aetiology differs significantly throughout different regions in the world, due to differences in healthcare
 quality and environmental and practice patterns [22]. Regardless of geography, urethral stricture disease
 adversely impacts physical health and quality of life (QoL) [29, 30], notwithstanding costs associated with the
 treatment of primary and recurrent disease [31, 32]. The rationale for preventing urethral strictures is to avoid
 morbidity to the individual and costs to society. Prevention of urethral strictures encompasses reducing the
 causes of stricture (e.g., infection, trauma, iatrogenic injury) and where this is not possible mitigating the risk.

3.3.1 Aetiology and prevention in males

a. Sexually transmitted infection

Urethritis due to sexually transmitted infection (STI), in particular gonorrhoea, was previously a major cause of
 urethral strictures in well-resourced countries accounting for 40% of all cases [33]. The wide-scale promotion
 of safe sexual practices and easier access to sexual health services, resulting in timely treatment with
 antimicrobials, is thought to have led to the considerable reduction in the problem [33]. Infective urethritis
 now accounts for 0.9% to 3.7% of cases in contemporary series from well-resourced countries [33, 34] but
 continues to be the major cause of strictures in low-resourced countries comprising 41.6% of all strictures [35].

<table>
<thead>
<tr>
<th align="left">Summary of evidence</th>
<th align="left">LE</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Access to investigation and treatment of STI is associated with a temporal decline in the incidence of infective urethritis related strictures.</td>
<td align="left">3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th align="left">Recommendation</th>
<th align="left">Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Advise safe sexual practices, recognise symptoms of sexually transmitted infection and provide access to prompt investigation and treatment for men with urethritis.</td>
<td align="left">Strong</td>
</tr>
</tbody>
</table>
b. Inflammation

Lichen sclerosus involves the urethra in 20% of cases [36] and is the most common cause of panurethral stricture disease (48.6%) [13]. The aetiology of LS has not been fully elucidated but is thought to have an autoimmune origin [37]. Lichen sclerosus may be associated with environmental factors and non-autoimmune comorbidities. Uncircumcised men are far more likely to suffer LS than circumcised men [age-adjusted odds ratio (OR) of 53.55; (95% confidence interval (CI): 7.24-395.88] [38]. Lichen sclerosus is also associated with higher mean body mass index (BMI), diabetes mellitus, coronary artery disease, tobacco usage, hyperlipidaemia, and hypertension [39-41].

c. External urethral trauma

External trauma to the urethra is the second most common cause of stricture formation in adults [33]. The urethra is vulnerable to trauma during certain activities including sport, driving a vehicle, sexual intercourse and during combat. The bulbar urethra is the site most frequently affected by blunt trauma [7], usually as a result of straddle injuries or kicks to the perineum. Penile fracture is associated with a urethral injury in 15% of cases [42]. Motor vehicle accidents are the main cause of blunt injuries to the posterior urethra associated with pelvic fractures [43]. Penetrating injuries of the urethra are uncommon during non-combat situations [44].

d. Iatrogenic urethral injury

Iatrogenic injury to the urethra is one of the most common causes of strictures in well-resourced countries [13, 33] accounting for 32% to 79% of all strictures [33, 45]. In children, specifically iatrogenic causes were identified in 6.7-25% of cases [46]. Preventing iatrogenic urethral injury represents the main way in which urologists can prevent urethral strictures. Iatrogenic urethral injury most commonly results from urethral instrumentation (e.g., catheterisation, cystoscopy), surgery for benign prostatic obstruction (BPO), surgery for prostate cancer, or radiotherapy [34].

d.1 Urethral catheterisation

Urethral strictures are a recognised complication of urethral catheterisation accounting for 11.2-16.3% of all strictures [13, 33]. In a meta-analysis by Hollingsworth and colleagues the pooled percentage of patients who developed urethral stricture or erosion after short-term catheterisation (< 3 weeks) in higher quality studies was 3.4% (CI: 1.0% to 7.0%) [47]. In studies comprised mainly of men with spinal cord injury with indwelling urethral catheters, the pooled estimate of urethral stricture or erosion was 8.7% (CI: 0.0%-18.7%) [47].

Urethral strictures following catheterisation may arise as a consequence of injury during attempts at insertion or during the period a catheter remains in situ. During insertion the urethra may be injured by formation of a false passage by the catheter tip (29.7%) or inflation of the balloon within its lumen (70.3%) [48]. The rate of urethral injuries due to catheterisation was found to be 3.2 per 1,000 inpatients [49]. A six-month prospective multicentre study found that of 37 patients with catheter-related urethral trauma referred to urologists, 24% continued to perform intermittent self-dilatation (ISD) once weekly and 11% required at least one urethral dilation for urethral stricture [50]. In another follow-up study of 37 patients with catheter-related urethral trauma, 78% of patients developed urethral stricture [48]. The most common locations of trauma are the bulbar and posterior urethra [51].

Catheter-related trauma can be prevented through several measures [52]. Studies have indicated around 25% of all indwelling catheterisations in hospitals were unnecessary and inappropriate [53, 54]. Implementation of guidelines [55, 56] and specific criteria [57] have been shown to reduce catheterisation rates. Several studies have identified deficits’ in the knowledge of urethral catheterisation amongst resident doctors [58, 59]. This is postulated to be a factor in catheter-related trauma [59]. A targeted training program on urethral catheterisation for nursing staff was shown to be effective in reducing iatrogenic urethral injuries in a prospective single institution study [49].

In addition to guidance and education, another approach to safer catheterisation is modification of the standard Foley catheter. A novel catheter balloon pressure valve safety system was developed to prevent balloon inflation injury though this has not been assessed in comparative studies [60, 61]. Bugeja et al. studied the use of urethral catheterisation device (UCD) incorporating a guidewire, in prospective observational cohort study that included 174 patients. The incidence of adverse events was 7% with standard Foley catheterisation vs. 0% with the UCD (no statistical analysis was performed) [62]. A further prospective observational study found that Seldinger technique catheterisation could be used successfully by non-urology trained doctors [63]. These technologies need to be further assessed in prospective randomised studies incorporating cost-benefit analysis.
Catheter diameter is suggested as a possible contributing factor to urethral stricture due to a pressure effect on the urethral wall [64]. Decreasing the catheter size from 22 Fr to 18 Fr significantly decreased the risk of fossa navicularis strictures (6.9% vs. 0.9%, p=0.02) after radical prostatectomy (RP) [65]. Catheter material may also have an influence on the occurrence of stricture. In the 1970s/80s several comparative studies in patients undergoing cardiac surgery demonstrated that non-coated latex catheters were associated with a greater incidence of urethritis and more stricture formation than silicone catheters [66-68]. Other studies showed no difference [69-71]. Modern latex catheters have polymeric coatings [72] due to the concern with regards to stricture alongside the risk of hypersensitivity and the demonstrable in vitro toxicity of latex. Prolonged urethral catheterisation has also been implicated in the aetiology of stricture (e.g., poly-trauma, burns patients) [45].

Summary of evidence

<table>
<thead>
<tr>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
</tr>
<tr>
<td>2a</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1a</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
</tr>
<tr>
<td>Strong</td>
</tr>
<tr>
<td>Weak</td>
</tr>
<tr>
<td>Strong</td>
</tr>
</tbody>
</table>

d.2 Transurethral prostate surgery

Urethral stricture following transurethral prostate surgery occurs in between 4.5% to 13% of patients [73], whereas bladder neck stenosis (BNS) occurs in between 0.3% to 9.7% [74]. Transurethral surgery is the most common cause of iatrogenic urethral stricture accounting for 41% of all causes [45]. The most common location for urethral stricture is the bulbomembranous urethra, followed by the fossa navicularis and penile urethra [75, 76]. Postulated mechanisms include friction at the penoscrotal junction, lack of adequate lubrication, repetitive ‘in and out’ movement of the resectoscope, breach of mucosal integrity leading to urine extravasation and monopolar current leak due to inadequate resectoscope insulation [77]. Bladder neck stenosis may be related to excessive and/or circumferential resection and the use of relatively large resection loops which may generate excessive heat in small intraurethral adenomas leading to scarring [74, 78]. Stenoses of the posterior urethra may also be due to a prolonged period of post-operative inability to void [79].

d.2.1 Risk factors for development of urethral stricture and bladder neck stenosis

Several risk factors for the development of urethral stricture and BNS following transurethral prostate surgery have been identified. Both prostatic inflammation (OR: 4.31) and operative time > 60 min (OR: 4.27) were found to be independent predictors of stricture after monopolar transurethral resection of prostate (TURP) [80]. In terms of bipolar TURP, slower resection rate (OR: 0.003), intraoperative urethral mucosa rupture (OR: 2.44) and post-operative infection were shown to be independent predictors (OR: 1.49) [81, 82]. A larger-calibre endoscopic sheath (26 Fr vs. 24 Fr) was associated with a greater risk of bulbar urethral stricture following monopolar TURP (11.4% vs. 2.9%, p=0.018) [83]. Room temperature irrigation solution was associated with a greater risk of urethral stricture following combined transurethral resection and vapourisation of the prostate compared to body temperature irrigation (21.3% vs. 6.3%, p=0.002) [84].

Bladder neck stenosis is known to occur more frequently in smaller prostate glands after both monopolar and bipolar TURP [85, 86]. Lee et al. found that adenoma weight was an independent risk factor for BNS after monopolar TURP [86]. Meanwhile, Tao et al. found total prostate volume (< 46.2 g) (OR: 1.5), but not resected gland weight, to be an independent risk factor [81].

d.2.2 Incidence of urethral stricture and bladder neck stenosis with different energy modalities

A systematic review and meta-analysis by Cornu et al. showed no significant differences in urethral stricture and BNS rates by energy modality (monopolar, bipolar, holmium laser enucleation, photoselective vapourisation) [73]. In another meta-analysis assessing outcomes of thulium (Tm:Yag) laser and bipolar TURP, no difference in urethral stricture and BNS rates were found between the two modalities [87]. The presence of potentially confounding factors such as endoscopic sheath diameter, energy setting used, procedural length and length of follow-up make inter-study comparisons between energy modalities problematic. Overall, there is no strong
evidence that any single modality is associated with a clinically significant higher incidence of urethral stricture and BNS than others. Selection of modality should be based on a comprehensive evaluation of clinical safety and efficacy. A summary of incidences of urethral stricture and BNS with different modalities is presented in Table 3.1.

Table 3.1: Incidence of urethral stricture and bladder neck stenosis by transurethral modality
(adapted from Chen et al. 2016 [74])

<table>
<thead>
<tr>
<th>Modality</th>
<th>Urethral stricture</th>
<th>Bladder neck stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transurethral resection of prostate (TURP) - monopolar and bipolar</td>
<td>1.7 to 11.7%</td>
<td>2.4 to 9.7%</td>
</tr>
<tr>
<td>Holmium enucleation of the prostate (HoLEP)</td>
<td>1.4 to 4.4%</td>
<td>0 to 5.4%</td>
</tr>
<tr>
<td>Photo-selective vaporisation (PVP)</td>
<td>0 to 4.4%</td>
<td>1.4 to 3.6%</td>
</tr>
</tbody>
</table>

d.2.3 Interventions to prevent urethral stricture and bladder neck stenosis

Sciarrà and colleagues conducted a single-blind randomised control trial (RCT; n=96) to assess the use of rofecoxib for stricture prevention following TURP. At twelve months follow-up a urethral stricture was found in 17% and 0% of cases in the placebo and rofecoxib groups, respectively (p=0.0039) [88]. Chung et al. conducted a single blinded RCT (n=180) evaluating the effect of urethral instillation of hyaluronic acid (HA) and carboxymethylcellulose (CMC). Urethral stricture on urethrography was diagnosed in 1.25% and 8.64% of patients in the treatment and placebo group respectively (p=0.031). Further randomised studies are needed to confirm these findings and the safety of the pharmacological interventions.

Several earlier comparative studies assessed whether routine preliminary urethrotomy with an Otis urethrotome prevented the incidence of stricture following TURP [89-92]. Only one of these reported at least twelve month follow-up, finding no significant difference in stricture rate in patients undergoing TURP alone vs. Otis urethrotomy followed by TURP (21% vs. 14%) [93]. Others have suggested performing internal urethrotomy where there is pre-existent meatal or urethral strictures [94].

Adjunctive transurethral incision of the prostate (TUIP) at the end of TURP to reduce the rates of BNS was studied by Lee and colleagues [86]. A total of 1,135 patients of whom 667 underwent TURP and 468 underwent TURP plus TUIP were retrospectively studied. At median follow-up of 38 months, the incidence of BNS was 12.3% for the TURP group vs. 6.0% for the TURP plus TUIP group (p < 0.001). In glands < 30 g, the incidence of BNS in the TURP vs. the TURP plus TUIP group was 19.3% and 7.7%, respectively (p < 0.05). The clinical efficacy and safety of additional surgical interventions to prevent urethral stricture and BNS need to be confirmed in larger prospective RCTs before their use can be recommended.

Summary of evidence

| An RCT with more than twelve months follow-up failed to demonstrate a significant reduction in stricture rate using routine urethrotomy prior to TURP. | 1b |

Recommendation

Do not routinely perform urethrotomy when there is no pre-existent urethral stricture.

Strength rating

Strong

d.3 Radical prostatectomy

Radical prostatectomy has been associated with vesico-urethral anastomosis stricture (VUAS) in between 0.5% to 30% of patients [74], though most modern series report it in the range of 1% to 3% [95]. The risk of stricture formation after salvage RP is notably higher (22-40%) [96]. Most VUAS develop within the first two years [96, 97]. A 2012 meta-analysis by Tewari et al. showed no significant difference in VUAS between open-, laparoscopic and robotic RP [98]. In contrast, a more recent analysis of a national cohort in the UK found that VUAS rate after robotic RP was 3.3%, which is significantly lower than following laparoscopic (5.7%) or open RP (6.9%) [99]. These findings are consistent with an earlier similar study conducted in the USA [100]. The difference in VUAS rates may be explained by the level of experience and surgical volume of surgeons [101]. The cohort studies represent “real world” data, including all levels of surgical experience and surgical volumes whereas the meta-analysis is based on clinical studies. Thus the better outcomes for robotic RP in the population studies may be related to the shorter learning curve [102].
d.3.1 Risk factors for development of vesicourethral anastomosis strictures
These include higher grade cancer, more advanced stage, higher prostate volume, coronary artery disease, obesity, hypertension, diabetes mellitus, previous bladder outlet surgery and older age [95, 103, 104]. Surgical factors include use of non-nerve-sparing technique, anastomotic urine leak, increased operative time and increased estimated blood loss [95, 103, 104]. In addition, low-volume surgeons (< 40/year) were shown to have higher VUAS rates, 27.7%, compared to high-volume surgeons (> 40/year), 22% [105].

d.3.2 Interventions to prevent vesicourethral anastomosis strictures
Srougi et al. studied bladder neck mucosal eversion in a prospective RCT of 95 patients. No significant difference was found in rates of VUAS at twelve months follow-up [106]. A meta-analysis by Kowelewski et al. comparing interrupted vs. continuous vesico-urethral anastomosis suturing found no difference in VUAS rates [107]. Another systematic review by Bai et al. compared barbed sutures to conventional sutures, although heterogeneity across studies precluded meta-analysis, no patients developed VUAS with either approach [108].

d.4 Prostate radiation and ablative treatments
Urethral strictures occur in 1.5% of patients undergoing external beam radiation therapy (EBRT), 1.9% having brachytherapy (BT) and 4.9% who receive combination EBRT-BT at around four years follow-up [109]. These strictures typically occur in the bulbomembranous urethra [110]. As opposed to RP, stricture incidence after irradiation increases with time [96, 109]. For the ablative treatments, the stricture incidence after cryotherapy and high-intensity focused ultrasound (HIFU) is 1.1-3.3% and 1-31%, respectively [96]. The use of these treatment modalities in the salvage setting is associated with increased risk of stricture formation: 3-10% after salvage EBRT, 5-12% after salvage cryotherapy and 15-30% after salvage HIFU [96]. Due to the increasing utilisation of prostate irradiation (EBRT, BT) and ablative treatments (cryotherapy, HIFU), an increasing number of respectively radiation-induced and ablative treatment-induced strictures are expected [111].

d.4.1 Risk factors for the development of radiation strictures
Awad et al., performed a multivariate meta-regression analysis including 46 studies, finding combining ERBT + BT and length of follow-up to be significant predictors of urethral stricture following prostate radiation [109]. Factors not shown to predict urethral stricture included biochemical equivalent dose, age and androgen deprivation therapy [109]. Previous TURP was not included in the analysis, but has been found to be independent predictor of stricture (HR: 2.81) in a previous multivariate analysis from a single institution [112] as has PSA level < 10 ng/ml (HR: 0.47) [113].

d.4.2 Interventions to prevent radiation induced urethral strictures
Delaying adjuvant or salvage EBRT by nine months is associated with lower rates of urethral stricture (HR 0.6) [114]. This has to be balanced with risk of delaying treatment in terms of cancer control [74]. In BT, it has been reported that downward movement of needle applicators occurs between fractions [115]. This may explain why strictures occur below the prostatic apex [113] in the so called “hot spot” [116]. Several measures taken together are thought to have contributed to a reduction in urethral stricture formation with BT including reduction of dose to the “hot spot”, more careful needle placement, avoiding midline insertion and the introduction of plastic needles rather than steel [109].

e. Failed hypospadias repair.
Although urethral strictures after hypospadias repair are sometimes considered as iatrogenic [33], they are a very specific subtype and should be considered as a separate entity. The main reasons for this are the absence of spongiosus tissue at different levels within the penile urethral segment, and the lack of high-quality local tissues for urethral reconstruction [117].

f. Congenital
The diagnosis of a congenital urethral stricture can only be made in the absence of other possible aetiology, such as iatrogenic, inflammatory and traumatic causes [20]. Congenital strictures are thought to be consequent to incomplete or incorrect fusion of the urethra formed from the urogenital sinus with the urethra formed following closure of the urethral folds. They typically have a deep bulbular location and are usually short. In general, congenital strictures are diagnosed at a young age (Moorman’s ring or Cobb’s collar).

g. Idiopathic
Idiopathic strictures are seen in 34% of all penile strictures and in 63% of all bulbular strictures [118]. Unrecognised trauma is thought to be a possible aetiology of idiopathic urethral strictures [22].
3.3.2 **Aetiology in females**
The cause of FUS was idiopathic in 48.5%, iatrogenic in 24.1%, resulting from prior urethral dilations, difficult/traumatic catheterisation with subsequent fibrosis, urethral surgeries (mainly diverticulum surgery, fistula repair and anti-incontinence procedures) and trauma (mainly following pelvic fracture) in 16.4% [119-131]. Radiation therapy and infections are rare causes of FUS [132]. The commonest segment of urethra affected is the mid- or mid-to-distal (58%). Panurethral strictures are rare (4%) [10, 119, 121, 122, 124-126, 131, 133].

For further information see online supplementary Tables S3.1 and S3.2.

4. **CLASSIFICATIONS**

4.1 **According to stricture location**
Classification according to stricture location is important as this will affect further management.

4.1.1 **In males**
4.1.1.1 **Anterior urethra**
The anterior urethra runs from the meatus to the urogenital diaphragm and is surrounded in its entire length by the corpus spongiosum [6, 134]. Further subdivision is made in three different areas (from distal to proximal) [7]:

Meatal strictures: these strictures are located at the external urethral meatus and may extend into the fossa navicularis of the glans.

Penile strictures: these are located in the segment between the fossa navicularis and the bulbar urethra. Externally, the penile urethra begins approximately at the balanopreputial sulcus and continues to the penoscrotal junction. The whole penile urethral segment lies in the groove ventral to corpora cavernosa and is surrounded by a thin layer of corpus spongiosum.

Bulbar strictures: the bulbar urethra starts at the penoscrotal junction and is surrounded by the bulbospongious muscle. It ends in the membranous urethra proximally at the level of the urogenital diaphragm. The bulbar urethra can be subdivided into a proximal and distal part. The proximal bulb urethra is defined as the segment within 5 cm of the membranous urethra; the urethra lies eccentrically in this part with abundant ventral spongious tissue. The distal bulb urethra is defined as the adjoining segment extending to the penoscrotal junction [135]. Strictures extending towards the membranous urethra are termed bulbomembranous strictures (BMS).

Penobulbar strictures: these extend from the penile urethra into the bulbar segment, compromising long segments of urethra.

The difference between penobulbar strictures and multifocal strictures should be noted. The latter are defined by two or more narrowed segments, either in the same or different subdivision of the urethra but preserving healthy lengths of urethra between them (e.g., iatrogenic strictures related to TUR procedures which typically affect the fossa navicularis and the penoscrotal junction with healthy urethra in between).

4.1.1.2 **Posterior urethra**
The posterior urethra is approximately 5 cm long, with three different segments [7]:

- The membranous urethra is the area of the urethra traversing the urogenital diaphragm, between the proximal bulb and the distal verumontanum.

- The prostatic urethra runs through the prostatic gland, starting at the proximal membranous urethra and extending to the bladder neck.

- The bladder neck is surrounded by the internal urinary sphincter and is the junction between the prostatic urethra and the bladder. Stenosis (or contracture) of the bladder neck implies a prostate in situ (i.e., after TURP or simple prostatectomies). If the narrowing or obliteration appears at this level but after a RP, the correct term is VUAS [7].
4.1.2 **In females**
The female urethra is approximately 4 cm long and arbitrarily divided in an upper, mid and lower part [10, 119, 121, 122, 124-126, 131, 133].

4.2 **According to stricture tightness**
The definition of low- vs. high-grade strictures remains debatable [136-138]. A urethral plate less than 3 mm is considered a high-grade or tight stricture [139]. It has been demonstrated with a normally functioning bladder that flow rate will not diminish until the urethral lumen has a diameter below 10 Fr [137].

Table 4.1, presents a suggested classification for male patients with a normal functioning bladder. This classification was developed by the EAU Urethral Stricture Panel based on a consensus process.

Table 4.1: EAU classification according to the degree of urethral narrowing

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Urethral lumen (French [Fr])</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal urethra on imaging</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Subclinical strictures</td>
<td>Urethral narrowing but ≥ 16 Fr</td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>Low grade strictures</td>
<td>11-15 Fr</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>High grade or flow significant strictures</td>
<td>4-10 Fr</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Nearly obliterative strictures</td>
<td>1-3 Fr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Obliterative strictures</td>
<td>No urethral lumen (0 Fr)</td>
<td></td>
</tr>
</tbody>
</table>

4.3 **Strictures in transgender men and woman**

4.3.1 **Trans women**

After male-to-female gender confirming surgery, the penile urethra has been resected. Meatal strictures are defined as strictures occurring at the neomeatus, which is formed between the junction of the distal bulb urethra and the neovagina. The other segments (bulbar and posterior) are the same as in a biological man.

4.3.2 **Trans men**

Four different areas can be identified in the urethra after female-to-male gender confirming surgeries [140]:

- The native urethra is the female urethral segment which remains preserved during surgery. It goes from the bladder neck to the original external meatus.
- The fixed part (pars fixa) or perineal urethra follows the native urethra, starting at the original external meatus. This segment is reconstructed using local tissues, typically vestibular mucosa or anterior vaginal mucosa. Its course is similar to the bulbar urethral segment in males, but without being covered by spongiosal tissue.
- The anastomotic part is the area where the pars fixa joins the neophallus.
- The phallic urethra is the segment located within the neophallus or the metoidioplasty and is usually made of skin tube. Its course is similar to the penile urethra in males, but without being covered by spongiosal tissue.

5. **DIAGNOSTIC EVALUATION**

A comprehensive diagnostic evaluation of urethral stricture disease encompasses clinical history and examination, urinalysis (+/- culture), uroflowmetry and post-void residual (PVR) assessment, radiography and endoscopy.

5.1 **Patient history**

The purpose of history taking is to assess symptoms including severity and duration, possible aetiology, prior treatments, complications, associated problems, and patient factors that may impact upon surgical outcome.

The clinical presentation of urethral stricture disease is varied. In a retrospective analysis of 611 patients with an endoscopically confirmed diagnosis of urethral stricture, LUTS were the most common presentation (54.3%) followed by acute urinary retention (22.3%), urinary tract infection (UTI) (6.1%) and difficult catheterisation (4.8%) [141]. In a retrospective study of 214 patients who underwent anterior urethroplasty, weak stream was
reported as the most common individual LUTS (49%) followed by incomplete emptying (27%) and urinary frequency (20%) [142]. A further retrospective series of 614 patients undergoing anterior urethroplasty found post-void dribble to be present in 73% [143].

Genitourinary pain is a common feature, affecting 22.9-71% [29, 141]. Pain may be felt in the bladder and/or urethra, is associated with more severe LUTS, is more likely to be felt by younger men and resolves in most following reconstruction [29]. Other complaints include spraying (9%), visible haematuria (3.1-5%), urethral abscess/necrotising fasciitis (2.3%), urgency (14%) and incontinence (1-4%) [141, 142].

To establish aetiology, an enquiry about a history of pelvic, genital or perineal trauma, prior instrumentation, prior surgeries, irradiation or focal therapies and urethritis should be made. It is important to document prior surgical approaches and date of the most recent intervention (e.g., dilatation) as this may impact upon the timing of radiological evaluation or surgical treatment.

Problems of sexual function are common in patients with urethral stricture disease [144, 145] and sexual function may be impacted upon by surgical intervention [146, 147], hence the status of erectile and ejaculatory function should be established and documented using validated tools.

The performance status of the patient should be determined as it may influence the choice of treatment (curative or palliative). A past medical history should assess for factors that may impact upon tissue healing including diabetes, immunosuppression and smoking. Oral tobacco use or the chewing of betel leaves may increase the risk of morbidity at the harvest site or render oral mucosa too poor for use. Prior harvest of oral mucosa should be noted as alternative sources for tissue transfer may need to be considered [148] or alternative surgical approaches (e.g., perineal urethrostomy [PU]).

5.2 Physical examination

The abdomen should be examined for the presence of a palpable bladder. The location of any suprapubic tube should be noted to assess its potential utility for antegrade cystoscopy or the placement of a sound (to facilitate repair) [149]. Examination of the genitalia should note the presence of foreskin, the position and size of the meatus as well as any evidence of scarring suggestive of LS. Pre-operative biopsy to confirm LS may be performed if this alters management and is essential if malignancy is suspected [150].

The presence of penile or perineal fistulae should be noted. The urethra should be palpated to assess for induration suggestive of significant fibrosis. Rarely a mass may signify a urethral carcinoma. A rectal examination to assess for prostatic pathology, which may be the cause of urinary symptoms, should be undertaken. In patients with posterior urethral stenosis rectal adherence to the prostate and the mobility of the surrounding tissues should be assessed [151]. The oral cavity should be examined for the suitability of oral mucosa. Measurement of BMI will identify obese individuals who are at greater risk of leg compartment syndrome when placed in the lithotomy position for a prolonged time period [152]. Assessing hip mobility is important when considering an exaggerated lithotomy position as some patients may have limited hip flexion due to unresolved orthopaedic problems [149].

5.2.1 Further diagnostic evaluation

5.2.1.1 Patient reported outcome measure (PROM)

The first validated urethral stricture surgery PROM (USS-PROM) was reported in 2011 [153]. It consists of six LUTS questions derived from the International Consultation on Incontinence Questionnaire Male LUTS (ICIQ-MLUTS) module, a LUTS-specific QoL question, the Peeling voiding chart and the EQ-5D to assess overall health-related QoL (HRQoL). The post-operative questionnaire contains an additional two questions to assess overall patient satisfaction. This PROM has been validated in several other languages (German, Spanish, Italian, Dutch, Turkish, Polish, Japanese) and is increasingly used in research studies as well as clinical practice. A further PROM is in development in North America but requires validation [154] (see section 11. Follow-up).

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A specific urethral stricture surgery patient reported outcome measure was found to have psychometric validity in the assessment of patient-derived benefit from surgical intervention for urethral stricture disease.</td>
<td>2a</td>
</tr>
<tr>
<td>Sexual dysfunction is prevalent in patients with urethral strictures and sexual function can be affected by surgical management of urethral stricture.</td>
<td>3</td>
</tr>
</tbody>
</table>
Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a validated patient reported outcome measure (PROM) to assess symptom severity and impact upon quality of life in men undergoing surgery for urethral stricture disease.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use a validated tool to assess sexual function in men undergoing surgery for urethral stricture disease.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

5.2.1.2 Urinalysis and urine culture

Urinalysis is an essential component of the work up of patients with LUTS. If infection is suggested, urine culture should be performed to confirm the diagnosis and identify the causative organism and sensitivity to antibiotics. Bacteriuria should be treated prior to surgical intervention to prevent peri-operative sepsis [155] (see section 10. Peri-operative care).

5.2.1.3 Uroflowmetry and post-void residual estimation

A reduced maximum flow rate with a prolonged plateau is characteristic of the constrictive obstruction caused by urethral stricture. However, interpretation of flow patterns is subjective and is not considered a reliable screening tool for the detection of stricture [156]. To overcome this, a statistical model based on uroflowmetry parameters was developed and was found to predict urethral stricture with a sensitivity of 80-81% and a specificity of 77-78% [156]. Uroflowmetry is usually combined with ultrasound (US) estimation of PVR to identify patients with urinary retention who may require emergent bladder drainage. Uroflowmetry parameters can also be used for monitoring patients and in the assessment of treatment response (see section 11. Follow-up).

Urodynamic studies are not indicated in the vast majority of patients with urethral stricture disease. In patients with suspected bladder dysfunction (e.g., severe storage LUTS, history of irradiation or neurological disease), an assessment of bladder function may help surgical decision making and patient counselling. Similarly, when there is concern that flow impairment or increased PVR are due to detrusor underactivity or an accontractile detrusor, a urodynamic study may help predict the likelihood that the patient would need to perform intermittent self-catheterisation (ISC) post-operatively. The only urodynamic parameter found to distinguish a diagnosis of urethral stricture from BPO is urethral closure pressure which is lower in the former due to the constrictive nature of the obstruction (22.07 vs. 28.4 cm H2O, p=0.0039, r=0.61, BPO vs. stricture) [157].

Summary of evidence

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform uroflowmetry and estimation of post-void residual in patients with suspected urethral stricture disease.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

5.2.1.4 Urethrography

Retrograde urethrography (RUG) has widely been used as the investigation of choice for evaluating the stricture presence, location, length and any associated anomalies (e.g., false passages, diverticula) [158].

The reported sensitivity and specificity of RUG in the diagnosis of strictures is 91% and 72%, respectively [159]. The positive predictive value (PPV) was 89% and the negative predictive value (NPV) was 76% [159]. Most reports suggest that RUG underestimates stricture length [160, 161]. Interpretation of RUG findings by urologists were found to be more accurate at predicting urethral stricture location and length as compared to evaluation by an independent physician [162].

Limitations of RUG include difficulty assessing very distal strictures and assessing the proximal extent of strictures which are too narrow to permit passage of adequate contrast. Combining a RUG with voiding cystourethrography (VCUG) can allow adequate visualisation of the urethra proximal to the stricture and a more accurate assessment of stricture length in (nearly) obliterator strictures, stenoses and gap in pelvic fracture urethral injury (PFU) [163, 164]. In addition, urethrography provides only a two-dimensional assessment of stricture and the results may be affected by the amount of penile stretch [165], degree of pelvic rotation and patient body habitus [166]. Risks of the procedure include infection, discomfort [157], contrast reaction from intravasation of contrast [167] in addition to the risk of radiation exposure. Urethrographic clamp devices (Brodny, Knutson) are available and were found to be less painful than using the Foley catheter technique [172].
Summary of evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrograde urethrography is a widely available and easy to perform method of diagnosing and assessing urethral stricture but may underestimate stricture length.</td>
<td>2a</td>
</tr>
<tr>
<td>Retrograde urethrography alone is not able to assess stricture length (or gap) in obliterations strictures or stenosis.</td>
<td>2a</td>
</tr>
<tr>
<td>Urethrographic clamp devices are less painful than using the Foley catheter technique.</td>
<td>2a</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform retrograde urethrography to assess stricture location and length in men with urethral stricture disease being considered for reconstructive surgery.</td>
<td>Strong</td>
</tr>
<tr>
<td>Combine retrograde urethrography with voiding cystourethrography to assess (nearly)-obliterative strictures, stenoses and pelvic fracture urethral injuries.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use clamp devices in preference to the Foley catheter technique for urethrographic evaluation to reduce pain.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

5.2.1.5 Cystourethroscopy

Cystourethroscopy allows for accurate visual detection of a suspected stricture or can rule out a stricture as cause of obstructive voiding [159]. It can detect narrowing of the urethral lumen before changes in uroflowmetry and symptoms [138]. Cystourethroscopy can also assess the presence of LS or other pathology but cannot usually assess stricture length as the calibre of most cystoscopes is greater than most symptomatic strictures [168]. To overcome this, use of smaller calibre ureteroscopes (6.5 Fr and 4.5 Fr) has been reported [168]. This also allows an assessment of the bladder prior to surgery and may identify other pathology such as bladder stones. Cystourethroscopy is particularly helpful for diagnosing proximal BMS which may be missed on RUG [169].

Retrograde urethroscopy combined with antegrade cystoscopy via the suprapubic tract may be used to evaluate PFUI and plan the surgical approach. It allows an assessment of the length of the defect, the competence of the bladder neck, the involvement of the bladder neck in scarring in addition to identifying the presence of bony spicules or other abnormalities (e.g., fistulae, stones) [170]. Combined retrograde and antegrade cystoscopy was found to provide similar estimates of length of urethral defect in patients with PFUI as combined retrograde and antegrade cystourethrography, but was more likely to detect fistulae, false passages and calculi [170].

Summary of evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystourethroscopy will reliably detect the presence of a urethral stricture.</td>
<td>3</td>
</tr>
<tr>
<td>Combined retrograde urethroscopy and antegrade cystoscopy is more accurate than retrograde and voiding cystourethrography at identifying associated abnormalities such as fistulae, false passages and calculi in patients with PFUI.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform cystourethroscopy as an adjunct to imaging if further information is required.</td>
<td>Weak</td>
</tr>
<tr>
<td>Combine retrograde urethroscopy and antegrade cystoscopy to evaluate pelvic fracture urethral injuries as an adjunct to imaging if further information is required.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

5.2.1.6 Ultrasound

Ultrasound of the urethra or sonourethrography (SUG) provides a non-invasive three-dimensional assessment of anterior urethral stricture disease; including stricture location, length and the degree of associated spongiosis [171].

Several studies have compared SUG to RUG and cystoscopic or intraoperative findings. Sonourethrography was found to be more accurate at diagnosing stricture presence compared to RUG [172, 173]. Sonourethrography was also found to more accurately estimate stricture length (94% correlation with intraoperative findings) than RUG (59% correlation with intraoperative findings) (p < 0.001) [161]. A further study showed similar findings and found that the closest correlation for stricture length at operation was for strictures in the penile urethra [160]. Intraoperative sonourethrogram findings have also been found to change the planned reconstructive approach (based on pre-operative retrograde urethrogram) in 19% of men undergoing anterior urethral reconstruction [166]. Sonourethrography incorporating real-time elastography
can provide a qualitative and quantitative assessment of spongiofibrosis [174, 175]. The clinical relevance of assessing the degree of spongiofibrosis pre-operatively remains to be established. Three-dimensional reconstruction of sonographic images is investigational at present [176].

The advantages of SUG are that it can be performed in the outpatient setting, provides information on the degree of spongiofibrosis and its relatively low cost [171]. Limitations of the technique include lower sensitivity for detection of strictures in the bulbular urethra, operator dependency, and the need for urethral distension requiring intraurethral anaesthesia. Sonourethrography requires specialised training in the use of US and is currently not in widespread usage.

Table 5.1: Diagnostic accuracy of sonourethrography compared to other modalities and surgical findings

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Segment of urethra studied</th>
<th>Comparator</th>
<th>Accuracy of SUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berne-Mestre et al. 2018 [172]</td>
<td>113</td>
<td>Anterior and posterior</td>
<td>RUG, VCUG, surgical findings</td>
<td>SUG more accurate than RUG (p < 0.05)</td>
</tr>
<tr>
<td>Ravikumar et al. 2014 [173]</td>
<td>40</td>
<td>Anterior and posterior</td>
<td>RUG, VCUG, surgical findings</td>
<td>Anterior: SUG 100% sensitivity, 100% specificity</td>
</tr>
<tr>
<td>Kalabhavi et al. 2018 [161]</td>
<td>30</td>
<td>Anterior</td>
<td>RUG, surgical findings</td>
<td>-</td>
</tr>
<tr>
<td>Krukowski et al. 2018 [160]</td>
<td>66</td>
<td>Anterior</td>
<td>RUG, surgical findings</td>
<td>SUG more accurate than RUG (r_s=0.946, p < 0.001 vs. r_s=0.597, p=0.001)</td>
</tr>
</tbody>
</table>

N = number of patients; RUG = retrograde urethrography; SUG = sonourethrography; VCUG = voiding cystourethrogram.

5.2.1.7 Magnetic resonance imaging

Magnetic resonance imaging (MRI) has been used to image PFUIs, posterior urethral stenoses and anterior urethral strictures.

Several studies have compared MRI urethrogram to RUG and intraoperative findings. Magnetic resonance imaging urethrogram was found to be as accurate as RUG at detecting stricture site in anterior urethral strictures [177]. In terms of stricture length both MRI urethrogram and RUG reliably correlated with intraoperative findings [177]. On the other hand, a further study of patients with anterior urethral strictures found MRI urethrogram stricture length to correlate more closely with surgical findings than RUG [178].

In a mixed group of anterior urethral strictures and posterior urethral stenoses, MRI urethrogram was as accurate (sensitivity = 100%, specificity = 91.7%) as combined RUG and sonourethrography (sensitivity = 100%, specificity = 91.7%) at diagnosing strictures [179]. There was no significant difference in the measurement of stricture length [179]. In a further study of patients with posterior urethral stenosis, MRI estimation of stenosis length correlated more closely with operative findings compared to RUG [180]. In patients with PFUI, MRI measurement of pubo-urethral stump angle (angle between long axis of pubis and line between the distal end of the proximal urethral stump and lower border of inferior pubic ramus) was predictive of an elaborated approach on multivariate analysis [181].

Magnetic resonance imaging was also found to be more accurate at diagnosing associated pathologies e.g., diverticula, tumours, fistulae and stones [179]. In cases of fistulation between the urinary tract and pubic symphysis after irradiation for prostate cancer, the fistula tract can be clearly demonstrated on MRI [182]. Other imaging modalities, including computed tomography (CT), may fail to identify the tract and the problem may be misdiagnosed as isolated osteomyelitis of the pubic bone leading to medical management with antibiotics rather than surgical excision [182].
The main advantage of MRI is greater anatomical detail, which is countered by the expense of the procedure and the greater complexity in interpreting images. The technique is not commonly used for routine situations, but it may be helpful in diagnosing associated pathologies which may alter patient management.

Table 5.2: Diagnostic accuracy of MRI compared to other modalities and surgical findings

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Segment of urethra studied</th>
<th>Comparator</th>
<th>Accuracy of SUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murugesan et al. 2018 [177]</td>
<td>32</td>
<td>Anterior</td>
<td>RUG, Surgical findings</td>
<td>MRI and RUG equivalent (100% sensitivity, 100% specificity)</td>
</tr>
<tr>
<td>Fath El-Bab et al. 2015 [178]</td>
<td>20</td>
<td>Anterior</td>
<td>RUG, Surgical findings</td>
<td>MRI more accurate than RUG.</td>
</tr>
<tr>
<td>El-Ghar et al. 2010 [179]</td>
<td>30</td>
<td>Anterior and posterior</td>
<td>RUG + SUG, Surgical findings</td>
<td>MRI and RUG equivalent (100% sensitivity, 91.7% specificity)</td>
</tr>
<tr>
<td>Oh et al. 2010 [180]</td>
<td>25</td>
<td>Posterior</td>
<td>RUG + VCUG, Surgical findings</td>
<td>MRI more accurate than RUG + VCUG.</td>
</tr>
</tbody>
</table>

MRI = magnetic resonance imaging; n = number of patients; RUG = retrograde urethrography; SUG = sonourethrography; VCUG = voiding cystourethrogram.

Summary of evidence

Magnetic resonance imaging is more accurate than retrograde urethrography and voiding cystourethrography at determining length of posterior urethral stenoses and can detect alternative associated pathologies e.g., diverticula, fistulae.

Recommendation

Consider MRI urethrography as an ancillary test in posterior urethral stenosis.
6. DISEASE MANAGEMENT IN MALES

6.1 Conservative options

6.1.1 Observation

A stricture will usually result in diminution in flow once the calibre of the urethral lumen is ≤ 10 Fr [137]. In other strictures (> 10 Fr), the diagnosis is often made by coincidence in asymptomatic patients because of a urologic examination for other reasons (e.g., cystoscopy, need for urethral catheterisation) [137]. Purohit et al. performed observation and repeated cystoscopic evaluation of 42 subclinical, incidentally encountered strictures (≥ 16 Fr). After a median follow-up of 23 months, only five (12%) strictures progressed to a low-grade stricture (11-15 Fr). No patient developed symptoms and none of them needed surgical intervention [137]. These patients are candidates for observation although no evidence exist on the long-term evolution of these strictures.

In a series of anatomic stricture recurrence (≤ 16 Fr) after urethroplasty, only 65% of patients were symptomatic [138]. Some asymptomatic patients refused further intervention because they had experienced substantial improvement after their primary urethroplasty. These patients were considered as functional “success” [138]. A multicentric study of the Trauma and Urologic Reconstructive Network of Surgeons observed an important discrepancy between cystoscopic recurrence and need for further intervention [138]. Patients with a large-calibre (> 16 Fr) recurrence had a one and two-year need for intervention rate of 4% and 12%, respectively. Of note, patients with small-calibre (≤ 16 Fr) recurrence had a one and two-year need for intervention rate of only 41% and 49%. Patients who needed intervention had poorer PROMs suggesting clinical symptoms and bother. There is no information on long-term complications in patients with recurrences who did not undergo
intervention. In cases of an asymptomatic stricture recurrence, it might be an option not to intervene but to perform regular follow-up.

Care must be taken about the term “asymptomatic” stricture (recurrence) as patients might conceal their bother and symptoms by different means (not drinking, social avoidance) and might only search for medical help once concealment is no longer tenable [183].

6.1.2 Suprapubic catheter
Radiation-induced urethral strictures are a difficult to treat population as stricture-free rates for urethral reconstruction are lower compared to those in non-irradiated patients [184]. Fuchs et al. evaluated 75 patients who were initially treated by suprapubic diversion for radiation-induced isolated BMS [185]. Only 51% eventually decided to undergo urethroplasty after a mean follow-up period of 25 months. Although there was no significant difference in overall performance status between patients with a chronic suprapubic catheter versus those undergoing urethroplasty, all patients with a poor performance score remained with a suprapubic catheter. Patients with concomitant stress urinary incontinence (SUI) opted more often to keep their suprapubic catheter as the SUI improved in 61% of cases. On the other hand, patients who kept their suprapubic catheter suffered from catheter-related complications in 27% of cases. Urinary diversion by ileal conduit was performed in 30% of patients who remained with a suprapubic catheter while this was only the case in 8% who underwent urethroplasty.

A suprapubic catheter is also an option in frail patients not able to undergo surgery or in patients who do not want (further) urethral surgery and are willing to accept the complications of a suprapubic catheter [186].

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with asymptomatic incidental (> 16 Fr) strictures have a low risk of progression and to develop symptoms.</td>
<td>3</td>
</tr>
<tr>
<td>Only half of the patients initially treated with a suprapubic catheter for radiation-induced bulbomembranous strictures will proceed with urethroplasty.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not intervene in patients with asymptomatic incidental (> 16 Fr) strictures.</td>
<td>Weak</td>
</tr>
<tr>
<td>Consider long-term suprapubic catheter in patients with radiation-induced bulbomembranous strictures and/or poor performance status.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

6.2 Endoluminal treatment of anterior urethral strictures in males
The ability to treat the majority of strictures by less invasive and time-consuming means, offers obvious benefits particularly when specialist surgical services are not available, or patients simply prefer a more pragmatic immediately available solution.

6.2.1 Direct vision internal urethrotomy
In contemporary practice, direct vision internal urethrotomy (DVIU) is commonly performed as a first line treatment of urethral strictures [187]. It is usually performed under general or spinal anaesthesia in well-resourced countries, but shown to be well tolerated under local anaesthesia with or without sedation [188-190].

6.2.1.1 Indications of “cold knife” direct vision internal urethrotomy
In the only high-level evidence study, Steenkamp et al. randomised 210 patients with seemingly comparable non-obliterative strictures at all locations of the urethra to either filiform dilatation vs. DVIU with local anaesthesia on an outpatient basis [191]. They collected objective data with RUG performed at seven follow-up visits (3, 6, 9, 12, 24, 36 and 48 months). This unique study showed that urethral dilatation is equally effective as DVIU but both procedure modalities become less effective with increasing stricture length (see section 6.2.1.1.3.1).

A Cochrane systematic review in 2012 could not identify a single prospective RCT comparing DVIU (or dilatation) with urethroplasty at the anterior urethra [192]. Since then, the randomised Open-label Superiority Trial of Open Urethroplasty Versus Endoscopic Urethrotomy (OPEN) prospectively randomised patients with a recurrent bulbular stricture between open urethroplasty and DVIU but this was for recurrent bulbular strictures only and not as primary treatment [193] (see section 6.2.1.1.2). A retrospective cohort series in boys with bulbular stricture reported a patency rate of 53% for DVIU and 80% for urethroplasty. No statistical analysis was performed and no information on stricture length was available in both cohorts which makes direct comparison hazardous [194].
Patency rates vary considerably between 8% and 77% after DVIU (predominantly without prior urethroplasty) in retrospective cohort studies with minimum follow-up of one year [64, 194-203] (Table 6.1). Median time to recurrence was less than twelve months in most series [64, 195-197, 199-201].

This large variation in patency rate can be in part explained by the heterogeneous nature of the strictures and various definitions of patency used by the authors in these series. Indication to perform DVIU is dependent on various stricture characteristics that are prognostic for a successful outcome.

Table 6.1: Results of DVIU in series with minimum follow-up > 12 months

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Age (years)</th>
<th>Follow-up (months)</th>
<th>Location</th>
<th>Length (cm)</th>
<th>Previous interventions</th>
<th>TTR (months)</th>
<th>Patency rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santucci et al. [195]</td>
<td>76</td>
<td>53 (range: 17-100)</td>
<td>18 (range: 1-30)</td>
<td>Bulbar: 37 (49%)</td>
<td>1.5 (0.2-5)</td>
<td>Primary: 100%</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penile: 4 (5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penobulbar: 1 (1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unknown: 34 (45%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pansadoro et al. [196]</td>
<td>224</td>
<td>62 (range: 11-90)</td>
<td>98 (range: 60-216)</td>
<td>Bulbar: 142 (63%)</td>
<td>1.6 (0.1-6.5)</td>
<td>Primary: 88%</td>
<td>< 12</td>
<td>56%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penile: 37 (17%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penobulbar: 45 (20%)</td>
<td></td>
<td></td>
<td>Recurrent: 12%</td>
<td>-</td>
</tr>
<tr>
<td>Al Taweel et al. [199]</td>
<td>301</td>
<td>37 (range: 17-82)</td>
<td>36</td>
<td>Bulbar: 227 (75%)</td>
<td>1.3 (0.4-4.2)</td>
<td>Primary: 47%</td>
<td>10</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penile: 50 (17%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penobulbar: 24 (8%)</td>
<td></td>
<td></td>
<td>Recurrent: 53%</td>
<td>-</td>
</tr>
<tr>
<td>Barbagli et al. [198]</td>
<td>136</td>
<td>37 (IQR: 25-48)</td>
<td>55 (range: 36-92)</td>
<td>Bulbar: 100%</td>
<td>1-2 cm: 45%</td>
<td>25 (57%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-3 cm: 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-4 cm: 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kluth et al. [197]</td>
<td>128</td>
<td>64 (SD: 16)</td>
<td>16 (IQR: 6-43)</td>
<td>Penile: 15 (12)</td>
<td>NR</td>
<td>Primary: 66%</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bulbar: 112 (88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unknown: 1 (1%)</td>
<td></td>
<td></td>
<td>Recurrent: 34%</td>
<td>-</td>
</tr>
<tr>
<td>Pal et al. [200]</td>
<td>186</td>
<td>39 (SD:15)</td>
<td>1st DVIU: 58 (SD: 15)</td>
<td>null</td>
<td>NR</td>
<td>Primary: 69%</td>
<td>8.5</td>
<td>First DVIU: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd DVIU: 56 (SD: 15)</td>
<td>null</td>
<td>Repeat: 31%</td>
<td>-</td>
<td>Second DVIU: 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd DVIU: 45 (SD: 15)</td>
<td>null</td>
<td>-</td>
<td>Third DVIU: 13</td>
<td></td>
</tr>
<tr>
<td>Diamond et al. [194]</td>
<td>53</td>
<td>14</td>
<td>30 (range: 6-64)</td>
<td>bulbar: 100%</td>
<td>NR</td>
<td>Primary: 100%</td>
<td>23</td>
<td>53%</td>
</tr>
<tr>
<td>Launonen et al. [201]</td>
<td>34</td>
<td>6 (range: 0-16)</td>
<td>79 (range: 7-209)</td>
<td>Bulbar: 74%</td>
<td>≤ 2 cm: 85%</td>
<td>Primary: 100%</td>
<td>4</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penile: 21%</td>
<td>> 2 cm: 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penobulbar: 6%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redon-Galvez et al. [202]</td>
<td>67</td>
<td>57 (range: 15-91)</td>
<td>40 (range: 12-120)</td>
<td>Penile:9%</td>
<td>≤ 1 cm: 82%</td>
<td>Primary: 90%</td>
<td>< 24</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bulbar: 64%</td>
<td>> 1 cm: 18%</td>
<td></td>
<td>Repeat: 10%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VUA: 21%</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Harraz et al. [203]</td>
<td>430</td>
<td>50 (SD: 15)</td>
<td>29 (range: 3-132)</td>
<td>Bulbar: 100%</td>
<td>< 2 cm</td>
<td>NR, prior urethroplasty excluded</td>
<td>NR</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Membranous: 6%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yürük et al. [64]</td>
<td>193</td>
<td>65 (SD: 13)</td>
<td>36 (SD: 12)</td>
<td>Bulbar: 100%</td>
<td>< 1 cm: 140 (73%)</td>
<td>0%</td>
<td>87% of recurrence ≤ 3</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-2 cm: 21 (11%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-3 cm: 32 (17%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DVIU = Direct vision internal urethrotomy; IQR = interquartile range; N = number of patients; NR = not reported; SD = standard deviation; TTR = time to recurrence.
6.2.1.1.2 Direct vision internal urethrotomy for recurrent strictures and as salvage treatment after failed urethroplasty

In the OPEN trial, a recurrent stricture was defined as at least one previous failed intervention (endoscopic urethrotomy, urethral dilatation, urethroplasty) [204]. The previous intervention was predominantly DVIU. Despite poor recruitment, 108 and 112 patients were randomised to urethroplasty and DVIU respectively in a 24-month study protocol. Both groups had a similar improvement in voiding score symptoms after intervention. However, patients undergoing urethroplasty had a 2.6 higher odds of experiencing an improvement of ≥ 10 ml/s in their maximum urinary flow compared to those undergoing urethrotomy (p=0.001) [204]. Need for re-intervention was observed in 13.8% vs. 25.9% of cases respectively allocated to urethroplasty and DVIU resulting in a 48% lower risk for re-intervention with urethroplasty (HR: 0.52; 95% CI: 0.31-0.89; p=0.017) [204]. Of note, self-dilatation was not considered a re-intervention [204]. Direct vision internal urethrotomy is also used as salvage treatment for recurrent strictures after urethroplasty. Brown et al. used DVIU for stricture recurrence (mean length: 4 cm; range: 1.5-7 cm) after excision and primary anastomosis (EPA), buccal mucosa grafts (BMG) urethroplasty and penile skin graft urethroplasty [205]. Patency was obtained in thirteen out of 37 cases (35%) after a single DVIU. After free graft urethroplasty (FGU), a short, veil-like stricture (or “diaphragm”) might develop at the distal or proximal end of the graft. Rosenbaum et al. used DVIU to a selected cohort of 43 patients with a short (< 1 cm), veil-like stricture after BMG urethroplasty [206]. After a mean follow-up of twelve months, patency rate was 51%. Farrell et al. performed DVIU with mitomycin C (MMC) injection in seventeen patients with a short (median 2 cm; interquartile range [IQR] 1-2.5 cm) recurrence after bulbar urethroplasty (no details on technique available) and patency was achieved in twelve (71%) patients [207].

6.2.1.1.3 Predictors of failure of “cold knife” direct vision internal urethrotomy

Several groups tried to identify prognostic factors to predict which patients are most likely to fail initial treatment (Table 6.2).

6.2.1.1.3.1 Stricture length

Stricture length was identified as an important predictive factor for recurrence in several series. For bulbar strictures, Pansadoro et al. found a 71% and 18% patency rate for < 1 cm and ≥ 1 cm strictures respectively (p < 0.001) [196]. In the series of Al Taweel et al., no patient with a stricture > 1 cm who achieved patency was stricture-free, whereas this was 27% for strictures < 1 cm (p < 0.001) [199]. Barbagli et al. reported an estimated five-year patency rate of 71%, 51% and 39% for 1–2 cm, 2–3 cm and 3–4 cm strictures respectively (p < 0.00001) [198]. Pal et al. reported no patency in case of strictures > 1 cm [200]. In their prospective study, Steenkamp et al. reported that for each 1 cm increase in the length of the stricture the risk of recurrence was increased by 1.22 (95% CI: 1.05-1.43) [191]. In a paediatric series, a 0% patency rate was obtained for strictures > 2 cm [201]. Redon-Galvez et al. reported a 25% patency rate for strictures > 1 cm, whereas strictures ≤ 1 cm had a 71% patency rate (p=0.006). This difference remained statistically significant in the multivariable analysis, when adjusted for stricture location (HR: 1.75; p=0.025) [202]. A systematic review of case series calculated a weighted average patency rate of 71.2% vs. 23.2% for strictures less and more than 1 cm respectively (p < 0.0001) [208].

6.2.1.1.3.2 Stricture tightness (calibre)

Pansadoro et al. reported a patency rate of 69% and 34% for strictures more than and less than 15 Fr in calibre, respectively (p < 0.001) [196]. Using pre-operative maximum urinary flow (pQmax) as surrogate for urethral calibre, Barbagli et al. stratified patients into three groups (pQmax < 5 vs. 5–8 vs. > 8 ml/s) and reported an estimated five-year patency rate of 31% versus 53% vs. 83%, respectively (p < 0.00001) and the importance of pQmax was confirmed in multi-variate analysis [198]. Kluth et al. could not confirm the significance of pQmax on the outcome of DVIU [197].

6.2.1.1.3.3 Number of strictures

Pansadoro et al. reported a lower patency rate in case of DVIU for multiple strictures compared to a single stricture at both the bulbar (18% vs. 50%; p < 0.001) and penile urethra (8% vs. 35%; p=0.013) [196]. Pal et al. reported a 0% patency rate in case of multiple strictures whereas this was 35% for a single stricture (p=0.03) [200].

6.2.1.1.3.4 Stricture aetiology

Harraz et al. identified idiopathic stricture aetiology as an independent risk factor for failure (HR: 3.11; p=0.035) [203]. On the other hand, stricture aetiology was not a predictive factor in many other series [196, 200, 201].
6.2.1.3.5 Stricture location
Several series have reported a better patency rate for bulbar strictures compared to penile stricture or peno-bulbar strictures [191, 196, 199]. Kluth et al. could not identify stricture location as an independent prognostic factor but only 12% of patients had a stricture at the penile urethra [197].

6.2.1.3.6 Previous interventions
Pansodoro et al. [196], Al Taweel et al. [199] and Heyns et al. [209] found a 0% patency rate after two or more prior failed DVIU, whereas this occured after three and four prior failed DVIUs in the series of Santucci et al. [195] and Launonen et al. [201], respectively. Kluth et al. identified secondary DVIU for a recurrent stricture as an independent risk factor for stricture recurrence (HR=1.78, 95% CI: 1.05-3.03, p=0.032) [197]. Pal et al. found significantly better patency rates after a 1st DVIU compared to a 2nd or 3rd DVIU [200].

6.2.1.3.7 Other factors
Two series could not identify age, diabetes, hypertension, obesity and smoking as independent predictive factors [197, 198]. However, Harraz et al. identified that older age at presentation and obesity are independent predictors of failure after DVIU [203].

In the absence of well-designed, adequately powered multi-centre trials it is difficult to answer the question as to which clinical factors are predictive of failure of DVIU in men with urethral strictures. However, based on the predictors evaluated above and further supported by consensus papers [210-212], one can summarise that the best candidates are previously untreated patients with a single, short (max. 2 cm) bulbar stricture. In a selected group of patients (n=60), a patency rate of 77% was reported for a single, short, primary bulbar stricture with a minimum follow-up of five years [196]. This is confirmed by a more contemporary cohort of patients with untreated short (1-2 cm) bulbar urethral strictures, in which the estimated five-year patency rate was 71% [198].

Table 6.2: Predictors for urethral patency after direct vision internal urethrotomy

<table>
<thead>
<tr>
<th>Author</th>
<th>Location</th>
<th>Length</th>
<th>Calibre</th>
<th>Multiplicity</th>
<th>Prior DVIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pansodoro et al.</td>
<td>Penile: 16%</td>
<td>< 1 cm: 71%</td>
<td>< 15 Fr: 34%</td>
<td>Single: 50%</td>
<td>None: 36%</td>
</tr>
<tr>
<td></td>
<td>Penobulbar: 11%</td>
<td>> 1 cm: 18%</td>
<td>> 15 Fr: 69%</td>
<td>Multiple: 16%</td>
<td>1: 6%</td>
</tr>
<tr>
<td></td>
<td>Bulbar: 42%</td>
<td>-</td>
<td>-</td>
<td>> 1: 0%</td>
<td></td>
</tr>
<tr>
<td>Steenkamp et al.</td>
<td>RR for recurrence penile vs. bulbar: 1.85 (95% CI: 0.94 to 3.67, p = 0.077)</td>
<td>< 2 cm: 60% (12 months)</td>
<td>NR</td>
<td>None: 50-60% (48 months)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2-4 cm: 50%</td>
<td>NR</td>
<td>1: 0-40% (48 months)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>> 4 cm: 20%</td>
<td>NR</td>
<td>2: 0% (924 months)</td>
<td></td>
</tr>
<tr>
<td>Santucci et al.</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0: 8%</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1: 6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2: 9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>> 2: 0%</td>
<td></td>
</tr>
<tr>
<td>Al Taweel et al.</td>
<td>Bulbar: 11%</td>
<td>< 1 cm: 27%</td>
<td>NR</td>
<td>NR</td>
<td>0: 12.1%</td>
</tr>
<tr>
<td></td>
<td>Penile: 0%</td>
<td>1-2 cm: 0%</td>
<td>-</td>
<td>1: 7.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penobulbar: 0%</td>
<td>> 2 cm: 0%</td>
<td>-</td>
<td>1: 0%</td>
<td></td>
</tr>
<tr>
<td>Barbagli et al.</td>
<td>NA</td>
<td>1-2 cm: 71%</td>
<td>pQmax < 5 ml/s: 31%</td>
<td>NA</td>
<td>0: 62%</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2-3 cm: 51%</td>
<td>pQmax 5-8 ml/s: 53%</td>
<td>-</td>
<td>1: 37%</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3-4 cm: 39%</td>
<td>pQmax > 8 ml/s: 83%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kluth et al. [197]</td>
<td>Location no predictor</td>
<td>pQmax no predictor</td>
<td>NR</td>
<td>0: 60%</td>
<td></td>
</tr>
<tr>
<td>Pal et al. [200]</td>
<td>NA</td>
<td>< 1 cm: 45%</td>
<td>NR</td>
<td>Single: 35%</td>
<td>0: 30%</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1-1.5 cm: 0%</td>
<td>Multiple: 0%</td>
<td>1: 23%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>> 1.5 cm: 0%</td>
<td>-</td>
<td>2: 13%</td>
<td></td>
</tr>
</tbody>
</table>
6.2.1.2 Indications of “hot-knife” direct vision internal urethrotomy

6.2.1.2.1 Laser urethrotomy

Lasers available for urological applications including Neodymium:YAG, Argon, Holmium:YAG, Potassium titanyl phosphate (KTP) and Tm:Yag and have been used for the treatment of urethral strictures. A systematic review identified four RCTs comparing laser urethrotomy and the “cold knife” urethrotomy. All studies were limited by short-term outcome evaluation and none of these four studies specified the results based on the location of the stricture. Two of these studies reported specific recurrence rates and meta-analysis showed a risk ratio (RR) for recurrence of 0.55 (95% CI: 0.18-1.66; p=0.29), 0.39 (95% CI: 0.19-0.81; p=0.01) and 0.44 (95% CI: 0.26-0.75; p=0.003) in favour of laser urethrotomy after three, six and twelve months respectively [213]. Jin et al. performed a systematic review including 44 case series on laser urethrotomy or “cold knife” DVIU [208]. This included nineteen articles on laser urethrotomy and 25 articles on “cold knife” DVIU. The overall weighted average stricture-free rate was 74.9% (371/495) and 68.5% (1874/2735) for laser vs. “cold knife” DVIU, respectively (p=0.004). Although significant, the results must be interpreted with caution because of heterogeneity and because no details are provided on follow-up duration. Specifically looking at first DVIU, laser and “cold knife” DVIU obtained a stricture-free rate of 58.6% and 42.7% respectively and the difference was no longer statistically significant (p=0.09). At the bulbar urethra, laser and “cold knife” DVIU yielded a stricture-free rate of 52.9% and 60%, respectively (p=0.06) [208].

After publication of this systematic review, the EAU Guideline Panel scope search identified two additional RCTs [214, 215] and one retrospective cohort series [216]. In the RCT of Yenice et al., patients with a primary, bulbar stricture were randomised either to “cold knife” DVIU (n=29) or holmium:YAG laser urethrotomy (n=34). After twelve months follow-up, no significant difference in patency rate was identified (79% for “cold knife” DVIU vs. 68% for laser urethrotomy, p=0.3) [215]. In their RCT, Chen et al. reported a better patency rate after one year with laser (n=24) compared to “cold knife” (n=22) DVIU (respectively 88% vs. 18%; p < 0.05). However, after two years the benefit for laser disappeared and after five years both techniques showed a low patency rate: 9% for “cold knife” DVIU vs. 12% for laser DVIU (p > 0.05) [214]. In both these RCTs, operation time was slightly but significantly longer with laser DVIU as compared to “cold knife” DVIU [214, 215]. Holzhauer et al. evaluated in a retrospective comparative study “cold knife” (n=127) with laser (n=65) DVIU at a mean follow-up of sixteen and eighteen, respectively. They reported patency rates of 42% for “cold knife” DVIU vs. 31% for laser DVIU (p=0.1) [216].

6.2.1.2.2 Plasmakinetic (bipolar) urethrotomy

Cecen et al. conducted an RCT comparing plasmakinetic with “cold knife” DVIU (n=136) [217]. They reported patency rates for plasmakinetic and “cold knife” urethrotomy at nine months in respectively 86% and 70% of cases (p=0.025). At eighteen months, patency rates for plasmakinetic and “cold knife” urethrotomy were 63% and 67%, respectively (p=0.643) [217]. A prospective cohort study on primary strictures < 2 cm reported a patency rate at twelve months in 23/30 (77%) cases for plasmakinetic DVIU vs. 19/30 (63%) cases with “cold knife” DVIU (p=0.04) [218]. A retrospective case series (n=27) reported a 74% patency rate for short (1-2.5 cm) strictures after a mean follow-up of fourteen months [219]. They reported negligible blood loss during the procedure and no post-operative incontinence.

Based on the conflicting results described above and taking into account the heterogeneity of series and absence of long-term follow-up, overall, the available studies do not support the efficacy of one technique of DVIU over another. Given the similar complication rates between techniques (see section 6.2.1.3), no recommendation can be made in favour of one technique over another.

6.2.1.3 Complications of direct vision internal urethrotomy

6.2.1.3.1 Complications of “cold knife” direct vision internal urethrotomy

An overall complication rate of 6.5% was reported in a systematic review of Jin et al. based on twelve articles including 1,940 patients [208] (Table 6.3).
Notably, erectile dysfunction (ED) was reported in 5.3% of cases in this review [208]. In addition, Graversen et al. reported ED in eleven out of 104 (10.6%) patients [220]. This risk appears higher in strictures located in the penile urethra and, in addition to the poor patency rates, the use of DVIU in the penile urethra must be discouraged [212, 220].

6.2.1.3.2 Complications of “hot knife” direct vision internal urethrotomy
The systematic review of Jin et al. reported a total complication rate of 11.8% (39/330) [208] (Table 6.3).

6.2.1.3.3 Complications of “cold knife” versus “hot knife” direct vision internal urethrotomy
In a systematic review of RCTs comparing “cold knife” DVIU vs. laser DVIU, only 1/4 series reported complications [213]. In the laser group, an 8.9% complication rate was found due to contrast extravasation to the perineum and stricture recurrence. For the “cold knife” DVIU, a 15.5% complication rate was reported related to bleeding [213]. Two later RCT’s reported similar rates of urinary extravasation [214, 215] and urinary incontinence (UI) [214] with both techniques.

The systematic review of retrospective case series of Jin et al. found no significant differences in the incidence rates of UI, urinary extravasation and UTI between laser and “cold knife” DVIU [208]. However, urinary retention and haematuria were more frequent with laser compared to “cold knife” DVIU [208]. Conversely, in the series of Yenice et al. haematuria was only reported after “cold knife” DVIU but not after laser DVIU (p=0.6) [215] (Table 6.3).

Table 6.3: Complications after “cold knife” DVIU versus laser DVIU

<table>
<thead>
<tr>
<th>Study/Complication</th>
<th>“Cold knife” DVIU (%)</th>
<th>Laser DVIU (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jin et al. [208]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary extravasation</td>
<td>2.9</td>
<td>3.1</td>
<td>0.938</td>
</tr>
<tr>
<td>Urinary incontinence</td>
<td>4.1</td>
<td>2.1</td>
<td>0.259</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>2.1</td>
<td>2.7</td>
<td>0.653</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>0.4</td>
<td>9</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Haematuria</td>
<td>2</td>
<td>5.2</td>
<td>0.034</td>
</tr>
<tr>
<td>Epididymitis</td>
<td>0.5</td>
<td>NR</td>
<td>NA</td>
</tr>
<tr>
<td>Fever</td>
<td>2.3</td>
<td>NR</td>
<td>NA</td>
</tr>
<tr>
<td>Scrotal abscess</td>
<td>0.3</td>
<td>NR</td>
<td>NA</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>5.3</td>
<td>NR</td>
<td>NA</td>
</tr>
<tr>
<td>Urinary tract irritation</td>
<td>NR</td>
<td>11.4</td>
<td>NA</td>
</tr>
<tr>
<td>Urinary fistula</td>
<td>NR</td>
<td>1.5</td>
<td>NA</td>
</tr>
<tr>
<td>Dysuria</td>
<td>NR</td>
<td>5.1</td>
<td>NA</td>
</tr>
<tr>
<td>Yenice et al. [215]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary extravasation</td>
<td>0</td>
<td>2.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Haematuria</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chen et al. [214]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary extravasation</td>
<td>9.1</td>
<td>4.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Urinary incontinence</td>
<td>4.5</td>
<td>4.2</td>
<td></td>
</tr>
</tbody>
</table>

DVIU = direct vision internal urethrotomy; NA = not applicable; NR = not reported.

6.2.1.3.4 Complications of direct vision internal urethrotomy versus dilatation
A Cochrane review found no significant differences for overall intra-operative complications (single dilatation vs. DVIU respectively 14% vs. 11%; RR: 0.75; 95 CI: 0.36-1.55) nor for individual complications (difficulty urinating, haematuria, false passage, pain, knotting/breaking/bending filiform leader) [191, 192]. The low rate of false passage for both DVIU and dilatation (respectively 0.96 and 0.94%) might be explained by the systematic use of a filiform leader in both groups which was inserted endoscopically in the dilatation group followed by coaxial dilatators [191, 192].

A small retrospective study comparing balloon dilatation (n=31) with DVIU (n=25) showed less urethral bleeding (6.5 vs. 32%; p=0.017) and UTI (3.2 vs. 24%; p=0.037) with balloon dilatation [221].

Apart from acute peri-operative complications described above, the stricture length was reported to increase after DVIU treatment requiring complex urethral reconstruction, but the authors of this retrospective study
clearly state the limitations of the study design in the absence of consistent baseline investigations [195]. Other authors mention that repeat urethral manipulations (DVIU and/or dilatation) can increase stricture complexity and delays time to urethroplasty [222, 223].

6.2.1.3.5 Complications of “cold knife” direct vision internal urethrotomy versus urethroplasty

The OPEN-trial reported adverse events of any type in 61% and 26.1% after urethroplasty (all types) and DVIU respectively [204]. In the urethroplasty group, mouth pain (related to oral mucosa graft [OMG] harvesting) and wound infection was noted as complication in respectively 14.6% and 4.9% of cases. Erectile dysfunction was 4.9% and 2.6% after urethroplasty and DVIU respectively. Serious adverse events were reported in 8.5% and 8.7% after urethroplasty and DVIU respectively [204].

Summary of evidence

LE	Direct vision internal urethrotomy performs poorly in penile strictures. Direct vision internal urethrotomy at the penile urethra might provoke venous leakage from the corpora cavernosa with subsequent risk of erectile dysfunction.
1b	Increased stricture length is associated with higher risk of failure of DVIU.
1b	In selected patients with a primary, single, short (< 2 cm) and non-obliterative bulbar stricture, a five-year stricture-free rate of up to 77% can be expected.
3	Direct vision internal urethrotomy has a stricture-free rate of 51-71% if performed for a short (< 2 cm) recurrent stricture after prior bulbar urethroplasty.
1a	There is conflicting evidence that “hot knife” (laser, plasmakinetic) DVIU would be superior compared to “cold knife” DVIU after more than one year of follow-up.

Recommendations

Strength rating	Do not use direct vision internal urethrotomy (DVIU) for penile strictures.
	Do not use DVIU/dilatation as solitary treatment for long (> 2 cm) segment strictures.
Weak	Perform DVIU/dilatation for a primary, single, short (< 2 cm) and non-obliterative stricture at the bulbar urethra.
Weak	Perform DVIU/dilatation for a short recurrent stricture after prior bulbar urethroplasty.
	Use either “hot” or “cold knife” techniques to perform DVIU depending on operator experience and resources.

6.2.2 Single dilatation

6.2.2.1 Modalities of dilatation and results

Dilatation can be done in the office, under local anaesthesia and without complex resources [211, 224].

With dilatation, the urethral mucosa at the stricture site is stretched and the scarring is disrupted. This is opposed to DVIU where the stricture is incised. However, both treatment modalities use the same principle to achieve urethral patency: a breach of the urethral mucosa at the site of the stricture in which re-epithelialisation should occur faster than wound contraction [192].

When dilators are used to dilate bulbar urethral strictures, considerable experience is required to avoid accidental perforation of the urethra at the level of the stricture. In order to reduce the risks (esp. false passage, spongiosal perforation, urethral bleeding) of “classic” blind dilatation with rigid sounds [224], other strategies have been developed and evaluated in which the dilatation is visually controlled:

- endoscopic/fluoroscopic guidewire placement and progressive dilatation with Amplatz renal dilators [224, 225];
- endoscopic/fluoroscopic guidewire placement and balloon dilatation [221, 226];
- endoscopic/fluoroscopic guidewire placement and S-curved coaxial dilators [227].

Although no direct comparative studies of blind vs. visually controlled dilatation are available, several studies have reported a low complication rate with visually controlled modifications of dilatation. The recurrence rate with short follow-up largely varies between 7.7-64.5% (Table 6.4). Chhabra et al. identified focal/short (< 1.5 cm) strictures and strictures at the bulbar urethra as predictors for a favourable outcome [226].
Table 6.4: Results of visually controlled dilatation

<table>
<thead>
<tr>
<th>Study</th>
<th>Technique</th>
<th>N</th>
<th>FU (mo)</th>
<th>recurrence</th>
<th>Definition of failure</th>
<th>Complications</th>
<th>Study</th>
<th>Technique</th>
<th>N</th>
<th>FU (mo)</th>
<th>recurrence</th>
<th>Definition of failure</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkoc et al. [224]</td>
<td>Amplatz</td>
<td>26</td>
<td>12-21</td>
<td>2 (7.7%)</td>
<td>Need for additional intervention</td>
<td>Haematuria 3 (11.5%) 0 (0%) NR NR</td>
<td>Chhabra et al. [226]</td>
<td>Balloon + ISD (permanent)</td>
<td>144</td>
<td>24 (3-52)</td>
<td>21 (15.6%)</td>
<td>Need for additional intervention</td>
<td>NR 0 (0%) 3 (2.1%) 14 (9.7%)</td>
</tr>
<tr>
<td>Chhabra et al. [226]</td>
<td>Balloon + ISD (permanent)</td>
<td>144</td>
<td>24 (3-52)</td>
<td>21 (15.6%)</td>
<td>Need for additional intervention</td>
<td>NR 0 (0%) 3 (2.1%) 14 (9.7%)</td>
<td>Kallidonis et al. [227]</td>
<td>Coaxial S-curved</td>
<td>310</td>
<td>12</td>
<td>90 (33%)</td>
<td>No recurrence @1 yr with maximum one additional procedure</td>
<td>11 (3.5%) 0 (0%) 7 (2.2%) 33 (10.6%)</td>
</tr>
<tr>
<td>Nomikos et al. [225]</td>
<td>Amplatz + DVIU + ISD (1 yr.)</td>
<td>34</td>
<td>12</td>
<td>8 (23.5%)</td>
<td>Stricture recurrence on urethroscopy/urethrography</td>
<td>2 (5.8%) NR NR 3 (8.8%)</td>
<td>Yu et al. [221]</td>
<td>Balloon</td>
<td>31</td>
<td>15 (5-36)</td>
<td>20 (64.5%)</td>
<td>Need for subsequent urethroplasty</td>
<td>2 (6.5%) 0 (0%) NR 1 (3.2%)</td>
</tr>
</tbody>
</table>

DVIU = direct vision internal urethrotomy; FU = follow-up; ISD = intermittent self-dilatation; mo = months; N = number of patients; NA = not applicable; NR = not reported; UTI = urinary tract infection; yr = year.

6.2.2.2 Effectiveness of dilatation compared with direct vision internal urethrotomy

A systematic review identified only one prospective RCT comparing dilatation with DVIU and failed to detect any differences [191, 192]. In a small (n=56) retrospective cohort study, the three-year estimated stricture recurrence-free survival was 35.5% and 28% for respectively balloon dilatation and DVIU (p=0.21) [221].

At present, there is lack of evidence to support the claim that dilatation is superior to DVIU (or vice versa) and therefore, the indications for single dilatation are the same as for DVIU.

Repetitive dilatation/DVIU with curative intent (see also section 6.2.1.3.6 Previous interventions) should be avoided as no long-term freedom of recurrence can be expected [211] and because of the significant risk of increasing stricture length and complexity [222, 223] and prolonging the time to urethroplasty (which has better patency rates rates) [223].

Summary of evidence

<table>
<thead>
<tr>
<th>Question</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visually controlled dilatation after endoscopic or fluoroscopic guidewire placement has a low complication rate.</td>
<td>3</td>
</tr>
<tr>
<td>Repetitive dilatations/DVIU have no long-term freedom of recurrence and increase stricture complexity.</td>
<td>1b</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use visually controlled dilatation in preference to blind dilatation.</td>
<td>Weak</td>
</tr>
<tr>
<td>Do not perform repetitive (> 2) direct vision internal urethrotomy/dilatations if urethroplasty is a viable option.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

6.2.3 Post-dilatation/direct vision internal urethrotomy strategies

Several strategies have been developed and evaluated to prevent wound contraction, improve the stricture-free rate and time to stricture recurrence after dilatation or DVIU.

It is noteworthy that these strategies tend to stabilise the stricture rather than to keep the patient stricture-free and the reported outcomes should be understood in this respect.
6.2.3.1 Intermittent self-dilatation

6.2.3.1.1 Results

A systematic review identified six randomised and quasi-randomised trials comparing ISD with no ISD with a follow-up between eight and 24 months [228]. Stricture recurrence was reduced in men performing ISD (85/197, 43%) vs. those who did not (128/207, 62%) (RR: 0.70 [0.48-1.00]; p=0.05). There was significant heterogeneity and the quality of included studies was very low, which led the authors to conclude there is uncertainty about the estimate [228]. This review found no significant difference in adverse events between ISD and no ISD (RR: 0.60 [0.11-3.26]; p=0.56) [228]. One trial containing 48 patients found no significant difference in six vs. twelve months duration of ISD (RR: 0.67 [0.12-3.64]) and another trial (n=59) found no significant difference from using a low-friction hydrophilic vs. a polyvinyl chloride catheter (RR: 0.32 [0.07-1.40]) [228]. Other studies have been published after this systematic review of 2014. Chhabra et al. reported that patients complying with ISD after dilatation had a lower need for re-intervention than those who did not, 12.3% vs. 20.5% respectively (p=0.2) [226]. After a mean follow-up of 25 months, Greenwell et al. found a need for subsequent intervention in 13/31 (42%) men performing ISD vs. 47/95 (49%) who did not (p=0.46). The number of reoperations in patients with need for subsequent intervention was lower in the group performing ISD vs. those who did not (2.6 vs. 3.4). No major complications were reported in both groups [229].

6.2.3.1.2 Complications

The potential benefit of ISD in stabilising the stricture must be balanced against the drawbacks. Commonly reported complications are urethral bleeding (7.1%) [230] and UTI/epididymitis (4.7%-18.1%) [231, 232]. A multicentric prospective study (n=85) reported that respectively 35% and 26% of patients had moderate to severe difficulties in catheterisation and respectively 32% and 17% of patients suffered moderate to severe pain while performing ISD. This had a serious impact on QoL which was rated moderate and poor in respectively 32% and 55% of patients [30]. Younger age was identified as predictor for poor QoL, and QoL was more impaired in proximal stricture location (posterior and bulbar) [30]. In a study of 286 patients (mainly > 60 years old) performing ISD, 20% experienced problems with ISD and 33% had at least one infection annually. After a mean follow-up of 58 months 67% still continued with ISD [233]. Khan et al. reported eight “drop-outs” of 30 (26.7%) men randomised to ISD [232]. Of these eight “drop-outs”, two were unable to perform ISD and one stopped because of pain.

As mentioned above, repetitive dilatation (including ISD) increases stricture complexity and delays time to urethroplasty [222, 223].

6.2.3.1.3 Intermittent self-dilatation combined with intra-urethral corticosteroids

To delay wound contraction at the stricture site, intra-urethral corticosteroids (as a catheter lubricant) have been used to improve the results of ISD. In 2014, a systematic review identified three prospective randomised controlled trials comparing ISD and local steroid (triamcinolone) ointment vs. ISD without local steroid ointment [234]. These three studies included a total 67 and 68 patients randomised to local steroid, or not, with a follow-up ranging between twelve and 36 months. There were fifteen (22.4%) recurrences in the steroid group and 25 (36.7%) in the control group (OR: 0.51; 95 CI: 0.24-1.10; p=0.09) [234]. Time to recurrence was longer in the steroid group vs. the control group (weighted mean difference = 0.29 [0.08-1.00]; p=0.05). There were no difference in adverse events between groups [234].

Since 2014, two additional RCTs have been published. Ergun et al. evaluated patients after DVIU for primary short (< 2 cm), bulbar (82%) or posterior (18%) strictures that were further randomised between ISD (n=30) and ISD + triamcinolone ointment (n=30) for six weeks. Stricture recurrence rate after 24 months was not significantly different between ISD and ISD + triamcinolone (respectively 33.3 and 30%) [235]. On the other hand, Regmi et al. found a lower stricture recurrence rate (22% vs. 46%, p=0.04) in patients performing ISD + triamcinolone (n=27) vs. ISD alone (n=28) [236]. In this study, median time to recurrence was 7.4 ± 4.5 months vs. 11.9 ± 3 months in respectively ISD alone and ISD + triamcinolone (p=0.16). Both studies reported no complications related to ointment of triamcinolone [235, 236].

In a small (n=28) cohort with LS-related strictures, an intra-urethral steroid regimen was successful (no need for subsequent escalation of therapy) in 25 (89%) patients after a mean follow-up of 25 months [150]. This regimen consisted of applying clobetasol cream 0.05% as lubricant on a calibration device (10-16 Fr catheter or dilator) twice a day during a minimum of two months. As most of these patients further continued with instillation of steroids on a calibration device, this high “success” rate must be viewed with caution and should be considered as a stabilisation of the stricture rather than a cure. Eventually, twelve (42.8%) patients could reduce the interval of instillation/dilatation and three (10.7%) of them could finally stop the treatment [150].
Summary of evidence

| LE | Stricture recurrence was reduced in men performing ISD versus those who did not. |
| LE | Intra-urethral corticosteroids in addition to ISD delays the time to recurrence. |

Recommendations

| Strength rating | Perform intermittent self-dilatation (ISD) to stabilise the stricture after dilatation/direct vision internal urethrotomy if urethroplasty is not a viable option. |
| Strength rating | Use intra-urethral corticosteroids in addition to ISD to stabilise the urethral stricture. |

6.2.3.2 Intrallesional injections

The rationale of adjuvant intrallesional injections is to reduce fibroblast proliferation and excessive urethral scarring [210].

6.2.3.2.1 Steroids

A systematic review in 2014 identified five studies comparing intra-urethral submucosal steroid injection vs. no intra-urethral submucosal steroid injection after DVIU, of which two were RCTs [234]. Meta-analysis of these two RCTs with 57 and 58 patients in, respectively, the steroid and control group showed no statistical difference in recurrence rate (OR: 0.53 [0.25-1.13]; p=0.10). Time to recurrence was significantly longer in the steroid group (weighted mean difference = 4.43; 95% CI: 2.77-6.09, p < 0.00001). There were no significant differences regarding adverse events (infection, bleeding, extravasation) between both groups (weighted mean difference = 1.59; 95% CI: 0.71-3.58, p=0.26).

6.2.3.2.2 Mitomycin C

An RCT (n=40) by Moradi et al. reported that MMC hydrogel significantly reduced recurrent stricture formation (10% with MMC vs. 50% without MMC; p=0.001) at one year in patients with anterior strictures < 1.5 cm and no or mild spongiosis on US [237]. The authors reported no significant complications related to MMC injection [237]. Another RCT (n=151) with eighteen months follow-up in predominantly bulbar strictures reported a stricture-free rate of 86% and 63% after DVIU with and without MMC, respectively (p=0.002) [238]. The mean stricture length was less than 2 cm in both groups. No significant complications, such as necrosis of the urothelium, extravasation, or systemic absorption, were recorded in the MMC group [238].

Farrell et al. conducted a retrospective study in 44 patients with recurrent bulbar and BMS with a median stricture length of 2 cm (IQR: 1-2.5 cm) [207]. They reported patency in 75% after a median follow-up of 26 months. No long-term complications attributed to MMC were observed.

In a prospective case-series (n=103), Kumar et al. evaluated adjuvant intrallesional injections of a cocktail of triamcinolone, MMC and hyaluronidase after DVIU for predominantly (78%) bulbar strictures with a median follow-up of fourteen months. A stricture-free rate of 81% was reported and none of the patients suffered local or systemic side effects related to the injection [239].

Despite the encouraging results reported with MMC, the use of MMC in urethral stricture management is still off-label and not widespread. Severe complications with MMC injection are possible. Redshaw et al. reported in a multi-institutional series that 4/55 (7%) patients experienced serious complications with osteitis pubis, rectourethral fistula and necrosis of the bladder floor when MMC was injected after endoscopic incision to treat BNS [240]. Given this safety concern and in the absence of well-conducted and adequately powered RCTs, MMC adjuvant to DVIU should only be used in the framework of a clinical trial.

See supplementary Table S6.1 for further information.

6.2.3.2.3 Platelet rich plasma

Rezaei et al. conducted an RCT comparing DVIU + platelet rich plasma (PRP) (n=44) vs. DVIU + saline (n=43) in primary, bulbar strictures < 1.5 cm in length [241]. The two-year stricture-free rate was 78% vs. 56% after DVIU with or without PRP, respectively (p=0.034). Complications were frequent but not significantly different between both groups (DVIU + PRP: 70%; DVIU + saline: 79%). All complications (urethral bleeding, haematuria, urethral pain, pelvic pain, urinary leakage and genitoperineal swelling) were classified as grade 1 according to the Clavien-Dindo system. Further validation of this treatment is needed before general clinical implementation.
Summary of evidence

| Intralesional injections after DVIU might improve stricture-free rates on the short-term compared to DVIU alone. Experience is limited and the use of these drugs are off-label. | LE 1a |

Recommendation

| Do not use intralesional injections outside the confines of a clinical trial. | Strength rating Weak |

6.2.3.3 Urethral stents

Urethral stents are designed with the aim to oppose wound contraction after dilatation or DVIU [242, 243]. Stent insertion is a short procedure (< 60 minutes) that can be done under local or spinal anaesthesia as “one-day” surgery [242, 244, 245]. Urethral stents are classified as permanent or temporary (removable, after six to twelve months).

6.2.3.3.1 Results

Permanent stainless-steel mesh stents are no longer commercially available.

An RCT comparing dilatation/DVIU only vs. dilatation/DVIU followed by temporary stent insertion for bulbar strictures reported a significantly longer stricture-free survival time in favour of dilation/DVIU followed by stent (median 292 vs. 84 days; \(p < 0.001 \)) [246]. Only 20.6% of patients treated with a stent developed a recurrent stricture within one year vs. 82.8% in the control group. These results are corroborated by a prospective series of Wong *et al.* who found a median stricture-free survival of two months after DVIU alone vs. 23 months after DVIU followed by temporary (three months) stent for bulbar strictures [243].

Failure and need for re-intervention are frequent (30-53%) and are usually because of stricture recurrence, stent encrustation, stent migration and urethral hyperplasia. Other complications include recurrent UTI, recurrent haematuria and genito-perineal pain (Table 6.5). Although stents are mainly used to treat bulbar strictures, they have been used for posterior stenoses as well. Stents used in the posterior urethra have a high risk (82%-100%) of causing UI and this is most pronounced in patients with previous irradiation and/or strictures extending into the membranous or bulbular urethra [247]. In the bulbular urethra, the risk of UI is higher if stent placement is adjacent to the external sphincter [248]. The use of stents in the penile urethra is anecdotal. Jung *et al.* reported stent failure in 4/7 (57%) patients with a penile stricture after a mean follow-up of eight months. Of those patients who failed, no patient with distal or pan-penile strictures was rendered stricture-free [249]. In their series, stricture recurrence after stenting of the penile urethra was significantly higher when compared to the bulbular urethra [249]. Although no direct comparison is available, temporary stents tend to have fewer and less severe complications compared to permanent stents (Table 6.7).
<table>
<thead>
<tr>
<th>Study</th>
<th>Type of stent</th>
<th>Duration</th>
<th>N</th>
<th>FU (months)</th>
<th>Stricture length (cm)</th>
<th>Stricture location</th>
<th>Previous interventions</th>
<th>Failure rate</th>
<th>Definition failure</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdallah et al. [242]</td>
<td>Thermo-expandable nitinol</td>
<td>Temporary</td>
<td>23</td>
<td>17 (6)</td>
<td>3.6 (1.2)</td>
<td>Bulbar</td>
<td>DVIU/urethroplasty: all</td>
<td>12 (52%)</td>
<td>Need for re-intervention</td>
<td>UTI 4 (17%)</td>
</tr>
<tr>
<td></td>
<td>haematuria 3 (13%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 3 (13%)</td>
</tr>
<tr>
<td></td>
<td>stent migration 5 (22%)</td>
</tr>
<tr>
<td></td>
<td>urethra hyperplasia 2 (8%)</td>
</tr>
<tr>
<td></td>
<td>Local pain 6 (26%)</td>
</tr>
<tr>
<td></td>
<td>UI NR</td>
</tr>
<tr>
<td>Jordan et al. [246]</td>
<td>Thermo-expandable nitinol</td>
<td>Temporary</td>
<td>63</td>
<td>12</td>
<td>2.7 (1.6)</td>
<td>Bulbar</td>
<td>DVIU only: all</td>
<td>28 (44%)</td>
<td>Inability to pass 16 Fr cystoscope</td>
<td>UTI 31 (49%)</td>
</tr>
<tr>
<td></td>
<td>haematuria 10 (16%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 3 (4.7%)</td>
</tr>
<tr>
<td></td>
<td>stent migration 8 (13%)</td>
</tr>
<tr>
<td></td>
<td>Local pain NR</td>
</tr>
<tr>
<td></td>
<td>UI 19 (30%)</td>
</tr>
<tr>
<td></td>
<td>urethra hyperplasia 12 (19%)</td>
</tr>
<tr>
<td>Temeltas et al. [245]</td>
<td>Polymer-coated</td>
<td>Temporary</td>
<td>28</td>
<td>29 (7-46)</td>
<td>1.9 (0.5-3.5)</td>
<td>Bulbar</td>
<td>DVIU only: all</td>
<td>10 (36%)</td>
<td>Stricture recurrence</td>
<td>UTI NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>on urethroscopy/graphy, Q_max < 15 ml/s, UTI</td>
<td>haematuria 1 (3.6%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 3 (11%)</td>
</tr>
<tr>
<td></td>
<td>stent migration NR</td>
</tr>
<tr>
<td></td>
<td>Local pain 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>UI NR</td>
</tr>
<tr>
<td>Wong et al. [243]</td>
<td>Thermo-expandable nitinol</td>
<td>Temporary</td>
<td>22</td>
<td>23 (9-31)</td>
<td>2.4 (1-4.5)</td>
<td>Bulbar</td>
<td>DVIU only: all</td>
<td>7 (32%)</td>
<td>Inability to pass 17 Fr cystoscope</td>
<td>UTI 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>haematuria 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 1 (4.5%)</td>
</tr>
<tr>
<td></td>
<td>stent migration 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Local pain 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>UI NR</td>
</tr>
<tr>
<td>Atesci et al. [244]</td>
<td>Thermo-expandable nitinol</td>
<td>Permanent</td>
<td>20</td>
<td>144 (120-192)</td>
<td>2.5 (0.5-5.5)</td>
<td>Bulbar</td>
<td>DVIU/urethroplasty: all</td>
<td>6 (30%)</td>
<td>Need for re-intervention</td>
<td>UTI NR</td>
</tr>
<tr>
<td></td>
<td>haematuria 4 (20%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 2 (10%)</td>
</tr>
<tr>
<td></td>
<td>stent migration 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Local pain 8 (40%)</td>
</tr>
<tr>
<td></td>
<td>UI 1 (5%)</td>
</tr>
<tr>
<td>Sertcelik et al. [248]</td>
<td>Thermo-expandable nitinol</td>
<td>Permanent</td>
<td>47</td>
<td>101 (84-125)</td>
<td>2 (0.5-5)</td>
<td>Bulbar (45), bulbo-membranous (2)</td>
<td>urethroplasty (19%)/DVIU (64%)/railroading (17%)</td>
<td>22 (47%)</td>
<td>Need for re-intervention</td>
<td>UTI NR</td>
</tr>
<tr>
<td></td>
<td>haematuria 12 (26%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 2 (4%)</td>
</tr>
<tr>
<td></td>
<td>stent migration 7 (15%)</td>
</tr>
<tr>
<td></td>
<td>Local pain 20 (43%)</td>
</tr>
<tr>
<td></td>
<td>UI 9 (19%)</td>
</tr>
<tr>
<td>Erickson et al. [247]</td>
<td>Self-expandable super alloy mesh</td>
<td>Permanent</td>
<td>38</td>
<td>28 (30)</td>
<td>3 (1.7)</td>
<td>Posterior (prostate cancer related); VAUS 2.4; prostatic urethra (irradiation) 14</td>
<td>DVIU only: all</td>
<td>20 (53%)</td>
<td>Need for re-intervention</td>
<td>UTI 7 (18%)</td>
</tr>
<tr>
<td></td>
<td>haematuria 3 (8%)</td>
</tr>
<tr>
<td></td>
<td>stent encrustation/stone formation 6 (16%)</td>
</tr>
<tr>
<td></td>
<td>stent migration NR</td>
</tr>
<tr>
<td></td>
<td>Local pain NR</td>
</tr>
<tr>
<td></td>
<td>UI 6 (16%)</td>
</tr>
<tr>
<td></td>
<td>urethra hyperplasia 31 (82%)</td>
</tr>
</tbody>
</table>

DVIU = direct vision internal urethrotomy; FU = follow-up; N = number of patients; NR = not reported; UI = urinary incontinence; UTI = urinary tract infection; VUAS = vesico-urethral anastomotic stricture; Q_max = maximum flow rate
6.2.3.3.2 Treatment of stent failure
In the case of stent failure, subsequent urethroplasty (usually with stent removal) is possible, but this urethroplasty is very likely to be more complex than it would have been had it been performed initially [250-252]. Due to the fact that the stainless-steel wires are fully embedded into the urethral wall, over time the urethral spongiosum is severely damaged. Horiguchi et al. found that a history of urethral stenting was an independent significant predictor of increased stricture complexity (OR: 13.7, 95% CI: 1.7-318.3, p=0.01) and need for more complex urethroplasty (OR: 6.9, 95% CI: 1.1-64.5, p=0.04) [222]. The majority (62%) of patients in this study had a permanent stent and tend to be difficult to remove because they are epithelialised, usually within six months [222]. The type of urethroplasty required depends on the length of the stricture and quality of local tissues [251]. In the majority of cases, it is possible to preserve the urethral plate and to perform a one-stage substitution urethroplasty [250, 251, 253]. The patency rates after different types of urethroplasty vary greatly between 16.7-100% [250-253] and this variation probably reflects variation in complexity of the stricture, rather than that the superiority of one technique of urethroplasty over another (for further information see supplementary Table S6.2). Due to these limitations, the use of stents should be avoided if subsequent urethroplasty is considered [242, 252]. Urethral stents are not a first-line treatment for urethral strictures but can be considered in co-morbid patients who have a recurrent stricture after DVIU/dilatation and are unable to have more complex urethroplasty or who refuse urethroplasty [242, 246, 247].

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent urethral stents have a high complications and failure rate and make subsequent urethroplasty more challenging if they fail.</td>
<td>3</td>
</tr>
<tr>
<td>Stents have a higher failure rate in the penile urethra.</td>
<td>3</td>
</tr>
<tr>
<td>Temporary stents after DVIU/dilatation at the bulbar urethra prolong time to next recurrence compared to DVIU/dilatation alone.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use permanent urethral stents.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use urethral stents for penile strictures.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use a temporary stent for recurrent bulbar strictures after direct vision internal urethrotomy to prolong time to next recurrence only if urethroplasty is not a viable option.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

6.3 Open repairs (urethroplasty): site and aetiology (clinical scenario) treatment options
6.3.1 The role of urethroplasty in the management of penile urethral strictures
Due to the specific aetiology and the associated problems, strictures related to failed hypospadias repair and LS will be discussed separately. However, many series reporting on the outcome of penile strictures have a mixed aetiology also including failed hypospadias repair and/or LS [254, 255]. Due to their specific location, distal penile strictures will be discussed separately.

6.3.1.1 Staged augmentation urethroplasty
Classically called “two-stage” urethroplasty, this approach may become a multi-stage urethroplasty as revision (usually due to graft contracture) after the 1st stage has been reported in 0-20% of cases [255-258]. Therefore, the term “staged” should be used instead [259]. Revision rates before 2nd stage were 0-20%, stressing that a two-stage urethroplasty might become a multi-stage urethroplasty. In general, reconstructive urologists tend to follow this approach in men with more complex urethral stricture disease (multiple interventions in the past, unfavourable clinical findings such as significant spongiofibrosis or scarring that requires excision, poor quality of the urethral plate). An interval of at least four to six months has been proposed before proceeding to the tubularisation of the urethra, provided that the graft has healed uneventfully [260-262].

A systematic review by Mangera et al. has shown an average patency rate of 90.5% with the use of all types of grafts for staged penile urethroplasties with an average follow-up of 22.2 months [263]. Patency rates of staged OMG urethroplasty in specific locations vary between 73.3 and 100% [254, 255, 257, 258]. Post-operative urethrocutaneous fistula (UCF) rates were 17.2% and 2.6% in the studies of Ekerhult et al. and Joshi et al., respectively, and either not reported or unclear in the remaining studies [254, 255].

6.3.1.2 Single-stage augmentation urethroplasty
Single-stage urethroplasty offers the option for reconstruction of the stricture without the need for multiple operations, the associated peri-procedural risks and the cosmetic and functional implications that by definition follow the first part of staged urethroplasties [264-266]. There is some evidence to suggest a considerable
number of patients (50% or more in some studies) who were offered 1st stage urethroplasty never returned for the 2nd stage because they were either satisfied with their functional status after the 1st stage (this particularly applied to older men or patients with multiple failed procedures in the past) or they were disappointed with the need for another operation [264, 265].

In the systematic review of Mangera et al., overall patency rate for all types of single-staged graft urethroplasties is 75.7% with an average follow-up of 32.8 months [263].

The patency rate for different one-stage techniques in specific are:
- dorsal OMG (n=190): 70-100% [258, 267-272];
- ventral OMG (n=47): 55-92.6% [273, 274];
- dorsal + ventral OMG (n=10): 80% [271];
- double (dorsal + ventral) onlay with penile/scrotal skin graft /OMG (n=14/8/4): 88.5% [268];
- dorsal penile skin graft (n=44): 62-78% [268, 269];
- penile skin flap (n=315): 67-100% [268-270, 275, 276].

No high-level evidence exists to state that one technique is superior to another but it seems that the dorsal graft location is more commonly used compared to the ventral one. Mangera et al. reported that the patency rate was better with OMG compared to other grafts (mainly penile skin) [263]. Jiang et al. showed that combined (dorsal + ventral) BMG onlay had significantly better stricture-free rates for penoscrotal strictures (patency rate 88.9% vs. 60.9% with single-onlay approach); however, follow-up was significantly shorter in the double-onlay group [277]. Few studies have reported dedicated results on sexual function parameters that do not appear to be significantly impaired post-operatively [257, 278, 279].

A critical factor with respect to single-staged procedures is the careful selection of patients, as men with long and complex strictures might not be good candidates for single-stage reconstruction and attempts to offer single-staged operations in these patients might lead to high recurrence rates. Sometimes, this selection can only be done based on intra-operative findings. Therefore, any scheduled single-staged procedure might be converted into a staged one [264, 280]. Palminteri et al. highlighted the fact that single-stage augmentation urethroplasties in men with LS-related strictures enlarge rather than remove the diseased segment of the urethra and therefore there is always a risk of recurrence in the future [281]. The role of previous interventions (especially multiple urethrotomies or history of previous urethroplasties) remains unclear as several studies on single-staged operations do not provide information on previous procedures, or excluded patients with operations in the past [270, 279]. Although favourable outcomes in patients with previous history of urethrotomies/urethroplasties were reported by Barbagli and Kulkarni, in the study by Pfalzgraf et al. all recurrences post-previous urethroplasty took place in the single-stage group while Ekerhult et al., identified prior history of urethral operations as a risk factor for recurrence in the group of single-stage procedures [254, 257, 258, 268]. In addition to previous urethral surgery, high BMI has also been identified as a poor prognostic factor after single-stage penile urethroplasty [254].

6.3.1.3 Anastomotic urethroplasty in men with penile urethral strictures

Historically, the use of anastomotic urethroplasty in the management of urethral stricture disease has been discouraged due to the risk of chordee post-operatively [262, 282]. Nevertheless, it has been performed in selected patients with very short strictures (usually < 1 cm) with a 93% patency rate, with satisfactory QoL and sexual function and without any case of chordee [283].

Summary of evidence

| Stricture-free rates for single-stage penile augmentation urethroplasties range from 70%-100% for dorsal OMG augmentation, 67-100% for penile skin flap (PSF) augmentation, 55-92.6% for ventral OMG augmentation and 62-78% for dorsal SG augmentation. Overall stricture-free rates for staged OMG penile augmentation urethroplasties range from 70-100%. |
|---|---|
| In staged urethroplasties, an interval of at least four to six months has been proposed before proceeding to the tubularisation of the urethra, provided that the graft has healed uneventfully. |
| The use of anastomotic urethroplasty in the management of urethral stricture disease has been discouraged due to the risk of chordee post-operatively. Anastomotic urethroplasty can be offered in selected cases of very short (< 1 cm), injury-associated penile strictures. |
| In case of adverse intra-operative findings, a single-stage approach might not be feasible and must be converted into a staged approach. | LE |
| 2b |
| 4 |
| 3 |
Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer men with penile urethral stricture disease augmentation urethroplasty by either a single-stage or staged approach taking into consideration previous interventions and stricture characteristics.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer an interval of at least four to six months before proceeding to the second stage of the procedure provided that outcome of the first stage is satisfactory.</td>
<td>Weak</td>
</tr>
<tr>
<td>Do not offer anastomotic urethroplasty to patients with penile strictures > 1 cm due to the risk of penile chordee post-operatively.</td>
<td>Strong</td>
</tr>
<tr>
<td>Counsel patients with penile strictures that single-stage procedures might be converted to staged ones in the face of adverse intra-operative findings.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

6.3.1.4 **Specific considerations for failed hypospadias repair-related strictures**

The term “failed hypospadias repair” (FHR) includes a wide range of abnormalities after previous attempts for reconstruction, such as glans deformity, recurrent urethral stricture, glans/urethral dehiscence, UCF and penile chordee [284-286]. The management of FHR is challenging as the urethral plate, penile skin and dartos fascia are often deficient/non-existent. Management of these patients is often made more difficult due to incomplete health records and a lack of critical information (original meatal site, number and type of previous repairs) [260, 287]. In addition, multiple operations might need to be offered to reach satisfactory outcomes [284]. As a result, FHR should always be considered as a complex condition and it is advised that FHR management takes place in high-volume centres [285, 286, 288, 289].

“Hypospadias cripples” is a term widely used to describe the group of men with multiple previous failed attempts to correct the condition resulting in unfavourable results such as severe scarring, penile deformity and shortening, hair or stones in the urethra, UCF, chordee and functional disorders (e.g., urinary or sexual dysfunction). This term should be avoided and a more neutral one should replace it as it further stigmatises men with hypospadias who have been shown to have reduced self-esteem and confidence due to unsatisfactory cosmesis, and problematic urinary and sexual function. Moreover, it has been reported that FHR patients experience high rates of disappointment after failure of attempted repair and a sense of helplessness as they are frequently advised that their failed hypospadias is too complex to correct and they should not pursue further repair [285-287, 290, 291].

Two main approaches are applicable: single-stage or staged procedures. In general, it is advised that staged procedures should be followed when the urethral plate is inadequate for a single-stage operation. Surgeons should consent patients for both types of urethroplasty as the surgical approach might need to be modified intra-operatively depending on favourable/unfavourable intra-operative findings. Besides poor-quality of the urethral plate, these unfavourable findings include high degree of scarring and presence of concomitant LS, UCF and/or chordee. It is not uncommon for men with FHR to have scarred skin or concurrent LS and thus, skin grafts or flaps should be avoided as the risk of recurrence due to LS is very high (90% in long-term follow-up reported by Depsaquale et al. [36]) [292, 293].

Staged repairs (using mainly BMG) reported patency rates ranging from 71-95% [256, 290, 292, 294, 295], while single-stage repairs had patency rates from 80-100% [292, 294, 296-299]. It needs to be highlighted that, as FHR is an umbrella term that covers various clinical conditions apart from urethral stricture disease only (such as UCF, chordee, penile deformity), “success” rates as reported by the authors in their studies do not represent urethral patency rates only. Unfortunately, the number of previous operations is either not reported or refers to the whole FHR study group collectively rather than to the subgroups of staged/single-staged procedures.

A comparative analysis is reported by Barbagli et al. in 345 FHR patients at five-year follow-up. Overall failure-free survival rate was 48% for all urethroplasties, and in subanalysis, staged techniques had significantly lower treatment failure-free survival rates compared to single-stage techniques [300]. However, it is unclear whether these groups were comparable in terms of baseline characteristics such as age, length of stricture, number of procedures, comorbidities etc. [300]. If the patients in the staged group had a more unfavourable background, this on its own could explain the final outcome rather than the surgical approach itself.

Kozinn et al. reported a 16% and 14% revision rate after the 1st and 2nd stage, respectively, and observed that these revision rates were higher in the FHR group compared to non-FHR patients with penile strictures [256]. There is conflicting evidence whether FHR as aetiology is a poor prognostic factor in the outcome of urethroplasty for penile strictures [254, 301-303]. Concomitant UCF can be successfully managed at the same time of urethroplasty [300].

For further information see supplementary Table S6.3.
Summary of evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men with FHR have history of multiple interventions, and poor quality tissues, and might require complex procedures for a satisfactory functional and cosmetic outcome.</td>
<td>4</td>
</tr>
<tr>
<td>Men with FHR may have low self-esteem due to urinary and sexual dysfunction and unsatisfactory cosmesis.</td>
<td>2b</td>
</tr>
<tr>
<td>Men with FHR can have scarred penile skin or concurrent LS and outcomes with skin grafts or flaps can be unsatisfactory.</td>
<td>3</td>
</tr>
</tbody>
</table>

6.3.1.5 Specific considerations for lichen sclerosus-related penile urethral strictures

Given the fact that LS affects the skin, the use of genital skin as a flap or graft is not advised as the risk of disease recurrence has been reported to be high (50-100%) and while most of recurrences tend to occur within the first two to three post-operative years, late recurrences have been reported [304].

Main strategies are single-stage or staged oral mucosa graft urethroplasty.

The EAU Urethral Strictures Guidelines Panel conducted a systematic review [305] to explore the role of single-stage oral mucosa graft urethroplasty in the management of LS-related urethral strictures and to compare its outcomes with alternative management options [surgical dilatations +/- intermittent self-dilatation (ISD); surgical dilatations + local steroids +/- ISD; staged oral mucosa urethroplasty; penile skin urethroplasty; meatotomy/meatoplasty; urethrotomy (Otis, DVIU); perineal urethrostomy; urinary diversion (e.g., suprapubic catheterisation)].

In total, fifteen studies met the inclusion criteria, recruiting a total of 649 patients (366 from five non-randomised comparative studies and 283 from ten single-arm retrospective observational studies). Single-stage oral mucosa graft urethroplasty resulted in success rates ranging from 65% to 100% after a 12-67 months mean or median follow-up. For staged oral mucosa graft urethroplasty, the most commonly reported comparator, the success rates were somewhat lower and varied between 60% and 79%. Methodological issues (mainly selection bias) could explain the difference in success rates rather than the intervention itself. Complications were uncommon (0-12%) and mainly comprised Grade 1-3 events.

Due to the overall very poor quality of evidence, the systematic review did not provide a clear answer as to whether single-stage oral mucosa graft urethroplasty is superior to other management options, although careful patient selection is highlighted. In the absence of adverse local tissue conditions a single-stage approach could lead to high success rates with an improvement in voiding symptoms and QoL.

Summary of evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichen sclerosus is a skin condition that can lead to scarring, and recurrence rates after skin graft/flap augmentation urethroplasties have been reported to be high (50-100%).</td>
<td>4</td>
</tr>
<tr>
<td>Single-stage OMG urethroplasty provides patency rates between 65 and 100% and is not inferior to staged OMG urethroplasty.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use genital skin in augmentation penile urethroplasty in men with lichen sclerosus-related strictures.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform single-stage oral mucosa graft urethroplasty in the absence of adverse local conditions in men with lichen sclerosus-related strictures.</td>
<td>Weak</td>
</tr>
</tbody>
</table>
6.3.1.6 DISTAL URETHRAL STRICTURES (MEATAL STENOSIS, FOSSA NAVICULARIS STRICTURES)

Open repair of distal urethral strictures can be in the form of Malone meatoplasty, skin flap meatoplasty or graft (skin [SG]/OMG) urethroplasty.

For short distal meatal strictures, the Malone meatoplasty (dorsal + ventral meatotomy) provides a technique with patency rates up to 100%, and 83% patient-reported satisfaction with the cosmetic results [306].

Skin flap meatoplasty showed excellent patency rates ranging from 85-100% based on three studies comprising 53 patients [307-309]. In addition, based on their results, patient satisfaction with post-operative outcomes and cosmesis was high, there were no cases of ED and functional complaints were minimal (mainly spraying of the urine flow). Barbagli et al. in their study from 2008, had lower success (57%) with the use of skin flaps; however, this was in only seven patients [268].

Patency rates with the use of grafts (OMG or SG) ranged from 69-91% in 85 patients overall [268, 297, 308, 310]. Where reported, patients were satisfied with cosmesis, and mild spraying of the urine flow self-resolved. Although tubularised grafts in a single-stage procedures are not routinely recommended (see also section 9. Tissue transfer), one series reported a 89.9% patency rate for this approach (“two-in one approach”) in selected patients with mainly distal penile strictures [311].

For further information see supplementary Table S6.4.

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-meatoplasty/urethroplasty patency rates in men with meatal stenosis or fossa</td>
<td>3</td>
</tr>
<tr>
<td>navicularis/distal urethral strictures range between 57-100% depending on type of</td>
<td></td>
</tr>
<tr>
<td>surgical intervention with high patient satisfaction and minimal complications.</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation

<table>
<thead>
<tr>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer open meatoplasty or distal urethroplasty to patients with meatal stenosis or fossa navicularis/distal urethral strictures.</td>
</tr>
<tr>
<td>Weak</td>
</tr>
</tbody>
</table>

6.3.2 URETHROPLASTY FOR BULBAR STRICTURES

6.3.2.1 “SHORT” BULBAR STRICTURES

The length of a “short” bulbar stricture is poorly defined. In general, “short bulbar strictures” are those amenable to stricture excision and subsequent tension-free anastomotic repair. The limit is usually around 2-3 cm but can be longer depending on the patient’s anatomy and stricture location within the bulbar urethra [312].

In fit patients, the choice of urethroplasty is between EPA (transecting or non-transecting) and FGU.

6.3.2.1.1 Excision and primary anastomosis

6.3.2.1.1.1 Excision and primary anastomosis with transection of corpus spongiosum (transecting EPA)

Transecting EPA (tEPA) is based on the full thickness resection of the segment of the bulbar urethra where the stricture and surrounding spongiosfibrosis is located. Reconstruction is performed by a tension-free spatulated anastomosis.

6.3.2.1.1.1.1 Patency rates

The International Consultation on Urological Diseases (ICUD) performed an extensive review of the literature and reported a composite patency rate of 93.8% for tEPA [313]. Based on this, they endorsed tEPA as treatment of choice for short bulbar strictures if other techniques have an expected patency rate below 90%. However, ED was not taken into account for this advice and, as discussed below, ED is a concern with tEPA.

After publication of the ICUD review, several other series have been published and the reported patency rates (76-97%) are in line with the findings of the ICUD review [314-326].

Usually, no need for further intervention is used to evidence that the urethra is patent. In the few studies using an anatomic definition for failure (an inability to pass a 16 Fr endoscope) tEPA urethroplasty achieves a similar patency rate, ranging between 85.5% and 97% [138, 319, 325, 327] (Table 6.12). The median time for recurrence after tEPA is between 3.5 and thirteen months [138, 316, 317].
Several authors suggested that tEPA is the technique of choice for short post-traumatic bulbar strictures with complete obliteration of the urethral lumen and full thickness spongiofibrosis [327, 328]. These strictures are a specific entity and usually the result of a straddle injury with complete or nearly complete rupture of the bulbar urethra. These obliterations are predominantly short and can be treated with tEPA yielding a patency rate of 98.5% as reported in the series of Horiguchi et al. [329]. They also reported an improvement in erectile function after urethroplasty measured one year post-operatively. Straddle injury (and perineal trauma) are a common aetiology in papers published about tEPA; however, separate data on the outcomes for this specific aetiology is usually lacking.

For further information see supplementary Tables S6.5 and S6.6.

6.3.2.1.1.2 Complications
Granieri et al. [318] specifically focused on complications after bulbar urethroplasty. Peri-operative complications (haematoma, neuralgia), infectious complications, anatomic complications and voiding complications were not significantly different between EPA, augmented anastomotic repair (AAR) and FGU. Erectile dysfunction after bulbar urethroplasty is usually transient, with improvement after three to six months [330]. Chordee is one of the complications attributed to EPA urethroplasty, but is rarely reported. A large series (352 patients) reported an incidence of 0.3% [327]. Another large series (94 patients) reported five cases (5.3%), with a mean stricture length of 2 cm (range 1.5-4) in patients with this complaint [314].

Other complications of tEPA are a cold feeling in the glans (1.6-3.2%) and decreased glandular tumescence (6%) [330, 331]. These latter complications (as well as ED) might be attributed to complete transection of the corpus spongiosum at the level of the stricture, thereby disrupting the antegrade blood flow of the urethra and corpus spongiosum. To spare this, the non-transecting EPA (ntEPA) has been described [332] and later modified [333].

6.3.2.1.1.2 Non-transecting excision and primary anastomosis (ntEPA)
6.3.2.1.1.2.1 Patency rates
Except for straddle injuries that are usually associated with complete obliteration of the lumen and full thickness scarring of the corpus spongiosum [313, 327], ntEPA is a good alternative for short bulbar strictures of all other aetiologies. With median follow-ups ranging between 17.6 and 37.1 months, the patency rates reported are 93.2-99%; with the lack of further intervention as success criteria [326, 328, 334]. Even with the anatomic criteria -16 Fr cystoscopy passage- the success rate achieved was 97.9% at twelve months [327] (see supplementary Table S6.7).

Two comparative analyses evaluated tEPA vs. ntEPA. Waterloo et al. reported patency rates of 88.4% and 93.2% respectively for tEPA and ntEPA (p=0.33) but with significantly longer follow-up for tEPA (118 vs. 32 months, p < 0.001). Of patients scheduled for ntEPA, 11.1% were converted to tEPA, highlighting that ntEPA is not always possible. Chapman et al., using anatomic success criteria (16 Fr cystoscope passage), reported patency in 93.8% of tEPA vs. 97.9% of ntEPA. Follow-up was also significantly shorter at 74.1 (SD: 45.4) months for tEPA vs. 37.1 (SD: 20.5) months for ntEPA (p < 0.001) [327].

6.3.2.1.1.2.2 Complications
When erectile function after urethroplasty was assessed (at six months), ntEPA had significantly lower ED rates (a decrease of > 5 points on the sexual health inventory for men [SHIM] scale) compared to tEPA (4.3 vs. 14.3%, respectively) [327]. Urethral transection performed during tEPA was the only factor associated with sexual dysfunction in multivariate analysis [327]. Other series reported ED lasting for more than six months in 2-6% of cases after ntEPA [328, 334, 335]. Grade ≥ 2 Clavien-Dindo complications were 3.6-8.1% vs. 4.3-6.8% respectively for tEPA and ntEPA, without reaching statistical significance [326, 327].

To date, no trials comparing ntEPA with FGU have been published to report on comparative patency outcomes and complications.

6.3.2.1.2 Free graft urethroplasty
Despite the very high patency rates of EPA, FGU has been performed for short bulbar strictures as well. This is mainly driven by reports of ED after EPA. A meta-analysis of ten papers [336] comparing tEPA with BMG FGU for short strictures, found that tEPA is better than BMG FGU in terms of patency rates (91.5% vs. 70%), whilst BMG FGU has less erectile complications (9% vs. 25%). However, the methodology of this meta-analysis must be disputed as it was performed on cohort studies without risk of bias assessment and without further specification of timing of assessment of ED. On the other hand, two prospective, non-randomised papers [138, 337] comparing tEPA with BMG FGU, found no significantly different patency rates for EPA compared
to BMG FGU (87-90% vs. 84-87%, respectively) and no significant differences in erectile complications for tEPA compared to BMG FGU (6.7% vs. 2.2%, respectively). However, the operation technique used was dependent upon the length of the stricture, with tEPA utilised for shorter strictures (< 2 cm) and BMG for longer (> 2 cm) [337] or when a tension-free anastomosis was not possible [138]. Appropriate choice of procedure for stricture length and other patient and stricture parameters appear to equalise outcomes. Another prospective trial [338] involving both penile and bulbar strictures could not find any influence on erectile function of urethral transection. A prospective study on ejaculatory function following different urethroplasties by Erickson et al. [339] found no overall difference in ejaculatory score pre- and post-operatively, although patients with a poor score pre-operatively improved significantly and those with a good score pre-operatively did not decrease post-operatively.

Dogra et al. [278] looked prospectively at sexual function in 87 patients after different urethroplasties (EPA, penile/bulbar substitution) and found a 20% reduction in sexual function in all groups, which resolved after six months.

Details on where to place the graft during FGU are discussed below.

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For short post-traumatic strictures tEPA has good patency rates.</td>
<td>3</td>
</tr>
<tr>
<td>For short bulbar strictures not related to straddle injury tEPA, ntEPA and FGU have the same patency rates, but ntEPA and FGU have less erectile dysfunction than tEPA.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use transecting excision and primary anastomosis (tEPA) for short posttraumatic bulbar strictures with (nearly) complete obliteration of the lumen and full thickness spongiofibrosis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use non-transecting excision and primary anastomosis or free graft urethroplasty instead of tEPA for short bulbar strictures not related to straddle injury.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

6.3.2.2 “Longer” bulbar strictures
6.3.2.2.1 Free graft urethroplasty
For strictures not amenable to EPA, FGU is the technique of choice and buccal mucosa is, at the moment, the most widely used graft. Other grafts (and flaps) are possible and discussed in the tissue transfer chapter. Patency rates of FGU of the bulbar urethra are 88-91% with twelve to 40 months follow-up [263, 340].

During bulbar urethroplasty, the bulbospongious muscle is usually separated at the midline which may cause damage to the muscle and perineal nerves. This might subsequently provoke post-void dribbling and ejaculation disorders. In order to reduce this, the muscle and nerve-sparing perineal approach has been introduced [341]. Although it is mostly used in graft urethroplasty, this approach is also possible for EPA as well [342]. Elkady et al. [335] randomised 50 patients between a muscle and nerve-sparing perineal approach vs. a classic perineal approach and found no difference in operative time (100 vs. 105 min), but significantly less dribbling (4% vs. 36%, p=0.01), and significantly less ejaculatory changes (8% vs. 40%, p=0.02) in the nerve and muscle-sparing group. Fredrick et al. [342] did the same in 50 patients in a multicentric study with bulbar urethroplasty but could not find a statistical difference regarding post-void dribbling and ejaculatory changes. Due to the limited and conflicting evidence, no recommendation can be made about the routine use of nerve and muscle-sparing modification during bulbar urethroplasty.

See supplementary Table S6.8 for further information.

6.3.2.2.2 Augmented anastomotic repair
Augmented anastomotic repair is also an option for these strictures. It has been mainly performed in cases where the stricture was just too long (+/- 2-4 cm) for tension-free EPA [324]. It can also be performed for longer strictures with a shorter (nearly) obliterator segment [343]. In this case, only the most obliterator segment is excised, the urethral plate is anastomosed and the urethra is further reconstructed with an onlay graft [343]. Patency rates after AAR vary between 91.1 and 91.9% with twelve to 28 months follow-up [318, 324] (see supplementary Table S6.9).

A non-transecting alternative has also been described to overcome the previously mentioned inconveniences related to spongiosal transection (augmented non-transecting anastomotic bulbar urethroplasty [ANTABU]). With this technique, Bugeja et al. [344] reported a 100% patency rate in sixteen patients after a median follow-up of thirteen months. One patient (6.7%) suffered permanent ED.
6.3.2.2.3 Location of the graft during urethroplasty for bulbar strictures
The best location for graft positioning into the bulbar urethra remains to be determined. There are many techniques described with ventral, lateral, dorsolateral or dorsal graft as an onlay or an inlay. Onlay means from the outside onto the urethra, inlay means from the inside after opening the urethra.

Regarding the site of graft placement, the Panel has conducted a systematic review assessing the literature from 1996 onwards, including studies with at least 20 patients and a minimum of twelve months follow-up [345]. This yielded one RCT, four non-randomised comparative series and 36 case series comprising 3,683 patients. The RCT of Vasudeva et al. compared ventral (n=40) with dorsal (n=40) onlay BMG urethroplasty and reported a patency rate of 90 and 92.5% respectively at twelve months follow-up (p=0.51) [340]. The non-randomised comparative studies could not identify any significant differences in patency rates for dorsal onlay vs. ventral onlay, dorsal inlay vs. ventral onlay or dorsal onlay vs. ventral onlay vs. dorsolateral onlay. Case series reported a patency rate of 62.1-98.3% for dorsal onlay, 74.3-94.4% for ventral onlay and 78.4-92% for dorsal inlay. There are no arguments to assume a higher risk of ED with one of the four techniques. Post-void-dribbling was reported in 0-28.1% with dorsal onlay and in 20-21% with ventral onlay. Other complications were also similar in incidence between techniques. Urethrocutaneous fistula and urethral diverticulum were only reported with the ventral onlay technique although this consisted of only two and one cases, respectively.

Double ventral-dorsal onlay, proposed by Palminteri et al. [139] for high-grade strictures, yielded a patency rate of 91% after 22 months follow-up.

6.3.2.3 Staged urethroplasty for bulbar urethral strictures
6.3.2.3.1 Indications
Staged urethroplasty may be considered when:
• there are locally adverse conditions such as fistula, false passage, abscess, cancer [280, 346, 347];
• there has been a previously unsuccessful complex urethroplasty including failed hypospadias repair [256, 346];
• there is a lack of certainty on behalf of the surgeon regarding the most appropriate form of urethroplasty for the patient [346];
• the stricture is radiotherapy induced [256];
• the stricture is consequent to LS [256] (this is controversial and for some groups LS is a contraindication for a staged urethroplasty [302]; Kozinn et al. recommend leaving at least ten months between 1st stage and 2nd stage re-tubularisation in patients with LS to allow graft complication to develop) [256];
• there is severe spongiofibrosis [348].

6.3.2.3.2 Outcomes
Patency rates of 33.3-94.6% at mean follow-up of 11.2-50 months have been described for staged urethroplasty in series which include men with bulbar urethral stricture disease [256, 302, 325, 348-350]. Grafts (mesh graft, preputial skin, oral mucosa) can be used in staged augmentation as well as marsupialisation [325,
In patients affected by LS, a 52.2% patency rate for staged urethroplasty was reported whereas this was 86% for single-stage buccal mucosa urethroplasty \((p < 0.01) \) \[302\]. It is highly likely that different stricture and patient characteristics contributed to the differences reported and this should be kept in mind when interpreting the data. Of note, 19-45.5% of patients planned for staged urethroplasty declined to proceed to 2nd stage re-tubularisation \[256, 349\].

Early complications after staged procedures include wound dehiscence, UTI, epididymitis, scrotal abscess and penile numbness. Specific to 2nd stage Johanson urethroplasty UCF occurs in 3-15%. The actual incidence of UCF is probably higher as many small fistulae close spontaneously with conservative management and are not formally reported \[302, 325, 348\].

Late complications of 1st stage urethroplasty include a need for revision in up to 19% - consequent to recurrence of LS in graft(s) (8.8%), graft contracture (6.6%) and stomal stenosis (3.3%) \[256\]. Late complications of 2nd stage urethroplasty include post-micturition dribble in 14-18%, SUI in up to 16%, penile curvature in up to 9%, ED in up to 4%, urethral diverticulum formation in 1% and cold glans \[302, 348, 350\]. Stress urinary incontinence (SUI), penile curvature and ED appear to be particularly associated with mesh graft stage urethroplasty \[348, 350\].

After their procedure, 86% and 96.6% of men with respectively mesh graft and buccal mucosa graft staged urethroplasty were satisfied. The patient groups included in the review were too small to detect significant differences \[348\]. All are retrospective series – with heterogenous indications, stricture locations (not exclusively bulbar), stricture lengths and patient groups. It is consequently difficult to draw meaningful conclusions from the little data that are available.

See supplementary Table S6.10 for more information.

Summary of evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staged urethroplasty for bulbar strictures and for strictures involving the bulb urethra yields patency rates of 33.3-90% depending upon patient and stricture characteristics and patient satisfaction is high with all types of staged urethroplasty.</td>
<td>3</td>
</tr>
<tr>
<td>Lichen sclerosus is a relative contraindication for staged urethroplasty in the literature with lower long-term urethral patency rates of 52.2% compared to urethral patency rates of 64.3% in non-lichen sclerosis patients.</td>
<td>3</td>
</tr>
<tr>
<td>Up to 45.5% of men elect not to proceed to 2nd stage re-tubularisation after successful 1st stage.</td>
<td>3</td>
</tr>
<tr>
<td>Up to 19% of men required revision of their 1st stage urethroplasty.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer staged urethroplasty to men with complex anterior urethral stricture disease not suitable for single stage urethroplasty and who are fit for reconstruction.</td>
<td>Weak</td>
</tr>
<tr>
<td>Do not perform staged bulbar urethroplasty for lichen sclerosis if single stage urethroplasty is possible.</td>
<td>Weak</td>
</tr>
<tr>
<td>Consider staged procedure in patients unsure about perineal urethrostomy versus urethral reconstruction.</td>
<td>Weak</td>
</tr>
<tr>
<td>Warn men that staged urethroplasty may comprise more than two stages.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Risk factors for adverse outcomes

In four series specifically dedicated to risk factors for failure after urethroplasty using multivariate analysis, there is conflicting evidence about several factors (aetiology, comorbidity, stricture length, prior therapy) that might be predictive for failure after urethroplasty (Table 6.6). Advanced age does not appear to be a risk factor for urethroplasty failure in the majority of studies, with the exception of Viers et al. 2017 \[354\] retrospective case series which found that the risk for recurrence was significantly higher beyond the age of 60 (< 50 yrs 94%, > 70 yrs 74%) in 184 patients having a wide variety of urethroplasties. Previous radiation therapy was also found to be a risk factor for stricture recurrence in both Viers’ \[354\] retrospective case series and Ahyai’s 2015 series \[355\] – with only a 71% patency rate at a median follow-up of 29 months in those with previous radiotherapy. Based on these data, a clear and evidence-based recommendation cannot be formulated.
Table 6.6: Risk factors for failure after urethroplasty based on multivariable Cox regression analyses

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Population</th>
<th>Comorbidity</th>
<th>Length</th>
<th>Aetiology</th>
<th>Prior stricture therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breyer et al. 2010</td>
<td>443</td>
<td>Mixed</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Prior DVIU: 1.7 (1.0-3.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prior urethroplasty: 1.8 (1.1-3.1)</td>
</tr>
<tr>
<td>Kinnaird et al. 2014</td>
<td>604</td>
<td>Mixed</td>
<td>NS</td>
<td>≥5 cm: 2.3 (1.2-4.5)</td>
<td>Iatrogenic: 3.4 (1.2-10.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LS: 5.9 (2.1-16.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Infectious: 7.3 (2.3-23.7)</td>
</tr>
<tr>
<td>Chapman et al. 2017</td>
<td>596</td>
<td>Isolated bulbar strictures</td>
<td>Overall comorbidity: 2.4 (1.1-5.3)</td>
<td>1.2 (1.1-1.3)</td>
<td>Infectious: 3.7 (1.3-10.6)</td>
<td></td>
</tr>
<tr>
<td>Verla et al. 2020</td>
<td>474</td>
<td>Anterior strictures</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

CI = confidence interval; HR = hazard ratio; LS = Lichen sclerosus; N = number of patients; NR = not reported
NS = not significant.

6.3.2.5 Management of recurrence after bulbar urethroplasty

Kahokehr et al. [324] followed nearly 400 patients after urethroplasty and found a recurrence rate of 6% (n=25). Ninety-two percent of the failed cases were treated successfully with DVIU and only 8% needed another open reconstruction. However, they did not mention characteristics of the recurrent cases nor the duration of follow-up.

Rosenbaum et al. [356] and Javali et al. [357] retrospectively analysed the outcomes of BMG FGU for ReDo urethroplasty in 51 and 21 patients respectively using the other cheek as donor side. Patency rates were 82-86%, which is in the range of primary cases.

Vetterlein et al. [358] compared primary (no previous open urethroplasty) vs. ReDo (previous open urethroplasty with BMG) vs. secondary (previous open urethroplasty without use of BMG) cases in a retrospective series of 534 patients with BMG FGU. The patency rates in primary and ReDo cases were comparable (87%) whilst the outcome in secondary cases was worse (71%).

A small series (n=37) reported on the use of EPA for revision surgery after failed urethroplasty in strictures of 2.1 (range 1-3.5) cm length on average. Patency rates using EPA after failed primary EPA (51%) and after any other technique of urethroplasty (49%) were 95 and 94% respectively with a mean follow-up of 30 months [317].

Summary of evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buccal mucosa free graft urethroplasty after failed urethroplasty achieves the same patency rates as primary cases.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendation

Use oral mucosa free graft urethroplasty for ReDo urethroplasty in case the of a long stricture. Strength rating Strong

6.3.3 Urethroplasty for penobulbar or panurethral strictures

The possibilities for reconstruction are various and often include combinations of different techniques or grafts other than OMG. The patency rates are usually lower than in shorter reconstructions (Table 6.7). Hussein et al. [359] performed a RCT comparing skin grafts vs. skin flaps in strictures of mean length 15 cm and found no difference in patency rates (72% vs. 79%) or complications.
Warner et al. [302] performed a multi-institutional review in 2015 including 466 patients with stricture length > 8 cm and found an overall patency rate of 77.5%.

As discussed previously, Kozinn et al. [256] reported on the outcome of staged urethroplasty in a cohort of which 54.9% had panurethral strictures (Table 6.7).

Kulkarni et al. [360] proposed a one-stage completely perineal approach with invagination of the penis and one-sided urethral dissection. After 59 months the overall patency rate was 83.7% in 117 men with a mean stricture length of 14 cm.

Another option in patients refusing or unfit for complex reconstructive surgery is PU (see section 6.3.4 Perineal urethrostomy).

Table 6.7: Study characteristics and patency rates of series on penobulbar strictures

<table>
<thead>
<tr>
<th>Author</th>
<th>Study</th>
<th>Length in cm (min, mean, range)</th>
<th>Technique</th>
<th>N</th>
<th>FU months (mean, range)</th>
<th>Patency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hussein et al. 2011 [359]</td>
<td>RCT</td>
<td>NR, 15, 9-21</td>
<td>Skin graft vs. flap</td>
<td>37</td>
<td>36, 12-60</td>
<td>72 vs. 79%</td>
</tr>
<tr>
<td>Hussein et al. 2016 [361]</td>
<td>Prospective</td>
<td>NR, 8, NR</td>
<td>BM vs. skin dorsal onlay</td>
<td>69</td>
<td>56, NR</td>
<td>90 vs. 84%</td>
</tr>
<tr>
<td>Warner et al. 2015 [302]</td>
<td>Retrospective review</td>
<td>> 8, 12.5, 8-24</td>
<td>BM/staged/skin</td>
<td>466</td>
<td>20, 12-344</td>
<td>77.5%</td>
</tr>
<tr>
<td>El Dahshoury et al. 2009 [362]</td>
<td>Retrospective</td>
<td>NR, 18, 15-20</td>
<td>Skin flap</td>
<td>30</td>
<td>24, NR</td>
<td>87%</td>
</tr>
<tr>
<td>Mathur et al. 2010 [363]</td>
<td>Retrospective</td>
<td>NR, 12, 8-16.5</td>
<td>Tunica albuginea graft</td>
<td>86</td>
<td>36, NR</td>
<td>89%</td>
</tr>
<tr>
<td>Meeks et al. 2010 [364]</td>
<td>Retrospective</td>
<td>NR, 11, 4-24</td>
<td>Abdominal skin graft</td>
<td>21</td>
<td>28, 11-52</td>
<td>81%</td>
</tr>
<tr>
<td>Kulkarni et al. 2012 [360]</td>
<td>Retrospective</td>
<td>NR, 14</td>
<td>BM dorsal onlay</td>
<td>117</td>
<td>59, NR</td>
<td>83.7%</td>
</tr>
<tr>
<td>Tabassi et al. 2014 [365]</td>
<td>Retrospective</td>
<td>NR, 14.4, NR</td>
<td>BM dorsal onlay</td>
<td>117(37)</td>
<td>19, NR</td>
<td>84%</td>
</tr>
<tr>
<td>Xu et al. 2017 [298]</td>
<td>Retrospective</td>
<td>> 8, 12, 8-20</td>
<td>BM/LM/combination</td>
<td>81</td>
<td>>12, 41, 15-86</td>
<td>83%</td>
</tr>
<tr>
<td>Alsagheer et al. 2018 [366]</td>
<td>Retrospective</td>
<td>> 8, 11.3</td>
<td>BM onlay vs. skin flap</td>
<td>50</td>
<td>NR, 16, NR</td>
<td>70 vs. 77%</td>
</tr>
<tr>
<td>Kozinn et al. 2013 [256]</td>
<td>Retrospective</td>
<td>NR, 9.6, 4-17</td>
<td>Staged urethroplasty</td>
<td>91</td>
<td>15, 12-69</td>
<td>90.1%</td>
</tr>
</tbody>
</table>

BM = buccal mucosa; LM = lingual mucosa; FU = follow-up; N = number of patients; NR = not reported; RCT = randomised controlled trial.

Summary of evidence

Publications about panurethral urethroplasties generally come from high volume centres. 4
Different materials and techniques might be needed for reconstruction. 3

Recommendations

Offer panurethral urethroplasties in specialised centres because different techniques and materials might be needed. Weak
Combine techniques to treat panurethral strictures if one technique is not able to treat the whole extent of the stricture. Weak
6.3.4 Perineal urethrostomy

6.3.4.1 Indications
Perineal urethrostomy offers a permanent or temporary solution for restoration of voiding in men with complex urethral stricture disease in whom:

- there are no further options to restore urethral patency either due to multiple previous failed urethroplasties [302, 346] or multiple co-morbidities precluding a more expansive surgical undertaking after failed endoscopic management [367];
- there is a lack of certainty on behalf of the surgeon regarding the most appropriate form of urethroplasty for the patient [346];
- following urethrectomy and/or penectomy for cancer [368].

6.3.4.2 Types of perineal urethrostomy
Johanson described an inverted anterior scrotal funnel PU in 1953. This was later modified by Gil-Vernet and Blandy to utilise a posteriorly based scrotal flap. Both these techniques utilise an inverted U or lambda incision. The Gil-Vernet-Blandy PU has been further modified with the addition of dorsal and/or ventral free OMG augment to allow use of PU in men with strictures consequent to radiotherapy [369] or LS [258] and/or in men with PU stenosis or stricture extending into the proximal bulbar or membranous urethra (“augmented Blandy”) [367].

More recently, the ‘7 flap’ PU utilising a unilateral posteriorly based scrotal flap has been developed for use in the very obese, or in men of all BMI with stricture extension into the proximal bulbar or membranous urethra [370]. Initially this was performed with transection of the distal bulb urethra but latterly the technique has been modified to a non-transection technique with loop mobilisation of the bulb urethra (“loop PU”) [371]. The “7-flap” utilises a midline incision – which has been shown to have a significantly reduced side-effect profile in terms of superficial wound infection (1.9% c.f. 18.6%) and superficial wound dehiscence (11.9% c.f. 23.3%) than the inverted U or lambda incision [372, 373] and may be associated with improved urethroplasty (and by inference PU) outcomes, at least in the short term (0% failure c.f. 6.2% failure at six months) [372]. Operative time is similar for all types of PU with mean operative time varying between 97.2 minutes to 112 minutes [368, 374].

The utilisation of PU is increasing [375] – constituting 4.5% of 403 procedures for complex urethral stricture disease in a tertiary centre in 2008 and 38.7% in 2017 [376]. Perineal urethroplasty patients are generally older than those having urethroplasty with a median of 62.6 years of age for men having PU in Fuchs et al. 2018 series compared with a median of 53.2 years for men having anterior urethroplasty [376]. Between 18.7% and 73.4% of men having staged urethroplasty for complex anterior urethral stricture decline to proceed to 2nd stage re-tubularisation after a successful 1st stage and remain voiding from the PU of their 1st stage urethroplasty [256, 346, 349].

6.3.4.3 Outcomes
6.3.4.3.1 Patency rates
Patency rates of 70-95% at mean/median follow-up of 20–63 months have been described [302, 346, 354, 367-369, 371, 374, 376]. All reports are retrospective series – all of which are heterogenous in terms of indications and patients. There is consequently little data available to determine which is the best technique for PU.

McKibben et al. reported a patency rate of 92.9% in 42 patients for “7-flap” PU at median follow-up of 53.6 months, whilst they had a 100% patency rate with loop PU in 20 patients at a median follow-up of thirteen months [371].

Lumen et al. in 2015 reported a 74.3% patency rate for Johanson PU compared with an 87.5% patency rate for Gil-Vernet-Blandy PU (p=0.248), but with a significantly longer follow-up after Johanson PU (median 36 vs. nine months) [368]. Barbagli et al. published the largest series of PU patients to date – including 173 men (all of whom had been planned to have a staged urethroplasty for their complex anterior urethral stricture disease and 127 (73.4%) of whom declined to proceed with 2nd stage re-tubularisation). The median follow-up in this series was 62 months and the patency rate was 70% - confirming that patency rates for PU (and indeed for all urethroplasty [269, 322] reduce with time [346].

See supplementary Table S6.11 for further information.

6.3.4.3.2 Complications
Perineal urethrostomy complications occur in 2.5-11.4% and include superficial wound dehiscence, scrotal abscess, UTI and urosepsis, bleeding, and transient scrotal pain and numbness [302, 368, 377]. The majority of
complications are Clavien-Dindo grades 1 (2.9-18.8%) and 2 (0-2.9%). Grade 3 complications are rare and only occur in 5.7-6.2%. In the medium-term 22.2-30.8% of men with PU report post-micturition dribble [368].

6.3.4.3.3 Patient reported outcomes
Barbagli et al. reported that 168/173 (97.1%) of men were satisfied or very satisfied with the outcome of their Gil-Vernet-Blandy PU and would have the procedure again at median 62 months follow-up. Of these, 166/173 (95.9%) felt they had excellent or good results from their Gil-Vernet-Blandy PU, 145/173 (85%) felt it caused them no problems and 141/173 (82%) felt it caused their partner no problems [346]. The Trauma and Urologic Reconstructive Network of Surgeons (TURN) collaborative found no significant change in sexual function and a significant improvement in urinary symptoms following PU in a small group of patients [378] whilst Lumen et al. found satisfactory or acceptable International Prostate Symptom Score (IPSS) outcomes in 26/32 (81.25%) of men with Johanson or Gil-Vernet-Blandy PU at a median follow-up of 32 months and nine months, respectively.

McKibben et al. found a mean patient global impression of improvement (PGI-I) of 1.3 in nineteen patients with either loop PU or “7-flap” PU [371] at median 31 months follow-up.

6.3.4.3.4 Risk factors for patency failure of the perineal urethroplasty
Lichen Sclerosus, trauma and infection urethral strictures have poorer outcomes from PU, with PU patency failure in 36.7-67% at a median 62 months follow-up [346, 377]. Worse outcomes were also observed in patients with previous failed urethroplasty and multiple previous endoscopic and open treatments [346, 366, 369].

Barbagli et al. found that stricture length was inversely related to PU patency, as was patient age [346]. Conversely Viers et al. found outcomes worsened with age, reporting patency rates of 100% in men < 50 years old compared with 83% in men aged 60-69 years old [354]. Lopez et al. found increased risk of PU failure in men with ischaemic heart disease which makes sense and would be a putative explanation for the age-related worsening of outcomes noted by Viers et al. [377].

Failure of PU is most commonly treated with surgical revision of PU using V-Y plasty, augmentation or complete ReDo but can also be managed with periodic dilatation or urinary diversion [346, 366, 367].

For further information see supplementary Table S6.11.

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perineal urethroplasty provides very good short- and long-term outcomes for men with complex urethral stricture disease.</td>
<td>1a</td>
</tr>
<tr>
<td>Perineal urethroplasty provides very good short and long-term outcomes for men who are unable to have complex reconstruction due to co-morbidities.</td>
<td>2b</td>
</tr>
<tr>
<td>All types of PU yield equivalent very good outcomes.</td>
<td>4</td>
</tr>
<tr>
<td>Augmented Gil-Vernet-Blandy or “7-flap” PU yield very good outcomes in men with extension of their urethral stricture disease into the proximal bulbar or membranous urethra.</td>
<td>2</td>
</tr>
<tr>
<td>“7-flap” PU yields very good results in obese men.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer perineal urethroplasty as a management option to men with complex anterior urethral stricture disease.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer perineal urethroplasty for men with anterior urethral stricture disease who are not fit or not willing to undergo formal reconstruction.</td>
<td>Weak</td>
</tr>
<tr>
<td>Choose type of perineal urethroplasty based on personal experience and patient characteristics.</td>
<td>Weak</td>
</tr>
<tr>
<td>Consider augmented Gil-Vernet-Blandy perineal urethroplasty or “7-flap” perineal urethroplasty in men with proximal bulbar or membranous urethral stricture disease.</td>
<td>Weak</td>
</tr>
<tr>
<td>Consider “7-flap” urethroplasty in obese men.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

6.3.5 Posterior urethra

6.3.5.1 Non-traumatic posterior urethral stenosis
6.3.5.1.1 Treatment of non-traumatic posterior urethral stenosis

Several treatment modalities including conservative management (see section 6.1 Conservative options), endoluminal, open or minimally invasive surgical procedures are currently available, depending on patient’s goals and health status.
6.3.5.1.2 Endoluminal management of non-traumatic posterior urethral stenosis

6.3.5.1.2.1 Dilatation of non-traumatic posterior urethral stenosis

This can be done under loco-regional anaesthesia [379-383]. Dilatation is used for VUAS [379-384] or radiation-induced BMS [112, 385] and in the majority of reported cases, patients were not previously treated for their stricture (see supplementary Table S6.12). Patency rates vary widely between 0% and 89% [112, 379-385]. The risk of de novo UI was low (0-11%) and no other complications were reported. It is of note that most series report on visually controlled dilatation [379-383] in VUAS without complete obliteration.

6.3.5.1.2.2 Endoscopic incision/resection of non-traumatic posterior urethral stenosis (Table 6.8)

Incisions can be performed at multiple locations according to surgeon’s preference [386]. However, aggressive incisions at the six and twelve o’clock positions should be avoided because of the risk of respectively rectal injury and urosepsis fistulation [182, 387-389]. The risk of urosepsis fistulation is especially a concern after previous radiotherapy [390]. Direct vision internal urethrotomy is mainly performed in patients with primary or recalcitrant VUAS although one series performed it in a mix of patients with VUAS and BNS [391] and two series reported it for radiation-induced BMS [112, 385]. Direct vision internal urethrotomy/dilatation for non-irradiated BMS are usually included in series reporting on anterior strictures (see section 6.2 Male endoluminal treatment of anterior urethral strictures). Patency after a 1st “cold/hot knife” DVIU ranges between 25-80% [379, 382, 384, 386, 391-396]. Laser incision yields a 69-100% patency rate [382, 384, 397, 398]. In a retrospective and unbalanced series, LaBossiere et al. found better patency rates for laser incision as compared to dilatation, “cold knife” DVIU and transurethral resection (TUR) [382]. Redshaw et al. reported inferior patency rates for “cold knife” incision vs. “hot knife” incision followed by MMC for BNS (50 vs. 63%; p=0.03) [240] (see supplementary Table S6.13). Urinary incontinence largely varies between 0 and 53% but some series have not assessed urinary continence before DVIU [392, 394]. In series where pre-DVIU continence data were available, de novo urinary continence after DVIU ranges between 0% and 10% [379, 384, 393, 395, 397]. Noteworthy, of 21 patients that were incontinent pre-DVIU in the series of Giannarini et al., eleven (52%) patients became continent and eight (38%) patients experienced improvement after DVIU [393]. In the series of Lagerveld, 1/5 (20%) patients noticed improvement of UI after DVIU [397]. As most recurrences will occur early [393, 394], it is advised to wait for three to four months after DVIU [386, 394, 399] to proceed with incontinence surgery if necessary, although others wait for twelve months [400]. The presence of recurrence must be ruled out by cystoscopy prior to incontinence surgery [386, 394, 399, 400].

Another option is to resect the stenosis. Popken et al. reported a 47% patency rate with TUR for untreated VUAS and no patient suffered de novo SUI [395]. Kranz et al. compared the results of TUR in 87 and 60 patients with respectively VUAS after RP and BNS after TURP. After a median follow-up of 27 (range: 1-98) months, patency rate was 40.2% for VUAS and 58.3% for BNS (p=0.031). The rate of de novo incontinence was significantly higher in patients treated for VUAS compared to BNS (13.8 vs. 1.7%; p=0.011) [401]. Kravchick et al. reported a higher incontinence rate after TUR compared to “cold knife” DVIU and dilatation for VUAS (50% vs. 13% vs. 0%, respectively; p=0.006) [383]. However, the number of patients were small and a selection bias of more severe cases towards TUR might be possible [383]. Alternatively, thermal damage to the adjacent external sphincter during TUR (especially with monopolar current) might be the cause of incontinence [383]. Brodak et al. compared TUR by bipolar resection (n=22) with holmium laser incision and vapourisation (n=17). After a mean follow-up of 42 months, two (9.1%) and four (23.5%) patients suffered a recurrence with bipolar and laser resection respectively (p=0.37). After six months, patients treated with bipolar resection had a significant better Q_{max} compared to laser treatment (13 vs. 6.1 ml/s; p < 0.001) [398]. Bipolar plasma vapourisation produced an 82% patency rate at a mean 24 months follow-up in 28 patients with VUAS who previously failed endoscopic treatment [402].

Cut-to-the-light technique for a complete obliterative stricture is not advised because of the very-low likelihood of durable patency and for the risk of false passage towards the rectum [399, 403, 404].

Repetitive DVIU was often able to stabilise the stricture [112, 379, 382, 385, 391-393, 401], but ultimately 6-10% required urinary diversion [394] or chronic suprapubic cystostomy [385, 391].

Transurethral resection can be performed for prostatic obstruction due to sloughing after high-energy treatments (HIFU, cryoablation) [96]. Transurethral resection for obstructive necrotic debris after radiotherapy is possible but is of limited role. Risk of recurrence is 50% and risk of de novo UI is 15-25% [96].
Table 6.8: Results of endoluminal incision/resection for posterior non-traumatic stenosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Modality</th>
<th>Type</th>
<th>N</th>
<th>Previous treatment (%)</th>
<th>FU (months)</th>
<th>Patency (%)</th>
<th>Urinary incontinence (%)</th>
<th>Complications (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merrick et al. [385]</td>
<td>Dilatation/“Cold knife” DVIU</td>
<td>Radiation-induced BMS</td>
<td>29</td>
<td>0</td>
<td>NR</td>
<td>69</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Sullivan et al. [112]</td>
<td>Dilatation (n=15) / “Cold knife” DVIU (n=20)</td>
<td>Radiation-induced BMS</td>
<td>39</td>
<td>0</td>
<td>16 (2-48)</td>
<td>51</td>
<td>11</td>
<td>NR</td>
</tr>
<tr>
<td>Brede et al. [394]</td>
<td>“Cold knife” DVIU</td>
<td>DVIU</td>
<td>63</td>
<td>Dilation 33 Incision 36 Both 29</td>
<td>11 (1-144)</td>
<td>73</td>
<td>52*</td>
<td>NR</td>
</tr>
<tr>
<td>Yurkanin et al. [392]</td>
<td>“Cold knife” DVIU</td>
<td>DVIU</td>
<td>61</td>
<td>Dilatation 100</td>
<td>31 (1-77)</td>
<td>87</td>
<td>12**</td>
<td>NR</td>
</tr>
<tr>
<td>Giannarini et al. [393]</td>
<td>“Cold knife” DVIU</td>
<td>DVIU</td>
<td>43</td>
<td>0</td>
<td>48 (23-80)</td>
<td>74</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>Ramchandani et al. [379]</td>
<td>“Cold knife” DVIU</td>
<td>DVIU</td>
<td>10</td>
<td>0</td>
<td>NR</td>
<td>50</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hayashi et al. [384]</td>
<td>“Cold knife” DVIU</td>
<td>Holmium laser DVIU</td>
<td>6</td>
<td>Dilatation: 100</td>
<td>NR</td>
<td>50</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lagerveld et al. [397]</td>
<td>Holmium laser DVIU</td>
<td>Holmium laser DVIU</td>
<td>10</td>
<td>None: 40 Endoscopic (dilatation +/- DVIU +/- ISD): 60</td>
<td>18 (3-29)</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ramirez et al. [391]</td>
<td>“Hot knife” DVIU</td>
<td>DVIU: 74% BNS: 26%</td>
<td>50</td>
<td>None: 22</td>
<td>16</td>
<td>72</td>
<td>9</td>
<td>NR</td>
</tr>
<tr>
<td>Gousse et al. [396]</td>
<td>“Hot knife” DVIU</td>
<td>DVIU</td>
<td>15</td>
<td>None</td>
<td>15 (6-26)</td>
<td>80</td>
<td>100***</td>
<td>NR</td>
</tr>
<tr>
<td>Bang et al. [386]</td>
<td>“Hot knife” DVIU</td>
<td>DVIU</td>
<td>37</td>
<td>NR</td>
<td>13 (2-33)</td>
<td>65</td>
<td>100***</td>
<td>NR</td>
</tr>
<tr>
<td>Popken et al. [395]</td>
<td>“Cold knife” DVIU</td>
<td>DVIU</td>
<td>6</td>
<td>None</td>
<td>12-72</td>
<td>50</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>TUR</td>
<td>DVIU</td>
<td>VUAS</td>
<td>15</td>
<td>None</td>
<td>47</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Kranz et al. [401]</td>
<td>TUR</td>
<td>VUAS</td>
<td>87</td>
<td>NR</td>
<td>27 (1-98)</td>
<td>40.2</td>
<td>13.8</td>
<td>NR</td>
</tr>
<tr>
<td>TUR</td>
<td>DVIU</td>
<td>VUAS</td>
<td>60</td>
<td>NR</td>
<td>58.3</td>
<td>1.7</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Brodak et al. [398]</td>
<td>TUR (bipolar)</td>
<td>BNS</td>
<td>22</td>
<td>DVIU 45</td>
<td>42 (14-72)</td>
<td>91</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Holmium laser DVIU</td>
<td>DVIU: 12</td>
<td>VUAS</td>
<td>17</td>
<td>DVIU: 12</td>
<td>76</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ozturk et al. [402]</td>
<td>TUR (bipolar)</td>
<td>VUAS</td>
<td>28</td>
<td>Dilatation: 75 DVIU: 25</td>
<td>24 (6-66)</td>
<td>82</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LaBossiere et al. [382]</td>
<td>Holmium laser DVIU</td>
<td>VUAS</td>
<td>70</td>
<td>NR</td>
<td>10</td>
<td>69</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*BNS = bladder neck stenosis; DVIU = Direct vision internal urethrotomy; FU = follow-up; ISD = intermittent self-dilatation; N = number of patients; NR = not reported; TUR = transurethral resection; VUAS = vesico-urethral anastomosis stricture.

*Patency rate after 1st endoluminal treatment evaluated in the study.

* requiring incontinence surgery (artificial urinary sphincter or male sling).

** Slightly problematic urinary incontinence by questionnaire post DVIU (no data on pre DVIU continence).

***All incontinent pre-operatively.
6.3.5.1.2.3 Post-dilatation/direct vision internal urethrotomy strategies for non-traumatic posterior urethral stenosis

6.3.5.1.2.3.1 Intermittent self-dilatation for non-traumatic posterior urethral stenosis

As for anterior strictures, ISD can be offered to patients for recurrent posterior stenosis after dilation/DVIU in order to stabilise the stenosis. This is especially relevant for patients unfit/unwilling to undergo surgery or in patients with radiation-induced BMS [112, 382, 385, 405]. Although ISD may be acceptable to many urologists and patients, it usually is associated with a reduced QoL and poor patient compliance [30].

6.3.5.1.2.3.2 Intraluminal injections for non-traumatic posterior urethral stenosis

In order to stabilise the luminal fibrosis and consequently to reduce the risk of recurrence, injection of antifibrotic agents at the time of endoluminal treatment has been proposed. The majority of patients in these studies were patients with recalcitrant/recurrent non-obliterative VUAS/BNS. Two series used corticosteroids [383, 399], whilst the others used MMC [240, 400, 403-406]. Patency rates with corticosteroid injections range between 50 and 100% [383, 399]. Patency rates with MMC vary between 50 and 79% [240, 400, 403-406]. No trials comparing endoluminal treatment with or without adjuvant intraluminal injections were identified.

See supplementary Table S6.13 for further information.

Complications are low across most studies, but all studies were retrospective in nature. Redshaw et al. also reported grade 3 complications in four out of 55 (7%) patients, including osteitis pubis (n=2), bladder neck necrosis (n=1) and rectourethral fistula (n=1) in one multi-institutional study [240]. Three of these patients ultimately required urinary diversion with additional faecal diversion in one patient [240]. Given the severity of these complications, although rare, MMC should not be used outside the framework of a clinical trial [407].

6.3.5.1.2.3.3 Urethral stent for non-traumatic posterior urethral stenosis

Stents have been used anecdotally in the posterior urethra [247, 248, 382]. Patency rates are relatively low (47-60%) [247, 248, 382] at the cost of a high-risk for UI (19-82%) [247, 248].

Summary of evidence

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For non-obliterative VUAS and radiation-induced BMS, visually controlled dilatation and DVIU yield a patency rate of respectively 0-89% and 25-100% with a low complication rate. It can be performed under loco-regional anaesthesia.</td>
<td>3</td>
</tr>
<tr>
<td>During DVIU, deep incision might provoke injury to the rectum at the six o’clock position and might provoke urosepsymphseal fistulation at the twelve o’clock position.</td>
<td>3</td>
</tr>
<tr>
<td>For BNS, TUR and “hot-knife” incision yield a patency rate of respectively 58.3 and 72% with a low complication rate.</td>
<td>3</td>
</tr>
<tr>
<td>Repetitive endoluminal treatments in non-obliterative VUAS, radiation-induced BMS or BNS have the ability to stabilise the posterior stenosis and are easy to perform compared to reconstructive surgery.</td>
<td>3</td>
</tr>
<tr>
<td>Any form of endoluminal treatment might be associated with de novo UI (up to 25%) or worsening of existing UI (up to 15%).</td>
<td>3</td>
</tr>
<tr>
<td>Vesico-urethral anastomosis stricture, BMS and BNS with complete obliteration are not included in present series and endoluminal treatment is unlikely to be successful.</td>
<td>3</td>
</tr>
<tr>
<td>Urethral stents at the posterior urethra have a rather low patency rate (47-60%) and incontinence rate (19-82%).</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform visually controlled dilatation or direct vision internal urethrotomy (DVIU) as 1st line-treatment for a non-obliterative vesico-urethral anastomosis stricture (VUAS) or radiation-induced bulbomembranous strictures (BMS).</td>
<td>Weak</td>
</tr>
<tr>
<td>Do not perform deep incisions at the six and twelve o’clock position during DVIU for VUAS or radiation-induced BMS.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform transurethral resection (TUR) or “hot-knife” DVIU as 1st line-treatment for patients with non-obliterative bladder neck stenosis (BNS) after surgery for benign prostatic obstruction.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform repetitive endoluminal treatments in non-obliterative VUAS or BNS in an attempt to stabilise the stricture.</td>
<td>Weak</td>
</tr>
<tr>
<td>Warn patients about the risk of de novo urinary incontinence (UI) or exacerbation of existing UI after endoluminal treatment.</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Do not perform endoluminal treatment in case of VUAS, BMS and BNS with complete obliteration.
| Strong |
---|---|

Do not use stents for strictures at the posterior urethra.
| Weak |

6.3.5.1.3 Lower urinary tract reconstruction for non-traumatic posterior urethral stenosis

If endoluminal treatment (repeatedly) fails or in case of a completely obliterated posterior stenosis [403, 404, 408, 409], lower urinary tract reconstruction may be considered in fit patients motivated to undergo surgery (Figure 6.1). The choice of lower urinary tract reconstruction will depend upon the length, location, calibre and aetiology of the stenosis, continence status, bladder function, previous radiotherapy, patient's preference and surgeon's expertise.

Figure 6.1: Options for lower urinary tract reconstruction of non-traumatic posterior urethral obstruction (stenosis/stricture)

6.3.5.1.3.1 Redo vesico-urethral anastomosis for vesico-urethral anastomotic stenosis after radical prostatectomy

After excision of the stenosis, ReDo vesico-urethral anastomosis (ReDo VUA) can be performed. This may be performed via a retropubic, perineal, combined abdominoperineal or robot-assisted approach. Nikolavsky et al. proposes a retropubic approach for VUAS involving the bladder neck, a perineal approach for short VUAS with intact bladder neck and an abdominoperineal approach for long segment (> 3 cm) VUAS with bladder neck involvement [408]. The ReDo VUA must be performed in a tension-free fashion which can be achieved either by mobilisation of the bladder (retropubic approach), mobilisation of the bulbar urethra with corporal splitting and inferior pubectomy if necessary (perineal approach) or both (abdominoperineal approach) [408, 410]. Dinerman et al. reported a robot-assisted abdominoperineal approach in a case with 4.5 cm long complete obliteration [411]. Kirshenbaum et al. reported a pure robot-assisted abdominal approach. Regardless of the approach, the procedure is technically demanding due to the location deep under the pubic symphysis, and the proximity of the external sphincter [410]. As a consequence, the surgical morbidity must be taken into account. As most patients with VUAS were healthy enough to undergo RP, most patients will likewise remain fit and eligible for VUAS surgical reconstruction [408, 410].
Table 6.9: Outcomes of ReDo vesico-urethral anastomosis

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Approach (%)</th>
<th>Previous RT (%)</th>
<th>FU (months)</th>
<th>Length (cm)</th>
<th>Patency (%)</th>
<th>Incontinence (%)</th>
<th>Complications (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nikolavsky et al. [408]</td>
<td>12</td>
<td>Perineal: 25</td>
<td>Abdominal: 67</td>
<td>25</td>
<td>76 (14-120)</td>
<td>2.5 (1-5)</td>
<td>67</td>
<td>58 Persistent extravasation due to anastomotic dehiscence grade 3b: 8.3 (prior RT)</td>
</tr>
<tr>
<td>Mundy et al. [410]</td>
<td>17</td>
<td>Transperineal</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>88</td>
<td>100</td>
<td>NR</td>
</tr>
<tr>
<td>Schuettfort et al. [412]</td>
<td>22</td>
<td>Transperineal</td>
<td>0</td>
<td>45 (4-77)</td>
<td>NR</td>
<td>91</td>
<td>100*</td>
<td>Rectal injury: 4 Lower leg paresthesia: 4</td>
</tr>
<tr>
<td>Pfalzgraf et al. [413]</td>
<td>20</td>
<td>Retropubic</td>
<td>NR</td>
<td>63 (15-109)</td>
<td>NR</td>
<td>60</td>
<td>65**</td>
<td>UTI: 5 Fever: 5 Renal failure: 5 (all grade 2)</td>
</tr>
<tr>
<td>Giudice et al. [414]</td>
<td>10</td>
<td>Perineal: 5</td>
<td>Abdominal: 4</td>
<td>NR</td>
<td>30 (4-106)</td>
<td>NR</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>Dinerman et al. [411]</td>
<td>1</td>
<td>Robot-assisted abdominoperineal</td>
<td>0</td>
<td>12</td>
<td>4.5</td>
<td>100</td>
<td>0***</td>
<td>0</td>
</tr>
<tr>
<td>Kirshenbaum et al. [409]</td>
<td>5</td>
<td>Robot-assisted abdominal (±VY-plasty)</td>
<td>0</td>
<td>14 (5-30-)</td>
<td>NR</td>
<td>60</td>
<td>0</td>
<td>Pubovesical fistula: 20 grade 3b</td>
</tr>
</tbody>
</table>

FU = follow-up; N = number of patients; NR = not reported; RT = radiotherapy; UTI = Urinary tract infection.

* incontinent before ReDo VUA.
** de novo incontinence in four out of eleven patients.
***social continent (1 pad/day).

ReDo VUA in non-irradiated patients yields patency rates of 60-91% (Table 6.9) [408-410, 412-414]. Prior radiotherapy is a risk factor for failure [410, 412]. In addition, radiation-induced bladder toxicity might provoke reduced bladder capacity, low bladder compliance, bladder spasms and pain, and urethral necrosis making reconstruction futile (see below) [390, 410, 415]. ReDo VUA should only be done in patients with adequate bladder function and in the absence of (peri)-urethral pathology (urethral necrosis, calcification, fistulation). Flaps (gracilis flap, peritoneal flap) to support and protect the anastomosis may be beneficial in irradiated patients [408].

With the transperineal approach, UI is inevitable, as this approach disrupts the external sphincter [409, 410, 412, 414]. With the retropubic approach, Pfalzgraf et al. reported de novo incontinence in only four out of eleven (36%) patients [413]. In the series of Nikolavsky et al. where a retropubic approach was predominantly used, incontinence rate was 58% [408]. Kirshenbaum et al. reported no incontinence in five patients treated by robot-assisted retropubic approach [409]. Giudice et al. reported incontinence in one out of four patients treated with the retropubic approach [414]. Therefore, some authors [96, 408, 409] have proposed a preference for the retropubic approach in patients with good pre-operative urinary continence, although both approaches have never been directly compared for UI. In addition, the lack of perineal dissection by a retropubic approach will preserve the perineal anatomy and vascularisation which makes subsequent artificial urinary sphincter (AUS) less demanding [409]. Artificial urinary sphincter implantation should be deferred because of the risk of VUAS recurrence and difficulty of treating any recurrent VUAS with the cuff of the AUS in place [394, 410]. The exact timing of AUS placement is not consensual in the literature but most advise waiting at least three to six months to ensure stability of the VUA patency [390, 407, 410, 412, 413].

Due to the complexity of this pathology the EAU Urethral Strictures Panel advises that VUAS reconstruction should be performed only in experienced high-volume centres, particularly after prior radiotherapy or other energy ablative treatments.
Summary of evidence	LE
ReDo VUA has patency rates of 60-91% in non-irradiated patients and 67% in irradiated patients with oblitative VUAS or VUAS refractory to endoluminal treatment. | 3
Urinary incontinence is inevitable after transperineal ReDo VUA. Artificial urinary sphincter placement can be offered after three to six months if patency of ReDo VUA is ensured. | 3
De novo incontinence with retropubic ReDo VUA is 0-58%. | 3

ReDo VUA has patency rates of 60-91% in non-irradiated patients and 67% in irradiated patients with oblitative VUAS or VUAS refractory to endoluminal treatment. | Weak
Urinary incontinence is inevitable after transperineal ReDo VUA. Artificial urinary sphincter placement can be offered after three to six months if patency of ReDo VUA is ensured. | Strong
De novo incontinence with retropubic ReDo VUA is 0-58%. | Weak

6.3.5.1.3.2 Posterior stenosis after surgery for benign prostatic obstruction
6.3.5.1.3.2.1 Bladder neck reconstruction for bladder neck stenosis after surgery for benign prostatic obstruction
The bladder neck is augmented by advancement of local bladder flaps (Y-V or T-plasty) with or without resection of scar tissue. They are used for BNS refractory to endoscopic treatments [409, 416-418]. Patency rates vary between 83% to 100% with fourteen to 45 months follow-up [409, 416-418]. There is a trend to perform bladder neck reconstruction by minimally invasive approach (laparoscopic, robot-assisted)[409, 417, 418]. De novo incontinence rate ranges from 0% to 14% [409, 416-418]. Satisfaction among patient is high with 88.5% of patients stating that they are pleased with the surgery, with an improvement of QoL in 75% of patients [416, 418]. Recently, a robot-assisted augmentation technique with subtrigonal buccal mucosa inlay has been successfully reported in a case report, but this technique requires further investigation [419].

See supplementary Table S6.14 for further information.

6.3.5.1.3.2.2 Bulbomembranous strictures after surgery for benign prostatic obstruction
Bulbomembranous urethral strictures (BMS) after TURP or simple prostatectomy are managed as bulbar strictures and can be treated by EPA or augmentation urethroplasty with a graft, taking into account the length and tightness of the stricture [79, 420]. As reconstruction is in the proximity of the external sphincter and the bladder neck was already damaged during BPO surgery, the risk of incontinence (up to 25%) is present [79].

Summary of evidence	LE
Bladder neck reconstruction with Y-V or T-plasty for treatment refractory BNS has patency rates of 83-100%. | 3
Incontinence occurs in up to 14% with bladder neck reconstruction and up to 25% after reconstruction of BMS after previous surgery for BPO. | 3

Recommendations	Strength rating
Perform bladder neck reconstruction with Y-V or T-plasty for treatment refractory bladder neck stenosis (BNS). | Weak
Warn patients about de novo urinary incontinence after reconstruction for BNS or bulbomembranous urethral strictures with previous benign prostatic obstruction surgery as aetiology. | Strong

6.3.5.1.3.3 Radiation/high-energy induced posterior strictures
6.3.5.1.3.3.1 Bulbomembranous strictures secondary to radiation/high energy sources
The major challenge in treating radiation-induced strictures is the consequent tissue damage with impaired healing capacity, involving not only the stricture itself but also the adjacent proximal and distal areas of the scar [410, 421]. Additionally, proximity of the stricture to the external sphincter can further complicate surgery [79]. Due to these challenges, patients with radiation-induced BMS have long been considered poor candidates for urethral reconstruction, and have been treated with urinary diversion if endoscopic treatments failed or were not possible [410].
Most radiation-induced BMS are short and in these cases EPA is possible [79, 184, 422, 423]. Reported patency rates vary between 67% and 95% [79, 184, 423, 424]. De novo UI was reported in 33-36% of cases [79, 184, 423, 424] and this seems to be higher compared to the rates reported for bulbar and traumatic-posterior strictures (see sections 6.3.2 and 6.3.5). Chung et al. reported de novo incontinence in twelve out of 36 (33%) patients with EPA for radiation-induced BMS vs. four out of 33 (12%) patients with EPA for PFUI (p=0.05) [424].

Excision and primary anastomosis has the advantage of avoiding the use of a graft or a local flap in an area of poor vascular health. However, EPA will not be possible for BMS with a long bulbar segment and in these cases, augmentation urethroplasty will be necessary despite the aforementioned concerns [184, 423, 425, 426]. Glass et al. used a cut-off of 2.5 cm to proceed with augmentation urethroplasty, whilst this was 2 cm by Meeks et al. [423, 426]. Some authors have even used augmentation urethroplasty as their standard technique for radiation-induced BMS [355]. Both dorsal [420, 425] and ventral onlay [355, 426] have been described to treat radiation-induced BMS. In the absence of a robust vascular graft bed, the support by a gracilis flap has been proposed during ventral onlay graft urethroplasty [426, 427]. Patency rates with augmentation urethroplasty vary between 50 and 83% [184, 355, 423, 425] with de novo incontinence ranging between 11 and 50% [184, 355, 425] (see supplementary Table S6.15). Rourke et al. reported a patency rate of 91% vs. 75% for respectively EPA and augmentation urethroplasty but this difference did not reach statistical significance (p=0.31) [425]. Of note, strictures treated with augmentation urethroplasty were significantly longer compared to those treated by EPA (respectively 6.1 vs. 2.1 cm; p < 0.001). They reported no significant differences in de novo urinary incontinence (26 vs. 25%; p=1), new onset ED (35 vs. 0%; p=0.06) or other adverse events (30% vs. 33%; p=1) [425].

6.3.5.1.3.3.2 Prostatic strictures secondary to radiation/high energy sources
Radiotherapy and high-energy modalities (cryoablation, HIFU) might provoke prostatic necrosis, sloughing and obstruction [96]. Cases refractive to TUR and with good bladder capacity might be salvaged by prostatectomy taking into account the morbidity associated with salvage RP (rectal injury, VUAS, incontinence) [96, 421]. Mundy et al. treated nine patients with patency in six, (67%) and one (11%) needing an AUS for severe incontinence [410].

Cases with impaired bladder function, urethral necrosis and/or peri-urethral pathology should be considered for supravesical diversion, especially if a suprapubic catheter is not tolerated due to bladder pain or spasms [390, 407, 410, 415].

Recently, a “pull-through” procedure has been reported as an alternative to cutaneous diversion for reconstruction of the devastated posterior urethra associated with a defunctionalised bladder after radiation where tissue vascularity and quality is poor [428]. This novel technique of total lower urinary tract reconstruction combines salvage cystectomy, ileal neobladder formation and urethral pull-through. An AUS was implanted in a 2nd stage. All eight patients maintained a patent posterior urethra after a median follow-up of 58 (range 16-84) months. Five patients experienced low-grade complications after the 1st stage, but no high-grade complications were reported. Four out of eight (50%) patients experienced cuff erosion with need for removal and subsequent reimplantation. After a median of two revision surgeries (range 0 to 4), all patients achieved social continence enhancing QoL [428]. This technique requires further validation before its use can be recommended.

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patency rates with EPA and augmentation urethroplasty are respectively 67-95% and 50-83% in case of radiation-induced BMS.</td>
<td>3</td>
</tr>
<tr>
<td>Radiation-induced BMS longer than 2-2.5 cm are rarely amenable for EPA.</td>
<td>3</td>
</tr>
<tr>
<td>De novo incontinence and new onset ED after urethral surgery for radiation-induced BMS are reported in respectively 11-50% and 0-35% of cases.</td>
<td>3</td>
</tr>
<tr>
<td>Salvage prostatectomy is able to achieve patency in 67% of patients for prostatic strictures after irradiation or high-energy treatments but morbidity is substantial.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use either excision and primary anastomosis (EPA) or augmentation urethroplasty for short (< 2.5 cm) radiation-induced bulbomembranous strictures (BMS) refractory to endoscopic treatment depending on surgeon’s experience.</td>
<td>Weak</td>
</tr>
</tbody>
</table>
6.3.5.1.4 Extirpative surgery and urinary diversion for non-traumatic posterior urethral stenosis
In complex and/or recurrent cases [408], lower urinary tract reconstruction is not possible or not indicated due to severe necrosis, calcification and significant morbidity, especially severe pain [407]. Intractable haematuria or fistulation might be other reasons to abandon the urethral outlet. Typically, the patient has a history of pelvic irradiation or high energy prostate cancer treatment and several previous attempts to achieve cure. Moreover, and equally important, any of the options used to deal with a devastated posterior urethra are dependent upon good bladder capacity, compliance and function allowing for bladder preservation as well as healthy distal ureters [390, 407]. The last resort therapeutic option is urinary diversion (continent or incontinent) with or without cystectomy [410, 415]. Different techniques have been described and the choice between them largely depends on the bladder capacity, presence of local symptoms, performance status and expectations of the patient. Cystectomy during urinary diversion is able to palliate symptoms of intractable bladder pain, spasms and haematuria which are especially prevalent after pelvic radiotherapy [429-432]. The satisfaction rate was reported to be 100% and the overwhelming majority of patients would have undergone this extirpative surgery an average of thirteen months sooner in a study of fifteen patients by Sack et al. [433]. In a report by Faris et al., 27% of the patients also required bowel diversion due to intractable gastrointestinal morbidity, highlighting the complexity of this pathology [415].

Summary of evidence

| Urinary diversion can improve QoL in patients with a devastated lower urinary tract with a high satisfaction rate. | LE 3 |
| Cystectomy is able to palliate symptoms of intractable bladder pain, spasms and haematuria. | LE 3 |

Recommendations

| Perform urinary diversion in recurrent or complex cases with loss of bladder capacity and/or incapacitating local symptoms. | Strength rating Weak |
| Perform cystectomy during urinary diversion in case of intractable bladder pain, spasms and/or haematuria. | Strength rating Weak |

6.3.5.2 Post-traumatic posterior stenosis
The acute and early management of PFUIs is discussed in the EAU Guidelines on Urological Trauma. A non-obliterate stenosis is the result of a partial injury at the membranous urethra, or occurs after unsuccessful early realignment of a partial or complete injury. An obliterate stenosis is the consequence of a complete injury with a distraction defect between the ruptured urethral ends. The gap between these ends fills up with dense fibrotic tissue [6].

The deferred management of PFUI is at earliest three months after the trauma. After that period, the pelvic haematoma has nearly always resolved, the prostate has descended into a more normal position, the scar tissue has stabilised [434] and the patient is clinically stable and able to lie down in the lithotomy position [434, 435].

6.3.5.2.1 Endoluminal treatment for post-traumatic posterior stenosis
Endoluminal treatment (dilation, DVIU) of an obliterate stenosis using the cut-to-the light principle will not be successful [43] and has a risk of creating a false passage towards the bladder base or rectum [436]. For a non-obliterate, short (< 1.5 cm) stenosis, one attempt of endoluminal treatment (endoscopic incision or dilation) can be performed. Kulkarni et al. reported a 92.3 and 96.5% stricture-free rate with “cold knife” and holmium laser urethrotomy, respectively (median follow-up respectively 61 and 57 months) [437]. These results are challenged by Barbagli et al. who reported a 51% stricture-free rate with holmium laser urethrotomy but with no data on length of follow-up available [438]. Cai et al. compared patient outcomes between bipolar plasma vapourisation and “cold knife” DVIU in 53 patients with posterior traumatic (80%) and iatrogenic (20%) urethral strictures with significantly different stricture-free rates of 81.5% vs. 53.8% at a mean follow-up of 13.9 months, respectively [439]. No severe complications were reported in either group. A statistically significant shorter operative time was found in the bipolar group [439]. Barratt et al. calculated a composite
stricture-free rate of 20% after all types of endoscopic treatments (but with a mix of obliterative and non-obliterative stenoses) [43]. De novo UI was reported in 4% of cases [43]. Repetitive endoluminal treatments are unlikely to be curative and must be discouraged as this delays the time to definitive cure and can lead to more complications [440, 441].

6.3.5.2.1.2 Endoluminal treatment after failed urethroplasty for post-traumatic posterior stenosis
In case of a non-obliterative and short (≤ 1 cm) recurrence after failed urethroplasty, endoluminal treatment can be performed [442, 443]. Although a 1st and 2nd DVIU can be successful with a stricture-free rate of 22.9-77.3% and 0-60% respectively, three or more incisions are never successful (see supplementary Table S6.16) [442-446]. Therefore, repetitive endoluminal treatments (dilations and/or endoscopic incisions) can only be considered as a palliative option [443, 447].

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoluminal treatment of obliterative stenoses is not successful and may create false passages towards bladder or rectum.</td>
<td>3</td>
</tr>
<tr>
<td>Endoluminal treatment of short, non-obliterative, stenoses has a 20-96.5% stricture-free rate.</td>
<td>3</td>
</tr>
<tr>
<td>A 1st DVIU has stricture-free rates of 22.9-77.3% for a short and non-obliterative recurrence after excision and primary anastomosis.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not perform endoscopic treatment for an obliterative stenosis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform one attempt at endoluminal treatment for a short, non-obliterative stenosis.</td>
<td>Weak</td>
</tr>
<tr>
<td>Do not perform more than two direct vision internal urethrotomies and/or dilatations for a short and non-obliterative recurrence after excision and primary anastomosis for a traumatic posterior stenosis if long-term urethral patency is the desired intent.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

6.3.5.2.2 Urethroplasty for post-traumatic posterior stenosis
In view of the complexity and difficulty of urethroplasty and the fact that the best results are obtained with its first attempt, this surgery must be performed in high-volume centres [448-450]. It has been calculated that to achieve and maintain sufficient experience in the reconstruction of PFUI, one centre per twelve million inhabitants is sufficient (for well-resourced countries) [449].

6.3.5.2.2.1 First urethroplasty for post-traumatic posterior stenosis
6.3.5.2.2.1.1 Indication and technique of urethroplasty for post-traumatic posterior stenosis
Progressive perineal EPA is the standard treatment for an obliterative stenosis and for a non-obliterative stenosis as first attempt, or after failure of primary endoluminal treatment [43, 451].

Although both a midline and inverted U-incision are possible to gain access to the posterior urethra, a midline incision is associated with a significant reduction in trauma to the superficial perineal and posterior scrotal nerves and vessels, in the rate of surgical site infections (3.1 vs. 16.4%) and reduced length of hospitalisation [373].

A combined transpubic abdomino-perineal approach is only necessary in complicated cases such as those with associated para-urethral bladder base fistula, trauma-related recto-urethral fistula, and bladder neck injury [436]. Total pubectomy during transpubic abdomino-perineal reconstruction has a higher complication rate (bleeding, pelvic instability, dead space) compared to partial (superior or inferior) pubectomy with no gain in surgical exposure [452]. Although also considered complex situations, iatrogenic recto-urethral fistula (after misdirected endoscopic treatment), traumatic recto-urethral fistula < 5 cm from the anus, UOF and urinoma cavity can usually be corrected by a progressive perineal approach only [436, 453].

6.3.5.2.2.1.2 Patency rate after urethroplasty for post-traumatic posterior stenosis
The overall patency rate after deferred EPA is 85.7% [43]. Complete excision of scar tissue is a strong predictor for freedom of stricture whereas number (3-5 vs. 6-7) and size (3.0 vs. 4.0 cm) of sutures are not [454]. One retrospective cohort study showed a significantly improved patency rate if dorsal anterior urethral spatulation was performed compared to ventral anterior urethral spatulation [455]. Another retrospective study showed an improved patency rate after eversion of the urethral mucosa of both urethral ends before anastomosis (“valgus urethral mucosa anastomosis”) [456]. The findings of both studies have yet to be confirmed in a prospective fashion.
To preserve the antegrade arterial inflow of the bulbar urethra and reduce the surgical trauma of “classic” deferred EPA, bulbar artery sparing EPA has been described [457]. Initial patency rates vary between 88.5-100% with 20-45 months of follow-up (see supplementary Table S6.17) [457-459]. Xie et al. only used this technique for distraction defects less than 2.5 cm [459]. No evidence exists to date whether bulbar artery sparing EPA is superior to the “classic” EPA in terms of patency rate and potency and continence rates.

In case of a very deep location of the proximal urethral end that makes anastomotic suturing impossible, Badenoch described a pull-through technique which has a 33.3-96.5% patency rate after 43-126 months of follow-up (see supplementary Table S6.18 for further information) [437, 460, 461]. With the aim to reduce stricture recurrence, Wong et al. advise a 1.5 cm segment overlap of the bulbar stump within the prostatic urethra during the pull-through technique [460]. To facilitate the suturing at the proximal part of the urethra located deep under the pubic bone, the robotic approach is under exploration but there is no evidence so far of improved outcome with this approach [462].

Patency rate in children varies between 75 and 89.8% (Table 6.10). The statement that EPA in children is associated with poorer results [463] cannot therefore be generally accepted [464].

Table 6.10: Outcomes of EPA in children

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Follow-up (months)</th>
<th>patency rate</th>
<th>Erectile dysfunction</th>
<th>Incontinence</th>
<th>Abdomino-perineal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podesta et al.</td>
<td>49</td>
<td>78 (60-264)</td>
<td>44 (89.8%)</td>
<td>3 (6.1%)</td>
<td>9 (18.4%)</td>
<td>21 (43%)</td>
</tr>
<tr>
<td>Waterloos et al.</td>
<td>7</td>
<td>57 (6-198)</td>
<td>6 (85.7%)</td>
<td>2 (28.6%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Singh et al.</td>
<td>5</td>
<td>26 (12-42)</td>
<td>4 (80%)</td>
<td>NA</td>
<td>1 (14.3%)</td>
<td>1 (14.3%)</td>
</tr>
<tr>
<td>Singla et al.</td>
<td>28</td>
<td>36 (3-58)</td>
<td>21 (75%)</td>
<td>-</td>
<td>1 (3.6%)</td>
<td>1 (3.6%)</td>
</tr>
<tr>
<td>Voelzke et al.</td>
<td>18</td>
<td>13 (1-71)</td>
<td>16 (88.9%)</td>
<td>-</td>
<td>-</td>
<td>1 (5.6%)</td>
</tr>
</tbody>
</table>

N = number of patients; NA = not applicable.

6.3.5.2.2.1.3 Sexual function, urinary continence and rectal injury after urethroplasty for post-traumatic posterior stenosis

Regarding erectile function, a prospective study by Hosseini et al. found no significant difference before, and three or six months after EPA for posterior traumatic stenosis [469]. Another prospective study by Tang et al. also demonstrated no significant overall change in ED after urethroplasty. However, in the subgroup of patients with pre-operative non-vascular ED, a significant post-operative increase in ED was observed [470]. A meta-analysis of retrospective studies showed a significant decline of the rate of ED from 43.27% before to 24.01% after posterior urethroplasty (p < 0.001) [471]. Assessment of erectile function and its definitive treatment (e.g., penile prosthesis) should be performed two years after the trauma because of the potential return of normal erectile function within that time [472, 473].

After deferred EPA, antegrade ejaculation is present in 98.3-100% of cases [474, 475]. Decreased ejaculatory volume and/or diminished ejaculatory force were reported in 17.2-18.7% of cases but it cannot be assessed whether this is due to the trauma or due to the surgery [474, 475].

Continence after PFUI and urethroplasty is generally attributed to a competent bladder neck [43]. On the other hand, as most ruptures occur at the bulbomembranous junction just below the external sphincteric mechanism, at least a part of the external sphincter mechanism can be spared during urethroplasty [476]. Therefore, incontinence is rare with deferred EPA (6.8%) and is usually due to incompetence of the bladder neck although an incompetent bladder neck will not necessarily result in incontinence after urethroplasty [43, 476].

Rectal injury is a relative rare (0-10.2%) but a severe complication after deferred EPA (see supplementary Table S6.19) [434, 446, 452, 455, 477-481]. The risk of rectal injury tends to be higher in complicated cases or cases with previous urethral manipulations [434, 477, 482].

6.3.5.2.2.2 ReDo-urethroplasty for post-traumatic posterior stenosis

In case of a recurrent stenosis, a repeat (“ReDo”) urethroplasty is possible. In the majority of cases, especially if not all consecutive length-gaining manoeuvres have been used during the 1st EPA, another EPA can be performed [465, 477, 478, 483, 484]. The Badenoch pull-through technique is again an option if no adequate mucosa-to-mucosa suturing is possible (See supplementary Table S6.18) [460, 461]. In case of excessive dead space after resection of the fibrosis, gracilis muscle [482] or omental flaps (laparoscopically harvested if urethroplasty was performed using perineal approach only) [436, 480] have been advised to fill up this space.
and support the anastomosis. These flaps, or alternatively bulbospongious muscle or local subcutaneous dartos flaps, are also useful to separate the suture lines in case of a concomitant recto-urethral fistula [436, 448, 453, 482]. If the urethra cannot be anastomosed in a tension-free fashion despite the aforementioned manoeuvres or in cases of ischemic narrowing/necrosis of the bulb urethra, options are a tubed preputial island flap, staged BMG urethroplasty with flap, staged buccal mucosa dartos flap, radial forearm free flap urethroplasty or entero-urethroplasty [448, 478, 483, 485]. In case of entero-urethroplasty, the sigmoid colon is preferred above ileum (which is in turn better than stomach) because of the proximity of the vascular pedicle to the perineum. Entero-urethroplasty should only be done in the presence of a competent bladder neck because subsequent implantation of an AUS is nearly impossible [485].

Patency rate of different types of ReDo-urethroplasty varies between 37.5-100% (Table 6.11) [443, 448, 450, 477, 478, 480, 483-485]. An alternative is to abandon the normal urinary outlet and opt for Mitrofanoff-vesicostomy, PU (if local perineoscrotal skin is suitable) or permanent suprapubic diversion [478, 485].

Table 6.11: Outcome of different types of ReDo-urethroplasty

<table>
<thead>
<tr>
<th>Study</th>
<th>Type</th>
<th>N</th>
<th>Follow-up (months)</th>
<th>Patency rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhagat et al. [483]</td>
<td>Progressive perineal EPA</td>
<td>28</td>
<td>29 (12-108)</td>
<td>36 (83.72%)</td>
</tr>
<tr>
<td></td>
<td>Transpubic EPA</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubed preputial flap</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staged BMG + local flap</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fu et al. [477]</td>
<td>Progressive perineal EPA</td>
<td>55</td>
<td>36 (18-47)</td>
<td>33 (60%)</td>
</tr>
<tr>
<td>Garg et al. [478]</td>
<td>Progressive perineal EPA</td>
<td>40</td>
<td>31 ± 11</td>
<td>30 (75%)</td>
</tr>
<tr>
<td></td>
<td>Transpubic EPA</td>
<td>2</td>
<td>25</td>
<td>2 (100%)</td>
</tr>
<tr>
<td></td>
<td>Tubed preputial flap</td>
<td>1</td>
<td>25</td>
<td>1 (100%)</td>
</tr>
<tr>
<td></td>
<td>Staged BMG + local flap</td>
<td>2</td>
<td>17</td>
<td>1 (100%)</td>
</tr>
<tr>
<td></td>
<td>Radial forearm free flap</td>
<td>1</td>
<td>15</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Gupta et al. [484]</td>
<td>Progressive perineal EPA</td>
<td>52</td>
<td>54 (10-144)</td>
<td>42 (80.8%)</td>
</tr>
<tr>
<td>Koraitim M. [443]</td>
<td>Progressive perineal EPA</td>
<td>4</td>
<td>168 (12-300)</td>
<td>4 (100%)</td>
</tr>
<tr>
<td></td>
<td>Transpubic EPA</td>
<td>5</td>
<td></td>
<td>5 (100%)</td>
</tr>
<tr>
<td>Kulkarni et al. [480]</td>
<td>Progressive perineal EPA</td>
<td>15</td>
<td>18 (6-24)</td>
<td>14 (93.3%)</td>
</tr>
<tr>
<td>Kulkarni et al. [488]</td>
<td>Progressive perineal EPA</td>
<td>541</td>
<td>68 (12-240)</td>
<td>412 (79.1%)</td>
</tr>
<tr>
<td></td>
<td>Tubed preputial flap</td>
<td>37</td>
<td></td>
<td>30 (81%)</td>
</tr>
<tr>
<td></td>
<td>Staged BMG flap</td>
<td>10</td>
<td></td>
<td>6 (60%)</td>
</tr>
<tr>
<td></td>
<td>Staged BMG + local flap</td>
<td>15</td>
<td></td>
<td>13 (86.6%)</td>
</tr>
<tr>
<td></td>
<td>Entero-urethroplasty</td>
<td>2</td>
<td></td>
<td>2 (100%)</td>
</tr>
<tr>
<td></td>
<td>Radial forearm free flap</td>
<td>3</td>
<td></td>
<td>3 (100%)</td>
</tr>
<tr>
<td></td>
<td>Pedicled anterolateral thigh flap</td>
<td>1</td>
<td></td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Mundy et al. [485]</td>
<td>Entero-urethroplasty</td>
<td>11</td>
<td>NA</td>
<td>7 (63.6%)</td>
</tr>
<tr>
<td>Podesta et al. [465]</td>
<td>Transpubic EPA</td>
<td>4</td>
<td>120 (72-204)</td>
<td>4 (100%)</td>
</tr>
<tr>
<td>Singh et al. [450]</td>
<td>Progressive perineal EPA</td>
<td>8</td>
<td>31 (13-90)</td>
<td>3 (37.5%)</td>
</tr>
<tr>
<td>Singh et al. [463]</td>
<td>Progressive perineal EPA</td>
<td>37</td>
<td>26 (12-42)</td>
<td>32 (86.5%)</td>
</tr>
<tr>
<td>Singla et al. [467]</td>
<td>Progressive perineal EPA</td>
<td>1</td>
<td>NA</td>
<td>1 (100%)</td>
</tr>
<tr>
<td></td>
<td>Tubed preputial flap</td>
<td>2</td>
<td>NA</td>
<td>2 (100%)</td>
</tr>
</tbody>
</table>

BMG = buccal mucosa graft; EPA = excision and primary anastomosis; N = number of patients; NA = not applicable.

Summary of evidence

<table>
<thead>
<tr>
<th>LE</th>
<th>Summary of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The best results are obtained after the 1st urethroplasty.</td>
</tr>
<tr>
<td>3</td>
<td>The overall stricture-free rate after EPA is 85.7%. By using the progressive perineal approach, a combined transpubic abdomino-perineal approach is usually not needed.</td>
</tr>
<tr>
<td>3</td>
<td>After failed endoluminal treatment, EPA is the standard treatment for a non-obliterative stenosis.</td>
</tr>
<tr>
<td>2b</td>
<td>Both a midline and inverted U perineal incision equally gain access to the posterior urethra but a midline incision is associated with less anatomical damage to local vessels and nerves, reduced risk of surgical site infection and hospital stay.</td>
</tr>
</tbody>
</table>
Total pubectomy during transpubic abdomino-perineal reconstruction has a higher complication rate (bleeding, pelvic instability, dead space) compared to partial (superior or inferior) pubectomy with no gain in surgical exposure.

By using the progressive perineal approach, a combined transpubic abdomino-perineal approach is usually not needed except for very long distraction defects and in case of complicated situations, which include associated para-urethral bladder base fistula, trauma-related recto-urethral fistula, and bladder neck injury.

If the urethra cannot be anastomosed in a tension-free fashion or in case of ischaemic narrowing/necrosis of the bulb urethra, options are a tubed preputial island flap, staged buccal mucosa graft urethroplasty with flap, staged buccal mucosa darts flap, radial forearm free flap urethroplasty or entero-urethroplasty.

In case of excessive dead space after resection of the fibrosis, local flaps have been advised to fill up this space and support the anastomosis. These flaps are also useful to separate the suture lines in case of a concomitant recto-urethral fistula.

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform open reconstruction for post-traumatic posterior stenosis only in high-volume centres.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform progressive perineal excision and primary anastomosis (EPA) for obliterative stenosis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform progressive perineal EPA for non-obliterative stenosis after failed endoluminal treatment.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform a midline perineal incision to gain access to the posterior urethra.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not perform total pubectomy during abdomino-perineal reconstruction.</td>
<td>Strong</td>
</tr>
<tr>
<td>Reserve abdomino-perineal reconstruction for complicated situations including very long distraction defect, para-urethral bladder base fistula, trauma-related recto-urethral fistula, and bladder neck injury.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform another urethroplasty after 1st failed urethroplasty in motivated patients not willing to accept palliative endoluminal treatments or urinary diversion.</td>
<td>Weak</td>
</tr>
<tr>
<td>Use a local tissue flap to fill up excessive dead space or after correction of a concomitant recto-urethral fistula.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

7. DISEASE MANAGEMENT IN FEMALES

7.1 Signs and symptoms of female urethral strictures

The symptoms of female urethral strictures are non-specific and therefore generally non-diagnostic. Female urethral stricture presents with mixed filling and voiding symptoms with frequency in 60.2%, urgency in 51%, poor flow in 42%, incomplete emptying in 42%, UI in 36% (stress, urge or mixed), nocturia in 26%, UTI in 20% and straining to void in 16%. It very rarely presents with urethral pain (3%), terminal dribble (1%), haematuria (1%) or renal failure (1%) (see supplementary Table S7.1) [10, 18, 119, 121, 122, 127, 129, 131, 133, 486-489].

There is often a significant delay in diagnosis of FUS from time of development of symptoms with mean delays of 4.3-12 years described (range 1-30 years) [124, 131].

7.2 Diagnosis of female urethral strictures

Twenty-four studies detail investigations leading to a diagnosis of FUS (see supplementary Table S7.2) [8, 10, 119-122, 125-131, 133, 488-497]. In all cases a full history was taken and a detailed pelvic examination was performed to assess for prolapse, masses, scars and vulval dermatological disorders such as LS, lichen planus or vulvo-vaginal atrophy. Flow rate and US PVR assessment was evaluated in eighteen (75%) and seventeen (71%) studies respectively. Lateral VCUG was performed routinely in fifteen studies (63%) and as required in one study (4%). Cystourethroscopy was performed routinely in thirteen studies (54%) and as required in two studies (8%). Urodynamics (UDS) were performed routinely in four studies (17%) and as required in seven studies (30%) whilst video-urodynamics (VUDS) were performed routinely in three studies (13%) and urethral calibration (to < 14 Fr) also in three studies (13%). Pelvic MRI was performed as required in four series (17%) whilst transrectal US (TRUS) and renal US were each performed routinely in two series (8%) and intravenous urography (IVU) in ten (4%).
Flow rate and PVR assessment make inherent sense as initial non-invasive screening tools and allow for simple monitoring of effect of treatment. Voiding cystourethrography and/or VUDS will permit diagnosis of BOO [18, 496], visualisation of ballooning above the proximal end of the FUS [129], and delineation of alternate or co-existent diagnoses such as detrusor overactivity (DO) and SUI [122], although VCUG, VUDS and UDS require the ability to insert a 6 Fr catheter and may not be possible without preliminary urethral dilatation in all cases of FUS [489]. Likewise, passage of a cystourethroscopy will require a preliminary dilatation in the majority of cases even when a paediatric uretero-renoscope is utilised [120]. Cystourethroscopy will allow for formal identification of the distal end of the FUS and will also allow for exclusion of a functional cause of BOO [129]. Magnetic resonance imaging is performed mainly to exclude alternate pathology such as urethral diverticulum and urethral carcinoma and also allows assessment of the degree of urethral fibrosis associated with FUS [489, 498]. Proponents of TRUS utilise it in lieu of MRI and also for visualisation of the dilated urethra above the proximal end of the FUS [499].

7.3 Treatment of female urethral strictures

7.3.1 Minimally invasive techniques for treatment of female urethral strictures

Several minimally invasive treatments have been reported; these include urethrotomy, dilatation, meatotomy and meatoplasty. Meatotomy and meatoplasty are essentially the same procedure in the female urethra and the term ‘meatoplasty’ will be used throughout this document.

7.3.1.1 Urethrotomy for treatment of female urethral strictures

No papers were found detailing the use and outcomes of urethrotomy specifically for the management of FUS. Internal urethrotomy or dilatation was used by Massey and Abrams [500] to treat a variety of pathologies, including FUS, causing symptoms of obstructed voiding, and resulted in symptomatic improvement in 80% of patients. As this study included women with a variety of complaints and did not assess urodynamic parameters, the results in the patient subset with true urethral stricture are unclear. If utilised, urethrotomy in the female urethra involves incisions at three, nine and occasionally twelve o’clock [500].

7.3.1.2 Urethral dilatation for treatment of female urethral strictures

With this treatment, the urethra is dilated to between 30 Fr and 41 Fr. Some patients will continue with ISD. Romman et al. 2012 [488] and Popat & Zimmern [489] also described suture plication of bleeding areas of the meatus if required post-urethral dilatation.

Four studies described the results after 12-59 months follow-up of, in total, 183 patients having dilatation only. Patency rates ranges from 7.5 to 51% (see Table 7.1) [122, 123, 488, 489]. In another four studies that included, in total, 31 patients that continued to perform ISD, stabilisation of the stricture with “patency” was obtained in 37.3-100% of cases at 12-21 months of follow-up (see Table 7.1)[8, 127, 130, 494]. New onset SUI (0.8%) and other complications are very rare after dilation (see supplementary Table S7.3). Due to the low complication rate, the minimally invasive nature of the technique and the reasonable success rate, it is acceptable to start with urethral dilation as a first-line treatment for an uncomplicated FUS.

7.3.1.3 Meatoplasty for treatment of female urethral strictures

Meatal stenosis is extremely rare, with only 2/58 (3%) of females evaluated for voiding dysfunction found to have true meatal stenosis [501]. Only three meatoplasty papers were identified containing 60 patients (see supplementary Table S7.4): one [502] detailed meatoplasty outcomes in a series of 58 girls whilst the 2nd was from a study analysing outcomes of various forms of FUS treatment that included one case of meatoplasty [503], and the third was a case report [127]. The patency rate of meatoplasty in girls is excellent with 97% of the 58 girls in Hesing’s series having a successful outcome with no reported side effects at twelve months. Forty-eight of 50 patients experienced resolution of their recurrent UTIs and improved voiding symptoms one year after meatoplasty [502]. None of these studies reported incontinence or other acute complications. For short meatal strictures, meatoplasty is the first-line treatment option.

7.3.2 Urethroplasty for treatment of female urethral strictures

Twenty-five papers report the outcomes of urethroplasty for FUS disease in 231 patients in total after the scope search of the Panel. The Panel have analysed the outcomes of these urethroplasty according to flap or graft type as: vaginal graft, vaginal flap, labial/vestibular graft, labial/vestibular flap and buccal or lingual graft.

In female urethroplasty, a dorsal approach is via a stricturotomy at twelve o’clock, a ventral approach is via a stricturotomy at six o’clock and circumferential is a full circumference reconstruction.

7.3.2.1 Vaginal graft augmentation urethroplasty for treatment of female urethral strictures

There were four studies reporting vaginal graft urethroplasty including 37 patients [10, 492, 497, 504]. All 37
vaginal graft urethroplasties were performed via a dorsal approach in women with a mean/median age of 47.5-60.6 years (range 35-70). In these studies, patency rates of 73-100% were reported after 22-27 months follow-up (Table 7.1). No complications and no new onset UI were reported.

See supplementary Table S7.5 for further information.

7.3.2.2 Vaginal flap augmentation urethroplasty for treatment of female urethral strictures
Vaginal flap urethroplasty was reported in 70 women and was always via a ventral approach, utilising an inverted U vaginal flap inlay in five studies (n=52) [121, 122, 125, 486, 487], a lateral C vaginal flap in three studies (n=17) [119, 127, 131] and one vaginal island flap in one patient [125]. At a mean/median follow-up time of 30-80.7 months, patency rates of 67-100% were reported (Table 7.1). Eight (11.4%) patients had a simultaneous pubo-vaginal sling (PVS), four (5.7%) had a simultaneous Martius fat pad flap interposition and one (1.4%) had a simultaneous excision of urethral diverticulum. Five (7.1%) patients developed new onset UI, two (2.9%) developed UTIs and two (2.9%) described temporary intravaginal direction of their urinary stream.

See supplementary Table S7.6 for further information.

7.3.2.3 Labial/vestibular graft augmentation urethroplasty for treatment of female urethral strictures
There were four papers detailing the outcomes of 31 patients having labial or vestibular graft urethroplasty (see supplementary Table S7.7); nineteen had ventral labial minora graft [126, 133, 491] and twelve had dorsal labial graft [130]. At a mean follow-up of 15-24 months, patency rates of 75-100% were reported with ventral grafting whilst this was 100% with dorsal grafting at six to fifteen months follow-up (Table 7.1). One (5.2%) ventral graft patient developed a UTI post-surgery. There were no other complications (including UI).

7.3.2.4 Labial/vestibular flap urethroplasty for treatment of female urethral strictures
There were two papers detailing the outcomes of nineteen patients having labial/vestibular flap urethroplasty: two had a ventral labia minora flap [505] and seventeen had a dorsal vestibular flap [11]. At a follow-up of 24 months the two ventral flap patients (100%) remained stricture-free whilst fifteen (88%) dorsal flap patients remained stricture-free at a mean of twelve months follow-up (Table 7.1 and supplementary Table S7.8). There were no adverse short- or long-term effects reported in either group.

7.3.2.5 Buccal and lingual mucosal graft augmentation urethroplasty for treatment of female urethral strictures
There were twelve papers detailing the outcomes of 73 patients, all treated with BMG except in the series of Sharma et al. who used lingual mucosa graft (LMG) in fifteen patients at the dorsal urethra [120]; 44 patients with dorsal onlay oral (buccal or lingual) mucosa graft (DOOMG) [120-122, 125, 128, 496, 496, 504, 506]; 27 with ventral onlay BMG (VOBMG) [121, 129, 507, 508] and two with circumferential BMG urethroplasty [121]. At a mean/median follow-up of 6-28 months, 62.5-100% of DOOMG urethroplasty patients were stricture-free whilst 50-100% of VOBMG patients were stricture-free at a mean of 10-24 months follow-up. Both circumferential BMG patients were stricture-free at a mean of 21 months follow-up (Table 7.1). Seven (15.9%) DOOMG patients suffered a low-grade short-term adverse effect and no patients in any subgroup developed sustained new onset UI.

For further information see supplementary Tables S7.9, S7.10 and S7.11.

7.3.2.6 Anastomotic urethroplasty
Anastomotic urethroplasty has only been described in two cases in the literature – both in women with very short mid-urethral stricture and both of whom were stricture-free at four and 24-months follow-up respectively. None of them suffered from UI post-operatively [121, 493] (see supplementary Table S7.12).
Table 7.1: Summary of available evidence on treatment of female urethral strictures

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of studies</th>
<th>N</th>
<th>Patency rate (%)</th>
<th>UI (%)</th>
<th>Mean/Median FU Months</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urethral Dilatation</td>
<td>4</td>
<td>183</td>
<td>7.5-51</td>
<td>0</td>
<td>12-59</td>
<td>[122, 123, 488, 489]</td>
</tr>
<tr>
<td>Urethral Dilatation + ISD/planned repeat dilatation</td>
<td>4</td>
<td>31</td>
<td>37.3-100*</td>
<td>1.9</td>
<td>12-21</td>
<td>[8, 127, 130, 494]</td>
</tr>
<tr>
<td>Dorsal Vaginal graft urethroplasty</td>
<td>4</td>
<td>37</td>
<td>73-100</td>
<td>0</td>
<td>22.4-27</td>
<td>[10, 492, 497, 504]</td>
</tr>
<tr>
<td>Ventral Vaginal flap urethroplasty</td>
<td>8</td>
<td>70</td>
<td>67-100</td>
<td>7</td>
<td>30-80.7</td>
<td>[119, 121, 122, 125, 127, 131, 486, 487]</td>
</tr>
<tr>
<td>Ventral Labial/Vestibular graft urethroplasty</td>
<td>3</td>
<td>37</td>
<td>75-100</td>
<td>0</td>
<td>15-24</td>
<td>[126, 133, 491]</td>
</tr>
<tr>
<td>Dorsal Labial/Vestibular graft urethroplasty</td>
<td>1</td>
<td>12</td>
<td>100</td>
<td>0</td>
<td>6-15</td>
<td>[130]</td>
</tr>
<tr>
<td>Ventral Labial/Vestibular flap urethroplasty</td>
<td>1</td>
<td>2</td>
<td>100</td>
<td>0</td>
<td>24</td>
<td>[505]</td>
</tr>
<tr>
<td>Dorsal BMG urethroplasty</td>
<td>1</td>
<td>15</td>
<td>88</td>
<td>0</td>
<td>12</td>
<td>[11]</td>
</tr>
<tr>
<td>Dorsal BMG urethroplasty</td>
<td>9</td>
<td>44</td>
<td>62.5-100</td>
<td>0</td>
<td>6-28</td>
<td>[120-122, 125, 128, 490, 496, 504, 506]</td>
</tr>
<tr>
<td>Ventral BMG urethroplasty</td>
<td>4</td>
<td>27</td>
<td>50-100</td>
<td>0</td>
<td>10-24</td>
<td>[121, 129, 507, 508]</td>
</tr>
</tbody>
</table>

FU = follow-up; ISD = intermittent self-dilatation; N = number of patients; UI= urinary incontinence.

Summary of evidence

Female urethral stricture symptoms are long standing and non-specific, the most commonly reported are frequency, urgency, poor flow, incomplete emptying and urinary incontinence. It is important to exclude FUS in female patients with LUTS.

Urethral dilatation alone to 30-41 Fr provides low stricture-free rates of mean 35% at mean follow-up 36.3 months.

Urethral dilatation and ISC or planned repeat dilatation provides stricture-free rates of 75%.

Urethroplasty provides stricture-free rates of 81-92%. No one particular type of urethroplasty is superior to another.

Meatotomy/meatoplasty for short meatal strictures has a success rate of 95% at twelve months follow-up.

Recommendations

- Perform flow rate, post-void residual and voiding cystourethrogram or video-urodynamics in all women with refractory lower urinary tract symptoms. **Strong**
- Perform urethral dilatation to 30-41 Fr as initial treatment of female urethral stricture (FUS). **Weak**
- Perform repeat urethral dilatation and start planned weekly intermittent self-dilatation (ISD) with a 16-18 Fr catheter for the 1st recurrence of FUS. **Weak**
- Perform urethroplasty in women with a 2nd recurrence of FUS and who cannot perform ISD or wish definitive treatment. The technique for urethroplasty should be determined by the surgeon’s experience, availability and quality of graft/flap material and quality of the ventral versus dorsal urethra. **Strong**
- Treat meatal strictures by meatotomy/meatoplasty. **Weak**
8. DISEASE MANAGEMENT IN TRANSGENDER PATIENTS

8.1 Treatment of strictures in trans men

In trans men, stricture treatment depends on the time after neophallic reconstruction, stricture location, stricture length and quality of local tissues [509].

8.1.1 Management of strictures early after neophallic reconstruction

Urethral surgery on tissues in the acute phase of inflammation and wound healing is not indicated and should be postponed until any healing problems of the neophallus have been resolved and scar tissue formation in the urethra has been stabilised. This usually takes six months [27, 140]. Endoscopic incision for short (< 3 cm)
urethral strictures has been performed, mainly at the anastomotic site, with a maximum stricture-free rate of only 16.7% when performed within six months after neophallic reconstruction [510]. Insertion of a suprapubic catheter is the first-line treatment in cases of obstructive symptoms severely affecting the patient's QoL, recurrent UTI or retention. The alternative is perineostomy, which is a specialist procedure and should be performed by a urologist familiar with transgender urethral anatomy. The perineostomy may be closed at the time of formal urethral reconstruction [140].

8.1.2 Treatment of meatal stenosis in trans men
Intermittent urethral dilatation is an option, as palliative treatment, for low-grade meatal stenosis with the interval of dilatation depending on the interval of stricture recurrence. Patients with high-grade meatal stenosis, those who refuse ISD, or those who want a durable solution should be offered simple meatotomy. Patency is 75% (mean follow-up 39 months) but the drawback is that the meatus will be in a hypospadiac position [140]. Alternatively, a staged urethroplasty can be offered [140].

8.1.3 Treatment of strictures at the neophallic urethra
Endoscopic incision of a short stricture at the neophallic urethra has been reported but evidence is very scarce and the long-term results seem to be disappointing (34% patency rate after median follow-up of 51 months) [510].

Single-stage graft urethroplasty is only possible if the graft can be supported and covered by the healthy surrounding fatty tissue of the neophallus. Experience is very limited and reported patency rate is 50% after a mean follow-up of 102 months [140].

The standard treatment for these strictures is staged urethroplasty with or without graft augmentation [140, 509] (BMG or full thickness SG) [27, 140]. A patency rate of 69.7% has been described with these techniques (mean follow-up: 25 months) [140].

For complex (e.g., fully obliterated) or recurrent strictures at the neophallic urethra, a complete urethral substitution of this part needs to be performed. Different suitable flaps have been described (radial forearm free flap, superficial circumflex iliac artery free flap, pedicled groin flap). Double-face grafts with the ventral graft supported by rotating a part of the neoscrotum or by a gracilis flap have been successfully reported in a very limited number of patients [509].

8.1.4 Treatment of strictures at the anastomosis neophallic urethra-fixed part of the urethra
Short, non-obliterative, strictures can be treated by endoscopic incision. A first endoscopic incision has a 45.5% patency rate but this dropped to 0% in case of three or more attempts (median follow-up of 51 months) [510]. Therefore, repetitive endoscopic incisions should be discouraged unless with palliative intent.

For very short (< 1 cm) low-grade strictures, Heineke-Mikulicz urethroplasty is an option reporting a 57.9% patency rate after a mean follow-up of 44 months [140].

If endoscopic incision fails or if the stricture is nearly or completely obliterator, options are EPA or graft augmentation urethroplasty. In case of short (< 2-3 cm) strictures, EPA yields a 57.1% patency rate (mean follow-up of 35 months) [27, 140]. If EPA is not possible, usually for strictures longer than 2 cm, a ventral onlay BMG urethroplasty demonstrated a 50% patency rate (median follow-up of 9.5 months) [511]. In case of insufficient ventral tissue during graft urethroplasty, it is advised to support this graft by a local fasciocutaneous flap [512]. An alternative (especially after failure of the previous techniques) can be a staged approach but no data are currently available [511].

8.1.5 Treatment of strictures at the fixed part of the urethra
This part of the urethra has a more reliable blood supply and the dorsal part of the urethra is supported by the corporal bodies of the clitoris. Therefore, single-stage dorsal inlay graft urethroplasty is possible for strictures at this site. Experience however is very limited [140, 509].

Staged repair with or without a dorsal graft is a reliable treatment for these rare strictures [140].

8.1.6 Definitive perineostomy in trans men
The vast majority of trans men have a strong desire to void in a standing position [509]. Therefore, definitive perineostomy should only be offered to those with refractory strictures or to patients with strictures who do not wish to have complex reconstructive surgery [27, 140].
8.2 Peri-operative care after treatment of strictures in trans men
Anecdotally, after endoscopic incision and urethroplasty, the urethral catheter is maintained for two to three weeks [510, 511]. Peri-catheter urethrography is advised before catheter removal as it might be challenging to reinsert the urethral catheter in case of urinary extravasation [511].

8.3 Strictures in trans women
It is acceptable to start with dilation of a short and non-obliterative stricture in trans women although no long-term data about the effectiveness are available [28, 513]. If this is not possible or if it fails, a short (< 1 cm) meatal stricture can be treated by Y-V meatoplasty with an 85% stricture-free rate [514]. Somewhat longer (1-2 cm) meatal strictures can be treated by a neovaginal advancement flap (inverted U or “7-flap”) with no recurrence observed after 37 months median follow-up [515].

Summary of evidence LE

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>After neophallic reconstruction, local tissues go through the different stages of wound healing and stable wound healing is usually achieved after six months.</td>
<td>3</td>
</tr>
<tr>
<td>After two attempts, endoscopic incision is no longer successful in trans men.</td>
<td>3</td>
</tr>
<tr>
<td>Two-stage urethroplasty for strictures at the neophallic urethra has a stricture-free rate of 69.7%.</td>
<td>3</td>
</tr>
<tr>
<td>Y-V meatoplasty for short (< 1 cm) meatal stenosis in trans women has a stricture-free rate of 85%.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not perform endoscopic incision or urethroplasty within six months after neophalloplasty.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not perform more than two endoscopic incisions for strictures in trans men unless with palliative intent.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform staged urethroplasty for strictures at the neophallic urethra if open reconstruction is indicated.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform Y-V meatoplasty for short (< 1 cm) meatal stenosis in trans women if open reconstruction is indicated.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

9. TISSUE TRANSFER

9.1 Comparison of grafts with flaps
One small RCT (LS excluded) comparing OMG with PSF found no significant difference in urethral patency rate [516]. Penile skin flaps had a higher urogenital morbidity (superficial penile skin necrosis, penile torsion, penile hypoesthesia and post-void dribbling) and longer operation time compared to OMG. Furthermore, patient dissatisfaction was significantly higher with penile flaps [516]. Another small RCT (LS excluded) comparing penile skin grafts with PSF confirmed these findings with longer operation time and more superficial penile skin necrosis in the group of the flaps whereas the urethral patency rate was similar between both groups [359]. Several retrospective series also found a comparable urethral patency rate between PSF and grafts [268, 270, 275, 517] (Table 9.1).

Table 9.1: Comparative studies of grafts versus flaps used in urethroplasty for anterior urethral strictures

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>Follow-up (mo.)</th>
<th>Flap Type</th>
<th>Urethral patency</th>
<th>Graft type</th>
<th>Urethral patency</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbagli et al. [268]</td>
<td>Retrospective</td>
<td>55</td>
<td>LIF 12/18 (67%)</td>
<td>OMG/PSG 36/45 (80%)</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubey et al. [516]</td>
<td>RCT 22-24</td>
<td>LIF 22/26 (84.6%)</td>
<td>BMG 24/27 (88.9%)</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fu et al. [270]</td>
<td>Retrospective >12</td>
<td>All types 166/199 (83.4%)</td>
<td>LMG 80/94 (85.1%)</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hussein et al. [359]</td>
<td>RCT 36</td>
<td>TIF 15/19 (78.9%)</td>
<td>PSG 13/18 (72.2%)</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumen et al. [275]</td>
<td>Retrospective 42-43</td>
<td>All types 23/29 (79.3%)</td>
<td>OMG/PSG 63/75 (84%)</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Due to their robust vascular pedicle, flaps can be used as a tube as well as a patch in a single-stage approach [448]. Castagnetti et al. showed that grafts used as a tube have significantly higher complication rates as compared to onlay grafts (OR: 5.86; 95% CI: 1.5-23.4) [518]. A review by Patterson et al. also reported high (circa 50%) complication and recurrence rates for tubularised grafts [519]. Iqbal et al. have shown an encouraging 87% stricture-free rate in 23 patients who were offered single-stage circumferential skin flap urethroplasty [279]. Therefore, if there is a need to reconstruct a complete urethral segment with a tissue-transfer tube in a one-stage operation, flaps are usually the preferred option. As flaps carry their own vascular supply to the reconstruction site, they do not rely on the local vascularisation of the recipient site. Therefore, they need to be considered in case of poor urethral vascularisation (e.g., after irradiation or dense scarring after previous urethroplasty) [275, 520]. In addition, flaps survive well in the presence of active urinary infection [521].

Grafts and flaps should not be considered competitors in urethral surgery. A combination of a flap with a graft is possible for complex, multifocal or penobulbar strictures [275, 522, 523].

Summary of evidence LE

Flaps have a higher urogenital morbidity, but a comparable patency rate compared to grafts. 1b

Grafts have a significantly higher complication rate compared to flaps when complete tubularisation in a single-stage approach is needed. 1b

Flaps do not rely on the local vascularisation of the recipient site. 3

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a graft above a flap when both options are equally indicated.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use grafts in a tubularised fashion in a single-stage approach.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use flaps in case of poor vascularisation of the urethral bed.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

9.2 Comparison of different types of flaps

Different local flaps have been described. Penile skin flaps are generally hairless, although the ventral penile skin can be hair-bearing around the raphe in some ethnic groups/phenotypes. They can be harvested as a transverse preputial skin flap [524], a transverse distal PSF [362, 521, 525, 526] or as a longitudinal island flap [527]. Urethral patency rates vary between 74.2 and 100% [270, 362, 521, 524-527]. Complications include skin necrosis (0-3.8%), fistula (0-7%), penile deformity (0-7%), post-void dribbling (0-79%) and sacculation (0-16.5%) (see supplementary Table S9.1). As there are no direct comparative series available about these flaps it is not possible to determine which performs better.

Hair-bearing perineal and scrotal flaps have been described as well. Fu et al. demonstrated that PSF had a significantly better urethral patency rate compared to scrotal and perineal skin flaps (respectively 87.7%, 69% and 66.7%) [270]. The hair-bearing perineal and scrotal skin flaps are associated with hairball formation and chronic infection which may cause failure of the repair. A study of Blandy with long-term follow-up reports 3% revision for calculi and 3% revision for diverticula [528].

An alternative is to epilate the needed scrotal skin prior to tissue transfer [529, 530] or to patch an OMG to the underlying dartos tissue of the scrotum after incision of the scrotal skin and use this patch as a flap in a second attempt [448].

Summary of evidence LE

Hair-bearing flaps have a lower urethral patency rate compared to non-hair-bearing flaps. 3

Recommendation

| Do not use hair-bearing perineal or scrotal flaps unless no other option is feasible. | Strong |
Comparison of different types of grafts

Buccal mucosa is at present the most commonly used graft. Urethral patency rates of buccal mucosa vary between 75.6% and 91.7% with 16-75 months of follow-up (see supplementary Table S9.2) [531-537].

Penile skin is another popular graft, especially in uncircumcised men where the foreskin is an abundant source of graft material.

In case of LS, Trivedi et al. demonstrated a significantly higher urethral patency rate when using non-genital mucosal grafts for reconstruction (82.6%) compared to genital skin grafts (4%) [538]; therefore, the use of genital skin in LS cases is not indicated.

There is no RCT comparing buccal mucosa with penile skin. A secondary analysis of a meta-analysis comparing dorsal with ventral onlay graft urethroplasty found a superior urethral patency rate for buccal mucosa compared to penile skin (88.1% vs. 79%; p < 0.001). In this secondary analysis, no data were available about the stricture aetiology, stricture length, follow-up duration or other potential confounders between both groups [539]. A pooled analysis of non-RCTs comparing buccal mucosa (n=483) with penile skin (n=428) found a better urethral patency rate for buccal mucosa (respectively 85.9% vs. 81.8%). However, the results might be biased because of the longer follow-up time and longer stricture length in the penile skin group [540]. Lengthy skin grafts (up to 20 cm) can be taken from the foreskin in a spiral fashion which is clearly more difficult with oral mucosa grafts.

The main disadvantage of BMG harvesting is the oral morbidity and because of this morbidity, lingual mucosa has been proposed as an alternative. A systematic review and meta-analysis of comparative studies comparing LMG with BMG (four prospective, two retrospective studies) showed no significant differences in urethral patency rate and overall long-term complication rate [541-543]. These studies revealed that LMG was associated with more difficulties in eating/drinking, speaking, tongue protrusion and dysgeusia [541, 542]. In 13.8-20%, speaking problems remained after six months [541, 542]. A retrospective study of Xu et al. reported difficulties in tongue movements, numbness over the donor site and speaking difficulties in 6.2%, 4.9% and 2.5% of patients, respectively after twelve months [298]. On the other hand, BMG harvesting provoked more oral tightness which was present in up to 24% of patients after six months [541, 542]. Chauhan et al. showed that immediate and early donor site complications were more common in the BMG group, except for bleeding being more common in the LMG group. Numbness (61%), difficulty in chewing (54%), swelling (48%) and articulation (40%) were the most common problems during the first week. Late donor site complications were rare [544]. Pal et al. describes more short-term complications (difficulty in tongue movement and slurring of speech) in the LMG group, compared to the BMG group. Long-term complications (after three months) at the donor site (persistent pain, perioral numbness, tightness of mouth, salivary disturbance, scarring of the cheeks) were only seen in the BMG group [545]. For long strictures, buccal mucosa can be combined with lingual mucosa [298].

The use of lower lip mucosa was described, especially when smaller grafts are needed, and has similar qualities to lingual mucosa. However, a narrative review based on the experience from retrospective series showed that these grafts have a higher post-operative donor site morbidity and can lead to permanent sequelae (persistent discomfort, neurosensory deficits, salivary flow changes and important aesthetic changes) at the donor site, which have not been described with lingual mucosa [546].

Beyond the oral mucosa and penile skin graft, a multitude of other autologous grafts have been described. These include: postauricular skin [523, 547], abdominal skin [364], split-thickness mesh graft from the thigh [348], inguinal skin [297] and colonic mucosa [548] (Table 9.2). Manoj et al. only used the postauricular skin when both genital skin and oral mucosa were not usable [547]. Marchal et al. used postauricular skin in addition to oral mucosa to reconstruct lengthy strictures [523]. Meeks et al. reported the use of abdominal skin graft mainly in patients with lengthy strictures where OMG harvesting would be insufficient, in case of prior OMG urethroplasty or if OMG was refused by the patient [364]. Pfalzgraf et al. reported a comparable urethral patency rate for split-thickness mesh graft and BMG (respectively 84 and 83%), but more penile deviation (9% vs. 0%) and lower satisfaction (83.3 vs. 96.7%) with split-thickness mesh graft [348]. Xu et al. used colonic mucosa for lengthy (> 10 cm) strictures. Urethral patency rate was 85.7% but graft harvest requires an abdominal procedure and 1/35 (2.9%) patient developed a colonic-abdominal fistula [548]. Due to the limited experience with grafts other than oral mucosa and penile skin, they should only be considered if oral mucosa and penile skin are not available, indicated or desired.
Table 9.2: Outcome of case series of other autologous grafts

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of graft</th>
<th>N</th>
<th>Follow-up (months)</th>
<th>Stricture length (cm)</th>
<th>Urethral patency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastian et al. 2012 [297]</td>
<td>Inguinal skin</td>
<td>34</td>
<td>70 (3-86)</td>
<td>8 (1.5-14)</td>
<td>91</td>
</tr>
<tr>
<td>Manoj et al. 2009 [547]</td>
<td>Postauricular skin</td>
<td>35</td>
<td>22 (3-48)</td>
<td>8.9 (3-15)</td>
<td>89</td>
</tr>
<tr>
<td>Meeks et al. 2010 [364]</td>
<td>Abdominal wall skin</td>
<td>21</td>
<td>28 (11-52)</td>
<td>11 (4-24)</td>
<td>81</td>
</tr>
<tr>
<td>Pfalzgraf et al. 2010 [348]</td>
<td>Split thickness skin graft</td>
<td>57/68</td>
<td>32</td>
<td>NR</td>
<td>84</td>
</tr>
<tr>
<td>Xu et al. 2009 [548]</td>
<td>Colonic mucosa</td>
<td>35</td>
<td>53.6 (26-94)</td>
<td>15.1 (10-20)</td>
<td>85.7</td>
</tr>
</tbody>
</table>

N = number of patients; NR = not reported.

Summary of evidence

Patency rates of buccal mucosa and lingual mucosa are comparable. 1a
Different types of oral grafts have different types of oral morbidity and some of the oral complications might last in the long-term. 1a
Patency rates with penile skin grafts are 79-81.8% versus 85.9-88.1% with buccal mucosa. 3
In LS related strictures, the use of genital skin graft is associated with poor patency rates (4%). 3

Recommendations

Use buccal or lingual mucosa if a graft is needed and these grafts are available. Weak
Inform the patient about the potential complications of the different types of oral grafting (buccal versus lingual versus lower lip) when an oral graft is proposed. Strong
Use penile skin if buccal/lingual mucosa is not available, suitable or accepted by the patient for reconstruction. Weak
Do not use genital skin graft in case of lichen sclerosus. Strong

9.4 Tissue engineered grafts

9.4.1 Cell-free tissue engineered grafts

These grafts are derived from cadaveric or animal sources (e.g., porcine small intestine submucosa (SIS), acellular bladder matrix, acellular dermal matrix), are completely cell-free and serve as a scaffold for host cell ingrowth [549]. The main advantage suggested for their use is the off shelf availability [549].

A small RCT (n=30) comparing acellular bladder matrix with BMG reported a urethral patency rate of respectively 66.6% and 100%. The poorer results of acellular bladder matrix were the most apparent in cases of an unhealthy urethral bed [550]. Palminteri et al. reported a global urethral patency rate with SIS graft in 19/25 (76%) cases [551]. In this series SIS graft urethroplasty failed in all cases with a stricture length > 4 cm [551]. On the other hand, Xu et al. reported adequate urethral patency in 26/28 patients (92.8%) after a median follow-up of 25 months. Of note, only one patient in this series underwent previous urethroplasty suggesting only minor spongiosis in the remaining patients [552]. Other series have included only a limited number of patients with short follow-up. In these series, urethral patency rates vary between 20 and 100% [549].

Summary of evidence

Patency rate of cell-free tissue engineered grafts decreases with large stricture length and unhealthy urethral bed. 1b

Recommendation

Do not use cell-free tissue engineered grafts in case of extensive spongiosis, after failed previous urethroplasty or stricture length > 4 cm. Weak

9.4.2 Autologous tissue engineered oral mucosa grafts

These grafts contain a matrix seeded with autologous oral mucosa cells. Production requires a small oral mucosa biopsy (8 0.5 cm²) and the graft is further manufactured in the lab. The main advantage suggested is the reduction of oral donor site morbidity whereas the main disadvantages are costs and the strict time frame between manufacturing and implantation of the graft [549].
The clinical use of autologous tissue-engineered OMG was evaluated in a prospective, multicentre study including 99 patients [553]. Estimated 12- and 24-months urethral patency rate was 67.3 and 58.2%, respectively. Oral adverse events were minimal. No comparative studies with acellular grafts or native OMGs are available nor are there any data about the cost-effectiveness [549].

Summary of evidence

| Safety, patency rate and cost-effectiveness of autologous tissue-engineered grafts is currently under research. |
|---------------|-----------------------------|
| LE | 3 |

Recommendation

| Do not use autologous tissue-engineered oral mucosa grafts outside the frame of a clinical trial. |
|---------------|-----------------------------|
| Strength rating | Strong |

9.5 Management of oral cavity after buccal mucosa harvesting

The post-operative morbidity of closure vs. non-closure of the buccal mucosa harvesting site has been evaluated by a number of prospective RCTs.

The results are summarised in Table 9.3. Based on these findings, no clear recommendation can be provided whether or not to close the harvesting site and the decision can be left to the treating physician.

Oral rinsing with chamomile [554] or chlorhexidine [542, 555] solution has been suggested in the first post-operative days without any evidence that this reduces pain or other oral complications.

Table 9.3: Effect of non-closure compared to closure on oral morbidity after buccal mucosa harvesting

<table>
<thead>
<tr>
<th>Study</th>
<th>Early oral pain</th>
<th>Eating/ drinking problems</th>
<th>Altered taste</th>
<th>Altered salivation</th>
<th>Oral tightness</th>
<th>Perioral numbness</th>
<th>Oral bleeding</th>
<th>Slurred speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soave et al. [554]</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Rourke et al. [556]</td>
<td>=</td>
<td>↓</td>
<td>NR</td>
<td>NR</td>
<td>↓</td>
<td>↓</td>
<td>=</td>
<td>NR</td>
</tr>
<tr>
<td>Muruganandam et al. [557]</td>
<td>↓</td>
<td>=</td>
<td>NR</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Wong et al. [555]</td>
<td>=</td>
<td>↑</td>
<td>NR</td>
<td>NR</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>NR</td>
</tr>
<tr>
<td>Lumen et al. [542]</td>
<td>↑</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

↓ = less morbidity with non-closure; ↑ = more morbidity with non-closure; = = no significant difference; NR = not reported

10. PERI-OPERATIVE CARE OF URETHRAL SURGERY

10.1 Urethral rest

After any form of urethral manipulation (urethral catheter, ISD, dilatation, DVIU), a period of urethral rest is necessary in order to allow tissue recovery and stricture “maturation” before considering urethroplasty. This improves the ability to identify the true extent of the fibrotic segments during subsequent surgery. If the patient develops incapacitating obstructive symptoms or urinary retention, a suprapubic catheter should be inserted. Terlecki et al. propose diagnostic evaluation after two months and urethroplasty after three months of urethral rest. These timings are based on the general principles of wound healing [558]. In their study, it has been shown that these periods allow for reliable stricture evaluation during urethrography which is, in turn, important to ensure selection of the most appropriate urethroplasty technique [558]. Utilising this strategy, similar outcomes were obtained compared to patients with stable previously unmanipulated strictures [558]. However, the optimal duration of urethral rest for all patients is not known and the degree of associated infection and inflammation should be taken into account as well with longer periods of rest in those with greater degrees of infection and inflammation.
After any form of urethral manipulation, a minimum period of three months urethral rest is necessary to allow for tissue healing before performing urethroplasty.

Recommendation

Do not perform urethroplasty within three months of any form of urethral manipulation.

Strength rating

Weak

10.2 Antibiotics

Post-operative wound infection and UTI are common post-operative complications and infection at the site of reconstruction may contribute to failure of urethroplasty. The vast majority of reconstructive urologists perform urine culture one to two weeks prior to surgery [559]. Urine culture is superior to urine-analysis which can be omitted in the pre-operative evaluation [559]. If infection or colonisation is present, a therapeutic course with antibiotics is recommended pre-operatively. In case of an indwelling catheter general principles would suggest at least an attempt to suppress the colonisation with pre-operative antibiotics [559]. These practices are in accordance to the strong recommendations of the EAU Guidelines on Urological Infections:

- “Screen for and treat asymptomatic bacteriuria prior to urological procedures breaching the mucosa.”
- “Treat catheter-associated asymptomatic bacteriuria prior to traumatic urinary tract interventions.”

An intra-operative prophylactic regimen with antibiotics (according to local antibiotic resistance profiles) is effective in reducing the rate of post-operative surgical site and UTIs [559]. Although most urologists continue with post-operative antibiotics upon and even beyond catheter removal, there is no evidence that such a prolonged administration would reduce the infective complication rate [559]. The EAU guidelines on urological infections do not routinely recommend the use of antibiotic prophylaxis to prevent clinical UTI after urethral catheter removal. There is no evidence that this recommendation would not apply to catheter removal after urethral surgery.

Summary of evidence

An intra-operative prophylactic regimen with antibiotics is effective in reducing the rate of post-operative surgical site and urinary tract infections.

Strength rating

Strong

10.3 Catheter management

After uncomplicated DVIU, there is no advantage in maintaining the catheter for a prolonged period and it should be removed within 72 hours [560].

After one-stage urethroplasty and closure of the urethral plate after staged urethroplasty, urinary extravasation at the site of reconstruction must be avoided [561]. For this purpose, urinary diversion by either transurethral catheter or suprapubic catheter with urethral stent can be used. With respect to the type of catheter material, a prospective randomised (but underpowered) trial comparing silicone vs. hydrogel coated latex transurethral catheters showed no significant difference in the time to stricture recurrence nor in the overall recurrence rate [561]. The size of the urethral catheter utilised usually varies between 14 Fr and 20 Fr [562, 563]. Systematic use of anticholinergic drugs has not shown a significant reduction in the rate of involuntary pericatheter voiding whilst catheterised [564].

After urethroplasty an indwelling catheter is commonly left in situ for two to three weeks [563, 565]. After three weeks of urethral catheterisation, an extravasation rate of 2.2%-11.5% at urethrography has been reported after different types of urethroplasty [565-568]. However, success with early catheter removal under three weeks has also been reported. A study after EPA for non-complicated anterior strictures demonstrated no significant difference in extravasation (6.8 vs. 4.5%) and recurrence rates (4.9 vs. 5.2%) between catheter removal at one or two weeks respectively [569]. Poelaert et al. reported an extravasation rate of 3.5% vs. 8.3%, when the catheter was removed ≤ 10 days or > 10 days respectively after all types of urethroplasty (n=219) (p=0.158) [562]. Importantly, patients who had a duration of catheterisation of > 10 days had longer and more complex strictures [562].
Prior to catheter removal after urethroplasty, it is important to assess for urinary extravasation to avoid ensuing complications including peri-urethral inflammation, abscess formation and fistulation. Importantly, some authors have identified urinary extravasation as a predictive factor for stricture recurrence. Other series, however, could not confirm the prognostic significance of urinary extravasation but they included any form of extravasation (including minor leaks). Grossgold et al. found that high-grade leaks (defined as length ≥ 1.03 cm and width ≥ 0.32 cm) were significantly associated with higher restructure rates. This study also found length of extravasation ≥ 1.03 cm alone to be an independent predictor of restructure. In cases of persistent and significant urinary extravasation, the catheter should be maintained or reinserted and the examination repeated after one week. However, low-grade ("wisp-like") extravasation does not appear to affect long-term restructure rate and the catheter can be removed in these cases without subsequent urethrogram. In case of any doubt about the significance of extravasation, it is safe to keep the catheter in for an additional week and repeat the assessment.

The assessment of urinary extravasation is achieved by either pericatheter retrograde urethrography (pcRUG), classic RUG or VCUG. Voiding cystourethrography (after catheter removal) is the most physiologic examination as it shows the urethra under normal intra-urethral pressures and using this test residual urethral narrowing is most accurately identified. This has been found to be a strong prognostic factor for failure in a series evaluating bulbar FGU. In contrast, pcRUG is associated with supraphysiological intra-urethral pressures and a potentially higher chance of false positive results. Although there is no evidence that one imaging modality is superior to the other, pcRUG should be performed if there is a high-risk of leakage as it avoids the need for catheter reinsertion through a recently reconstructed urethra in case of a positive exam. High risk of leakage depends on the complexity of urethroplasty (e.g., stricture length > 10 cm, panurethral repair). External clinical signs of impaired wound healing (e.g., abscess formation, wound dehiscence) are also associated with a high risk (71.4%) of leakage. In cases of attempted VCUG where the patient is not able to void during fluoroscopy after catheter removal, RUG should be performed.

Although limited evidence for urethroplasty care in trans men exists, one study advised a three week period of transurethral catheterisation with pcRUG upon catheter removal.

After perineostomy or the 1st stage of staged urethroplasty, the catheter can be removed without need for urethrography after three to five days.

Summary of evidence

Prior to catheter removal after urethroplasty, it is important to assess for urinary extravasation with urethrography to avoid ensuing complications including peri-urethral inflammation, abscess formation and fistulation.	LE 2b
After uncomplicated DVIU, there is no advantage in maintaining the catheter for a prolonged period.	3
Early catheter removal may be appropriate for a subset of patients with short, uncomplicated, strictures.	3

Recommendations

Perform a form of validated urethrography after urethroplasty to assess for urinary extravasation prior to catheter removal.	Strong
Remove the catheter within 72 hours after uncomplicated direct vision internal urethrotomy or urethral dilatation.	Weak
Consider 1st urethrography seven to ten days after uncomplicated urethroplasty to assess whether catheter removal is possible, especially in patients with bother from their urethral catheter.	Weak

11. FOLLOW-UP

11.1 Rationale for follow-up after urethral surgery

The rationale for follow-up patients after urethral stricture surgery is to detect and manage any complication or recurrence. As with any surgical procedure, following urethroplasty some patients will present with complications at short to medium follow-up: approximately 38% with bulbar urethroplasties and up to 54% for all anterior urethroplasties. Most of these complications (92%) would be classified as Clavien
grade 1 or 2 [318]. Even though urethroplasty techniques provide the highest chances for successful treatment of urethral strictures, some patients will experience recurrence [322]. For further details on particular outcomes in each urethral segment, please review the individual chapters of this Guideline.

Summary of evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>After urethroplasty surgery, recurrent strictures appear with different frequency depending on stricture features and urethroplasty techniques.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer follow-up to all patients after urethroplasty surgery.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

11.2 Definition of success after urethroplasty surgery

The “traditional academic” definition of post-operative success after urethroplasty has been considered as “The lack of any post-operative intervention for re-streiction” [572]. This definition, despite being widely used [302, 318] is problematic as it ignores asymptomatic or even symptomatic recurrences in patients not willing to undergo further surgeries [572]. There is some variation as to what is considered intervention with some groups accepting endoscopic treatments as success, while considering failure only as the requirement for a ReDo urethroplasty [303].

A more objective definition of success is the “anatomic success”, defined as “Normal urethral lumen during RUG or cystoscopy, regardless of patient symptoms”. Using this definition, stricture recurrence or anatomical failure is considered by some groups as urethral narrowing found to be endoscopically impassable – without force – with a 16 Fr flexible endoscope [138, 573]. This definition is certainly more strict, with up to 35% of cystoscopic recurrences after bulbar urethroplasty remaining asymptomatic, and thus would have been considered as successful if a “lack of further intervention” definition was used [138]. Other groups consider cystoscopic recurrence as any stricture that is visible on post-operative cystoscopy, even the so-called “large-calibre re-strictures” (> 17 Fr) [136]. Not all anatomic recurrent strictures would need further treatment [572]. It was suggested to intervene when the anatomic recurrence is associated with recurrence of symptoms, structure-related high post-void residuals or a stricture calibre of < 14 Fr – even if these are asymptomatic [572].

Over the last ten years, the evaluation of urethral surgery outcomes has shifted towards a “patient-reported definition of success”. The aim of any urethral intervention is to allow patients to return to a normal state of voiding while maintaining QoL [574] or to minimise symptoms, reduce disability, and improve HRQoL by restoring normal urinary function [575]. Even if the surgeon reconstructed a wide and patent urethra, if patients experience pain, sexual dysfunction or perceive their urinary function as not improved, they will not rate their outcome as successful [572]. On a multivariate analysis including both patient-reported and clinical parameters, urine flowmetry parameters failed to demonstrate significant contribution to satisfaction [576]. Kessler et al. reported that only 78.3% of patients with clinical success described themselves as (very) satisfied. More dissatisfaction significantly appeared with penile curvature, penile shortening, worsening of erectile function and impairment of sexual life [577]. Conversely, 80% of patients defined as clinical failures considered themselves as (very) satisfied with their outcomes [577]. Regardless of anatomic success after urethroplasty, post-operative pain, sexual dysfunction and persistent LUTS were independent predictors of patient dissatisfaction [576]. Improvement in voiding function (i.e., statistical improvement on IPSS) alone does not predict patient satisfaction after urethroplasty [578]. On a multivariate analysis including both patient-reported and clinical parameters, after adjusting for disease recurrence and age, persistence in voiding symptoms (weak stream), genitourinary pain, and post-operative sexual function alterations were the greatest independent drivers of post-operative dissatisfaction [576]. In addition, penile shortening (OR: 2.26; CI: 95% 1.39-3.69) and chordee (OR: 2.26; CI: 95% 1.44-4.19) were independent predictors of patient dissatisfaction after urethroplasty [578] (Table 11.1).
Table 11.1: Predictors of patient dissatisfaction after urethral surgery

<table>
<thead>
<tr>
<th>Predictor/Symptoms</th>
<th>Measure of effect</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak/very weak urinary stream</td>
<td>< 0.001</td>
<td>Kessler TM et al. J Urol 2002 [577]</td>
</tr>
<tr>
<td>Penile curvature</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Penile shortening</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Worsening of erectile function</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Impairment of sexual life</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Erection confidence (SHIM)</td>
<td>OR: 1.53 (1.12 – 2.07)*</td>
<td></td>
</tr>
<tr>
<td>Inability to ejaculate (MSHQ)</td>
<td>OR: 1.52 (1.15 – 2.01)*</td>
<td></td>
</tr>
<tr>
<td>Urethral pain</td>
<td>OR: 1.71 (1.05 - 2.77)*</td>
<td></td>
</tr>
<tr>
<td>Bladder pain</td>
<td>OR: 2.74 (1.12 – 6.69)*</td>
<td></td>
</tr>
<tr>
<td>Urinary strain (CLSS)</td>
<td>OR: 3.23 (1.74 – 6.01)*</td>
<td></td>
</tr>
<tr>
<td>Hesitancy (IPSS)</td>
<td>OR: 2.01 (1.29 – 3.13)*</td>
<td></td>
</tr>
<tr>
<td>Voiding quality of life (IPSS)</td>
<td>OR: 1.96 (1.42 – 2.72)*</td>
<td></td>
</tr>
<tr>
<td>Haematuria</td>
<td>10</td>
<td>Maciejewski CC et al. Urology 2017 [578]</td>
</tr>
<tr>
<td>Urinary extravasation</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05; ** p < 0.001.

SHIM = Sexual Health Inventory for Men; MSHQ = Male Sexual Health Questionnaire; CLSS = Core Lower Urinary Tract Symptom Score; IPSS = International Prostate Symptoms Score.

Due to this evident discrepancy between surgeon’s assessment and patient assessment, PROMs have been developed for the follow-up after urethroplasty [153, 575].

A complete approach for urethral surgery outcomes would combine both anatomic, endoscopic, and patient-reported success [320, 572]. As a Panel, we suggest using a functional definition of success in clinical practice, namely “lack of symptoms and/or need for further interventions”.

Collecting standardised documentation of the patient’s subjective assessment of their symptoms and objective anatomic outcomes would be limited for academic purposes, in order to allow comparison of surgical outcomes among reconstructive urologic surgeons and centres. Those objective and subjective outcomes measures should therefore be assessed and reported (simultaneously but separately) when evaluating urethroplasty results [572].

11.3 Follow-up tools after urethral surgery

11.3.1 Diagnostic tools for follow-up after urethral surgery

11.3.1.1 Calibration during follow-up after urethral surgery

The difference between calibration and urethral dilatation is usually subjective as soft strictures may be dilated during calibration [579]; therefore, urethral calibration should be used with caution for follow-up after urethroplasty. Dedicated calibration bougies should be used and not dilatators.

11.3.1.2 Urethrocystoscopy during follow-up after urethral surgery

Urethrocystoscopy has been considered the most useful tool to confirm the presence or absence of a recurrent stricture [136, 580], as up to 35% of patients with re-strictures remain asymptomatic [138]. Also, the cystoscope could be a measure to calibrate the strictured lumen, bearing in mind the most commonly used endoscopes: 15.7 Fr (5 mm diameter) or 17.3 Fr (5.5 mm diameter) [580]. Urethrocystoscopy allows differentiation of recurrences as diaphragm/cross-bridging – responding to simple intervention, or significant urethral restrictures – requiring repeated interventions or ReDo surgeries [581]. Endoscopic assessment at three months after anterior urethroplasty can predict the risk for further re-intervention at one year. Compared to normal endoscopy, large calibre (> 17 Fr) restrictures have a HR of 3.1 (1.35-7.29) for repeat intervention while small calibre (< 17 Fr) restrictures have a 23.7 HR (12.44-45.15) adjusted for age, stricture length, location and aetiology [136]. The main problem with using urethrocystoscopy for routine follow-up is the low compliance of patients as only 54% of patients underwent endoscopy at one year after urethroplasty, even when it was a part of a study protocol [138].

11.3.1.3 Retrograde urethrogram and voiding cystourethrogram during follow-up after urethral surgery

Retrograde urethrogram combined with VCUG are commonly used to confirm suspected recurrence [582, 583] or as part of a routine protocol to assess post-operative urethral patency [584, 585].
11.3.1.4 *Urethral ultrasound – Sonourethrography during follow-up after urethral surgery*

The use of SUG as a follow-up tool is not very common. It would be a reliable tool for diagnostic recurrent strictures [582].

11.3.2 **Screening tools for follow-up after urethral surgery**

These tools are used to assess whether there is suspicion of stricture recurrence and need for subsequent diagnostic evaluation (see section 5. Diagnostic evaluation).

11.3.2.1 *Flow-rate analysis during follow-up after urethral surgery*

Evaluating the Q_{max} is the commonest follow-up tool. Different cut-off points from Q_{max} 15 ml/s or 12 ml/s were suggested to consider the intervention as a failure or to trigger a confirmatory test for recurrence [584]. There is no clear threshold, and 19% of patients with $Q_{\text{max}} < 14$ ml/s would still have a patent urethra, allowing passage of 15 Fr cystoscope [139].

Flow rates may be affected by operator error, BPO/LUTS, bladder dysfunction, and variations in bladder capacity. Further limitations of uroflowmetry include the need for a minimum voided volume of 125 to 150 ml to reach a voided flow rate that reliably predicts an abnormality [579]. Even in controlled settings, the percentage of patients with adequate pre- and post-operative uroflowmetry analysis is only 31% [585]. Comparing both pre- and post-operative Q_{max} levels was suggested, and a difference in Q_{max} of 10 ml/s or less is found to be a reliable screen tool for recurrence (sensitivity 92%, specificity 78%). This measure also has strong reproducibility (R=0.52) [585]. Unfortunately, this improvement after urethroplasty is significantly different between age groups, with less than 10 ml/s average change in those over 65 years old, probably affected by BPO and/or bladder dysfunction [586]. Another parameter to consider is the shape of the voiding curve, recording it as flat (obstructed) or bell-shaped [587]. An obstructive voiding curve demonstrated 93% sensitivity to predict recurrent strictures, while a combination of urinary symptoms and obstructive voiding curve achieved 99% sensitivity and 99% NPV [587].

11.3.2.2 *Post-void residual ultrasound measure during follow-up after urethral surgery*

Post-void residual US measure is significantly increased in patients with recurrent strictures compared with those without recurrences [582]. Unfortunately, PVR measurement is affected by abdominal ascites, bladder diverticula and/or poor bladder function [579], with some studies reporting inconsistent correlation with obstruction in the presence of BPO. Also US measures of PVR are user dependent, showing high interobserver variability. Combined with other tests – uroflowmetry, IPSS, and SUG – PVR achieves adequate predictive values [582], but currently there is no literature support for its solo use to assess urethral stricture recurrence [588].

11.3.2.3 *Symptoms questionnaires during follow-up after urethral surgery*

The IPSS questionnaire, despite being designed for BPO, showed significant improvement after successful urethroplasty and inverse significant correlation with Q_{max} [578, 589]. The mean improvement of IPSS is around -11 points (range -19 to -5) [586].

Table 11.2: Post-urethroplasty changes in IPSS values

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>Mean pre-operative value</th>
<th>Mean post-operative value</th>
<th>Change</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morey AF et al. 1998</td>
<td>50</td>
<td>26.9</td>
<td>4.4</td>
<td>NR</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td>DeLong J et al. 2013</td>
<td>110</td>
<td>NR</td>
<td>NR</td>
<td>-11 (IQR -19 - -5)</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>Maciejewski CC et al. 2017</td>
<td>94</td>
<td>18.7 (+/- 9)</td>
<td>5.8 (+/- 5)</td>
<td>NR</td>
<td>p < 0.0001</td>
</tr>
</tbody>
</table>

N = number of patients; NR = Not reported; IQR = Interquartile range.

Combination of IPSS and Q_{max} analysis was suggested to diagnose recurrences. Using an IPSS cut-off point of 10 points associated with $Q_{\text{max}} > 15$ ml/s would prevent further invasive studies in 34% of patients, while only 4.3% of strictures < 14 Fr would have been missed. Using an IPSS cut-off point of 15 points associated with $Q_{\text{max}} >15$ ml/s would prevent further invasive studies in 37% of cases, while 6% of strictures < 14 Fr would have been missed [590].
The Visual Prostate Symptom Score (VPSS) was also used to diagnose recurrent urethral strictures, offering a significantly shorter time to completion compared with IPSS, especially in cases of illiteracy or limited education. Visual Prostate Symptom Score showed a good correlation with IPSS, Q_{max} and urethral diameter. A combination of VPSS > 8 with $Q_{max} < 15$ ml/s had a NPV of 89% and a PPV of 87% for recurrent urethral strictures [591].

Post-micturition dribble, assessed by the specific question of the USS-PROM questionnaire, was present in 73% of patients pre-operatively and 40% after anterior urethroplasty, while only 6.3% was de novo. Incidence was not predicted by stricture location nor urethroplasty type [143].

11.3.3 Quality of life assessment, including disease specific questionnaires during follow-up after urethral surgery

Urethral stricture affects QoL evaluated by EQ-5D-3L questionnaire. Pre-operative anxiety and depression was found in 29% of patients. De novo AD after urethroplasty is uncommon (10%), and has two predictors: decreased sexual function and poor reported image of overall health [592]. A more recommended approach is the assessment of the condition-related QoL [593]. The USS-PROM proved useful to assess outcomes in anterior urethroplasty patients [575]. Its use also received criticism, as some of the individual generic QoL questions do not improve after successful urethroplasty, as they are not condition-specific [594]. Currently, there is another version of PROM, being developed and validated by a North American collaborative group, including questions related to the sexual consequences of urethral stricture disease [154]. PROM questionnaires should be implemented in each visit to check for functional success, as they are able to show improvement over time.

The Core Lower Urinary Tract Symptom Score (CLSS) questionnaire was used to assess pre- and post-urethroplasty pain in the bladder, penis/urethra, and perineum/scrotum. Most of the parameters improved after urethroplasty, but up to 29% of patients reported worsening of perineal pain after surgery [595].

Sexual function should be evaluated by validated tools if not assessed in a - PROM. The international index on erectile function (IIEF), SHIM, O’Leary Brief Male Sexual Function Inventory (BMFSI), SLQQ (Sexual Life Quality Questionnaire), Male Sexual Health Questionnaire (MSHQ) have all been used after urethroplasties for evaluation of erectile and ejaculatory functions. Other non-validated tools were suggested such as the Post-Urethroplasty Sexual Questionnaire (PUSQ) [596] or specific questionnaires for genital appearance (length, curvature) or sensitivity [597].

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrograde urethrography and urethrocystoscopy are able to identify anatomical success after a urethroplasty.</td>
<td>2a</td>
</tr>
<tr>
<td>A significant gap was demonstrated between objective and subjective outcomes after urethroplasties. PROM questionnaires are specific tools to assess subjective outcomes and patient satisfaction after urethroplasty surgeries.</td>
<td>2a</td>
</tr>
<tr>
<td>Validated questionnaires proved useful to assess the consequences of urethral surgery on sexual function.</td>
<td>2a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use cystoscopy or retrograde urethrography to assess anatomic success after urethroplasty surgery.</td>
<td>Weak</td>
</tr>
<tr>
<td>Use PROM questionnaires to assess subjective outcomes and patient satisfaction.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use validated questionnaires to evaluate sexual function after urethral stricture surgeries.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

11.4 Ideal follow-up interval after urethral surgery

The optimal follow-up strategy must allow for an objective determination of anatomic and functional outcomes to assess surgical success whilst avoiding excessive invasive testing that leads to unnecessary cost, discomfort, anxiety and risk [572].

After anterior urethroplasty, 21% of recurrences are clinically evident, and cystoscopically confirmed, after three months [598] and 96% after one year [581]. Early recurrences are more frequent in patients with LS and older age, in longer strictures and when skin grafts were used [598].
11.5 Length of follow-up after urethral surgery

The median time of recurrence after bulbar urethroplasty is approximately ten months [324]. In case series, between 55.4% [598] and 96% [581, 584] of all recurrences are detected during the first year of follow-up after urethral surgery. Twenty-three percent of bulbar stricture recurrences are detected during the second year of follow-up, and the percentage of recurrences decreases after the second year [322].

On the other hand, long-term follow-up studies highlighted the role of length of follow-up as a predictor for stricture recurrence after bulbar urethroplasty [322, 599]. Late recurrences – later than five years after urethroplasty – could be observed in up to 15% of cases [139, 322]. This should be considered mainly after augmentation urethroplasties, especially in case skin grafts were used [583]. Certainly, patients should be instructed to seek urological evaluation if they experience late recurrent symptoms [599].

11.6 Risk stratified proposals during follow-up after urethral surgery

Cost of follow-up after urethroplasty is higher in the first year after the procedure [600]. In a literature review it ranged between 205 to 1,784 US Dollars, with higher costs associated to posterior urethral repairs [600].

As the risk of recurrence and side effects are related to the type of stricture and urethroplasty, a different follow-up schedule was proposed and shown to be cost-effective in the USA, potentially saving up to 85% of costs after five years [573]:

- Urethroplasties with a low risk of recurrence (EPA urethroplasty without history of radiotherapy, hypospadias or LS features) could be safely followed up based on monitoring of symptoms, using self-administered IPSS questionnaire, every three months for one year, and annually thereafter.
- Urethroplasties with standard risk of recurrence (urethroplasty using grafts, flaps, and/or post-irradiation, hypospadias and/or LS patients) could combine IPSS questionnaire + flowmetry every three months for one year, and annually thereafter. Additionally, RUG at three and twelve months should be performed.

In this protocol, urethrocystoscopy is only performed if required [573]. Another suggested follow-up protocol includes urethrocystoscopy or RUG/VCUG at three months post-operatively, in order to rule out early failures, especially in case of graft use. If there is evidence of good anatomical outcome in these tests, flowmetry and questionnaire results at three months should be considered as the new baseline. Thereafter, follow-up could be safely and routinely performed with non-invasive tests (flowmetry – evaluating Q max and the shape of curve – and questionnaires. Any deterioration should be further investigated with a urethrocystoscopy [588].

A recently suggested protocol also included assessment of LUTS, sexual function (erectile and ejaculatory), and lower urinary tract pain, that need to be compared with pre-operative findings which should include a PROM questionnaire [572]. Cystoscopy and flowmetry should be performed between three to six months post-operatively, and flowmetry should be considered as the new baseline for longitudinal follow-up. Future significant decline (25-30%) in Q_max or Q_max-(average flow rate) should trigger new cystoscopy to rule out anatomic recurrence, even in patients who are symptom-free [572]. A routine cystoscopy at twelve to fifteen months should be performed at the surgeon’s discretion, based on risk assessment of three aspects: higher-risk patients, evidence of partial urethral narrowing at three month assessment, low-volume surgeons [572].

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The higher percentage of recurrences presents during the first twelve months, after urethroplasty surgery.</td>
<td>2a</td>
</tr>
<tr>
<td>Risk-adjusted follow-up protocols are cost-effective and safe for the patients.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer a routine follow-up of at least one year after urethroplasty.</td>
<td>Strong</td>
</tr>
<tr>
<td>Adopt a risk-adjusted follow-up protocol.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

11.7 Follow-up protocol proposal after urethroplasty

11.7.1 Surgeries with low risk of recurrence

- Anastomotic urethroplasties in the bulbar/bulbo)membranous segment with no history of radiotherapy, hypospadias or balanitis xerotica obliterans (BXO)/LS features.
Table 11.3: Follow-up protocol for urethroplasty with low risk of recurrence

<table>
<thead>
<tr>
<th>Surgery</th>
<th>3 months</th>
<th>12 months</th>
<th>24 months*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uroflowmetry</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PROM (incl. sexual function)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anatomic evaluation: (Urethrocystoscopy/RUG-VCUG)</td>
<td>+**</td>
<td>On indication</td>
<td>On indication</td>
</tr>
</tbody>
</table>

*Follow-up could be discontinued after two years, advising the patient to seek urological evaluation if symptoms worsen. Academic centres could increase the length of follow-up for research purposes.

**The Panel suggests performing an anatomic assessment at three months.

11.7.2 Surgical management options with standard risk of recurrence
- Anastomatic urethroplasties in the bulbar segment with prior history of radiotherapy, hypospadias or BXO/LS features;
- Penile urethroplasties;
- Non-traumatic posterior urethroplasties;
- Graft or/and flap – substitution – urethroplasties.

Table 11.4: Follow-up protocol for urethroplasty with standard risk of recurrence

<table>
<thead>
<tr>
<th>Surgery</th>
<th>3 months</th>
<th>12 months</th>
<th>24 months</th>
<th>5 years *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uroflowmetry</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PROM (incl. sexual function)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anatomic evaluation: (Urethrocystoscopy/RUG-VCUG)</td>
<td>+**</td>
<td>On indication</td>
<td></td>
<td>On indication</td>
</tr>
</tbody>
</table>

*Follow-up could be discontinued after five years, advising the patient to seek urological evaluation if symptoms worsen. A longer follow-up period should be considered after penile and substitution urethroplasties. Academic centres could increase the length of follow-up for research purposes.

Please see Figure 11.1 for further guidance.
Figure 11.1: Follow-up after urethroplasty

URETHRAL STRICTURES - 2021

URETHRAL STRICTURES - 2021

Figure 11.1: Follow-up after urethroplasty

- **Urethroplasty**
 - 3 months

- **Uroflowmetry**
 - PROM – including sexual function
 - Urethrocytography / RUG-VCUG

- **Consider Flowmetry values, PROM and scores as new baseline values**

- **Consider**
 1) Location of stricture
 2) Urethroplasty technique
 3) Prior radiotherapy
 4) Hypospadias
 5) BXO/LS

- **Low-risk of recurrence**
 - Uroflowmetry
 - PROM – including sexual function

- **Standard-risk of recurrence**
 - Uroflowmetry
 - PROM – including sexual function
 - Urethrocytography / RUG-VCUG

- **12 months after urethroplasty**
 - **Urethrocytography / RUG-VCUG**
 - If flowmetry $Q_{\text{max}} < 15 \text{ ml/s}$
 - If flowmetry Q_{max} descends 10 ml/s from new baseline (3 months value)
 - If significant worsening on PROM values
 - If clinically indicated

- **24 months after urethroplasty**
 - Uroflowmetry
 - PROM – including sexual function

- **Discharge patient, advising to seek urological evaluation if symptoms worsen**

- **5 years after urethroplasty**
 - Uroflowmetry
 - PROM – including sexual function
 - Urethrocytography / RUG-VCUG
 - If flowmetry $Q_{\text{max}} < 15 \text{ ml/s}$
 - If flowmetry Q_{max} descends 10 ml/s from new baseline (3 months value)
 - If significant worsening on PROM values
 - If clinically indicated

BXO = balanitis xerotica obliterans; **LS** = lichen sclerosus; **PROM** = patient reported outcome measure; Q_{max} = maximum flow rate; **RUG** = retrograde urethrography; **VCUG** = voiding cystourethrography.
12. REFERENCES

13. **CONFLICT OF INTEREST**

All members of the Urethral Strictures Guidelines Panel have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publicly accessible through the European Association of Urology website: http://www.uroweb.org/guidelines/. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.

14. **CITATION INFORMATION**

The format in which to cite the EAU Guidelines will vary depending on the style guide of the journal in which the citation appears. Accordingly, the number of authors or whether, for instance, to include the publisher, location, or an ISBN number may vary.

The compilation of the complete Guidelines should be referenced as:

If a publisher and/or location is required, include:

References to individual guidelines should be structured in the following way:
Contributors' names. Title of resource. Publication type. ISBN. Publisher and publisher location, year.