GUIDELINES ON TESTICULAR CANCER

M.P. Laguna (Chairperson), O. Klepp, A. Horwich, F. Algaba, C. Bokemeyer, G. Pizzocaro, G. Cohn-Cedemark, P. Albers
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>1</th>
<th>BACKGROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Methods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>PATHOLOGY AND NATURAL HISTORY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>DIAGNOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Clinical examination</td>
</tr>
<tr>
<td>3.2</td>
<td>Imaging of the Testis</td>
</tr>
<tr>
<td>3.3</td>
<td>Serum Tumor Markers at diagnostic</td>
</tr>
<tr>
<td>3.4</td>
<td>Inguinal exploration and orchiectomy</td>
</tr>
<tr>
<td>3.5</td>
<td>Organ sparing surgery</td>
</tr>
<tr>
<td>3.6</td>
<td>Pathological examination of the testis</td>
</tr>
<tr>
<td>3.7</td>
<td>Diagnosis of Carcinoma in situ (Tin)</td>
</tr>
<tr>
<td>3.8</td>
<td>Screening</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>STAGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Diagnostic tools</td>
</tr>
<tr>
<td>4.2</td>
<td>Serum tumour markers. Postorchiectomy half-life kinetics</td>
</tr>
<tr>
<td>4.3</td>
<td>Abdominal, mediastinal, supraclavicular nodes and viscera</td>
</tr>
<tr>
<td>4.4</td>
<td>Staging and prognostic classifications</td>
</tr>
<tr>
<td>4.5</td>
<td>Prognostic risk factors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>IMPACT ON FERTILITY AND FERTILITY ASSOCIATED ISSUES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>GUIDELINES ON DIAGNOSIS AND STAGING OF TESTICULAR CANCER</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>References (Diagnosis and Staging testis tumor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>TREATMENT: STAGE I GERM CELL TUMOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Stage I seminoma</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Prophylactic radiotherapy</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Surveillance</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Prophylactic chemotherapy</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Retroperitoneal Lymph Node Dissection (RPLND)</td>
</tr>
<tr>
<td>7.2</td>
<td>Guidelines for the treatment of seminoma stage I</td>
</tr>
<tr>
<td>7.3</td>
<td>NSGCT stage I</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Retroperitoneal Lymph Node Dissection (RPLND)</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Surveillance</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Primary chemotherapy</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Risk adapted treatment</td>
</tr>
<tr>
<td>7.4</td>
<td>CS1S with (persistently) elevated serum tumour markers</td>
</tr>
<tr>
<td>7.5</td>
<td>Guidelines on the treatment of NSGCT stage I</td>
</tr>
<tr>
<td>7.6</td>
<td>References (Treatment Stage I Testis Tumor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>TREATMENT: METASTATIC GERM CELL TUMOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Primary chemotherapy</td>
</tr>
<tr>
<td>8.2</td>
<td>Restaging and further treatment</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Restaging</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Residual tumor resection</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Consolidation chemotherapy after secondary surgery</td>
</tr>
<tr>
<td>8.3</td>
<td>Systemic Salvage treatment for relapse or refractory disease</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Seminoma</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Non Seminoma</td>
</tr>
<tr>
<td>8.4</td>
<td>Salvage Surgery</td>
</tr>
<tr>
<td>8.5</td>
<td>Treatment of brain metastases</td>
</tr>
<tr>
<td>8.6</td>
<td>Guidelines for the treatment of metastatic germ cell tumours</td>
</tr>
<tr>
<td>8.7</td>
<td>References (Treatment of Metastatic disease)</td>
</tr>
</tbody>
</table>
9 FOLLOW-UP AFTER CURATIVE THERAPY 37
 9.1 General considerations 37
 9.2 References (General considerations) 38
 9.3 Follow-up stage I Non-seminoma 38
 9.3.1 Follow-up after surveillance 38
 9.3.2 Follow-up after nerve-sparing RLND 38
 9.3.3 Follow-up after adjuvant chemotherapy 39
 9.4 References (Follow-up Stage I Nonseminoma) 39
 9.5 Follow-up: stage I Seminoma 41
 9.5.1 Follow-up after radiotherapy 41
 9.5.2 Follow-up after surveillance 41
 9.5.3 Follow-up after adjuvant chemotherapy 42
 9.6 References (Follow-up stage I Seminoma) 42
 9.7 Follow-up stage II and advanced (metastatic) disease 44
 9.7.1 Clinical and pathological stage II NSGCT 44
 9.7.1.1 Relapse after primary RPLND 44
 9.7.1.2 Relapse after primary chemotherapy 45
 9.7.2 Clinical stage II Seminoma 46
 9.7.3 Clinical stage IIC and III Seminoma and Non-Seminoma 46
 9.8 References (Follow-up advanced disease) 47

10 ABBREVIATIONS 50
1 BACKGROUND

Testicular cancer represents between 1% and 1.5% of male neoplasms and 5% of urological tumours in general, with 3-6 new cases/occurring per 100,000 males/year in Western society (1,2). An increase in the incidence of testicular cancer was detected during the 1970's and 1980's, particularly in Northern European countries and a recent review shows a clear trend toward an increased Testicular Cancer incidence in the last 30 years in the majority of the industrialized countries in North America, Europe and Oceania but surprising differences in incidence rates are seen between neighboring countries (3). Data from the Surveillance Epidemiology and End Results Program during the years 1973 to 1998 show a continuing increased risk among white men in USA only for seminoma (4).

Only 1-2% of cases are bilateral. The histological type varies, although there is a clear predominance (90-95%) of germ cell tumours (1). Peak incidence is in the third decade of life for non-seminoma and in the fourth decade for pure seminoma. Familial clustering has been observed, particularly among siblings (5). Genetic changes have been described in patients with testicular cancer. A specific genetic marker (an isochromosome of the short arm of chromosome 12, i(12p), has been described in all histological types of germ cell tumours (5). Intratubular germ cell neoplasia (Tin) shows the same chromosomal changes, and recently alterations in the p53 locus have been found in 66% of cases of testicular Tin (6).

Epidemiological risk factors for the development of testicular tumors are: a history of chriptorchidism or undescended testis, Klinefelter's syndrome, familial history of testicular tumors among first grade relatives (father /brothers), the presence of a contralateral tumor or Tin and infertility (7-12). Tallness is associated with risk of germ cell cancer in a recent study (13) although further confirmation is needed. Currently, testicular tumours show excellent cure rates. The main factors contributing to this are: careful staging at the time of diagnosis; adequate early treatment based on chemotherapeutic combinations, with or without radiotherapy and surgery; and very strict follow-up and salvage therapies. In the last decade, a decrease in the mean time delay to diagnosis and to treatment has been observed (14). In the treatment of Testicular Cancer the choice of the Center where this treatment is going to be administered is of capital importance. Although early stages can be successfully treated in a non reference Center, the relapse rate is higher, suggesting that the high survival rate is due to the chemo- and radiosensitivity of the early stages rather than the compliance achieved in the non reference Center (15). In poor prognosis non seminomatous germ cell tumors overall survival is significantly different (worse) depending on the number of patients treated at the Institution (< 5) (16).

1.1 Methods

The present Guidelines represent an implementation of the previously published texts; the latest guideline text was published in 2002. A multidisciplinary team of urologists, medical oncologists, radiotherapists and a pathologist were involved in producing the present text which is based on a non-structured review of the literature through 2003. Also data from Meta-analysis studies, Cochrane evidence and the recommendations of the European Germ Cell Cancer Collaborative Group, as well as other available guidelines have been included (17-23). Whenever possible, references have been labelled according to the principles of Evidence Based Medicine (24). The nature of the recommendations in the present guidelines is labelled according to grade of evidence (24).

2 PATHOLOGY AND NATURAL HISTORY

In seminoma Stage I the tumor size and the invasion of the rete testis are independent predictors of relapse. No molecular marker (CD30 and citokeratins) is useful.

In the non-seminoma and non- teratoma gem cell tumors the vascular invasion and stage are the most important morphological predictors. The behaviour of teratoma in the two different age groups is different; in prepuberal individuals testis teratoma is benign while in the postpuberal group metastases can appear in 27-33% of the cases.

The recommended pathological classification (modified from the World Health Organization) is shown below (25).

1. Germ cell tumours
 • Intratubular germ cell neoplasia
 • Seminoma (including cases with syncytiotrophoblastic cells)
 • Spermatocytic seminoma (mention if there is sarcomatous component)
 • Embryonal carcinoma
• Yolk sac tumour:
 • Reticular, solid and polyvesicular patterns
 • Parietal, intestinal, hepatoid and mesenchymal differentiation
• Choriocarcinoma
• Teratoma (mature, immature, with malignant component)
• Tumours with more than one histological type (specify % of individual components)

2. Sex cord stromal tumours
• Leydig cell tumour
• Sertoli cell tumour (typical, sclerozing, large cell calcifying)
• Granulosa (adult and juvenile)
• Mixed
• Unclassified

3. Mixed germ cell/sex cord stromal tumours

3. DIAGNOSIS

3.1 Clinical Examination
Testicular cancer generally affects young men in the third or fourth decade of life. It normally appears as a
painless, unilateral mass in the scrotum or the casual finding of an intrascrotal mass (26). In approximately 20%
of cases the first symptom is scrotal pain and up to 27% of patients with testicular cancer have local pain (1).
Occasionally, trauma to the scrotum may reveal the presence of a testicular mass. Gynaecomastia appears in
7% of cases and is more common in non-seminomatous tumours. Back and flank pain are present in about
11% of cases (14). Reduction in testis size can precede a testicular tumour (27).
In about 10% of cases, a testicular tumour can mimic an orchioepididymitis, with consequent delay of the
correct diagnosis (1,2). Ultrasound must be performed in any doubtful case. Physical examination reveals the
features of the mass and must always be carried out in conjunction with a general examination in order to find
possible (supraclavicular) distant metastases, a palpable abdominal mass or gynaecomastia. A correct
diagnosis must be established in all patients with an intrascrotum mass (28).

3.2 Imaging of the testis
Currently, diagnostic ultrasound serves to confirm the presence of a testicular mass and to explore the
contralateral testis. Its sensitivity in detecting a testicular tumour is almost 100%, and it has an important role
in determining whether a mass is intra- or extratesticular (29). Ultrasound is an inexpensive test, but it is
unnecessary when the presence of a testicular tumour is clinically evident (30). Ultrasound of the testis has to
be performed in young men without a palpable testicular mass who have retroperitoneal or visceral masses or
elevated serum beta-hCG or AFP (31-34). The main uses of ultrasound are as a screening test of the
contralateral testis in the follow-up of patients at risk (35).

Magnetic Resonance Imaging (MRI) offers higher sensitivity and specificity than ultrasound for
diagnosing tumours (36-38) and may be able to differentiate seminomatous from non-seminomatous tumours.
MRI of the scrotum offers a sensitivity of 100% and a specificity of 95-100% (39), but its high cost does not
justify its use for diagnosis.

3.3 Serum tumor markers at diagnostic
Serum tumour markers are prognostic factors and contribute to diagnosis and staging (40). The following
markers should be determined:
• AFP (produced by yolk sac cells)
• Beta-hCG (b-hCG) (expression of trophoblasts)
• LDH (marker of tissue destruction)

Globally, there is an increase in these markers in 51% of cases of testicular cancer (14,26). Alpha-Fetoprotein
(AFP) increases in 50-70% of patients with non-seminomatous germ cell tumour (NSGCT) and a rise in beta-
human chorionic gonadotrophin (hCG) is seen in 40-60% of patients with NSGCT. About 90% of non-
seminomatous tumours present with a rise in one or two of the markers. Up to 30% of seminomas can present
or develop an elevated beta-hCG level during the course of the disease (41,42). Lactate Dehydrogenase (LDH)
is a less specific marker, and its concentration is proportional to tumour volume. Its level may be elevated in
80% of patients with advanced testicular cancer (41). It should be noted that negative markers levels do not
exclude the diagnosis of a germ cell tumour. Other markers studied include neuro-specific enolase (NSE) and placental alkaline phosphatase (PLAP). NSE and/or PLAP may be of limited value in monitoring patients with pure seminoma. Cytogenetic and molecular markers are available in specific centres, but at present only contribute to research studies.

Measurement of serum AFP, beta-hCG and LDH is mandatory. NSE and PLAP are optional.

3.4 Inguinal exploration and orchiectomy
Every patient with a suspected testicular mass must undergo inguinal exploration with exteriorization of the testis within its tunics, and immediate orchiectomy with division of the spermatic cord at the internal inguinal ring has to be performed if a tumour is found. The spermatic cord is isolated at the external ring and clamped with a soft vascular clamp. The testis is then exteriorized with its tunics. The surgical field is protected with surgical sponges, the tunica vaginalis is opened, and the testis is carefully inspected and palpated. If the diagnosis is not clear, a testicular biopsy is taken for frozen section histological examination. Once the diagnosis of testicular tumour has been established, the testis is enveloped into the sponges which protected the surgical field, gloves are changed, the inguinal channel is opened and the spermatic cord is divided at the level of the internal ring. The specimen is sent for definitive histology.

In case of disseminated disease and life-threatening metastases, up-front chemotherapy can be started and orchiectomy delayed until clinical stabilisation.

3.5 Organ sparing surgery
Although organ sparing surgery is not indicated it can be attempted in special cases with all the necessary precautions.

In synchronous bilateral testicular tumors, metachronous contralateral tumors or in a tumor in a solitary testis with normal preoperative testosterone levels, organ preserving surgery can be performed when the tumor measures less than 2 cm and surgical rules are respected. In those cases, the rate of associated Tin is high (up to 82%) and can be treated with radiotherapy (43).

The option has to be carefully discussed with the patient and surgery performed in a center with experience (44,45).

3.6 Pathological examination of the testis
After surgical ablation of the testis, pathological assessment is mandatory and determination of serum tumour markers is advisable.

Mandatory pathological requirements
- Macroscopic features: side, testis size, tumoural maximum size and macroscopic features of epididymis, spermatic cord and tunica vaginalis.
- Sampling: 1 cm^2 section for every cm of maximal tumoural diameter, including normal macroscopic parenchyma (if present), albuginea and epididymis selection of suspected areas. At least one proximal and one distal section of spermatic cord plus any suspected area.
- Microscopic features and diagnosis: histological type (specify individual components and estimate amount as percentage).
 - Presence or absence of peri-tumoral venous and/or lymphatic invasion.
 - Presence or absence of albuginea, tunica vaginalis, epididymis or spermatic cord invasion.
 - Presence or absence of intratubular germinal neoplasia (Tin) in non-tumoral parenchyma.
- Category pT category according to TNM 2002.
- Immunohistochemical studies: in seminoma and mixed germ cell tumour, AFP and beta-hCG.

Advisable immunohistochemical markers
- In seminoma: cytokeratins (CAM 5.2), PLAP
- In intratubular germ cell neoplasia: PLAP
- Other advisable markers: Chromogranine A (Cg A), Ki 1, and NSE

3.7 Diagnosis of carcinoma in situ (Tin)
Contralateral biopsy has been advocated to rule out the presence of Tin (46). Although this is routine policy in some countries, the low incidence of Tin and contralateral asynchronous testicular tumours, up to 5% and approximately 2.5% respectively, (27,47-50), the morbidity of Tin treatment and the fact that most of these asynchronous tumours are at a low stage at presentation make it controversial to recommend a systematic contralateral biopsy (50,51). It is still difficult to reach a consensus whether the existence of contralateral Tin has to be identified in all cases. However biopsy of the contralateral testis should be offered to high-risk patients for contralateral Tin with a testicular volume less than 12 ml, a history of chriptorchidism and younger than 30 years of age (48,53).
Once Tin is diagnosed, local Radiotherapy (up to 18 Gy) is the treatment of choice. Because this may produce infertility, the patient must be carefully counselled before treatment commences (48).

3.8 Screening
Although there are no surveys proving the advantages of screening programmes, it has been demonstrated that stage and prognosis are directly related to early diagnosis. In the presence of clinical risk factors, some self-physical examination by the affected individual is advisable.

4 STAGING
Staging represents the cornerstone on which testicular cancer treatment is based. After diagnostic and determination of the histological type staging is mandatory. To determine the presence of metastatic or occult disease half life kinetics of serum tumors markers has to be assessed, the nodal pathway has to be screened and the presence of visceral metastases ruled out.

Consequently, it is mandatory to assess:
• Post-orchiectomy half life kinetics of serum tumour markers
• Status of abdominal and supraclavicular nodes, and the liver
• Presence or absence of mediastinal nodal involvement and lung metastases
• Status of brain and bone if any suspicious symptoms are present

4.1 Diagnostic tools
The currently available test include: serial blood sampling, chest X-ray, abdominal and thoracic CT scan, abdomen ultrasound, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) scan and other specific examinations depending on clinical suspicion.

4.2 Serum tumor markers. Postorchiectomy half-life kinetics
The mean serum half-life of AFP is 5-7 days and that of beta-hCG approximately 1 day (41). Tumor markers have to be reevaluated after orchiectomy to determine half life kinetics. The persistence of elevated serum tumor markers 3 weeks after orchiectomy indicates the presence of metastatic disease (macro or microscopically) while normalization of marker levels after treatment does not necessarily mean the absence of a tumour. During chemotherapy the markers decline or persistence has a prognostic value.

4.3 Abdominal, mediastinal, supraclavicular nodes and viscera
Abdominal and mediastinal nodes are best assessed by means of CT scan. The supraclavicular nodes are best assessed by physical examination.

CT scanning has clear advantages over lymphography in assessing retroperitoneal metastatic disease. It offers a sensitivity of 70-80% in the determination of the state of retroperitoneal nodes. Its accuracy depends on the size of the nodes; sensitivity and negative predictive value increase using a 3-mm threshold to define metastatic nodes in the landing zones (54). Those figures decrease slightly in stages I and II (55,56), with a rate of understaging of 25-30% (57). New generations of CT scans do not seem to improve the sensitivity. An abdominal CT scan is mandatory but can be considered optional in very slim young men and children, in whom ultrasound must be performed due to lack of retroperitoneal fat.

MRI produces similar results to CT scanning in the detection of retroperitoneal nodal enlargement (58). Again, the main objections to its routine use are high cost and limited access. Nevertheless, MRI can be very helpful when abdominal CT or ultrasound are inconclusive (58), when CT scan is contraindicated because of allergy to contrast media or when the physician or the patient are concerned about radiation dose. MRI is an optional test and there are currently no indications for its systematic use in the staging of testicular cancer.

Chest X-ray is the routine thorax examination. An antero-posterior and lateral chest X-ray could be considered the only thoracic examination in seminoma when retroperitoneal and pelvic CT scans are negative (59). A chest CT scan is the most sensitive way to evaluate the thorax and mediastinal nodes. This exploration has to be recommended in patients with NSGCT because up to 10% of cases can present with small subpleural nodes that are not visible radiologically (1). The CT scan has high sensitivity but low specificity (58). A chest CT is mandatory in all patients with NSGCT and in those with seminoma and positive abdominal CT scan (59).

There is not yet enough evidence to support the use of the fluorodeoxyglucose-positron-emission tomography (FDG-PET) scan in early testis tumor stages, it can nevertheless be recommended in the follow-up of seminoma post-chemotherapy residual masses bigger than 3 cm in order to decide Watchful Waiting (WW) or active treatment therapy (60-63).
Other examinations, such as brain or spinal CT, bone scan or liver ultrasound, should be performed if there is suspicion of metastases to these organs. CT scan or MRI of the skull are advisable in patients with NSGCT and widespread lung metastases. Table I shows the recommended test at staging.

Table 1: Recommended tests for staging at diagnosis

<table>
<thead>
<tr>
<th>Test</th>
<th>Recommendation grade B</th>
<th>Recommendation grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum tumor markers</td>
<td>Alpha – fetoprotein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β – hCG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDH</td>
<td></td>
</tr>
<tr>
<td>Abdomen CT scan</td>
<td>All patients</td>
<td>Slim adolescent</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Seminoma (a)</td>
<td></td>
</tr>
<tr>
<td>Chest CT scan</td>
<td>NSGCT</td>
<td></td>
</tr>
<tr>
<td>Testis ultrasound</td>
<td>Clinical suspicion and normal scrotum at palpation</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>When abdominal CT is inconclusive</td>
<td>All cases</td>
</tr>
<tr>
<td>PET scan (b)</td>
<td>Follow-up residual masses in seminoma</td>
<td>Follow-up residual masses in seminoma</td>
</tr>
<tr>
<td>Other</td>
<td>If clinical suspicion</td>
<td></td>
</tr>
</tbody>
</table>

(a) If negative abdominal computed tomography (CT) scan.
(b) There is currently no indication for PET scan at diagnosis.

4.4 Staging and prognostic classifications

There are multiple staging systems, generally based on the quantity of tumoural volume at diagnosis and take into account known risk factors.

Among them the tumour, node, visceral metastasis (TNM) system, the Peckham classification (Royal Marsden Hospital), the Walter Reed Hospital classification and staging systems from the European Organization for Research and Treatment of Cancer (EORTC), Memorial Sloan Ketering (MMSK) and Indiana University Hospital.

It appears that each group working in the field of testicular cancer has its own staging system. The most commonly systems used in Europe are the TNM and the Peckham classification.

The staging system recommended in these guidelines is the 2002 TNM of the UICC (International Union Against Cancer) (Table 2) (64).

This includes: determination of the anatomical extent of disease; assessment of serum tumour markers: including nadir values of beta-human chorionic gonadotrophin (beta-hCG), alpha-fetoprotein (AFP) and lactate dehydrogenase (LDH) after orchiectomy (S category); clear definition of regional nodes; and some N category modifications related to the node size.

Table 2: TNM classification for testicular cancer (UICC, 2002 Sixth Edition)

pT Primary Tumour

- **pTX** Primary tumour cannot be assessed (see 1, T–Primary tumour)
- **pT0** No evidence of primary tumour (e.g. histologic scar in testis)
- **pTis** Intratubular germ cell neoplasia (carcinoma in situ)
- **pT1** Tumour limited to testis and epididymis without vascular/lymphatic invasion: tumour may invade tunica albuginea but not tunica vaginalis
- **pT2** Tumour limited to testis and epididymis with vascular/lymphatic invasion, or tumour extending through tunica albuginea with involvement of tunica vaginalis
- **pT3** Tumour invades spermatic cord with or without vascular/lymphatic invasion
- **pT4** Tumour invades scrotum with or without vascular/lymphatic invasion

N Regional Lymph Nodes clinical

- **NX** Regional lymph nodes cannot be assessed
- **N0** No regional lymph node metastasis
- **N1** Metastasis with a lymph node mass 2 cm or less in greatest dimension or multiple lymph nodes, none more than 2 cm in greatest dimension
- **N2** Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension, or multiple lymph nodes, any one mass more than 2 cm but not more than 5 cm in greatest dimension
- **N3** Metastasis with a lymph node mass more than 5 cm in greatest dimension
pN Pathological

- pNX: Regional lymph nodes cannot be assessed
- pN0: No regional lymph node metastasis
- pN1: Metastasis with a lymph node mass 2 cm or less in greatest dimension and 5 or fewer positive nodes, none more than 2 cm in greatest dimension
- pN2: Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence or extranodal extension of tumour
- pN3: Metastasis with a lymph node mass more than 5 cm in greatest dimension

M Distant Metastasis

- MX: Distant metastasis cannot be assessed
- M0: No distant metastasis
- M1: Distant metastasis
 - M1a: Non-regional lymph node(s) or lung
 - M1b: Other sites

S Serum Tumour Markers

- Sx: Serum marker studies not available or not performed
- S0: Serum marker study levels within normal limits
- LDH (U/L) hCG (mIU/ml) AFP (ng/ml)

<table>
<thead>
<tr>
<th>Stage</th>
<th>pT</th>
<th>N0</th>
<th>M0</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>IB</td>
<td>T2, T3 or T4</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>IS</td>
<td>Any pT/TX</td>
<td>N0</td>
<td>M0</td>
<td>S1-3</td>
</tr>
</tbody>
</table>

1 Except for PTis and pT4, where radical orchectomy is not always necessary for classification purposes, the extent of the primary tumour is classified after radical orchectomy; see pT. In other circumstances, TX is used if no radical orchectomy has been performed.

According to the 2002 TNM classification, stage I testicular cancer includes the following substages:

Stage IA patients have primary tumours limited to the testis and epididymis, with no evidence of microscopic vascular or lymphatic invasion by tumour cells on microscopy, no sign of metastases on clinical examination or imaging, and post-orchectomy serum tumour marker levels within normal limits. Stage IB patients have a more locally invasive primary tumour, but no sign of metastatic disease. Stage IS patients have persistently elevated (and usually increasing) serum tumour marker levels after orchectomy, which is evidence of subclinical metastatic disease (or possibly a second germ cell tumour in the remaining testis). If serum tumour marker levels are declining according to the expected half-time decay after orchectomy, the patient is usually followed up until normalization.

In large, population-based patient series, 75-80% of seminoma patients and about 55% of patients with non-seminomatous germ cell testicular cancer (NSGCT) have stage I disease at diagnosis (65,66). True stage IS (persistently elevated or increasing serum marker levels after orchectomy) is found in about 5% of non-seminoma patients. If a staging retroperitoneal lymph nodes dissection (RPLND) is performed in stage IS patients, nearly all patients have pathological stage II disease (pN+) (1,2,5,65).

In 1997 the International Germ Cell Cancer Collaborative Group (IGCCC), defined a prognostic-factor based staging system for metastatic testis tumor based on identification of some clinical independent adverse factors. This staging system has been incorporated into the TNM Classification and uses histology, location of the primary tumor, location of metastases and markers levels in serum as prognostic factors to categorize patients into “good”, “intermediate” or “poor” prognosis (67) (Table 3).
Table 3: Prognostic-based staging system for metastatic germ cell cancer
(International Germ Cell Cancer Collaborative Group)

Good prognosis group

Non-seminoma

- 56% of cases
- 5-year PFS 89%
- 5-year survival 92%

All of the following criteria:
- Testis/retroperitoneal primary
- No non-pulmonary visceral metastases
- AFP < 1,000 ng/ml
- β-hCG < 5,000 mIU/L (1,000 ng/ml)
- LDH < 1.5 x ULN

Seminoma

- 90% of cases
- 5-year PFS 82%
- 5-year survival 86%

All of the following criteria:
- Any primary site
- No non-pulmonary visceral metastases
- Normal AFP
- Any β-hCG
- Any LDH

Intermediate prognosis group

Non-seminoma

- 28% of cases
- 5 years PFS 75%
- 5-year survival 80%

All of the following criteria:
- Testis/retroperitoneal primary
- No non-pulmonary visceral metastases
- AFP > 1,000 and < 10,000 ng/ml or
- β-hCG > 5000 and < 50,000 mIU/l or
- LDH > 1.5 and < 10 x ULN

Seminoma

- 10% of cases
- 5-year PFS 67%
- 5-year survival 72%

Any of the following criteria:
- Any primary site
- Non-pulmonary visceral metastases
- Normal AFP
- Any β-hCG
- Any LDH

Poor prognosis group

Non-seminoma

- 16% of cases
- 5-year PFS 41%
- 5-year survival 48%

Any of the following criteria:
- Mediastinal primary
- Non-pulmonary visceral metastases
- AFP > 10,000 ng/ml or
- β-hCG > 50,000 mIU/L (10,000 ng/ml) or
- LDH > 10 x ULN

Seminoma

No patients classified as poor prognosis

PFS = progression-free survival;
AFP = alpha-fetoprotein;
β-hCG = beta-human chorionic gonadotrophin;
LDH = lactate dehydrogenase

4.5 Prognostic risk factors

A series of pathological risk factors have been identified in all staging systems, which consequently have a bearing on the prognosis. (11-16). For clinical stage I, the most important risk factors are the histological type (seminomatous or non-seminomatous) and the presence of peri-tumoural vascular and lymphatic invasion for Non-Seminoma Stage I (68,69).

For seminoma Stage I on multivariate analysis tumor size (< or = 4 cm) and invasion of the rete testis remained the most important predictors for relapse (1, 7).

The significant prognostic pathological risk factors for stage I and clinical risk factors for metastatic disease are listed in table 4.
Table 4: Prognostic risk factors for testicular cancer

<table>
<thead>
<tr>
<th>Pathological (for stage I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Histopathological type</td>
</tr>
<tr>
<td>• For seminoma</td>
</tr>
<tr>
<td>Tumor size ((\geq 4) cm)</td>
</tr>
<tr>
<td>Invasion of the rete testis</td>
</tr>
<tr>
<td>• For Non-seminoma</td>
</tr>
<tr>
<td>Vascular/lymphatic in or peri-tumoral invasion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical (for metastatic disease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Primary location</td>
</tr>
<tr>
<td>• Elevation of tumour marker levels</td>
</tr>
<tr>
<td>• Presence of non-pulmonary visceral metastasis*</td>
</tr>
</tbody>
</table>

Only clinical predictive factor for metastatic disease in seminoma.

5 IMPACT ON FERTILITY AND FERTILITY ASSOCIATED ISSUES

Sperm abnormalities are not infrequent in patients with Testis Tumors. Furthermore chemotherapy treatment can also impair fertility. In patients in the reproductive age, pre-treatment fertility assessment (Testosteron, Luteinizing Hormone (LH) and FSH levels) and sperm analysis should be performed and cryopreservation offered if desired. Cryopreservation should be performed before or after orchiectomy, but in any case prior to chemotherapy treatment (70-77).

In case of bilateral orchiectomy or low testosterone levels after treatment of TIN, long-life testosterone supplementation is recommended (78). For more detailed information the reader is referred to the EAU Male Infertility Guidelines.

6 GUIDELINES ON DIAGNOSIS AND STAGING OF TESTICULAR CANCER

1. Physical examination may be sufficient for the diagnosis of testicular cancer (GRADE B recommendation).
2. Testicular ultrasound is mandatory when a tumour is clinically suspected but the examination of the scrotum is normal, or if there is any doubt about the clinical findings in the scrotum (GRADE B recommendation).
3. Orchiectomy and pathological examination of the testis is necessary to confirm the diagnosis and define the local extension (pT category) (GRADE B recommendation). Nevertheless in an emergency clinical situation chemotherapy can be started before orchiectomy.
4. Serum determination of tumour markers (AFP, beta-hCG, LDH) must be performed before and after orchiectomy for staging and prognostic reasons (GRADE B recommendation).
5. Retroperitoneal, mediastinal and supraclavicular nodes and visceral state have to be assessed in testicular cancer. In seminoma, a chest CT scan is not necessary if abdominal nodes are negative (GRADE B recommendation).

6.1 REFERENCES (Diagnosis and Staging of Testis Tumor)

1. Richie JP.

27. Skakkebaek EN.
Possible carcinoma-in-situ of the testis. Lancet 1972; ii:516-517. EBM III.

28. Richie JP, Birnholz J, Gamick MB.
Ultrasoundography as a diagnostic adjunct for the evaluation of masses in the scrotum. Surg Gynecol Obstet 1982;154:695-698. EBM III.

29. Doherty FJ.

31. Friedrich M, Claussen CD, Felix R.

32. Glazer HS, Lee JKT, Melson GL, McClennan BL.

33. Bockrath JM, Schaeffer AJ, Kiess MS, Nieman HL.

34. Shawker TH, Javadpour N, O'Leary T, Shapiro E, Krudy AG.

35. Lenz S, Giwercman A, Skakkebaek NE, Bruun E, Frimodt-Moller C.

36. Thurnher S, Hricak H, Carroll PR, Pobiel RS, Filly RA.

37. Mattrey RF.

38. Rholl KS, Lee JKT, Ling D, Heiken JP, Glazer HS.

39. Johnson HO, Mattrey RF, Phillipson J.

40. Klein EA.

41. Peyret C.
42. Javadpour N.

44. Heidenreich A, Holtl W, Albrecht W, Pont J, Engelmann UH.

45. Weissbach L.

46. Dieckmann KP, Loy V.

47. Von der Maase H, Rorth M, Walbom-Jorgensen S, Sorensen BL, Christophersen IS, Hald T, Jacobsen GK, Berthelsen JG, Skakkebaek NE.

48. Harland SJ, Cook PA, Fossa SD, Horwich A, Mead GM, Parkinson MC, Roberts JT, Stenning SP.

49. Giwercman A, Bruun E, Frimodt-Muller C, Skakkebaek NE.

51. Herr HW, Sheinfeld J.

52. Albers P, Goll A, Bierhoff E, Schoeneich G, Muller SC.

53. Heidenreich A, Moul JW.

UPDATE MARCH 2004

http://www.isismedical.com

www.wiley.com/go/tnm

UPDATE MARCH 2004

68. Bokemeyer C, Schmoll HJ.

70. Petersen PM, Giwercman A, Skakkebaek NE, Rorth M.

71. Petersen PM, Giwercman A, Daugaard G, Rorth M, Petersen JH, Skakkebaek NE, Hansen SW, von der Maase H.

72. De Santis M, Albrecht W, Holtl W, Pont J.

73. Jacobsen KD, Fossa SD, Bjoro TP, Aass N, Heilo A, Stenwig AE.

74. Kliesch S, Behre HM, Jurgens H, Nieschlag E.

75. Giwercman A, von der Maase H, Rorth M, Skakkebaek NE.
Semen quality in testicular tumour and CIS in the contralateral testis. Lancet 1993;341:384-385. EBM IV.

76. Kliesch S, Bergmann M, Hertle L, Nieschlag E, Behre HM.

77. Spermon JR, Kiemeneiy LA, Meuleman EJ, Ramos L, Wetzels AM, Witjes JA.

78. Nieschlag E, Behre HM.
7 TREATMENT: STAGE I GERM CELL TUMOURS

7.1 Stage I seminoma
After modern staging procedures, about 15-20% of stage I seminoma patients have subclinical metastatic disease, usually in the retroperitoneum, and will relapse after orchiectomy alone (1).

7.1.1 Prophylactic radiotherapy
Seminoma cells are extremely radiosensitive. Prophylactic radiotherapy to a para-aortic (PA) field or to a hockey stick field (para-aortic and ipsilateral iliacal nodes), with moderate doses (total 20-24 Gy), will reduce the relapse rate to only 1-3% (2-5). After modern radiotherapy nearly all relapses will first occur outside the irradiated field (supradiaphragmatic lymph nodes or in the lungs) (2,5). Based upon the results of a large randomized Medical Research Council (MRC) trial, Fossa et al. (2,3) recommended radiotherapy to a para-aortic field as standard treatment for patients with testicular seminoma stage I, T1-T3 and with undisturbed lymphatic drainage. The acute toxicity was reduced and the sperm count within the first 18 months was significantly higher after para-aortic irradiation than after irradiation of the traditional dog-leg field. On the other hand, the relapse rate in the iliac lymph nodes was about 2% (all of them on the right side) after para-aortic and 0% after dog-leg irradiation. Another possible site of failure is in the left renal hilum. Para-aortic irradiation should be tailored according to the site of the primary tumour. Prophylactic irradiation of supradiaphragmatic lymph nodes is not indicated in seminoma stage I.

The rate of severe radiation-induced long-term toxicity is less than 2%. Moderate chronic gastrointestinal (GI) side-effects are seen in about 5% of patients and moderate acute GI toxicity in about 60% (2). The main concern surrounding prophylactic radiotherapy is the potentially increased risk of radiation-induced secondary non-germ-cell malignancies, including leukaemia (6-8). A scrotal shield can be of benefit during prophylactic radiotherapy in order to prevent scattered radiation toxicity in the contralateral testis (9), but this is not needed for a para-aortic field. At this point in time it is difficult to evaluate the long-term risks after prophylactic radiotherapy for stage I seminoma since former treatment procedures included larger fields, higher doses of radiotherapy and/or the use of alkylating chemotherapy.

7.1.2 Surveillance
Several prospective non-randomized studies of surveillance have been conducted during the last decade, several of which comprised more than 100 patients. Meta-analysis from the 4 largest studies shows an actuarial 5 years relapse-free rate of 82.3%. On multivariate analysis tumor size (< or = 4 cm) and invasion of the rete testis remained as the most important predictors for relapse (10)

The actuarial relapse rate is of the order of 15-20% at 5 years, and most of the relapses are first detected in infra-diaphragmatic lymph nodes (1,11-13). About 70% of the patients relapsing after surveillance are suitable for treatment with radiotherapy alone. Only about 20% of these patients relapse after salvage radiotherapy and need salvage chemotherapy. The overall cancer-specific survival rate reported by experienced centres is 97-100% for seminoma stage I after surveillance (12,13). A pooled (multivariate) analysis based on the three largest studies of testicular seminoma stage I managed by surveillance indicates that a primary tumour of over 4 cm in size and invasion of the rete testis are important prognostic factors for relapse, with hazard ratios of 1.9 and 2.0, respectively (10). The main drawback of surveillance is the need for more intensive follow-up, especially with repeated imaging examinations of the retroperitoneal lymph nodes, for at least 5 years after orchiectomy. This compares with the very low risk of subdiaphragmatic relapse after prophylactic radiotherapy. About 20% of the relapses seen after surveillance occur more than 4 years after orchiectomy (12). Cost analyses of surveillance compared with radiotherapy indicate that it is more expensive (14), but estimates vary depending basically on the follow-up schedules (15,16).

7.1.3 Prophylactic chemotherapy
Chemotherapy is very effective in advanced seminoma and may be an alternative to radiotherapy or surveillance in stage I seminoma (12,13). One or two courses of adjuvant carboplatin seem to reduce the relapse rate to the order of 1-3% (13,17,18), but further experience and long-term observations are needed before such adjuvant chemotherapy can be recommended as a routine option. A joint MRC and EORTC trial (MRC TE 19 trial) is currently comparing adjuvant radiotherapy with one course of carboplatin, but the results are not yet available (2).

7.1.4 Retroperitoneal Lymph Node Dissection (RPLND)
In a prospective, non-randomized study comparing radiotherapy and RPLND in stage I seminoma, there was a trend towards a higher incidence of retroperitoneal relapses (9.5%) after RPLND as primary treatment. Therefore this policy should not be recommended in stage I seminoma (17).
7.2 GUIDELINES FOR THE TREATMENT OF SEMINOMA STAGE 1
1. Prophylactic radiotherapy to a para-aortic or a hockey stick field, to a total dose of 20-24 Gy. (GRADE A recommendation)
2. Surveillance (if available facilities). (GRADE B recommendation)
3. Awaiting the results of current comparative studies, Carboplatin based chemotherapy can only be recommended in the setting of clinical trials. (GRADE B recommendation)

7.3 NSGCT stage I
If stage IS cases are excluded, up to 30% of NSGCT patients with clinical stage I (CS1) disease have subclinical metastases and will relapse if surveillance alone is applied after orchiectomy.

7.3.1 RPLND
If RPLND is performed, about 30% of patients are found to have retroperitoneal lymph node metastases, which corresponds to pathological stage II (PS2) disease (18-20). If no retroperitoneal metastases are found at RPLND (PS1), approximately 10% of the PS1 patients relapse at distant sites (21-25).
The main predictor of relapse in CS1 NSGCT managed by surveillance, and both for having PS2 disease and for relapse in PS1 after RPLND, is histopathological evidence of vascular invasion by tumor cells in, or near, the primary tumor in the testis (22,24-27). The presence of vascular invasion seems to be a very robust parameter, and is clinically usable even without centralized review by an expert panel (24,28). Vascular invasion was the most predictive of stage in a multifactorial analysis. The absence of vascular invasion has a negative predictive value of 77%, thus allowing for surveillance in low-risk compliant patients (25).
Patients without vascular invasion constitute about 50- 70% of the CS1 population, and these patients have only a 15-20% risk of relapse on surveillance, compared with a 50% relapse rate in patients with vascular invasion. The risk of relapse for PS1 patients is less than 10% for those without vascular invasion and about 30% for those with vascular invasion (24,28-30).
If CS1 patients with PS2 are only followed up after RPLND, about 30% relapse, mainly at sites outside the abdomen and pelvis. The risk of relapse depends upon the amount of retroperitoneal disease resected (31-33). If two (or more) courses of cisplatin-based chemotherapy are given adjuvant to RPLND in the PS2 cases, the relapse rate is reduced to less than 2%, including teratoma relapse (22,26,34). The risk of retroperitoneal relapse after a properly performed nerve-sparing RPLND is very low (less than 2%), as is the risk of ejaculatory disturbance or other significant side-effects (26,31,32). The follow-up after RPLND is much simpler and less costly than that carried out during post-orchiectomy surveillance due to the reduced need for abdominal CT scans (26). A laparoscopic RPLND may become a good alternative to an open RPLND, but can currently not be recommended as a standard treatment (35-38).

7.3.2 Surveillance
Improvements in clinical staging and follow-up methods, and the availability of effective salvage treatment with cisplatin-based chemotherapy and post-chemotherapy surgery, have led to studies of only close surveillance after orchiectomy in CS1 NSGCT patients. The largest reports of the surveillance strategy indicate a cumulative relapse rate of about 30%, with 80% of the relapses occurring during the first 12 months of follow-up, 12% during the second year and 6% during the third year, decreasing to 1% during the fourth and fifth years, and occasionally even later (27,39,40). About 35% of relapsing patients have normal levels of serum tumour markers at relapse. About 60% of the relapses are in the retroperitoneum. Despite very close follow-up, 11% of relapsing patients presented with large-volume recurrent disease. The somewhat lower relapse rates reported from surveillance studies compared with some series of patients staged by RPLND (22) can be explained by the fact that some patients (presumably at risk) are excluded once surveillance is advised.

7.3.3 Primary chemotherapy
Several studies involving two courses of chemotherapy with bleomycin, etoposide and cisplatin, (BEP) as primary treatment for high-risk patients (having about 50% risk of relapse) have been reported (41-45). In these series, involving more than 200 patients, some with a median follow-up of nearly 8 years (41), a relapse rate of only 2.7% was reported, with very little long-term toxicity. Two cycles of cisplatinum based adjuvant chemotherapy do not seem to adversely affect fertility or sexual activity (46). It is important to be aware of the risk of slow-growing retroperitoneal teratomas after primary chemotherapy and of the risk of chemoresistant cancer relapse. The need for repeated and long-term follow-up with imaging (CT or ultrasound) of the retroperitoneum after primary chemotherapy is not yet clear. The results of cost analyses comparing surveillance, RPLND and primary chemotherapy show different results among the reported studies, possibly because of differences in intensity and costs related to follow-up procedures. Overall costs for the different options in treating CS1 may be of the same order of magnitude although a unique cost-benefit analysis shows that adjuvant chemotherapy is the cheaper option per life saved (14-16,47).
7.3.4 Risk-adapted treatment
As with primary chemotherapy, a policy of stratifying patients with CS1 NSGCT according to their presumed risk of relapse may be a rational option. Several studies have reported similar survival rates and a final cure rate close to 100% (28,41-44,48). The main selection criterion for high-risk patients was the presence of vascular invasion in those treated with primary chemotherapy or RPLND, and that for low-risk patients was the absence of vascular invasion following surveillance.

7.4 CS1S with (persistently) elevated serum tumour markers
Serum tumour markers should be followed closely until it is clear whether or not levels are falling according to the expected half-time values for AFP and beta-hCG. If the marker level increases after orchiectomy, the patient has residual disease. If RPLND is performed, up to 87% of these patients have pathologically documented nodes in the retroperitoneum (49). An ultrasound examination of the contralateral testicle must be performed, if this has not been done initially.

The treatment of true CS1S patients is still controversial. They may be treated with either three courses of primary BEP chemotherapy, with follow-up as for CS1B (high risk; see below) patients after primary chemotherapy (50), or by RPLND (47). The presence of vascular invasion may strengthen the indication for primary chemotherapy as most CS1S with vascular invasion will need chemotherapy sooner or later anyway.

7.5 GUIDELINES FOR THE TREATMENT OF NSGCT STAGE I
CS1A (pT1, no vascular invasion); low risk
1. If the patient is willing and able to comply with a surveillance policy and long-term (at least 5 years) close follow-up is feasible; surveillance is equivalent to nerve-sparing RPLND (GRADE B recommendation)
2. If RPLND reveals PN+ (nodal involvement) disease, we are facing a Pathological Stage II and consequently adjuvant chemotherapy with two courses of BEP should be considered (GRADE A recommendation)
CS1B (pT2-pT4); high risk
One of the following active treatments is recommended:
1. Nerve-sparing RPLND, which must be bilateral if PN+ disease is revealed peroperatively (nerve-sparing on the opposite side). If Pathological Stage II is revealed further chemotherapy should be Considered (GRADE A recommendation)
2. Primary chemotherapy with two courses of BEP (GRADE B recommendation).

7.6 REFERENCES (Treatment Stage I Testis Tumor)

20 UPDATE MARCH 2004

UPDATE MARCH 2004

8 TREATMENT: METASTATIC GERM CELL TUMOURS

Treatment of metastatic germ cell tumours depends on:
- Histology of the primary tumour
- Prognostic groups as they have been defined by the International Germ Cell Cancer Collaborative Group (IGCCCG) based on 5,202 non-seminoma and 660 seminoma cases (Table 3) (1).

There is a general consensus that treatment should start with initial chemotherapy in all cases except for low-volume stage II disease, which alternatively can be treated with primary bilateral RPLND for non-seminoma (eventually followed by two cycles of chemotherapy or by surveillance) or radiotherapy for pure seminoma (2,3).

In stage II a-b NSGCT primary chemotherapy and primary RPLND are comparable options in terms of outcome but side effects and toxicity are different, allowing for involvement of the patient in selecting the treatment of choice (4).

8.1 Primary chemotherapy

The primary treatment of choice for advanced disease is four courses of BEP (or PEB) combination chemotherapy (Table 5). These regimens have proven superiority to cisplatin, vinblastine and bleomycin (PVB) in patients with advanced disease (5,6,7).

Table 5: British BEP and PEB regimens (every 3 (4) weeks)

<table>
<thead>
<tr>
<th>Drug</th>
<th>BEP</th>
<th>PEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>20 mg/m², days 1–5</td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td>120 mg/m², days 1, 3, 5</td>
<td>100 mg/m², days 1–5</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>30 mg, days 2, 9, 16</td>
<td></td>
</tr>
</tbody>
</table>

BEP = bleomycin, etoposide and cisplatin; **PEB** = cisplatin, etoposide and bleomycin.

a Plus hydration.

For patients with a ‘good prognosis’, according to the International Germ Cell Cancer Consensus Classification (IGCCCG) (1) standard treatment consists of three cycles of PEB or in case of contraindication against bleomycin of four cycles of PE (1,8-11). Therapy should be given without reduction of the doses in 22-day intervals; delaying the following chemotherapy cycle is justified only in case of fever with granulocytopenia < 1,000/mm³ or thrombopenia < 100,000/µl. There is no indication for prophylactic application of hematopoetic growth factors as G-CSF for example. However, if infectious complications have occurred under chemotherapy, prophylactic administration of G-CSF is recommended for the following cycles (10,12).

With the ‘intermediate prognosis’ group in the IGCCCG a group of patients has been defined, which reaches a 5-year survival rate of about 80%. The available data support four cycles of PEB as standard treatment (1,13). Due to the generally less favourable prognosis of this patient group, in comparison to patients with ‘good prognosis’, they may be treated in prospective trials like for example in the EORTC GU Group trial with PEB vs PEB+Paclitaxel (13).

For patients with ‘poor prognosis’ standard treatment consists of four cycles of PEB; four cycles of PEI (Cisplatin, Etoposide, Ifosfamide) are of the same effect but more toxic (14,15). The 5-year progression-free survival is between 45 and 50%. It has not yet been proven that high-dose chemotherapy increases the survival rate (16,17). Since a matched-pair analysis resulted in a better survival rate (18,19), these patients should be treated in the ongoing prospective randomized trial, investigating the value of high-dose chemotherapy. Patients meeting ‘poor-prognosis’ criteria should therefore be transferred to a reference...
centre. Any general recommendations for treatment modifications for patients with a poor general condition (Karnofsky <50%), extended liver infiltration (>50%) and extended pulmonary infiltration do not exist.

8.2 Restaging and further treatment

8.2.1 Restaging
After termination of two courses of chemotherapy, re-evaluation is performed by imaging investigations and determination of tumor markers. At marker decline and stable or regressive tumor manifestation chemotherapy will be completed (three or four cycles depending on the initial stage) (1,20,21). In case of marker decline, but growing metastases, resection of the tumor is obligatory after termination of induction therapy, unless in case of emergency according to local tumor growth (22).

Only with documented marker growth after 2 courses of chemotherapy an early crossover of therapy is indicated. These patients are usually candidates for new drugs trials (19,23). Patients with a low-level marker plateau post treatment will be observed whether or not complete normalisation occurs. Salvage chemotherapy is indicated for documented marker rise only (24,25).

8.2.2 Residual tumor resection
A residual mass of seminoma will not be resected, irrespective of the size, but controlled by imaging investigations and tumor markers (26-32). On progression, salvage chemotherapy will be given, if necessary including surgery and radiotherapy (33-37). In case of non-seminoma and complete remission after chemotherapy, secondary RPLND is not indicated (38-43). In case of residual mass (greater than 1 cm in diameter) and marker normalisation surgical resection is indicated (38,44-51). Overall, following BEP induction chemotherapy, only 10% of residual masses contain viable cancer, 50% contain mature teratoma and 40% contain necrotic-fibrotic tissue. As yet no imaging investigation including PET or prognosis model are able to predict histological differentiation of the residual tumor. Residual tumor resection is mandatory (39-41,52-60).

The extent of surgery should be based on the risk of relapse of an individual patient and in quality of life issues (45). If possible, all the masses have to be resected because a complete resection, in the setting of viable malignant cells, is more critical than recourse to postoperative chemotherapy (61). Histology in different organ sites may diverge (53).

8.2.3 Consolidation chemotherapy after secondary surgery
After resection of necrosis or mature teratoma no further treatment is required. In case of complete resection of vital carcinoma or immature teratoma two adjuvant cycles of conventionally dosed cisplatinum-based chemotherapy should be given (cave: cumulative doses of bleomycine). The prognosis will definitely deteriorate if vital carcinoma is found in resection specimens after second and third line chemotherapy. In this latter situation postoperative chemotherapy is not indicated and unable to improve the prognosis (49,54).

Two courses of cisplatin, vinblastine and bleomycine (PVB), vinblastine, adriamycin and, bleomycine (VAB) or BEP given post-operatively following lymphadenectomy for ‘radically’ resected retroperitoneal metastases containing viable cancer have been followed by nearly no relapses (62-66). This adjuvant treatment has been questioned by some authors (63-67), who reported equivalent results in 60 radically resected patients with, or without, such treatment. Furthermore, it has been demonstrated in a co-operative retrospective study (68) that the major success factors in these patients are complete surgical resection and percentage of viable cancer in the residual mass, with the effect of adjuvant chemotherapy being borderline. Nevertheless, the results with adjuvant chemotherapy are not statistically superior to those resulting from very careful observation and deferred treatment in the case of relapse (69).

8.3 Systemic salvage treatment for relapse or refractory disease

8.3.1 Seminoma
Cisplatin based combination salvage chemotherapy will result in long-term remissions for about 50% of patients who relapse after first-line chemotherapy (70). Regimens of choice are: four cycles of PEI/VIP or four cycles of VeIP. At present it is impossible to determine whether conventionally dosed cisplatin based combination chemotherapy is sufficient as first salvage treatment or whether early intensification of first-salvage treatment with high-dose chemotherapy should be attempted (71). Therefore treatment of these rare patients within clinical trials and at experienced centres is of outmost importance.

8.3.2 Non-seminoma
Standard salvage treatment after first-line chemotherapy consists of either four cycles of PEI/VIP or four cycles of VeIP, respectively (Table 6). Conventionally dosed salvage chemotherapy may achieve long-term remissions in 15 to 40% of patients, depending on individual risk factors (72,73). Prognostic indicators of response to salvage therapy are: location and histology of the primary tumor, response to first line treatment, duration of remissions and level of AFP and β-hCG at relapse (72-75). Salvage therapy with VeIP is probably not superior
to other conventionally dosed cisplatin based combination regimens (71,73,74). The use of conventionally
dosed combination regimens with more than three agents will increase toxicity without improving treatment
outcome (76). Depending on the presence of adverse prognostic factors, the results of salvage therapy after
first-line cisplatin based treatment are unsatisfactory (72,77). Although some Phase II trials indicate a 10%
 improvement in survival with early intensification of first salvage treatment using high-dose chemotherapy,
others fail to demonstrate such improvement (78-80). Recently, Taxol and Gemcitabine have proved to be
active in the treatment of refractory germ cell tumours; both drugs are synergistic with Cisplatin (81-83).
However, all of these patients should be entered into ongoing multicentre studies to define the optimal
approach to salvage treatment and should be referred to centers experienced in caring for relapse and/or
refractory patients (71).

Table 6: Standard VIP (VelP)

<table>
<thead>
<tr>
<th>Drug</th>
<th>VIP (VelP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>20 mg/m², days 1–5a</td>
</tr>
<tr>
<td>Etoposide (vinblastine)</td>
<td>75 mg/m², days 1–5 (0.11 mg/kg, days 1, 2)</td>
</tr>
<tr>
<td>Ifosfamidec</td>
<td>1.2 g/m², days 1–5</td>
</tr>
</tbody>
</table>

VIP = VP-16 (vinblastine) ifosfamide and cisplatin; VelP = velban, ifosfamide and cisplatin;
a Plus hydration.

8.4 Salvage surgery
Residual tumors after salvage chemotherapy should be resected within four to six weeks after marker
normalisation or when a marker plateau is reached. In case of marker progression after salvage treatment
and lack of other chemotherapeutic options, resection of residual tumors (‘desperation surgery’) should be
considered if complete resection of all tumor seems feasible (about 25% long-term survival may be achieved)
(47,55,72,85-95).

8.5 Treatment of brain metastases
Brain metastases occur in the frame of a systemic relapse and rarely as an isolated relapse. The long-term
survival of patients presenting with brain metastasis at initial diagnostic is poor (30-40%), but even poorer is
the development of a brain metastases as a recurrent disease (five years survival 2-5%) (96,97). Chemotherapy
is the initial treatment in this case and some data support the use of consolidation radiotherapy even in case of
a total response after chemotherapy (98). Surgery can be considered in case of a persistent solitary metastasis
depending on the systemic state, the histology of the primary tumor and the location of the metastasis.

8.6 GUIDELINES FOR THE TREATMENT OF METASTATIC GERM CELL TUMOURS
1. Low volume NSGCT stage II can be treated either by RPLND (plus surveillance or two cycles of
 chemotherapy) or by primary chemotherapy (GRADE A recommendation)
2. In metastatic NSGCT with a good prognosis, three courses of BEP is the primary treatment of choice
 (GRADE A recommendation)
3. In metastatic NSGCT with an intermediate or poor prognosis, the primary treatment of choice is
 four courses of standard BEP (GRADE A recommendation)
4. Surgical resection of residual masses after chemotherapy in NSGCT is indicated in case of a residual
 mass > 1cm and when serum levels of tumour markers are normal or normalizing
 (GRADE B recommendation)
5. Metastatic seminoma with less than N3M1 disease can be treated initially with radiotherapy.
 When necessary, chemotherapy can be used as a salvage treatment with the same schedule
 as for the corresponding prognostic groups of NSGCT (GRADE A recommendation)
6. Advanced seminoma (N3 or M1) should be treated with primary chemotherapy according to
 the same principles used for NSGCT (GRADE A recommendation).

8.7 REFERENCES (Treatment Metastatic disease)
1. International Germ Cell Collaborative Group.
 International Germ Cell Consensus Classification: a prognostic factor-based staging system for
dopt=Abstract
2. Frohlich MW, Small EJ.
Stage II nonseminomatous testis cancer: the roles of primary and adjuvant chemotherapy.

3. Baniel J, Donohue JP.
Cost and risk benefit considerations in low stage (I and II) nonseminomatous testicular tumors.
AUA Update Series 1997;26:50-55.

RPLND or primary chemotherapy in clinical stage IIA/B nonseminomatous germ cell tumors.
Results of a prospective multicenter trial including quality of life assessment.

5. Saxman S, Finch D, Gonin R, Einhorn LH.

6. de Wit R, Stoter G, Kaye SB, Sleijfer DT, Jones WG, ten Bokkel Huinink WW, Rea LA, Collette L, Sylvester R.

7. Shelley MD, Burgon K, Mason MD.

8. Horwich A, Sleijfer DT, Fossa SD, Kaye SB, Oliver RT, Cullen MH, Mead GM, de Wit R, de Mulder PH, Dearnaley DP, Cook PA, Sylvester RJ, Stenning SP.
Randomized trial of bleomycin, etoposide and cisplatin compared with bleomycin, etoposide and carboplatin in good-prognosis metastatic nonseminomatous germ cell cancer: a multi-institutional Medical Research Council/European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group trial.

Hematopoetic growth factors and treatment of testicular cancer: biological interactions, routine use and dose intensive chemotherapy.

Equivalence of three or four cycles of bleomycin, etoposide, and cisplatin chemotherapy and of a 3- or 5- day schedule in good-prognosis Germ Cell cancer: a randomized study of the European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical research Council.

Long-term follow-up of patients with good-risk germ cell tumors treated with etoposide and cisplatin.

UPDATE MARCH 2004

UPDATE MARCH 2004

UPDATE MARCH 2004 31
43. Stomper PC, Fung CY, Socinski MA, Jochelson MS, Garnick MB, Richie JP.

44. Aprikian AG, Herr HW, Bajorin DF, Bosl GJ.
EBM IIa.

45. Herr HW.

47. Wood DP, Herr HW, Heller G, Vlamis V, Sogani PC, Motzer RJ, Fair WR, Bosl GJ.

48. Baniel J, Foster RS, Rowland RG, Bihrl R, Donohue JP.

49. Hartmann JT, Schmoll HJ, Kuczyk MA, Candelaria M, Bokemeyer C.
Post-chemotherapy resection of residual masses from metastatic non-seminomatous germ cell tumors. Ann Oncol 1997;8:531-538. EBM III.

Retroperitoneal lymphadenectomy for post-chemotherapy residual masses: is a modified dissection and resection of the residual mass sufficient?. Br J Urol 1998;81:295-300. EBM III.

51. Tekgul S, Özen HA, Celebi I, Ozgu I, Ergen A, Demircin M, Remzi D.

53. Hartmann JT, Candelaria M, Kuczyk MA, Schmoll HJ, Bokemeyer C.
Comparison of histological results from the resection of residual masses at different sites after chemotherapy for metastatic non-seminomatous germ cell tumours. Eur J Cancer 1997;33:843-847.
EBM III.

Surgical resection in patients with nonseminomatous germ cell tumor who fail to normalize serum tumor markers after chemotherapy. Urology 1994;43:74-80. EBM III.

89. Foster RS, Donohue JP.

Late relapse of germ cell tumors after cisplatin-based chemotherapy. Ann Oncol 1997;8:41-47. EBM III.

Results of salvage retroperitoneal lymphadenectomy (RLA) in the treatment of patients with nonseminomatous germ cell tumors remaining marker positive after inductive chemotherapy. Int Urol Nephrol 1995;27:325-329. EBM III.

92. Murphy BR, Breeden ES, Donohue JP, Messemer J, Walsh W, Roth BJ, Einhorn LH.

93. Nichols C.

94. Ravi R, Ong J, Oliver RT, Badenoch DF, Fowler CG, Hendry WF.

95. Albers P, Ganz A, Hanning E, Miersch WD, Muller SC.

96. Fossa SD, Bokemeyer C, Gerl A, Culine S, Jones WG, Mead GM, Germa-Luch JR, Pont J, Schmoll HJ, Tjulandin S.

98. Hartmann JT, Bamberg M, Albers P et al.
9 FOLLOW-UP AFTER CURATIVE THERAPY

9.1 General considerations

In spite of the fact that relative information exists on the value of follow-up testing of asymptomatic patients after potentially curative therapy, testis cancer, the most curable human tumor is an excellent model for post curative therapy surveillance.

The selection of the test to be performed in follow-up should adhere to the following principles (1):

A The interval between examinations and duration of testing should be consistent with the time of maximal risk of recurrence and the natural history of the tumor

B The tests should be directed at the most likely sites of recurrence and should have a high predictive value, both positive and negative

C Therapy should be available that will result in cure of the recurrence, significant prolongation of life or palliation symptoms. The initiation of earlier therapy should improve the outcome compared with therapy given when the patient becomes symptomatic from the tumor recurrence.

D The increased risk of second malignancy, both in the primary site and in other tissues that may have been exposed to the same carcinogens or in which there is epidemiologic evidence of increased risk, should also guide the ordering tests. Malignant and non malignant complications of therapy must also be considered. Such testing should also be performed with a frequency and duration consistent with the nature of the risk and include only tests with high positive and negative predictive values

The following considerations apply in a general manner for the selection of an appropriate schedule and testing in the follow-up of all stages of Testis Tumor:

• Most recurrences after curative therapy will occur in the first two years; consequently surveillance should be most frequent and intensive during this time.
• Late relapses can occur beyond 5 years therefore yearly follow-up for life may be advocated.
• After RPLND relapse in the retroperitoneum is rare, the most likely site of recurrence being the chest.
• The value of chest X-ray has been recently questioned in the follow-up of patients with disseminated disease after complete remission (2).
• CT of the chest has a higher predictive value than chest X-ray (3)
• The results of therapy are dependant on the bulk of disease, thus an intensive strategy to detect presymptomatic disease may be justifiable.
• After chemotherapy or radiotherapy a small long-term risk for secondary malignancies development exists.

In testis tumor the aims of follow-up are:

• to detect relapse as early as possible in all stages,
• to detect an asynchronous contralateral carcinoma of the testis in an early phase,
• to avoid unnecessary treatment in Stage I.

Because different treatment policies are available for Stage I and low-volume of metastatic disease (resulting in the same survival but different recurrence rate), in those stages the intensity of the follow-up should be determined by the rate and timing of relapse. The site of relapse for each one of the policies should dictate the tests to be performed during the follow-up.

Whether in early or advanced stages the tests to be performed during follow-up are:

• Physical examination (search for neck and abdominal masses, gynaecomastia, examination of groins, superficial nodes and the remaining testis),
• Serum Tumour Markers determination (AFP, beta-hCG and LDH),
• Chest X-ray and or Chest CT, Abdominal and pelvic CT or abdominal ultrasound,
• and Brain CT in case of neurological symptoms, and Bone scan in case of bone pain.

Currently, not enough evidence is available in the literature from which to derive strict recommendations on timing and testing during follow-up. The nature of the recommendations on follow-up is of grade B or C with a consistent lack of randomized studies. Therefore, the authors want to emphasize that the following recommendations represent the minimum standard of follow-up. Any other tests (e.g., hormonal determinations, spermiograms, neurological examinations) or more frequent schedules of evaluation may be performed on the basis of a clinical protocol or with investigative purposes.
9.2 REFERENCES (General considerations on follow-up of Testis Tumor)

9.3 Follow-up stage I non-seminoma

Approximately 5% of patients with clinical stage I NSGCT present with elevated levels of tumour markers after orchiectomy and up to 25-30% relapse during the first 2 years (1-9).

The follow-up schedule will differ depending on which of the three possible treatment strategies was chosen: surveillance, nerve-sparing retroperitoneal lymphadenectomy (RLND) or primary chemotherapy.

9.3.1 Follow-up after surveillance

The results of a surveillance policy depend upon a careful pre-operative staging procedure and follow-up management. Half of the relapses will occur in the first 6 months; however, recurrent disease has been detected as late as 6 years after orchiectomy. In a ‘wait and see’ policy, relapses will occur in 30% of cases. Of these relapses, 80% will occur in the first 12 months after orchiectomy and approximately 12% during the second year. The median time to relapse is 6 months (range 1-62 months), but relapses after 3-5 years, and even later, may still occur, with an annual rate of 4% (10-11). Relapse occurs mainly in the retroperitoneum; approximately 20% of patients have evident metastases in the retroperitoneum and 10% in the mediastinum and lungs (12). Sometimes the only indication is an elevated level of tumor markers.

Careful observation during the first 6 -12 months after orchiectomy is mandatory; thereafter, the interval may be longer. Surveillance should continue for a minimum of 6 years and indefinite yearly follow-up is advocated by some. There is no universally accepted protocol for surveillance. A recommended follow-up schedule is shown in Table 7. It is particularly difficult to establish recommendations for those patients with negative pre-operative tumour markers levels.

Table 7: Recommended follow-up schedule in a surveillance policy: – stage I non-seminoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3–5</th>
<th>6–10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>Monthly</td>
<td>4-6 times</td>
<td>Twice/year</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Tumour markers</td>
<td>9-12 times (Monthly the first 6 months)</td>
<td>4-6 times</td>
<td>Twice/year</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>9-12 times (Monthly for the first 6 months)</td>
<td>4-6 times</td>
<td>Twice/year</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Abdominal CT scan</td>
<td>3-4 times</td>
<td>Twice</td>
<td>Once/year</td>
<td>If indicated</td>
<td></td>
</tr>
</tbody>
</table>

9.3.2 Follow-up after nerve-sparing RLND

Retroperitoneal relapse after a properly performed nerve-sparing RLND is extremely rare. RLND should eliminate the retroperitoneal nodes as a site of relapse, and thus the need for repeated abdominal CT scans. The USA Intergroup data show retroperitoneal relapse in 7/264 patients with pathological stage I disease (and 20 pulmonary relapses); four of these seven had no marker elevation (13). In the Indiana series, only one relapse in 559 cases was reported (14). If a relapse occurs, it is generally in the chest, neck or at the margins of the surgical field. Pulmonary relapses occur in 10-12% of patients and more than 90% of those relapses occur within 2 years of RLND (15,16). The recommended follow-up schedule is shown in Table 8.
Table 8: Recommended follow-up schedule after retroperitoneal lymphadenectomy or adjuvant chemotherapy - stage I non-seminoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3–5</th>
<th>Year 5–10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>6 times</td>
<td>3 times</td>
<td>2 per year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>6 times</td>
<td>3 times</td>
<td>2 per year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>6 times</td>
<td>3 times</td>
<td>2 per year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal computed tomography scan</td>
<td>Twice</td>
<td>Once</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
</tbody>
</table>

* Grade C recommendation
* Due to a risk of late, slow-growing teratoma in the retroperitoneum after adjuvant chemotherapy once a year.
* Alternating with abdominal CT scan.

9.3.3 Follow-up after adjuvant chemotherapy

Although the number of patients treated using adjuvant chemotherapy is still small, some prospective reports with long-term follow-up show a very low relapse rate (1-3,17) of about 3%. The need for repeated and long-term assessment of the retroperitoneum is still not clear. Primary chemotherapy in the treatment of NSGCT cannot be regarded as investigational, but still has to be offered in the setting of clinical trials. The follow-up schedule will depend on the results of these studies, but will probably be similar to that recommended for RPLND (Table 8). Owing to the risk of developing a late, slow-growing teratoma in the retroperitoneum after adjuvant chemotherapy, an abdominal CT or an ultrasound examination should also be performed (at least) annually during the third to fifth year.

9.4 REFERENCES (Follow-up stage I non-seminoma)

1. Cullen MH, Stenning SP, Parkinson MC, Fossa SD, Kaye SB, Horwich AH, Harland SJ, Williams MV, Jakès R.

3. Bohlen D, Borner M, Sonntag RW, Fey MF, Studer UE.
 Long-term results following adjuvant chemotherapy in patients with clinical stage I testicular nonseminomatous malignant germ cell tumors with high risk factors. J Urol 1999;161:1148-1152. EBM III.

4. Lashley DB, Lowe BA.

5. Bosl GJ, Motzel RJ.

6. Tjan-Heijnen VCG, Oosterhof GON, de Wit R, de Mulder PHM.

UPDATE MARCH 2004

15. Schmoll HJ, Weissbach L. Diagnostik und Therapie von Hodentumoren, Interdisziplinäre Konsensus-Konferenz, Halle (Saale), 1996. EBM IIa-IIb-III.

9.5 Follow-up stage I seminoma

The majority of patients with seminoma (70-80%) present with clinical stage I disease at diagnosis (1). In 15-20% of cases, there is nodal radiological involvement at the level of the retroperitoneum and only 5% of patients present with distant metastasis (1). The relapse rate varies between 1% and 20%, depending on the post-orchiectomy therapy chosen. Only up to 30% of seminomas present with elevation of beta-hCG at diagnosis or in the course of the disease. Consequently, in most cases, measurement of blood markers will not be a reliable test for follow-up (2). The treatment options post-orchiectomy in stage I seminoma are retroperitoneal radiotherapy, surveillance and adjuvant chemotherapy. Due to extreme radio and chemosensitivity, high cure rates of almost 100% are reached with each of the approaches, even in case of relapse. The costs of the different therapies vary, as do the expected side-effects (3-5).

The optimal schedule of follow-up has yet to be defined and will differ according to the treatment chosen. Different tests have to be performed according to the relapse time and pattern of relapse.

9.5.1 Follow-up after radiotherapy

Low doses of radiotherapy (20-24 Gy) limited to the retroperitoneal or the hockey stick field achieve an overall survival rate of approximately 99% at 5-10 years (6-10). The rate of relapse is 1-2% and the most common time of presentation is within 18 months after treatment (4,7,11-13), although late relapses have also been described (14). The site of relapse is mainly at the supradiaphragmatic lymph nodes, mediastinum, lungs or bones. In a small proportion of cases, the tumour will relapse in the inguinal or external iliac nodes (1). The side-effects of radiotherapy include impaired spermatogenesis, gastrointestinal symptoms (peptic ulceration) and induction of second malignancies (4,15,16). Up to 50% of patients can develop moderate toxicity Grade I-II (6). The schedule of follow-up is described in Table 9.

Table 9: Follow-up for post-orchiectomy radiotherapy or chemotherapy – stage I seminoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year</th>
<th>2</th>
<th>3</th>
<th>4–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>2/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>2/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>6 times</td>
<td>4 times</td>
<td>3 times</td>
<td>2/year</td>
</tr>
<tr>
<td>Abdominal CT scan</td>
<td>Once</td>
<td>Once</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>Once*</td>
<td>Once*</td>
<td>Once</td>
<td>If indicated</td>
</tr>
</tbody>
</table>

* Alternating with abdominal computed tomography scan.

9.5.2 Follow-up after surveillance

It must be recognized that there is a somewhat higher need for salvage chemotherapy if prophylactic radiotherapy is omitted. Alternatively, at least 80% of patients will receive unnecessary radiotherapy if this is given prophylactically to all those with seminoma stage I. There are already prospective, but not randomized, studies of surveillance showing that the actuarial risk of relapse at 5 years ranges between 15% and 20% (17-21). Nevertheless, there is no increased risk of death. The median time to relapse ranges from 12-18 months, but up to 29% of relapses can develop later (1). The sites of relapse are the PA lymph nodes in up to 82% of cases; the pelvic lymph nodes, inguinal nodes and lungs can also be affected (1). Due to the high and often late rate of relapse, close and active follow-up is mandatory for at least 5 years. The major disadvantages of this policy are lack of long-term follow-up data, high costs and patient compliance. The schedule of follow-up is described in Table 10.
Table 10: Follow-up in surveillance policy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4-5</th>
<th>Year 6-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>Six times</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>Six times</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Six times</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice/year</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal computed tomography scan</td>
<td>Four times</td>
<td>Four times</td>
<td>Twice</td>
<td>Once/year</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>*</td>
<td>*</td>
<td>Twice</td>
<td>Once/year</td>
<td>If indicated</td>
</tr>
</tbody>
</table>

* Not required.
* Alternating with abdominal computed tomography scan.

9.5.3 Follow-up after adjuvant chemotherapy

One or two courses of carboplatin-based chemotherapy is an effective alternative treatment in stage I seminoma. The relapse rate is less than 2%, but the number of patients treated in a prospective setting is still low and the length of follow-up is also limited in most studies. In general, this treatment is well tolerated, with only mild, acute and intermediate-term toxicity (22,23). As the relapse rate is low, the follow-up schedule may be the same as the one proposed for post-orchiectomy radiotherapy (Table 9).

9.6 REFERENCES (Follow-up stage I seminoma)

9.7 Follow-up of stage II and advanced (metastatic) disease

The more advanced the nodal stage of the disease, the higher the likelihood of recurrence (1). In general, the primary tumour bulk governs the outcome for patients with NSGCT (2). In stage II NSGCT, regardless of the treatment policy adopted, excellent survival rates of 97% are reached provided that relapse is identified as soon as possible (3-5).

In advanced metastatic germ cell tumours, the extent of the disease is correlated with the response to therapy and with survival. The combination of cisplatin-based chemotherapy and surgery (aggressive multimodality) achieves cure rates between 65% and 85%, depending on the initial extent of disease (2,6). Complete response rates to chemotherapy are in the order of 50-60% (2); another 20-30% of patients could be rendered disease free with post-chemotherapy surgery (7).

The main reasons for failure of therapy in advanced NSGCT are (2,8,9):

- The presence of bulky disease not responding completely to chemotherapy
- Unresectable residual teratoma after chemotherapy
- Presence or development of chemoresistant non-germ elements, which account for 8.2% of cases

There is a lack of randomized trial results from which to plan evidence-based follow-up, and the different schedules used by various centres have a higher variability and are more individualized than for stage IA.

9.7.1 Clinical and pathological stage II NSGCT

As previously stated in this guidelines low-volume stage II NSCGT can be treated by primary RPLN or primary chemotherapy.

9.7.1.1 Relapse after primary RPLND

Two different situations can occur:

1. About 23-28% of clinical stage II patients will have pathological stage I disease and should be followed up accordingly (see follow-up for NSGCT stage I) (10,11).

2. Between 72% and 77% of clinical stage II patients will be of pathological stage II, having a different relapse rate depending on the type of treatment. Whatever the treatment policy chosen, the majority of relapses occur within the first 2 years and outside the surgical field.

Relapse after primary RPLND followed by two immediate cycles of chemotherapy

The relapse rate for this group is 6% at 4 years (1,6). In non-randomized series, with a mean follow-up ranging from 30-72 months, this treatment policy results in a high overall disease-free survival rate of 98-100% (3,12).
The main disadvantage of adjuvant chemotherapy is that it represents an overtreatment in approximately 50% of patients with stage II disease.

Relapse after primary RPLND followed by surveillance

The average relapse rate in this group is 35% (range 8-49%) at a mean of 4 years (1,13,14). Nevertheless, the relapse rate depends on pathological stage; pathological stage IIa presents a risk of relapse of less than 50%, while pathological stage IIb presents a risk of relapse of at least 50% (1,3,6,15).

Following primary RPLND the retroperitoneal CT scan can be replaced by a less expensive abdominal ultrasound, although a baseline post-RPLND CT scan is recommended (Table 11). When primary RPLND is followed by surveillance (generally in cases of low-volume lymph node involvement or pathological stage IIa), a stricter schedule of follow-up is needed than with adjuvant chemotherapy. A physical examination, tumour marker assessment and chest X-ray are performed more frequently than in the former treatment policy. The follow-up outlined in Table 11 can be used, but the tests have to be performed:

- Monthly during the first year
- Bimonthly during the second year
- Three-monthly during the third year
- Every 4 months during the fourth year
- Twice in the fifth year
- Yearly thereafter

Table 11: Follow-up of NSGCT stage IIa-IIb after RPLND plus chemotherapy or primary chemotherapy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Thereafter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>Bimonthly</td>
<td>Four times</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Tumour markers</td>
<td>Bimonthly</td>
<td>Four times</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Bimonthly</td>
<td>Four times</td>
<td>Twice</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
</tr>
<tr>
<td>Abdominal CT (after RPLND)</td>
<td>Baseline, then as indicated</td>
<td>As indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>Twice</td>
<td>Twice</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
</tr>
</tbody>
</table>

CT = computed tomography.

After RPLND, a baseline CT scan of the abdomen and pelvis is obtained, and repeated if clinically indicated thereafter.

After primary chemotherapy, the retroperitoneum has to be monitored by means of CT scan at least twice during the first 2 years.

9.7.1.2 Relapse after primary chemotherapy

Between 68% and 78% of patients (average 75%) will reach a clinical complete response (5,16,17). The relapse rate is then around 5%, and most relapses occur in the first 8 months after chemotherapy, continuing up to 2 years. Nevertheless, later relapses in the range 2-5% may occur depending on several prognostic factors (e.g. whether the metastasis is: > 3 cm or < 3 cm in size, histology of the primary tumour/teratoid elements). Mature teratomas have been described at 5-8 years of follow-up (3).

Generally, the relapse rate at a median follow-up of 5.5 years is approximately 8%. The progression-free survival rate is approximately 92% and the overall survival rate is 97% (5).

Although this treatment policy avoids RPLND in 68-78% of patients, depending on whether the clinical stage is IIa or IIb (5,16,18), it requires extended follow-up. After primary chemotherapy, retroperitoneal CT scans cannot be omitted from the follow-up schedule. The follow-up schedule is basically the same as that for primary RPLND plus adjuvant chemotherapy, although after primary chemotherapy an abdominal and pelvic CT scan has to be performed at least twice during the first 2 years (Table 11).
9.7.2 **Clinical stage II seminoma**

Relapse rates following radiotherapy for clinical stages IIa and IIb are in the range 5-15%. Most relapses occur within the first 2 years and present with a supraclavicular or mediastinal mass, while relapses in the irradiated field are rare (6). The recommend follow-up schedule is outlined in Table 12.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>> 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>Six times</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Tumour markers</td>
<td>Six times</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Six times</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice</td>
<td>Twice</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>CT abdomen and pelvis</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td></td>
</tr>
<tr>
<td>CT chest</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td>If indicated</td>
<td></td>
</tr>
</tbody>
</table>

CT = computed tomography.

9.7.3 **Clinical stage IIC and III seminoma and non-seminoma**

In advanced disease following the IGCCG classification, the overall survival rate is in the order of 92% for patients in the good prognostic category, 80% for those in the intermediate category and 48% for those in the poor prognostic category (19). Stage IIC is generally grouped in the subset of patients with good prognosis (3). After chemotherapy, careful follow-up observation is recommended if there is a decrease of at least 90% in the volume of retroperitoneal masses, provided there was no evidence of teratomatous elements in the primary tumour. Nevertheless, to date there are no reliable CT scan criteria to distinguish tumour or teratoma from necrotic debris in the post-chemotherapy setting; false-negative CT scan rates range from 8-37% (8). In advanced NSGCT, despite statistical correlation with a variety of factors (e.g., degree of shrinkage, size of residual mass, pre-chemotherapy tumour marker levels, teratomatous components in orchiectomy specimen), the risk of a false-negative prediction based on a CT scan is still currently approximately 20% (8). In advanced seminoma, the rate of ‘in-site’ failure is 3% when the CT scan is normal or shows a residual abnormality less than 3 cm in diameter (20-23). The follow-up schedule for advanced disease (seminoma and non-seminoma) is presented in Table 13.

In advanced disease routine estimation of serum tumor markers (β-hCG and AFP) seems to be the single most important follow-up procedure followed by the physical examination and the clinical history (24-25), some recent studies questioning the value of the routine chest X-ray test (25).

A brain CT has to be performed during follow-up if neurological symptoms are present, because up to 5% of patients with advanced disease present with or develop brain metastases (6). An abdominal CT scan has to be performed at least annually, because of the ominous significance of teratoma, if found in the retroperitoneum.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Thereafter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>Monthly</td>
<td>Bimonthly</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Tumour markers</td>
<td>Monthly</td>
<td>Bimonthly</td>
<td>Four times</td>
<td>Three times</td>
<td>Twice</td>
<td>Once/year</td>
<td></td>
</tr>
<tr>
<td>Abdominal CT</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td></td>
</tr>
<tr>
<td>Chest CT</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td></td>
</tr>
<tr>
<td>Brain CT</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td>As indicated</td>
<td></td>
</tr>
</tbody>
</table>

CT = computed tomography.

Table 12: Follow-up of seminoma stage IIa-IIb after radiotherapy

Table 13: Follow-up of advanced NSGCT and seminoma
If the post-chemotherapy evaluation shows any mass > 3 cm, the appropriate CT scan should be repeated 2 and 4 months later to ensure that the mass is continuing to regress.

Chest CT is indicated if abnormality is detected on chest X-ray and after pulmonary resection.

In patients with headaches, focal neurological findings or any CNS symptom.

9.8 REFERENCES (Follow-up stage II and advanced disease)

* These EAU Guidelines on Testicular Cancer are endorsed by all members of the EAU Oncological Urology Group (Chairman: C. Abbou). Members of the Oncological Urology Group are the EAU Working parties on: Bladder Cancer, Renal Cell Cancer, Penile Cancer, Prostate Cancer & Testis Cancer.
10 ABBREVIATIONS USED IN THE TEXT

This list is not comprehensive for the most common abbreviations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP</td>
<td>Alpha-fetoprotein</td>
</tr>
<tr>
<td>BEP</td>
<td>Bleomycin, etoposide & cisplatin</td>
</tr>
<tr>
<td>beta-hCG</td>
<td>Beta-human chorionic gonadotrophin</td>
</tr>
<tr>
<td>CgA</td>
<td>Chromogranine A</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>EP</td>
<td>Etoposide and Cisplatin</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organization for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>Fluorodeoxyglucose-positron-emission tomography</td>
</tr>
<tr>
<td>IGCCCG</td>
<td>International Germ Cell Cancer Collaborative Group</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate Dehydrogenase</td>
</tr>
<tr>
<td>MMSK</td>
<td>Memorial Sloan Kettering</td>
</tr>
<tr>
<td>MRC</td>
<td>Medical Research Council</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance Imaging</td>
</tr>
<tr>
<td>NSE</td>
<td>Neuro-specific Enolase</td>
</tr>
<tr>
<td>NSGCT</td>
<td>Non-seminomatosus germ cell tumour</td>
</tr>
<tr>
<td>PEB</td>
<td>Cisplatin, Etoposide and Bleomycin</td>
</tr>
<tr>
<td>PEI</td>
<td>Cisplatin, Etoposide, Ifosfamide</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PVI</td>
<td>Cisplatin, Vinblastine, Ifosfamide</td>
</tr>
<tr>
<td>PLAP</td>
<td>Placental alkaline Phosphatase</td>
</tr>
<tr>
<td>PVB</td>
<td>Cisplatin, Vinblastine and Bleomycin</td>
</tr>
<tr>
<td>RPLND</td>
<td>Retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>Tin</td>
<td>Intratubular germ cell neoplasia</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumour Node Metastasis</td>
</tr>
<tr>
<td>UICC</td>
<td>International Union Against Cancer</td>
</tr>
<tr>
<td>VAB</td>
<td>Vinblastine, Adriamycin and Bleomycin</td>
</tr>
<tr>
<td>VelP</td>
<td>Velvan, Ifosfamide and Cisplatin</td>
</tr>
</tbody>
</table>