Biochemical Recurrence in Prostate Cancer: The European Association of Urology Prostate Cancer Guidelines Panel Recommendations

Thomas Van den Broeck a,*, Roderick C.N. van den Bergh b, Erik Briers c, Philip Cornford d, Marcus Cumberbatch e, Derya Tilki f,g, Maria De Santis h, i, Stefano Fant i j, Nicola Fossati k,l, Silke Gillessen m,n,o, Jeremy P. Grummet p, Ann M. Henry q, Michael Lardas r, Matthew Liew s, Malcolm Mason t, Lisa Moris a, u, Ivo G. Schoots v, Theodorus van der Kwast w, Henk van der Poel x, Thomas Wiegel y, Peter-Paul M. Willemse z, Olivier Rouvière s, Thomas B. Lam b, c, Nicolas Mottet D

a Department of Urology, University Hospitals Leuven, Leuven, Belgium; b St. Antonius Hospital, Utrecht, The Netherlands; c Patient Advocate, Hasselt, Belgium; d Royal Liverpool and Broadgreen Hospitals NHS Trust, Liverpool, UK; e Academic Urology Unit, University of Sheffield, Sheffield, UK; f Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; g Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; h Charité University Hospital, Berlin, Germany; i Department of Urology, Medical University of Vienna, Vienna, Austria; j Nuclear Medicine Division, Policlinico S. Orsola, University of Bologna, Bologna, Italy; k Unit of Urology/Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; l Università Vita-Salute San Raffaele, Milan, Italy; m Division of Cancer Sciences, University of Manchester and The Christie, Manchester, UK; n Department of Oncology and Haematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; o University of Bern, Bern, Switzerland; p Department of Surgery, Central Clinical School, Monash University, Melbourne, Australia; q Leeds Cancer Centre, St. James’s University Hospital, University of Leeds, Leeds, UK; r Department of Urology, Leto Hospital, Athens, Greece; s Department of Urology, Wigan and Leigh NHS Foundation Trust, Wigan, UK; t School of Medicine, Cardiff University, Cardiff, UK; u Department of Molecular Endocrinology, KU Leuven, Leuven, Belgium; v Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; w Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands; x Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands; y Department of Radiation Oncology, University Hospital Ulm, Ulm, Germany; z Department of Oncological Urology, Utrecht Cancer Center, Utrecht, The Netherlands; A Hospices Civils de Lyon, Radiology Department, Edouard Herriot Hospital, Lyon, France; b Academic Urology Unit, University of Aberdeen, Aberdeen, UK; c Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK; d Department of Urology, University Hospital, St. Etienne, France

Article info

Associate Editor: Dr. Derya Tilki

Keywords:
Prostate cancer
Biochemical recurrence
Radical prostatectomy
Radiotherapy
Gleason score
PSA kinetics
Prognostic factors
Guidelines
European Association of Urology

Abstract

Biochemical recurrence (BCR) after primary treatment of localized prostate cancer does not necessarily lead to clinically apparent progressive disease. To aid in prognostication, the European Association of Urology prostate cancer guidelines panel undertook a systematic review and successfully developed a novel BCR risk stratification system (groups with a low risk or high risk of BCR) based on disease and prostate-specific antigen characteristics.

Patient summary: Following treatment to cure prostate cancer, some patients can develop recurrence of disease identified via a prostate-specific antigen blood test (ie, biochemical recurrence, or BCR). However, not every man who experiences BCR develops progressive disease (symptoms or evidence of disease progression on imaging). We conducted a review of the literature and developed a classification system for predicting which patients might progress to optimize treatment decisions.

© 2019 European Association of Urology. Published by Elsevier B.V. All rights reserved.

* Corresponding author. Department of Urology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium.
E-mail address: vandenbroeck.thomas@gmail.com (T. Van den Broeck).

https://doi.org/10.1016/j.euf.2019.06.004
2405-4569/© 2019 European Association of Urology. Published by Elsevier B.V. All rights reserved.
1. Introduction

Following radical treatment for prostate cancer with either external beam radiotherapy (EBRT) or radical prostatectomy (RP), 27–53% of patients experience biochemical recurrence (BCR) [1]. However, not all patients with BCR go on to develop disease progression and metastatic disease, and the rate of such progression also varies. It is important to identify patients at high risk of progression to initiate early salvage treatment, while treatment can be deferred for those with a low risk of progression. The European Association of Urology (EAU)-European Association of Nuclear Medicine (EANM)-European Society for Radiotherapy and Oncology (ESTRO)-European Society of Urogenital Radiology (ESUR)-International Society of Geriatric Oncology (SIOG) prostate cancer guidelines panel performed a systematic review for better prognostication for patients with BCR in terms of clinical and metastatic progression to optimize salvage treatment decisions. Prostate-specific antigen (PSA) persistence, defined as detectable or persistent PSA after RP, is a different stage of the disease that is associated with worse oncological outcomes [2,3] and is not discussed in this manuscript.

2. BCR defined

There is heterogeneity of BCR definitions between and within the main curative interventions. After RP, the threshold that best predicts further metastases is PSA > 0.4 ng/ml that is rising [4,5]. Nonetheless, the goodness of fit of this definition remains modest, with approximately 74% of patients developing metastatic progressive disease after 10 yr of follow-up. After primary RT, with or without short-term hormonal manipulation, the Radiation Therapy Oncology Group-American Society for Therapeutic Radiology and Oncology Phoenix consensus conference definition of BCR (with accuracy of >80% for clinical failure) is any PSA increase >2 ng/ml higher than the PSA nadir, regardless of the nadir value [6]. This definition appears to have the highest predictive accuracy for metastatic disease following BCR. Although BCR is clearly associated with critical oncological endpoints (clinical failure, prostate cancer mortality, and overall mortality), its effect size varies significantly across studies. In addition, for men experiencing BCR after primary treatment, sufficiently long life expectancy is necessary for BCR to influence mortality [7–12]. In unselected relapsing patients, the median actuarial time to the development of metastasis is 8 yr and the median time from metastasis to death is a further 5 yr [13]. Therefore, the EAU-EANM-ESTRO-ESUR-SIOG prostate cancer guidelines panel recommends evaluating a patient’s life expectancy when considering further treatment. Nevertheless, current BCR thresholds for EBRT and RP do not have high predictive accuracy for the main oncological outcomes (in particular metastatic progression), with variable prognosis among patients who develop BCR, ranging from patients with a nonaggressive disease course to those with aggressive disease and high metastatic potential. The indication for further treatments should not be based on meeting a threshold PSA recurrence as defined above alone, but should depend on the individualized risk of progression. Additional stratification of patients with BCR is crucial to ensure timely commencement (generally before meeting the BCR threshold) or deferral of salvage treatment.

3. Individualized risk assessment and salvage therapies

Our systematic review identified several critically important prognostic factors [14]. For patients who underwent RP as primary treatment and subsequently developed PSA recurrence, the main unfavorable prognostic factors were a PSA doubling time (PSA-DT) of ≤1 yr and a pathological Gleason score (pGS) of 8–10 (International Society of Urological Pathology [ISUP] grade 4–5). For patients with PSA recurrence following primary RT, an interval from primary therapy to biochemical failure (IBF) of ≤18 mo and a biopsy Gleason score (bGS) of 8–10 (ISUP grade 4–5) were the main unfavorable prognostic factors. On the basis of these findings, the EAU-EANM-ESTRO-ESUR-SIOG prostate cancer guidelines panel recommends using a novel BCR classification system that stratifies patients with BCR into low-risk (PSA-DT >1 yr and pGS <8 [ISUP grade <4] after RP; IBF >18 mo and bGS <8 [ISUP grade <4] after RT) and high-risk BCR (PSA-DT ≤1 yr or pGS 8–10 [ISUP grade 4–5] after RP; IBF <18 mo or bGS 8–10 [ISUP grade 4–5] after RT), as summarized in Table 1. The risk grouping was recently externally validated. Tilki et al [15] assessed the discriminative ability of the BCR risk grouping in predicting metastatic recurrence and prostate cancer-specific mortality (PCSM) in a large population of patients (n = 1040) with BCR after primary RP [15]. After 5 yr, metastasis-free survival was 99.7% (95% confidence interval [CI] 99.0–100%) for the low-risk BCR group (n = 510) and 86.7% (95% CI 83.4–90.1%) for the high-risk BCR group (n = 530). Furthermore, for a subset of 398 patients who did not receive salvage therapies before metastatic progression, similar results were observed. Trock et al [16] investigated the impact of salvage RT (sRT) on PCSM in relation to PSA-DT for BCR after primary RP. For patients with PSA-DT <6 mo, sRT resulted in a reduction of PCSM, with hazard ratios of 0.24 (95% CI 0.07–0.77) and 0.14 (95% CI 0.05–0.39) for men with and without concomitant ADT.

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR after radical prostatectomy</td>
<td></td>
</tr>
<tr>
<td>Low-risk BCR</td>
<td>PSA-DT >1 yr and pGS <8 (ISUP grade <4)</td>
</tr>
<tr>
<td>High-risk BCR</td>
<td>PSA-DT ≤1 yr or pGS 8–10 (ISUP grade 4–5)</td>
</tr>
<tr>
<td>BCR after radiation therapy</td>
<td></td>
</tr>
<tr>
<td>Low-risk BCR</td>
<td>IBF >18 mo and bGS <8 (ISUP grade <4)</td>
</tr>
<tr>
<td>High-risk BCR</td>
<td>IBF ≤18 mo or bGS 8–10 (ISUP grade 4–5)</td>
</tr>
</tbody>
</table>

BCR = biochemical recurrence; PSA-DT = prostate-specific antigen doubling time; pGS = pathological Gleason score; ISUP = International Society of Urological Pathology; IBF = interval from primary therapy to biochemical failure; bGS = biopsy Gleason score.

respectively. However, for patients with PSA-DT > 6 mo, there was no significant effect of sRT, with hazard ratios of 0.66 (95% CI 0.28–1.58) and 0.85 (95% CI 0.45–1.59) for men with and without ADT, respectively. The authors concluded that for patients with PSA-DT < 6 mo, sRT had a protective effect only when initiated within 2 yr of BCR diagnosis. For patients with PSA-DT ≥ 6 mo, the delay in sRT initiation did not have any effect on reported outcomes [16]. This suggests that for patients with low-risk BCR after primary RP, delaying sRT is a safe treatment choice. By contrast, for patients with high-risk BCR, early sRT (before PSA levels rise to 0.5 ng/ml) is recommended [17,18]. A systematic review of salvage androgen deprivation therapy (ADT) for recurrent disease after primary treatment showed similar results and suggested that only patients with PSA-DT < 6–12 mo and pGS > 7 (ISUP grade > 3) could potentially benefit from salvage ADT [19]. Therefore, the EAU-EANM-ESTRO-ESUR-SIOG prostate cancer guidelines panel recommends offering close surveillance and possibly deferred salvage treatment to patients with low-risk BCR. Salvage ADT should not be offered to patients with low-risk BCR. For high-risk BCR, early restaging (including modern imaging) and early salvage therapy are recommended. It has repeatedly been shown that commercially available genomic tests such as Decipher can identify patients at risk of metastatic progression after primary treatment and influence treatment decision-making [20–22]. In future trials, the inclusion of genomic markers with the EAU BCR risk stratification might improve its discriminative power even more. Ongoing randomized trials such as RADICALS and the final analysis of the prospective PRO-IMPACT study will add important evidence in the next few years.

4. Conclusions

The EAU-EANM-ESTRO-ESUR-SIOG prostate cancer guidelines panel recommends stratifying patients experiencing BCR after primary treatment for localized PC into EAU low-risk and high-risk BCR groups. The potential benefits and toxicities of salvage treatment(s) should be discussed with each individual patient, while considering both the EAU BCR risk stratification and life expectancy. In the absence of risk factors, the nonaggressive course of the disease should be discussed to allow patients to make a well-informed decision. Further research should focus on refining this simple risk stratification to increase its discriminative power. For example, it could be expected that splitting up ISUP grade 2 and 3 disease within the classification or including genomic tests could improve its discriminative power even more. Researchers initiating trials on salvage therapies after primary RP or RT are encouraged to include this risk stratification into their patient inclusion protocol to optimize future patient care.

Author contributions: Thomas Van den Broeck had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Mottet, Lam, Van den Broeck.

Acquisition of data: Mottet, Lam, Van den Broeck.

Analysis and interpretation of data: Mottet, Lam, Van den Broeck.

Drafting of the manuscript: Van den Broeck, Lam, Mottet.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: None.

Obtaining funding: None.

Administrative, technical, or material support: None.

Supervision: Mottet, Lam.

Other: None.

Financial disclosures: Thomas Van den Broeck certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: Henk van Der Poel is a company consultant for Intuitive Surgical, has participated in trials for Astellas and Steba Biotech, and has received grant and research support from Astellas. Philip Cornford is a company consultant for Astellas, Ipsen, and Ferring; receives company speaker honoraria from Astellas, Janssen, Ipsen, and Pfizer; participates in trials from Ferring; and receives fellowships and travel grants from Astellas and Janssen. Thomas B. Lam is a company consultant for and has received company speaker honoraria from Pfizer, GSK, Astellas, and Ipsen. Ann M. Henry is a company consultant for Nucletron-Elektro; participates in trials by Cancer Research UK and the National Institute of Health Research (UK); has received travel grants from the Medical Research Council, the National Institute of Health Research (UK), and Cancer Research UK; and has received research grants from Cancer Research UK and the Sir John Fisher Foundation. Malcolm Mason is a company consultant for Ellipses Pharma and Oncotherics. Thomas Wiegel is a member of the advisory board for IPSEN; receives company speaker honoraria from IPSEN and Hexal, is a member of the Janssen Steering Committee, and has participated in the ATLAS/AUO trial. Silke Gillessen is a company consultant for AAA International, Astellas Pharma, Bayer, Bristol-Myers Squibb, Clovis, CureVac, Ferring, Innocrin Pharmaceuticals, Janssen Cilag, MaxiVAX SA, Orion, Roche, Sanofi Aventis Group, Nectar, and Proteo-MediX; has received speaker honoraria from Janssen and Novartis; and participates in multiple trials for different companies. Olivier Rouvière has received company speaker honoraria from EDAP-TMS, participates in trials by ESAO-TMS and Vermon, and has received research and travel grants from Philips. Maria De Santis is a company consultant for Amgen, Astellas, AstraZeneca, Bayer, Bristol-Myers Squibb, Celgene, Dendreon, Eisai, ESSA, Ferring, GSK, Incyte, IPSEN, Janssen Cilag, Merck, MSD, Novartis, Pfizer, Pierre Fabre Oncologie, Roche, Sanofi Aventis, SeaGen, Shionogi, Synthon, Takeda, Teva, OncoGenex, and Sandoz; receives speaker honoraria from Amgen, Astellas, AstraZeneca, Bayer, Bristol-Myers Squibb, Ferring, GSK, IPSEN, Janssen Cilag, Merck, MSD, Novartis, Pfizer, Pierre Fabre Oncologie, Roche, Sanofi Aventis, SeaGen, Shionogi, Synthon, Takeda, and Teva/OncoGenex; and Sandoz; receives speaker honoraria from Amgen, Astellas, AstraZeneca, Bayer, Bristol-Myers Squibb, Ferring, GSK, IPSEN, Janssen Cilag, Merck, MSD, Novartis, Pfizer, Pierre Fabre Oncologie, Roche, Sanofi Aventis, SeaGen, Shionogi, Synthon, Takeda, and Teva/OncoGenex. Derya Tiiki is a company consultant for Steba Biotech and MDx Health; has received speaker honoraria from Mundipharma, Astellas, and Ribose-Pharm; participates in trials by MDxHealth; has received travel and research grants from Janssen; and is a member of the PIONEUR consortium. Stefano Fanti is a company consultant for AstraZeneca, Bayer, Bristol-Myers Squibb, Celgene, Dendreon, Ferring, GSK, IPSEN, Janssen Cilag, Merck, MSD, Novartis, Pfizer, Pierre Fabre Oncologie, Roche, Sanofi Aventis, SeaGen, Shionogi, Synthon, Takeda, and Teva/OncoGenex.

company consultant for Bayer and ANMI; has received speaker honoraria from Bayer, Genzyme, ANMI, and GE Healthcare; and participates in trials by Amgen, Bayer, BMS, Genzyme, Janssen, Merck, and Novartis. Nicolas Mottet is a company consultant for Janssen, GE, BMS, Sanofi, and Astellas; has received speaker honoraria from Astellas, Pierre Fabre, Steba, Janssen, and Ferring; and has received fellowships and travel grants from Astellas, IPSEN, Sanofi, Janssen, and Roche. Thomas Van den Broeck, Roderick C.N. van den Bergh, Lisa Moris, Erik Briers, Marcus Cumberbatch, Nicola Fossati, Jeremy P. Grummet, Michael Lardas, Matthew Liew, Ivo G. Schoots, Peter-Paul M. Willems, and Theodorus Van Der Kwast have nothing to disclose.

Funding/Support and role of the sponsor: None.

References

