Guidelines

Prostate Cancer

9. REFERENCES

1.Mottet, N., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol, 2021. 79: 243.

https://pubmed.ncbi.nlm.nih.gov/33172724

2.Cornford, P., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur Urol, 2021. 79: 263.

https://pubmed.ncbi.nlm.nih.gov/33039206

3.Phillips, B. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 1998.

https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

4.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.

https://pubmed.ncbi.nlm.nih.gov/18467413

5.Culp, M.B., et al. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur Urol, 2020. 77: 38.

https://pubmed.ncbi.nlm.nih.gov/31493960

6.Organization, I.A.f.R.o.C.I.W.H. Data visualization tools for exploring the global cancer burden in 2020. 2020. 2021.

https://gco.iarc.fr/today/home

7.Union, E. Prostate cancer burden in EU-27. 2021.

https://visitorscentre.jrc.ec.europa.eu/sites/default/files/poster_flyer/prostate_cancer_factsheet%5B1%5D_0.pdf

8.Bell, K.J., et al. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer, 2015. 137: 1749.

https://pubmed.ncbi.nlm.nih.gov/25821151

9.Haas, G.P., et al. The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol, 2008. 15: 3866.

https://pubmed.ncbi.nlm.nih.gov/18304396

10.Fleshner, K., et al. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat Rev Urol, 2017. 14: 26.

https://pubmed.ncbi.nlm.nih.gov/27995937

11.Kimura, T., et al. Global Trends of Latent Prostate Cancer in Autopsy Studies. Cancers (Basel), 2021. 13.

https://pubmed.ncbi.nlm.nih.gov/33478075

12.IARC. IARC France All Cancers (excluding non-melanoma skin cancer) Estimated Incidence, Mortality and Prevalence Worldwide in 2012. 2014.

http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.

13.Hemminki, K. Familial risk and familial survival in prostate cancer. World J Urol, 2012. 30: 143.

https://pubmed.ncbi.nlm.nih.gov/22116601

14.Jansson, K.F., et al. Concordance of tumor differentiation among brothers with prostate cancer. Eur Urol, 2012. 62: 656.

https://pubmed.ncbi.nlm.nih.gov/22386193

15.Nyame, Y.A., et al. Deconstructing, Addressing, and Eliminating Racial and Ethnic Inequities in Prostate Cancer Care. Eur Urol, 2022. 82: 341.

https://pubmed.ncbi.nlm.nih.gov/35367082

16.Karami, S., et al. Earlier age at diagnosis: another dimension in cancer disparity? Cancer Detect Prev, 2007. 31: 29.

https://pubmed.ncbi.nlm.nih.gov/17303347

17.Sanchez-Ortiz, R.F., et al. African-American men with nonpalpable prostate cancer exhibit greater tumor volume than matched white men. Cancer, 2006. 107: 75.

https://pubmed.ncbi.nlm.nih.gov/16736511

18.Chen, F., et al. Evidence of Novel Susceptibility Variants for Prostate Cancer and a Multiancestry Polygenic Risk Score Associated with Aggressive Disease in Men of African Ancestry. Eur Urol, 2023. 84: 13.

https://pubmed.ncbi.nlm.nih.gov/36872133

19.Mahal, B.A., et al. Prostate Cancer Racial Disparities: A Systematic Review by the Prostate Cancer Foundation Panel. Eur Urol Oncol, 2022. 5: 18.

https://pubmed.ncbi.nlm.nih.gov/34446369

20.Randazzo, M., et al. A positive family history as a risk factor for prostate cancer in a population-based study with organised prostate-specific antigen screening: results of the Swiss European Randomised Study of Screening for Prostate Cancer (ERSPC, Aarau). BJU Int, 2016. 117: 576.

https://pubmed.ncbi.nlm.nih.gov/26332304

21.Beebe-Dimmer, J.L., et al. Risk of Prostate Cancer Associated With Familial and Hereditary Cancer Syndromes. J Clin Oncol, 2020. 38: 1807.

https://pubmed.ncbi.nlm.nih.gov/32208047

22.Bratt, O., et al. Family History and Probability of Prostate Cancer, Differentiated by Risk Category: A Nationwide Population-Based Study. J Natl Cancer Inst, 2016. 108.

https://pubmed.ncbi.nlm.nih.gov/27400876

23.Amin Al Olama, A., et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Hum Mol Genet, 2015. 24: 5589.

https://pubmed.ncbi.nlm.nih.gov/26025378

24.Gulati, R., et al. Screening Men at Increased Risk for Prostate Cancer Diagnosis: Model Estimates of Benefits and Harms. Cancer Epidemiol Biomarkers Prev, 2017. 26: 222.

https://pubmed.ncbi.nlm.nih.gov/27742670

25.Nicolosi, P., et al. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol, 2019. 5: 523.

https://pubmed.ncbi.nlm.nih.gov/30730552

26.Giri, V.N., et al. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate, 2019. 79: 333.

https://pubmed.ncbi.nlm.nih.gov/30450585

27.Pritchard, C.C., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med, 2016. 375: 443.

https://pubmed.ncbi.nlm.nih.gov/27433846

28.Castro, E., et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, 2019. 37: 490.

https://pubmed.ncbi.nlm.nih.gov/30625039

29.Ewing, C.M., et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med, 2012. 366: 141.

https://pubmed.ncbi.nlm.nih.gov/22236224

30.Lynch, H.T., et al. Screening for familial and hereditary prostate cancer. Int J Cancer, 2016. 138: 2579.

https://pubmed.ncbi.nlm.nih.gov/26638190

31.Nyberg, T., et al. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. Eur Urol, 2020. 77: 24.

https://pubmed.ncbi.nlm.nih.gov/31495749

32.Castro, E., et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol, 2013. 31: 1748.

https://pubmed.ncbi.nlm.nih.gov/23569316

33.Castro, E., et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol, 2015. 68: 186.

https://pubmed.ncbi.nlm.nih.gov/25454609

34.Na, R., et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur Urol, 2017. 71: 740.

https://pubmed.ncbi.nlm.nih.gov/27989354

35.Mano, R., et al. Malignant Abnormalities in Male BRCA Mutation Carriers: Results From a Prospectively Screened Cohort. JAMA Oncol, 2018. 4: 872.

https://pubmed.ncbi.nlm.nih.gov/29710070

36.Edwards, S.M., et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet, 2003. 72: 1.

https://pubmed.ncbi.nlm.nih.gov/12474142

37.Agalliu, I., et al. Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer, 2007. 97: 826.

https://pubmed.ncbi.nlm.nih.gov/17700570

38.Leongamornlert, D., et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer, 2014. 110: 1663.

https://pubmed.ncbi.nlm.nih.gov/24556621

39.Wang, Y., et al. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med, 2015. 8: 15708.

https://pubmed.ncbi.nlm.nih.gov/26629066

40.Zhen, J.T., et al. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer, 2018. 124: 3105.

https://pubmed.ncbi.nlm.nih.gov/29669169

41.Leongamornlert, D., et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer, 2012. 106: 1697.

https://pubmed.ncbi.nlm.nih.gov/22516946

42.Thompson, D., et al. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst, 2002. 94: 1358.

https://pubmed.ncbi.nlm.nih.gov/12237281

43.Karlsson, R., et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol, 2014. 65: 169.

https://pubmed.ncbi.nlm.nih.gov/22841674

44.Storebjerg, T.M., et al. Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int, 2016. 118: 646.

https://pubmed.ncbi.nlm.nih.gov/26779768

45.Ryan, S., et al. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev, 2014. 23: 437.

https://pubmed.ncbi.nlm.nih.gov/24425144

46.Carlsson, S., et al. Influence of blood prostate specific antigen levels at age 60 on benefits and harms of prostate cancer screening: population based cohort study. BMJ, 2014. 348: g2296.

https://pubmed.ncbi.nlm.nih.gov/24682399

47.Rosty, C., et al. High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer, 2014. 13: 573.

https://pubmed.ncbi.nlm.nih.gov/25117503

48.Leitzmann, M.F., et al. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin Epidemiol, 2012. 4: 1.

https://pubmed.ncbi.nlm.nih.gov/22291478

49.Cook, L.S., et al. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J Urol, 1999. 161: 152.

https://pubmed.ncbi.nlm.nih.gov/10037388

50.Blanc-Lapierre, A., et al. Metabolic syndrome and prostate cancer risk in a population-based case-control study in Montreal, Canada. BMC Public Health, 2015. 15: 913.

https://pubmed.ncbi.nlm.nih.gov/26385727

51.Esposito, K., et al. Effect of metabolic syndrome and its components on prostate cancer risk: meta-analysis. J Endocrinol Invest, 2013. 36: 132.

https://pubmed.ncbi.nlm.nih.gov/23481613

52.Vidal, A.C., et al. Obesity increases the risk for high-grade prostate cancer: results from the REDUCE study. Cancer Epidemiol Biomarkers Prev, 2014. 23: 2936.

https://pubmed.ncbi.nlm.nih.gov/25261967

53.Davies, N.M., et al. The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes Control, 2015. 26: 1603.

https://pubmed.ncbi.nlm.nih.gov/26387087

54.Rivera-Izquierdo, M., et al. Obesity as a Risk Factor for Prostate Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of 280,199 Patients. Cancers (Basel), 2021. 13.

https://pubmed.ncbi.nlm.nih.gov/34439328

55.Preston, M.A., et al. Metformin use and prostate cancer risk. Eur Urol, 2014. 66: 1012.

https://pubmed.ncbi.nlm.nih.gov/24857538

56.Li, Y., et al. Effect of Statins on the Risk of Different Stages of Prostate Cancer: A Meta-Analysis. Urol Int, 2022. 106: 869.

https://pubmed.ncbi.nlm.nih.gov/34518476

57.Dickerman, B.A., et al. Alcohol intake, drinking patterns, and prostate cancer risk and mortality: a 30-year prospective cohort study of Finnish twins. Cancer Causes Control, 2016. 27: 1049.

https://pubmed.ncbi.nlm.nih.gov/27351919

58.Zhao, J., et al. Is alcohol consumption a risk factor for prostate cancer? A systematic review and meta-analysis. BMC Cancer, 2016. 16: 845.

https://pubmed.ncbi.nlm.nih.gov/27842506

59.Chen, X., et al. Coffee consumption and risk of prostate cancer: a systematic review and meta-analysis. BMJ Open, 2021. 11: e038902.

https://pubmed.ncbi.nlm.nih.gov/33431520

60.Key, T.J. Nutrition, hormones and prostate cancer risk: results from the European prospective investigation into cancer and nutrition. Recent Results Cancer Res, 2014. 202: 39.

https://pubmed.ncbi.nlm.nih.gov/24531775

61.Alexander, D.D., et al. Meta-Analysis of Long-Chain Omega-3 Polyunsaturated Fatty Acids (LComega-3PUFA) and Prostate Cancer. Nutr Cancer, 2015. 67: 543.

https://pubmed.ncbi.nlm.nih.gov/25826711

62.Lippi, G., et al. Fried food and prostate cancer risk: systematic review and meta-analysis. Int J Food Sci Nutr, 2015. 66: 587.

https://pubmed.ncbi.nlm.nih.gov/26114920

63.Ilic, D., et al. Lycopene for the prevention and treatment of benign prostatic hyperplasia and prostate cancer: a systematic review. Maturitas, 2012. 72: 269.

https://pubmed.ncbi.nlm.nih.gov/22633187

64.Bylsma, L.C., et al. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr J, 2015. 14: 125.

https://pubmed.ncbi.nlm.nih.gov/26689289

65.Nouri-Majd, S., et al. Association Between Red and Processed Meat Consumption and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Front Nutr, 2022. 9: 801722.

https://pubmed.ncbi.nlm.nih.gov/35198587

66.Zhang, M., et al. Is phytoestrogen intake associated with decreased risk of prostate cancer? A systematic review of epidemiological studies based on 17,546 cases. Andrology, 2016. 4: 745.

https://pubmed.ncbi.nlm.nih.gov/27260185

67.Applegate, C.C., et al. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients, 2018. 10.

https://pubmed.ncbi.nlm.nih.gov/29300347

68.Kristal, A.R., et al. Plasma vitamin D and prostate cancer risk: results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev, 2014. 23: 1494.

https://pubmed.ncbi.nlm.nih.gov/24732629

69.Nyame, Y.A., et al. Associations Between Serum Vitamin D and Adverse Pathology in Men Undergoing Radical Prostatectomy. J Clin Oncol, 2016. 34: 1345.

https://pubmed.ncbi.nlm.nih.gov/26903577

70.Cui, Z., et al. Serum selenium levels and prostate cancer risk: A MOOSE-compliant meta-analysis. Medicine (Baltimore), 2017. 96: e5944.

https://pubmed.ncbi.nlm.nih.gov/28151881

71.Allen, N.E., et al. Selenium and Prostate Cancer: Analysis of Individual Participant Data From Fifteen Prospective Studies. J Natl Cancer Inst, 2016. 108.

https://pubmed.ncbi.nlm.nih.gov/27385803

72.Lippman, S.M., et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009. 301: 39.

https://pubmed.ncbi.nlm.nih.gov/19066370

73.Knijnik, P.G., et al. The impact of 5-alpha-reductase inhibitors on mortality in a prostate cancer chemoprevention setting: a meta-analysis. World J Urol, 2021. 39: 365.

https://pubmed.ncbi.nlm.nih.gov/32314009

74.Thompson, I.M., et al. The influence of finasteride on the development of prostate cancer. N Engl J Med, 2003. 349: 215.

https://pubmed.ncbi.nlm.nih.gov/12824459

75.Haider, A., et al. Incidence of prostate cancer in hypogonadal men receiving testosterone therapy: observations from 5-year median followup of 3 registries. J Urol, 2015. 193: 80.

https://pubmed.ncbi.nlm.nih.gov/24980615

76.Watts, E.L., et al. Low Free Testosterone and Prostate Cancer Risk: A Collaborative Analysis of 20 Prospective Studies. Eur Urol, 2018. 74: 585.

https://pubmed.ncbi.nlm.nih.gov/30077399

77.Golla, V., et al. Testosterone Therapy on Active Surveillance and Following Definitive Treatment for Prostate Cancer. Curr Urol Rep, 2017. 18: 49.

https://pubmed.ncbi.nlm.nih.gov/28589395

78.Burns, J.A., et al. Inflammatory Bowel Disease and the Risk of Prostate Cancer. Eur Urol, 2019. 75: 846.

https://pubmed.ncbi.nlm.nih.gov/30528221

79.Zhou, C.K., et al. Male Pattern Baldness in Relation to Prostate Cancer-Specific Mortality: A Prospective Analysis in the NHANES I Epidemiologic Follow-up Study. Am J Epidemiol, 2016. 183: 210.

https://pubmed.ncbi.nlm.nih.gov/26764224

80.Lian, W.Q., et al. Gonorrhea and Prostate Cancer Incidence: An Updated Meta-Analysis of 21 Epidemiologic Studies. Med Sci Monit, 2015. 21: 1902.

https://pubmed.ncbi.nlm.nih.gov/26126881

81.Rao, D., et al. Does night-shift work increase the risk of prostate cancer? a systematic review and meta-analysis. Onco Targets Ther, 2015. 8: 2817.

https://pubmed.ncbi.nlm.nih.gov/26491356

82.Islami, F., et al. A systematic review and meta-analysis of tobacco use and prostate cancer mortality and incidence in prospective cohort studies. Eur Urol, 2014. 66: 1054.

https://pubmed.ncbi.nlm.nih.gov/25242554

83.Brookman-May, S.D., et al. Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of Oncological Urology (ESOU). Eur Urol Focus, 2019. 5: 756.

https://pubmed.ncbi.nlm.nih.gov/29576530

84.Ju-Kun, S., et al. Association Between Cd Exposure and Risk of Prostate Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore), 2016. 95: e2708.

https://pubmed.ncbi.nlm.nih.gov/26871808

85.Russo, G.I., et al. Human papillomavirus and risk of prostate cancer: a systematic review and meta-analysis. Aging Male, 2020. 23: 132.

https://pubmed.ncbi.nlm.nih.gov/29571270

86.Multigner, L., et al. Chlordecone exposure and risk of prostate cancer. J Clin Oncol, 2010. 28: 3457.

https://pubmed.ncbi.nlm.nih.gov/20566993

87.Bhindi, B., et al. The Association Between Vasectomy and Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Intern Med, 2017. 177: 1273.

https://pubmed.ncbi.nlm.nih.gov/28715534

88.Cremers, R.G., et al. Self-reported acne is not associated with prostate cancer. Urol Oncol, 2014. 32: 941.

https://pubmed.ncbi.nlm.nih.gov/25011577

89.Huang, T.B., et al. Aspirin use and the risk of prostate cancer: a meta-analysis of 24 epidemiologic studies. Int Urol Nephrol, 2014. 46: 1715.

https://pubmed.ncbi.nlm.nih.gov/24687637

90.Bhindi, B., et al. The impact of the use of aspirin and other nonsteroidal anti-inflammatory drugs on the risk of prostate cancer detection on biopsy. Urology, 2014. 84: 1073.

https://pubmed.ncbi.nlm.nih.gov/25443907

91.Lin, S.W., et al. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int J Cancer, 2012. 131: E1015.

https://pubmed.ncbi.nlm.nih.gov/22539073

92.Pabalan, N., et al. Association of male circumcision with risk of prostate cancer: a meta-analysis. Prostate Cancer Prostatic Dis, 2015. 18: 352.

https://pubmed.ncbi.nlm.nih.gov/26215783

93.Rider, J.R., et al. Ejaculation Frequency and Risk of Prostate Cancer: Updated Results with an Additional Decade of Follow-up. Eur Urol, 2016. 70: 974.

https://pubmed.ncbi.nlm.nih.gov/27033442

94.Brierley, J.D., et al., TNM classification of malignant tumors. UICC International Union Against Cancer. 8th edn. 2017.

http://www.uicc.org/tnm/

95.D’Amico, A.V., et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. Jama, 1998. 280: 969.

https://pubmed.ncbi.nlm.nih.gov/9749478

96.Ploussard, G., et al. Decreased accuracy of the prostate cancer EAU risk group classification in the era of imaging-guided diagnostic pathway: proposal for a new classification based on MRI-targeted biopsies and early oncologic outcomes after surgery. World J Urol, 2020. 38: 2493.

https://pubmed.ncbi.nlm.nih.gov/31838560

97.Ceci, F., et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging, 2021. 48: 1626.

https://pubmed.ncbi.nlm.nih.gov/33604691

98.van den Bergh, R.C.N., et al. Re: Andrew Vickers, Sigrid V. Carlsson, Matthew Cooperberg. Routine Use of Magnetic Resonance Imaging for Early Detection of Prostate Cancer Is Not Justified by the Clinical Trial Evidence. Eur Urol 2020;78:304-6: Prebiopsy MRI: Through the Looking Glass. Eur Urol, 2020. 78: 310.

https://pubmed.ncbi.nlm.nih.gov/32660749

99.Epstein, J.I., et al. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol, 2005. 29: 1228.

https://pubmed.ncbi.nlm.nih.gov/16096414

100.Epstein, J.I., et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol, 2016. 40: 244.

https://pubmed.ncbi.nlm.nih.gov/26492179

101.van Leenders, G., et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol, 2020. 44: e87.

https://pubmed.ncbi.nlm.nih.gov/32459716

102.Epstein, J.I., et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur Urol, 2016. 69: 428.

https://pubmed.ncbi.nlm.nih.gov/26166626

103.Moyer, V.A., et al. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med, 2012. 157: 120.

https://pubmed.ncbi.nlm.nih.gov/22801674

104.Sauter, G., et al. Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol, 2018. 73: 674.

https://pubmed.ncbi.nlm.nih.gov/28117112

105.Anderson, B.B., et al. Extraprostatic Extension Is Extremely Rare for Contemporary Gleason Score 6 Prostate Cancer. Eur Urol, 2017. 72: 455.

https://pubmed.ncbi.nlm.nih.gov/27986368

106.Ross, H.M., et al. Do adenocarcinomas of the prostate with Gleason score (GS) </=6 have the potential to metastasize to lymph nodes? Am J Surg Pathol, 2012. 36: 1346.

https://pubmed.ncbi.nlm.nih.gov/22531173

107.Alberts, A.R., et al. Biopsy undergrading in men with Gleason score 6 and fatal prostate cancer in the European Randomized study of Screening for Prostate Cancer Rotterdam. Int J Urol, 2017. 24: 281.

https://pubmed.ncbi.nlm.nih.gov/28173626

108.Baboudjian, M., et al. Grade group 1 prostate cancer on biopsy: are we still missing aggressive disease in the era of image-directed therapy? World J Urol, 2022. 40: 2423.

https://pubmed.ncbi.nlm.nih.gov/35980449

109.Zareba, P., et al. The impact of the 2005 International Society of Urological Pathology (ISUP) consensus on Gleason grading in contemporary practice. Histopathology, 2009. 55: 384.

https://pubmed.ncbi.nlm.nih.gov/19817888

110.Goel, S., et al. Concordance Between Biopsy and Radical Prostatectomy Pathology in the Era of Targeted Biopsy: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2020. 3: 10.

https://pubmed.ncbi.nlm.nih.gov/31492650

111.Wang, Y., et al. Predictive Factors for Gleason Score Upgrading in Patients with Prostate Cancer after Radical Prostatectomy: A Systematic Review and Meta-Analysis. Urol Int, 2023. 107: 460.

https://pubmed.ncbi.nlm.nih.gov/36990065

112.Schoots, I.G., et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol, 2015. 67: 627.

https://pubmed.ncbi.nlm.nih.gov/25511988

113.Inoue, L.Y., et al. Modeling grade progression in an active surveillance study. Stat Med, 2014. 33: 930.

https://pubmed.ncbi.nlm.nih.gov/24123208

114.Labbate, C.V., et al. Should Grade Group 1 (GG1) be called cancer? World J Urol, 2022. 40: 15.

https://pubmed.ncbi.nlm.nih.gov/33432506

115.Berlin, A., et al. The influence of the “cancer” label on perceptions and management decisions for low-grade prostate cancer. J Natl Cancer Inst, 2023. 115: 1364.

https://pubmed.ncbi.nlm.nih.gov/37285311

116.Saoud, R., et al. Physician Perception of Grade Group 1 Prostate Cancer. Eur Urol Focus, 2023.

https://pubmed.ncbi.nlm.nih.gov/37117112

117.Iczkowski, K.A., et al. Low-grade prostate cancer should still be labelled cancer. BJU Int, 2022. 130: 741.

https://pubmed.ncbi.nlm.nih.gov/36083240

118.Van der Kwast, T.H., et al. Defining the threshold for significant versus insignificant prostate cancer. Nat Rev Urol, 2013. 10: 473.

https://pubmed.ncbi.nlm.nih.gov/23712205

119.Preisser, F., et al. Intermediate-risk Prostate Cancer: Stratification and Management. Eur Urol Oncol, 2020. 3: 270.

https://pubmed.ncbi.nlm.nih.gov/32303478

120.Overland, M.R., et al. Active surveillance for intermediate-risk prostate cancer: yes, but for whom? Curr Opin Urol, 2019. 29: 605.

https://pubmed.ncbi.nlm.nih.gov/31436567

121.Kasivisvanathan, V., et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med, 2018. 378: 1767.

https://pubmed.ncbi.nlm.nih.gov/29552975

122.Emmett, L., et al. The Additive Diagnostic Value of Prostate-specific Membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the Diagnosis of Prostate Cancer (PRIMARY): A Prospective Multicentre Study. Eur Urol, 2021. 80: 682.

https://pubmed.ncbi.nlm.nih.gov/34465492

123.Ahmed, H.U., et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet, 2017. 389: 815.

https://pubmed.ncbi.nlm.nih.gov/28110982

124.Thompson, J.E., et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol, 2014. 192: 67.

https://pubmed.ncbi.nlm.nih.gov/24518762

125.Kane, C.J., et al. Variability in Outcomes for Patients with Intermediate-risk Prostate Cancer (Gleason Score 7, International Society of Urological Pathology Gleason Group 2-3) and Implications for Risk Stratification: A Systematic Review. Eur Urol Focus, 2017. 3: 487.

https://pubmed.ncbi.nlm.nih.gov/28753804

126.Zumsteg, Z.S., et al. Unification of favourable intermediate-, unfavourable intermediate-, and very high-risk stratification criteria for prostate cancer. BJU Int, 2017. 120: E87.

https://pubmed.ncbi.nlm.nih.gov/28464446

127.Gnanapragasam, V.J., et al. Improving Clinical Risk Stratification at Diagnosis in Primary Prostate Cancer: A Prognostic Modelling Study. PLoS Med, 2016. 13: e1002063.

https://pubmed.ncbi.nlm.nih.gov/27483464

128.Gnanapragasam, V.J., et al. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study. BMC Med, 2018. 16: 31.

https://pubmed.ncbi.nlm.nih.gov/29490658

129.Parry, M.G., et al. Risk stratification for prostate cancer management: value of the Cambridge Prognostic Group classification for assessing treatment allocation. BMC Med, 2020. 18: 114.

https://pubmed.ncbi.nlm.nih.gov/32460859

130.Kensler, K.H., et al. Prostate Cancer Screening in African American Men: A Review of the Evidence. J Natl Cancer Inst, 2023.

https://pubmed.ncbi.nlm.nih.gov/37713266

131.Page, E.C., et al. Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. Eur Urol, 2019. 76: 831.

https://pubmed.ncbi.nlm.nih.gov/31537406

132.Bokhorst, L.P., et al. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. Eur Urol, 2014. 65: 329.

https://pubmed.ncbi.nlm.nih.gov/23954085

133.Arnsrud Godtman, R., et al. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg randomized population-based prostate cancer screening trial. Eur Urol, 2015. 68: 354.

https://pubmed.ncbi.nlm.nih.gov/25556937

134.Bjerner, J., et al. Baseline Serum Prostate-specific Antigen Value Predicts the Risk of Subsequent Prostate Cancer Death-Results from the Norwegian Prostate Cancer Consortium. Eur Urol, 2023.

https://pubmed.ncbi.nlm.nih.gov/37169639

135.Vickers, A.J., et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study. BMJ, 2013. 346: f2023.

https://pubmed.ncbi.nlm.nih.gov/23596126

136.Boyle, H.J., et al. Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. Eur J Cancer, 2019. 116: 116.

https://pubmed.ncbi.nlm.nih.gov/31195356

137.Loeb, S., et al. Pathological characteristics of prostate cancer detected through prostate specific antigen based screening. J Urol, 2006. 175: 902.

https://pubmed.ncbi.nlm.nih.gov/16469576

138.Etzioni, R., et al. Limitations of basing screening policies on screening trials: The US Preventive Services Task Force and Prostate Cancer Screening. Med Care, 2013. 51: 295.

https://pubmed.ncbi.nlm.nih.gov/23269114

139.Ilic, D., et al. Screening for prostate cancer. Cochrane Database Syst Rev, 2013. 2013: CD004720.

https://pubmed.ncbi.nlm.nih.gov/23440794

140.Ilic, D., et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ, 2018. 362: k3519.

https://pubmed.ncbi.nlm.nih.gov/30185521

141.Hayes, J.H., et al. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA, 2014. 311: 1143.

https://pubmed.ncbi.nlm.nih.gov/24643604

142.Hugosson, J., et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur Urol, 2019. 76: 43.

https://pubmed.ncbi.nlm.nih.gov/30824296

143.Independent, U.K.P.o.B.C.S. The benefits and harms of breast cancer screening: an independent review. Lancet, 2012. 380: 1778.

https://pubmed.ncbi.nlm.nih.gov/23117178

144.de, V., II, et al. A Detailed Evaluation of the Effect of Prostate-specific Antigen-based Screening on Morbidity and Mortality of Prostate Cancer: 21-year Follow-up Results of the Rotterdam Section of the European Randomised Study of Screening for Prostate Cancer. Eur Urol, 2023. 84: 426.

https://pubmed.ncbi.nlm.nih.gov/37029074

145.Hugosson, J., et al. Eighteen-year follow-up of the Goteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol, 2018. 52: 27.

https://pubmed.ncbi.nlm.nih.gov/29254399

146.Heijnsdijk, E.A., et al. Quality-of-life effects of prostate-specific antigen screening. N Engl J Med, 2012. 367: 595.

https://pubmed.ncbi.nlm.nih.gov/22894572

147.Vasarainen, H., et al. Effects of prostate cancer screening on health-related quality of life: results of the Finnish arm of the European randomized screening trial (ERSPC). Acta Oncol, 2013. 52: 1615.

https://pubmed.ncbi.nlm.nih.gov/23786174

148.Martin, R.M., et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP Randomized Clinical Trial. JAMA, 2018. 319: 883.

https://pubmed.ncbi.nlm.nih.gov/29509864

149.Gelfond, J., et al. Intermediate-Term Risk of Prostate Cancer is Directly Related to Baseline Prostate Specific Antigen: Implications for Reducing the Burden of Prostate Specific Antigen Screening. J Urol, 2015. 194: 46.

https://pubmed.ncbi.nlm.nih.gov/25686543

150.Roobol, M.J., et al. Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculator for Initial Prostate Biopsy by Incorporating the 2014 International Society of Urological Pathology Gleason Grading and Cribriform growth. Eur Urol, 2017. 72: 45.

https://pubmed.ncbi.nlm.nih.gov/28162815

151.Bancroft, E.K., et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol, 2014. 66: 489.

https://pubmed.ncbi.nlm.nih.gov/24484606

152.Bancroft, E.K., et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol, 2021. 22: 1618.

https://pubmed.ncbi.nlm.nih.gov/34678156

153.Mark, J.R., et al. Genetic Testing Guidelines and Education of Health Care Providers Involved in Prostate Cancer Care. Urol Clin North Am, 2021. 48: 311.

https://pubmed.ncbi.nlm.nih.gov/34210487

154.Giri, V.N., et al. Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J Clin Oncol, 2020. 38: 2798.

https://pubmed.ncbi.nlm.nih.gov/32516092

155.John, E.M., et al. Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA, 2007. 298: 2869.

https://pubmed.ncbi.nlm.nih.gov/18159056

156.Carvalhal, G.F., et al. Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng./ml. or less. J Urol, 1999. 161: 835.

https://pubmed.ncbi.nlm.nih.gov/10022696

157.Gosselaar, C., et al. The role of the digital rectal examination in subsequent screening visits in the European randomized study of screening for prostate cancer (ERSPC), Rotterdam. Eur Urol, 2008. 54: 581.

https://pubmed.ncbi.nlm.nih.gov/18423977

158.Herrera-Caceres, J.O., et al. Utility of digital rectal examination in a population with prostate cancer treated with active surveillance. Can Urol Assoc J, 2020. 14: E453.

https://pubmed.ncbi.nlm.nih.gov/32223879

159.Okotie, O.T., et al. Characteristics of prostate cancer detected by digital rectal examination only. Urology, 2007. 70: 1117.

https://pubmed.ncbi.nlm.nih.gov/18158030

160.Prebay, Z.J., et al. The prognostic value of digital rectal exam for the existence of advanced pathologic features after prostatectomy. Prostate, 2021. 81: 1064.

https://pubmed.ncbi.nlm.nih.gov/34297858

161.Stamey, T.A., et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med, 1987. 317: 909.

https://pubmed.ncbi.nlm.nih.gov/2442609

162.Semjonow, A., et al. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate Suppl, 1996. 7: 3.

https://pubmed.ncbi.nlm.nih.gov/8950358

163.Thompson, I.M., et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med, 2004. 350: 2239.

https://pubmed.ncbi.nlm.nih.gov/15163773

164.Schroder, F.H., et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med, 2012. 366: 981.

https://pubmed.ncbi.nlm.nih.gov/22417251

165.Merriel, S.W.D., et al. Systematic review and meta-analysis of the diagnostic accuracy of prostate-specific antigen (PSA) for the detection of prostate cancer in symptomatic patients. BMC Med, 2022. 20: 54.

https://pubmed.ncbi.nlm.nih.gov/35125113

166.Habib, F.K., et al. Differential effect of finasteride on the tissue androgen concentrations in benign prostatic hyperplasia. Clin Endocrinol (Oxf), 1997. 46: 137.

https://pubmed.ncbi.nlm.nih.gov/9135694

167.Eastham, J.A., et al. Variations among individual surgeons in the rate of positive surgical margins in radical prostatectomy specimens. J Urol, 2003. 170: 2292.

https://pubmed.ncbi.nlm.nih.gov/14634399

168.Stephan, C., et al. Interchangeability of measurements of total and free prostate-specific antigen in serum with 5 frequently used assay combinations: an update. Clin Chem, 2006. 52: 59.

https://pubmed.ncbi.nlm.nih.gov/16391327

169.Gill, N., et al. Prostate-Specific Antigen: a Review of Assay Techniques, Variability and Their Clinical Implications. BioNanoScience, 2017. 8: 707.

https://link.springer.com/article/10.1007/s12668-017-0465-4

170.Nordstrom, T., et al. Repeat Prostate-Specific Antigen Tests Before Prostate Biopsy Decisions. J Natl Cancer Inst, 2016. 108.

https://pubmed.ncbi.nlm.nih.gov/27418620

171.Rosario, D.J., et al. Contribution of a single repeat PSA test to prostate cancer risk assessment: experience from the ProtecT study. Eur Urol, 2008. 53: 777.

https://pubmed.ncbi.nlm.nih.gov/18079051

172.De Nunzio, C., et al. Repeat prostate-specific antigen (PSA) test before prostate biopsy: a 20% decrease in PSA values is associated with a reduced risk of cancer and particularly of high-grade cancer. BJU Int, 2018. 122: 83.

https://pubmed.ncbi.nlm.nih.gov/29533522

173.Maggi, M., et al. Prostate Imaging Reporting and Data System 3 Category Cases at Multiparametric Magnetic Resonance for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2020. 6: 463.

https://pubmed.ncbi.nlm.nih.gov/31279677

174.Nordstrom, T., et al. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis, 2018. 21: 57.

https://pubmed.ncbi.nlm.nih.gov/29259293

175.Yusim, I., et al. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci Rep, 2020. 10: 20015.

https://pubmed.ncbi.nlm.nih.gov/33203873

176.Hamzaoui, D., et al. Prostate volume prediction on MRI: tools, accuracy and variability. Eur Radiol, 2022. 32: 4931.

https://pubmed.ncbi.nlm.nih.gov/35169895

177.Choe, S., et al. MRI vs Transrectal Ultrasound to Estimate Prostate Volume and PSAD: Impact on Prostate Cancer Detection. Urology, 2023. 171: 172.

https://pubmed.ncbi.nlm.nih.gov/36152871

178.de, V., II, et al. Prostate cancer risk assessment by the primary care physician and urologist: transabdominal- versus transrectal ultrasound prostate volume-based use of the Rotterdam Prostate Cancer Risk Calculator. Transl Androl Urol, 2023. 12: 241.

https://pubmed.ncbi.nlm.nih.gov/36915892

179.Eldred-Evans, D., et al. Population-Based Prostate Cancer Screening With Magnetic Resonance Imaging or Ultrasonography: The IP1-PROSTAGRAM Study. JAMA Oncol, 2021. 7: 395.

https://pubmed.ncbi.nlm.nih.gov/33570542

180.Turkbey, B., et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol, 2019. 76: 340.

https://pubmed.ncbi.nlm.nih.gov/30898406

181.Weinreb, J.C., et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol, 2016. 69: 16.

https://pubmed.ncbi.nlm.nih.gov/26427566

182.Bratan, F., et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol, 2013. 23: 2019.

https://pubmed.ncbi.nlm.nih.gov/23494494

183.Borofsky, S., et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology, 2018. 286: 186.

https://pubmed.ncbi.nlm.nih.gov/29053402

184.Johnson, D.C., et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. Eur Urol, 2019. 75: 712.

https://pubmed.ncbi.nlm.nih.gov/30509763

185.Yaxley, W.J., et al. Histological findings of totally embedded robot assisted laparoscopic radical prostatectomy (RALP) specimens in 1197 men with a negative (low risk) preoperative multiparametric magnetic resonance imaging (mpMRI) prostate lobe and clinical implications. Prostate Cancer Prostatic Dis, 2021. 24: 398.

https://pubmed.ncbi.nlm.nih.gov/32999464

186.Drost, F.H., et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev, 2019. 4: CD012663.

https://pubmed.ncbi.nlm.nih.gov/31022301

187.Oerther, B., et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level. Prostate Cancer Prostatic Dis, 2022. 25: 256.

https://pubmed.ncbi.nlm.nih.gov/34230616

188.Klotz, L., et al. Comparison of Multiparametric Magnetic Resonance Imaging-Targeted Biopsy With Systematic Transrectal Ultrasonography Biopsy for Biopsy-Naive Men at Risk for Prostate Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol, 2021. 7: 534.

https://pubmed.ncbi.nlm.nih.gov/33538782

189.van der Leest, M., et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naive Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol, 2019. 75: 570.

https://pubmed.ncbi.nlm.nih.gov/30477981

190.Rouviere, O., et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol, 2019. 20: 100.

https://pubmed.ncbi.nlm.nih.gov/30470502

191.Exterkate, L., et al. Is There Still a Need for Repeated Systematic Biopsies in Patients with Previous Negative Biopsies in the Era of Magnetic Resonance Imaging-targeted Biopsies of the Prostate? Eur Urol Oncol, 2020. 3: 216.

https://pubmed.ncbi.nlm.nih.gov/31239236

192.Smeenge, M., et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a Consensus Panel. BJU Int, 2012. 110: 942.

https://pubmed.ncbi.nlm.nih.gov/22462566

193.Correas, J.M., et al. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol, 2021. 39: 661.

https://pubmed.ncbi.nlm.nih.gov/32306060

194.Mannaerts, C.K., et al. Detection of clinically significant prostate cancer in biopsy-naive men: direct comparison of systematic biopsy, multiparametric MRI- and contrast-ultrasound-dispersion imaging-targeted biopsy. BJU Int, 2020. 126: 481.

https://pubmed.ncbi.nlm.nih.gov/32315112

195.Grey, A.D.R., et al. Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study. Lancet Oncol, 2022. 23: 428.

https://pubmed.ncbi.nlm.nih.gov/35240084

196.Hofbauer, S.L., et al. A non-inferiority comparative analysis of micro-ultrasonography and MRI-targeted biopsy in men at risk of prostate cancer. BJU Int, 2022. 129: 648.

https://pubmed.ncbi.nlm.nih.gov/34773679

197.Ghai, S., et al. Comparison of Micro-US and Multiparametric MRI for Prostate Cancer Detection in Biopsy-Naive Men. Radiology, 2022. 305: 390.

https://pubmed.ncbi.nlm.nih.gov/35852425

198.Dias, A.B., et al. Multiparametric ultrasound and micro-ultrasound in prostate cancer: a comprehensive review. Br J Radiol, 2022. 95: 20210633.

https://pubmed.ncbi.nlm.nih.gov/34752132

199.Kawada, T., et al. Diagnostic Performance of Prostate-specific Membrane Antigen Positron Emission Tomography-targeted biopsy for Detection of Clinically Significant Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2022. 5: 390.

https://pubmed.ncbi.nlm.nih.gov/35715320

200.Kretschmer, A., et al. Biomarkers in prostate cancer - Current clinical utility and future perspectives. Crit Rev Oncol Hematol, 2017. 120: 180.

https://pubmed.ncbi.nlm.nih.gov/29198331

201.Wagaskar, V.G., et al. A 4K score/MRI-based nomogram for predicting prostate cancer, clinically significant prostate cancer, and unfavorable prostate cancer. Cancer Rep (Hoboken), 2021. 4: e1357.

https://pubmed.ncbi.nlm.nih.gov/33661541

202.Hendriks, R.J., et al. Clinical use of the SelectMDx urinary-biomarker test with or without mpMRI in prostate cancer diagnosis: a prospective, multicenter study in biopsy-naive men. Prostate Cancer Prostatic Dis, 2021. 24: 1110.

https://pubmed.ncbi.nlm.nih.gov/33941866

203.Bryant, R.J., et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study. J Natl Cancer Inst, 2015. 107.

https://pubmed.ncbi.nlm.nih.gov/25863334

204.Catalona, W.J., et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol, 2011. 185: 1650.

https://pubmed.ncbi.nlm.nih.gov/21419439

205.Nordstrom, T., et al. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur Urol, 2015. 68: 139.

https://pubmed.ncbi.nlm.nih.gov/25151013

206.Wagaskar, V.G., et al. Clinical Utility of Negative Multiparametric Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer and Clinically Significant Prostate Cancer. Eur Urol Open Sci, 2021. 28: 9.

https://pubmed.ncbi.nlm.nih.gov/34337520

207.Gronberg, H., et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur Urol, 2018. 74: 722.

https://pubmed.ncbi.nlm.nih.gov/30001824

208.Nordstrom, T., et al. Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncol, 2021. 22: 1240.

https://pubmed.ncbi.nlm.nih.gov/34391509

209.Morote, J., et al. Improving the Early Detection of Clinically Significant Prostate Cancer in Men in the Challenging Prostate Imaging-Reporting and Data System 3 Category. Eur Urol Open Sci, 2022. 37: 38.

https://pubmed.ncbi.nlm.nih.gov/35243388

210.Ploussard, G., et al. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther, 2018. 18: 1013.

https://pubmed.ncbi.nlm.nih.gov/30016891

211.Van Neste, L., et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker-Based Risk Score. Eur Urol, 2016. 70: 740.

https://pubmed.ncbi.nlm.nih.gov/27108162

212.Maggi, M., et al. SelectMDx and Multiparametric Magnetic Resonance Imaging of the Prostate for Men Undergoing Primary Prostate Biopsy: A Prospective Assessment in a Multi-Institutional Study. Cancers (Basel), 2021. 13.

https://pubmed.ncbi.nlm.nih.gov/33922626

213.Lendinez-Cano, G., et al. Prospective study of diagnostic accuracy in the detection of high-grade prostate cancer in biopsy-naive patients with clinical suspicion of prostate cancer who underwent the Select MDx test. Prostate, 2021. 81: 857.

https://pubmed.ncbi.nlm.nih.gov/34184761

214.Roumiguie, M., et al. Independent Evaluation of the Respective Predictive Values for High-Grade Prostate Cancer of Clinical Information and RNA Biomarkers after Upfront MRI and Image-Guided Biopsies. Cancers (Basel), 2020. 12.

https://pubmed.ncbi.nlm.nih.gov/31991591

215.Tomlins, S.A., et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005. 310: 644.

https://pubmed.ncbi.nlm.nih.gov/16254181

216.Tomlins, S.A., et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol, 2016. 70: 45.

https://pubmed.ncbi.nlm.nih.gov/25985884

217.Donovan, M.J., et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis, 2015. 18: 370.

https://pubmed.ncbi.nlm.nih.gov/26345389

218.McKiernan, J., et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol, 2016. 2: 882.

https://pubmed.ncbi.nlm.nih.gov/27032035

219.Vedder, M.M., et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur Urol, 2014. 66: 1109.

https://pubmed.ncbi.nlm.nih.gov/25168616

220.Lamy, P.J., et al. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review. Eur Urol Focus, 2018. 4: 790.

https://pubmed.ncbi.nlm.nih.gov/28753865

221.Iczkowski, K.A., et al. Needle core length in sextant biopsy influences prostate cancer detection rate. Urology, 2002. 59: 698.

https://pubmed.ncbi.nlm.nih.gov/11992843

222.Egevad, L., et al. Dataset for the reporting of prostate carcinoma in core needle biopsy and transurethral resection and enucleation specimens: recommendations from the International Collaboration on Cancer Reporting (ICCR). Pathology, 2019. 51: 11.

https://pubmed.ncbi.nlm.nih.gov/30477882

223.Van der Kwast, T., et al. Guidelines on processing and reporting of prostate biopsies: the 2013 update of the pathology committee of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Virchows Arch, 2013. 463: 367.

https://pubmed.ncbi.nlm.nih.gov/23918245

224.Epstein, J.I., et al. Best practices recommendations in the application of immunohistochemistry in the prostate: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol, 2014. 38: e6.

https://pubmed.ncbi.nlm.nih.gov/25029122

225.Chen, R.C., et al. Active Surveillance for the Management of Localized Prostate Cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J Clin Oncol, 2016. 34: 2182.

https://pubmed.ncbi.nlm.nih.gov/26884580

226.Deng, F.M., et al. Size-adjusted Quantitative Gleason Score as a Predictor of Biochemical Recurrence after Radical Prostatectomy. Eur Urol, 2016. 70: 248.

https://pubmed.ncbi.nlm.nih.gov/26525839

227.Kweldam, C.F., et al. Disease-specific survival of patients with invasive cribriform and intraductal prostate cancer at diagnostic biopsy. Mod Pathol, 2016. 29: 630.

https://pubmed.ncbi.nlm.nih.gov/26939875

228.Kweldam, C.F., et al. On cribriform prostate cancer. Transl Androl Urol, 2018. 7: 145.

https://pubmed.ncbi.nlm.nih.gov/29594028

229.van der Kwast, T.H., et al. ISUP Consensus Definition of Cribriform Pattern Prostate Cancer. Am J Surg Pathol, 2021. 45: 1118.

https://pubmed.ncbi.nlm.nih.gov/33999555

230.Zhou, M. High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod Pathol, 2018. 31: S71.

https://pubmed.ncbi.nlm.nih.gov/29297491

231.Saeter, T., et al. Intraductal Carcinoma of the Prostate on Diagnostic Needle Biopsy Predicts Prostate Cancer Mortality: A Population-Based Study. Prostate, 2017. 77: 859.

https://pubmed.ncbi.nlm.nih.gov/28240424

232.Miura, N., et al. The Prognostic Impact of Intraductal Carcinoma of the Prostate: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 909.

https://pubmed.ncbi.nlm.nih.gov/32698712

233.Shah, R.B., et al. Atypical intraductal proliferation detected in prostate needle biopsy is a marker of unsampled intraductal carcinoma and other adverse pathological features: a prospective clinicopathological study of 62 cases with emphasis on pathological outcomes. Histopathology, 2019. 75: 346.

https://pubmed.ncbi.nlm.nih.gov/31012493

234.Hickman, R.A., et al. Atypical Intraductal Cribriform Proliferations of the Prostate Exhibit Similar Molecular and Clinicopathologic Characteristics as Intraductal Carcinoma of the Prostate. Am J Surg Pathol, 2017. 41: 550.

https://pubmed.ncbi.nlm.nih.gov/28009609

235.Pepdjonovic, L., et al. Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J Urol, 2017. 35: 1199.

https://pubmed.ncbi.nlm.nih.gov/27987032

236.Epstein, J.I., et al. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med, 2021. 145: 461.

https://pubmed.ncbi.nlm.nih.gov/32589068

237.Tumours, E.B.W.C.o., WHO Classification of Tumours. Urinary and male genital tumours. 8th ed, ed. I.A.f.R.o. Cancer. Vol. 5th Edn.; vol 8. 2022, Lyon (France).

https://publications.iarc.fr/610

238.Gordetsky, J.B., et al. Histologic findings associated with false-positive multiparametric magnetic resonance imaging performed for prostate cancer detection. Hum Pathol, 2019. 83: 159.

https://pubmed.ncbi.nlm.nih.gov/30179687

239.Srigley, J.R., et al. Controversial issues in Gleason and International Society of Urological Pathology (ISUP) prostate cancer grading: proposed recommendations for international implementation. Pathology, 2019. 51: 463.

https://pubmed.ncbi.nlm.nih.gov/31279442

240.Strom, P., et al. Prognostic value of perineural invasion in prostate needle biopsies: a population-based study of patients treated by radical prostatectomy. J Clin Pathol, 2020. 73: 630.

https://pubmed.ncbi.nlm.nih.gov/32034057

241.Fleshner, K., et al. Clinical Findings and Treatment Outcomes in Patients with Extraprostatic Extension Identified on Prostate Biopsy. J Urol, 2016. 196: 703.

https://pubmed.ncbi.nlm.nih.gov/27049874

242.Morozov, A., et al. A systematic review and meta-analysis of artificial intelligence diagnostic accuracy in prostate cancer histology identification and grading. Prostate Cancer Prostatic Dis, 2023. 26: 681.

https://pubmed.ncbi.nlm.nih.gov/37185992

243.Freedland, S.J., et al. Preoperative model for predicting prostate specific antigen recurrence after radical prostatectomy using percent of biopsy tissue with cancer, biopsy Gleason grade and serum prostate specific antigen. J Urol, 2004. 171: 2215.

https://pubmed.ncbi.nlm.nih.gov/15126788

244.Grossklaus, D.J., et al. Percent of cancer in the biopsy set predicts pathological findings after prostatectomy. J Urol, 2002. 167: 2032.

https://pubmed.ncbi.nlm.nih.gov/11956432

245.Brimo, F., et al. Prognostic value of various morphometric measurements of tumour extent in prostate needle core tissue. Histopathology, 2008. 53: 177.

https://pubmed.ncbi.nlm.nih.gov/18752501

246.Bangma, C.H., et al. Active surveillance for low-risk prostate cancer. Crit Rev Oncol Hematol, 2013. 85: 295.

https://pubmed.ncbi.nlm.nih.gov/22878262

247.Nguyen, P.L., et al. Analysis of a Biopsy-Based Genomic Classifier in High-Risk Prostate Cancer: Meta-Analysis of the NRG Oncology/Radiation Therapy Oncology Group 9202, 9413, and 9902 Phase 3 Randomized Trials. Int J Radiat Oncol Biol Phys, 2023. 116: 521.

https://pubmed.ncbi.nlm.nih.gov/36596347

248.de Bono, J., et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 382: 2091.

https://pubmed.ncbi.nlm.nih.gov/32343890

249.Mateo, J., et al. Genomics of lethal prostate cancer at diagnosis and castration resistance. J Clin Invest, 2020. 130: 1743.

https://pubmed.ncbi.nlm.nih.gov/31874108

250.Schweizer, M.T., et al. Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncol, 2021. 7: 1.

https://pubmed.ncbi.nlm.nih.gov/34086042

251.Robinson, D., et al. Integrative clinical genomics of advanced prostate cancer. Cell, 2015. 161: 1215.

https://pubmed.ncbi.nlm.nih.gov/26000489

252.Matsubara, N., et al. Olaparib Efficacy in Patients with Metastatic Castration-resistant Prostate Cancer and BRCA1, BRCA2, or ATM Alterations Identified by Testing Circulating Tumor DNA. Clin Cancer Res, 2023. 29: 92.

https://pubmed.ncbi.nlm.nih.gov/36318705

253.Chi, K.N., et al. Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clin Cancer Res, 2023. 29: 81.

https://pubmed.ncbi.nlm.nih.gov/36043882

254.Iremashvili, V., et al. Partial sampling of radical prostatectomy specimens: detection of positive margins and extraprostatic extension. Am J Surg Pathol, 2013. 37: 219.

https://pubmed.ncbi.nlm.nih.gov/23095506

255.Kench, J.G., et al. Dataset for the reporting of prostate carcinoma in radical prostatectomy specimens: updated recommendations from the International Collaboration on Cancer Reporting. Virchows Arch, 2019. 475: 263.

https://pubmed.ncbi.nlm.nih.gov/31098802

256.Gandaglia, G., et al. A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies. Eur Urol, 2019. 75: 506.

https://pubmed.ncbi.nlm.nih.gov/30342844

257.Partin, A.W., et al. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology, 2001. 58: 843.

https://pubmed.ncbi.nlm.nih.gov/11744442

258.Magi-Galluzzi, C., et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol, 2011. 24: 26.

https://pubmed.ncbi.nlm.nih.gov/20802467

259.van Veggel, B.A., et al. Quantification of extraprostatic extension in prostate cancer: different parameters correlated to biochemical recurrence after radical prostatectomy. Histopathology, 2011. 59: 692.

https://pubmed.ncbi.nlm.nih.gov/22014050

260.Aydin, H., et al. Positive proximal (bladder neck) margin at radical prostatectomy confers greater risk of biochemical progression. Urology, 2004. 64: 551.

https://pubmed.ncbi.nlm.nih.gov/15351591

261.Ploussard, G., et al. The prognostic significance of bladder neck invasion in prostate cancer: is microscopic involvement truly a T4 disease? BJU Int, 2010. 105: 776.

https://pubmed.ncbi.nlm.nih.gov/19863529

262.Stamey, T.A., et al. Prostate cancer is highly predictable: a prognostic equation based on all morphological variables in radical prostatectomy specimens. J Urol, 2000. 163: 1155.

https://pubmed.ncbi.nlm.nih.gov/10737486

263.van Oort, I.M., et al. Maximum tumor diameter is not an independent prognostic factor in high-risk localized prostate cancer. World J Urol, 2008. 26: 237.

https://pubmed.ncbi.nlm.nih.gov/18265988

264.van der Kwast, T.H., et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 2: T2 substaging and prostate cancer volume. Mod Pathol, 2011. 24: 16.

https://pubmed.ncbi.nlm.nih.gov/20818340

265.Epstein, J.I., et al. Prognostic factors and reporting of prostate carcinoma in radical prostatectomy and pelvic lymphadenectomy specimens. Scand J Urol Nephrol Suppl, 2005: 34.

https://pubmed.ncbi.nlm.nih.gov/16019758

266.Evans, A.J., et al. Interobserver variability between expert urologic pathologists for extraprostatic extension and surgical margin status in radical prostatectomy specimens. Am J Surg Pathol, 2008. 32: 1503.

https://pubmed.ncbi.nlm.nih.gov/18708939

267.Chuang, A.Y., et al. Positive surgical margins in areas of capsular incision in otherwise organ-confined disease at radical prostatectomy: histologic features and pitfalls. Am J Surg Pathol, 2008. 32: 1201.

https://pubmed.ncbi.nlm.nih.gov/18580493

268.Hollemans, E., et al. Prostate Carcinoma Grade and Length But Not Cribriform Architecture at Positive Surgical Margins Are Predictive for Biochemical Recurrence After Radical Prostatectomy. Am J Surg Pathol, 2020. 44: 191.

https://pubmed.ncbi.nlm.nih.gov/31592799

269.Cao, D., et al. Ability of linear length of positive margin in radical prostatectomy specimens to predict biochemical recurrence. Urology, 2011. 77: 1409.

https://pubmed.ncbi.nlm.nih.gov/21256540

270.Sammon, J.D., et al. Risk factors for biochemical recurrence following radical perineal prostatectomy in a large contemporary series: a detailed assessment of margin extent and location. Urol Oncol, 2013. 31: 1470.

https://pubmed.ncbi.nlm.nih.gov/22534086

271.Chapin, B.F., et al. Positive margin length and highest Gleason grade of tumor at the margin predict for biochemical recurrence after radical prostatectomy in patients with organ-confined prostate cancer. Prostate Cancer Prostatic Dis, 2018. 21: 221.

https://pubmed.ncbi.nlm.nih.gov/29230008

272.Dinneen, E.P., et al. Intraoperative Frozen Section for Margin Evaluation During Radical Prostatectomy: A Systematic Review. Eur Urol Focus, 2020. 6: 664.

https://pubmed.ncbi.nlm.nih.gov/31787570

273.Schlomm, T., et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol, 2012. 62: 333.

https://pubmed.ncbi.nlm.nih.gov/22591631

274.Mirmilstein, G., et al. The neurovascular structure-adjacent frozen-section examination (NeuroSAFE) approach to nerve sparing in robot-assisted laparoscopic radical prostatectomy in a British setting - a prospective observational comparative study. BJU Int, 2018. 121: 854.

https://pubmed.ncbi.nlm.nih.gov/29124889

275.van der Slot, M.A., et al. NeuroSAFE in radical prostatectomy increases the rate of nerve-sparing surgery without affecting oncological outcome. BJU Int, 2022. 130: 628.

https://pubmed.ncbi.nlm.nih.gov/35536200

276.Koseoglu, E., et al. Intraoperative Frozen Section via Neurosafe During Robotic Radical Prostatectomy in the Era of Preoperative Risk Stratifications and Primary Staging With mpMRI and PSMA-PET CT: Is There a Perfect Candidate? Clin Genitourin Cancer, 2023. 21: 602.

https://pubmed.ncbi.nlm.nih.gov/37451883

277.Dinneen, E., et al. NeuroSAFE PROOF: study protocol for a single-blinded, IDEAL stage 3, multi-centre, randomised controlled trial of NeuroSAFE robotic-assisted radical prostatectomy versus standard robotic-assisted radical prostatectomy in men with localized prostate cancer. Trials, 2022. 23: 584.

https://pubmed.ncbi.nlm.nih.gov/35869497

278.Farrell, C., et al. Prostate Multiparametric Magnetic Resonance Imaging Program Implementation and Impact: Initial Clinical Experience in a Community Based Health System. Urol Pract, 2018. 5: 165.

https://pubmed.ncbi.nlm.nih.gov/37300235

279.Reesink, D.J., et al. Comparison of risk-calculator and MRI and consecutive pathways as upfront stratification for prostate biopsy. World J Urol, 2021. 39: 2453.

https://pubmed.ncbi.nlm.nih.gov/33090259

280.Louie, K.S., et al. Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis. Ann Oncol, 2015. 26: 848.

https://pubmed.ncbi.nlm.nih.gov/25403590

281.Mannaerts, C.K., et al. Prostate Cancer Risk Assessment in Biopsy-naïve Patients: The Rotterdam Prostate Cancer Risk Calculator in Multiparametric Magnetic Resonance Imaging-Transrectal Ultrasound (TRUS) Fusion Biopsy and Systematic TRUS Biopsy. Eur Urol Oncol, 2018. 1: 109.

https://pubmed.ncbi.nlm.nih.gov/31100233

282.Kim, L., et al. Clinical utility and cost modelling of the phi test to triage referrals into image-based diagnostic services for suspected prostate cancer: the PRIM (Phi to RefIne Mri) study. BMC Med, 2020. 18: 95.

https://pubmed.ncbi.nlm.nih.gov/32299423

283.Morote, J., et al. A Clinically Significant Prostate Cancer Predictive Model Using Digital Rectal Examination Prostate Volume Category to Stratify Initial Prostate Cancer Suspicion and Reduce Magnetic Resonance Imaging Demand. Cancers (Basel), 2022. 14.

https://pubmed.ncbi.nlm.nih.gov/36291883

284.Moldovan, P.C., et al. What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur Urol, 2017. 72: 250.

https://pubmed.ncbi.nlm.nih.gov/28336078

285.Kamal, O., et al. Intermediate-term oncological outcomes after a negative endorectal coil multiparametric MRI of the prostate in patients without biopsy proven prostate cancer. Clin Imaging, 2022. 92: 112.

https://pubmed.ncbi.nlm.nih.gov/36306588

286.Wagensveld, I.M., et al. A Prospective Multicenter Comparison Study of Risk-adapted Ultrasound-directed and Magnetic Resonance Imaging-directed Diagnostic Pathways for Suspected Prostate Cancer in Biopsy-naive Men. Eur Urol, 2022. 82: 318.

https://pubmed.ncbi.nlm.nih.gov/35341658

287.Distler, F.A., et al. The Value of PSA Density in Combination with PI-RADS for the Accuracy of Prostate Cancer Prediction. J Urol, 2017. 198: 575.

https://pubmed.ncbi.nlm.nih.gov/28373135

288.Washino, S., et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naive patients. BJU Int, 2017. 119: 225.

https://pubmed.ncbi.nlm.nih.gov/26935594

289.Schoots, I.G., et al. Risk-adapted biopsy decision based on prostate magnetic resonance imaging and prostate-specific antigen density for enhanced biopsy avoidance in first prostate cancer diagnostic evaluation. BJU Int, 2021. 127: 175.

https://pubmed.ncbi.nlm.nih.gov/33089586

290.Hansen, N.L., et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int, 2017. 120: 631.

https://pubmed.ncbi.nlm.nih.gov/27862869

291.Pagniez, M.A., et al. Predictive Factors of Missed Clinically Significant Prostate Cancers in Men with Negative Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 24.

https://pubmed.ncbi.nlm.nih.gov/31967522

292.Boesen, L., et al. Prebiopsy Biparametric Magnetic Resonance Imaging Combined with Prostate-specific Antigen Density in Detecting and Ruling out Gleason 7-10 Prostate Cancer in Biopsy-naive Men. Eur Urol Oncol, 2019. 2: 311.

https://pubmed.ncbi.nlm.nih.gov/31200846

293.Hansen, N.L., et al. The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7-10 prostate cancer in a repeat biopsy setting. BJU Int, 2017. 119: 724.

https://pubmed.ncbi.nlm.nih.gov/27488931

294.Oishi, M., et al. Which Patients with Negative Magnetic Resonance Imaging Can Safely Avoid Biopsy for Prostate Cancer? J Urol, 2019. 201: 268.

https://pubmed.ncbi.nlm.nih.gov/30189186

295.Sigle, A., et al. Prediction of Significant Prostate Cancer in Equivocal Magnetic Resonance Imaging Lesions: A High-volume International Multicenter Study. Eur Urol Focus, 2023. 9: 606.

https://pubmed.ncbi.nlm.nih.gov/36804191

296.Kortenbach, K.C., et al. Early experience in avoiding biopsies for biopsy-naive men with clinical suspicion of prostate cancer but non-suspicious biparametric magnetic resonance imaging results and prostate-specific antigen density < 0.15 ng/mL(2): A 2-year follow-up study. Acta Radiol Open, 2022. 11: 20584601221094825.

https://pubmed.ncbi.nlm.nih.gov/35464293

297.Konishi, T., et al. Combination of biparametric magnetic resonance imaging with prostate-specific antigen density to stratify the risk of significant prostate cancer: Initial biopsy and long-term follow-up results. Int J Urol, 2022. 29: 1031.

https://pubmed.ncbi.nlm.nih.gov/35697503

298.Schoots, I.G., et al. Multivariate risk prediction tools including MRI for individualized biopsy decision in prostate cancer diagnosis: current status and future directions. World J Urol, 2020. 38: 517.

https://pubmed.ncbi.nlm.nih.gov/30868240

299.Saba, K., et al. External Validation and Comparison of Prostate Cancer Risk Calculators Incorporating Multiparametric Magnetic Resonance Imaging for Prediction of Clinically Significant Prostate Cancer. J Urol, 2020. 203: 719.

https://pubmed.ncbi.nlm.nih.gov/31651228

300.Radtke, J.P., et al. Prediction of significant prostate cancer in biopsy-naive men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. PLoS One, 2019. 14: e0221350.

https://pubmed.ncbi.nlm.nih.gov/31450235

301.Pallauf, M., et al. External validation of two mpMRI-risk calculators predicting risk of prostate cancer before biopsy. World J Urol, 2022. 40: 2451.

https://pubmed.ncbi.nlm.nih.gov/35941246

302.Peters, M., et al. Predicting the Need for Biopsy to Detect Clinically Significant Prostate Cancer in Patients with a Magnetic Resonance Imaging-detected Prostate Imaging Reporting and Data System/Likert >/=3 Lesion: Development and Multinational External Validation of the Imperial Rapid Access to Prostate Imaging and Diagnosis Risk Score. Eur Urol, 2022. 82: 559.

https://pubmed.ncbi.nlm.nih.gov/35963650

303.Eklund, M., et al. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med, 2021. 385: 908.

https://pubmed.ncbi.nlm.nih.gov/34237810

304.Van Poppel, H., et al. Early Detection of Prostate Cancer in 2020 and Beyond: Facts and Recommendations for the European Union and the European Commission. Eur Urol, 2021. 79: 327.

https://pubmed.ncbi.nlm.nih.gov/33384200

305.Hugosson, J., et al. Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. N Engl J Med, 2022. 387: 2126.

https://pubmed.ncbi.nlm.nih.gov/36477032

306.Eldred-Evans, D., et al. An Evaluation of Screening Pathways Using a Combination of Magnetic Resonance Imaging and Prostate-specific Antigen: Results from the IP1-PROSTAGRAM Study. Eur Urol Oncol, 2023. 6: 295.

https://pubmed.ncbi.nlm.nih.gov/37080821

307.Eichler, K., et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol, 2006. 175: 1605.

https://pubmed.ncbi.nlm.nih.gov/16600713

308.Watts, K.L., et al. Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol, 2020. 38: 734 e19.

https://pubmed.ncbi.nlm.nih.gov/32321689

309.Wegelin, O., et al. The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. Eur Urol, 2019. 75: 582.

https://pubmed.ncbi.nlm.nih.gov/30522912

310.Wegelin, O., et al. Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies: A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique? Eur Urol, 2017. 71: 517.

https://pubmed.ncbi.nlm.nih.gov/27568655

311.Goldberg, H., et al. Comparison of Magnetic Resonance Imaging and Transrectal Ultrasound Informed Prostate Biopsy for Prostate Cancer Diagnosis in Biopsy Naive Men: A Systematic Review and Meta-Analysis. J Urol, 2020. 203: 1085.

https://pubmed.ncbi.nlm.nih.gov/31609177

312.Leow, J.J., et al. Can we omit systematic biopsies in patients undergoing MRI fusion-targeted prostate biopsies? Asian J Androl, 2023. 25: 43.

https://pubmed.ncbi.nlm.nih.gov/35488666

313.Deniffel, D., et al. Prostate biopsy in the era of MRI-targeting: towards a judicious use of additional systematic biopsy. Eur Radiol, 2022. 32: 7544.

https://pubmed.ncbi.nlm.nih.gov/35507051

314.Barrett, T., et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway. Nat Rev Urol, 2023. 20: 9.

https://pubmed.ncbi.nlm.nih.gov/36168056

315.Brisbane, W.G., et al. Targeted Prostate Biopsy: Umbra, Penumbra, and Value of Perilesional Sampling. Eur Urol, 2022. 82: 303.

https://pubmed.ncbi.nlm.nih.gov/35115177

316.Noujeim, J.P., et al. Optimizing multiparametric magnetic resonance imaging-targeted biopsy and detection of clinically significant prostate cancer: the role of perilesional sampling. Prostate Cancer Prostatic Dis, 2023. 26: 575.

https://pubmed.ncbi.nlm.nih.gov/36509930

317.Hagens, M.J., et al. An Magnetic Resonance Imaging-directed Targeted-plus-perilesional Biopsy Approach for Prostate Cancer Diagnosis: “Less Is More”. Eur Urol Open Sci, 2022. 43: 68.

https://pubmed.ncbi.nlm.nih.gov/36353069

318.Hsieh, P.F., et al. Learning Curve of Transperineal MRI/US Fusion Prostate Biopsy: 4-Year Experience. Life (Basel), 2023. 13.

https://pubmed.ncbi.nlm.nih.gov/36983794

319.Diamand, R., et al. The role of perilesional and multiparametric resonance imaging-targeted biopsies to reduce the risk of upgrading at radical prostatectomy pathology: A retrospective monocentric study. Urol Oncol, 2022. 40: 192 e11.

https://pubmed.ncbi.nlm.nih.gov/35236622

320.Ahdoot, M., et al. Using Prostate Imaging-Reporting and Data System (PI-RADS) Scores to Select an Optimal Prostate Biopsy Method: A Secondary Analysis of the Trio Study. Eur Urol Oncol, 2022. 5: 176.

https://pubmed.ncbi.nlm.nih.gov/33846112

321.Barletta, F., et al. Assessing the need for systematic biopsies in addition to targeted biopsies according to the characteristics of the index lesion at mpMRI. Results from a large, multi-institutional database. World J Urol, 2022. 40: 2683.

https://pubmed.ncbi.nlm.nih.gov/36149448

322.Hou, Y., et al. A clinical available decision support scheme for optimizing prostate biopsy based on mpMRI. Prostate Cancer Prostatic Dis, 2022. 25: 727.

https://pubmed.ncbi.nlm.nih.gov/35067674

323.Di Franco, F., et al. Characterization of high-grade prostate cancer at multiparametric MRI: assessment of PI-RADS version 2.1 and version 2 descriptors across 21 readers with varying experience (MULTI study). Insights Imaging, 2023. 14: 49.

https://pubmed.ncbi.nlm.nih.gov/36939970

324.de Rooij, M., et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training. Eur Radiol, 2020. 30: 5404.

https://pubmed.ncbi.nlm.nih.gov/32424596

325.Meng, X., et al. The Institutional Learning Curve of Magnetic Resonance Imaging-Ultrasound Fusion Targeted Prostate Biopsy: Temporal Improvements in Cancer Detection in 4 Years. J Urol, 2018. 200: 1022.

https://pubmed.ncbi.nlm.nih.gov/29886090

326.Rouviere, O., et al. Artificial intelligence algorithms aimed at characterizing or detecting prostate cancer on MRI: How accurate are they when tested on independent cohorts? - A systematic review. Diagn Interv Imaging, 2023. 104: 221.

https://pubmed.ncbi.nlm.nih.gov/36517398

327.Dell’Oglio, P., et al. Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy. World J Urol, 2019. 37: 221.

https://pubmed.ncbi.nlm.nih.gov/29948044

328.Faiena, I., et al. PI-RADS Version 2 Category on 3 Tesla Multiparametric Prostate Magnetic Resonance Imaging Predicts Oncologic Outcomes in Gleason 3 + 4 Prostate Cancer on Biopsy. J Urol, 2019. 201: 91.

https://pubmed.ncbi.nlm.nih.gov/30142318

329.Houlahan, K.E., et al. Molecular Hallmarks of Multiparametric Magnetic Resonance Imaging Visibility in Prostate Cancer. Eur Urol, 2019. 76: 18.

https://pubmed.ncbi.nlm.nih.gov/30685078

330.Lam, T.B.L., et al. EAU-EANM-ESTRO-ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment with Curative Intent for Localised Prostate Cancer from an International Collaborative Study (DETECTIVE Study). Eur Urol, 2019. 76: 790.

https://pubmed.ncbi.nlm.nih.gov/31587989

331.Hagens, M.J., et al. Diagnostic Performance of a Magnetic Resonance Imaging-directed Targeted plus Regional Biopsy Approach in Prostate Cancer Diagnosis: A Systematic Review and Meta-analysis. Eur Urol Open Sci, 2022. 40: 95.

https://pubmed.ncbi.nlm.nih.gov/35540708

332.Kurniawati, I., et al. Targeting Castration-Resistant Prostate Cancer Using Mesenchymal Stem Cell Exosomes for Therapeutic MicroRNA-let-7c Delivery. Front Biosci (Landmark Ed), 2022. 27: 256.

https://pubmed.ncbi.nlm.nih.gov/36224011

333.Kanagarajah, A., et al. A systematic review on the outcomes of local anaesthetic transperineal prostate biopsy. BJU Int, 2023. 131: 408.

https://pubmed.ncbi.nlm.nih.gov/36177521

334.Tu, X., et al. Transperineal Magnetic Resonance Imaging-Targeted Biopsy May Perform Better Than Transrectal Route in the Detection of Clinically Significant Prostate Cancer: Systematic Review and Meta-analysis. Clin Genitourin Cancer, 2019. 17: e860.

https://pubmed.ncbi.nlm.nih.gov/31281065

335.Roberts, M.J., et al. Prostate Biopsy-related Infection: A Systematic Review of Risk Factors, Prevention Strategies, and Management Approaches. Urology, 2017. 104: 11.

https://pubmed.ncbi.nlm.nih.gov/28007492

336.Pilatz, A., et al. Update on Strategies to Reduce Infectious Complications After Prostate Biopsy. Eur Urol Focus, 2019. 5: 20.

https://pubmed.ncbi.nlm.nih.gov/30503175

337.von Knobloch, R., et al. Bilateral fine-needle administered local anaesthetic nerve block for pain control during TRUS-guided multi-core prostate biopsy: a prospective randomised trial. Eur Urol, 2002. 41: 508.

https://pubmed.ncbi.nlm.nih.gov/12074792

338.Adamakis, I., et al. Pain during transrectal ultrasonography guided prostate biopsy: a randomized prospective trial comparing periprostatic infiltration with lidocaine with the intrarectal instillation of lidocaine-prilocain cream. World J Urol, 2004. 22: 281.

https://pubmed.ncbi.nlm.nih.gov/14689224

339.Bass, E.J., et al. Magnetic resonance imaging targeted transperineal prostate biopsy: a local anaesthetic approach. Prostate Cancer Prostatic Dis, 2017. 20: 311.

https://pubmed.ncbi.nlm.nih.gov/28485391

340.Xiang, J., et al. Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis. World J Surg Oncol, 2019. 17: 31.

https://pubmed.ncbi.nlm.nih.gov/30760274

341.Iremashvili, V.V., et al. Periprostatic local anesthesia with pudendal block for transperineal ultrasound-guided prostate biopsy: a randomized trial. Urology, 2010. 75: 1023.

https://pubmed.ncbi.nlm.nih.gov/20080288

342.Meyer, A.R., et al. Initial Experience Performing In-office Ultrasound-guided Transperineal Prostate Biopsy Under Local Anesthesia Using the PrecisionPoint Transperineal Access System. Urology, 2018. 115: 8.

https://pubmed.ncbi.nlm.nih.gov/29409845

343.He, B.M., et al. Perineal nerve block versus periprostatic block for patients undergoing transperineal prostate biopsy (APROPOS): a prospective, multicentre, randomised controlled study. EClinicalMedicine, 2023. 58: 101919.

https://pubmed.ncbi.nlm.nih.gov/37007736

344.Lam, W., Wong, A., Chun, S., Wong, T., et al. Prostate cancer detection, tolerability and safety of transperineal prostate biopsy under local-anaesthesia vs standard transrectal biopsy in biopsy-naive men: a pragmatic, parallel group, randomized controlled study. BJU Int, 2022. 129: 9.

https://doi.org/10.1111/bju.15675

345.Pradere, B., et al. Nonantibiotic Strategies for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol, 2021. 205: 653.

https://pubmed.ncbi.nlm.nih.gov/33026903

346.Bennett, H.Y., et al. The global burden of major infectious complications following prostate biopsy. Epidemiol Infect, 2016. 144: 1784.

https://pubmed.ncbi.nlm.nih.gov/26645476

347.Berry, B., et al. Comparison of complications after transrectal and transperineal prostate biopsy: a national population-based study. BJU Int, 2020. 126: 97.

https://pubmed.ncbi.nlm.nih.gov/32124525

348.Castellani, D., et al. Infection Rate after Transperineal Prostate Biopsy with and without Prophylactic Antibiotics: Results from a Systematic Review and Meta-Analysis of Comparative Studies. J Urol, 2022. 207: 25.

https://pubmed.ncbi.nlm.nih.gov/34555932

349.Basourakos, S.P., et al. Role of Prophylactic Antibiotics in Transperineal Prostate Biopsy: A Systematic Review and Meta-analysis. Eur Urol Open Sci, 2022. 37: 53.

https://pubmed.ncbi.nlm.nih.gov/35243391

350.Chernysheva, D.Y., Popov S.V., Orlov I.N., Tsoy A.V., Neradovskiy V.A. . The first experience of transperineal prostate biopsy without antibiotic prophylaxis. Cancer Urology. 2021;17(2):46-52. (In Russ.). Cancer Urology: 46.

https://oncourology.abvpress.ru/oncur/article/view/1392

351.Jacewicz, M., et al. Antibiotic prophylaxis versus no antibiotic prophylaxis in transperineal prostate biopsies (NORAPP): a randomised, open-label, non-inferiority trial. Lancet Infect Dis, 2022. 22: 1465.

https://pubmed.ncbi.nlm.nih.gov/35839791

352.Shaker, H.S., et al. Does The Use Of Povidone Iodine Suppository Decrease The Infective Complications Of TRUS Guided Prostate Biopsies? A Randomized Prospective Study. QJM: An International Journal of Medicine, 2020. 113.

https://doi.org/10.1093/qjmed/hcaa070.024

353.Farooq, K., et al. Role of Povidone-Iodine-Soaked Gauze in Preventing Infectious Complications Following Trans Rectal Digital Guided Prostate Biopsy. Journal of Postgraduate Medical Institute, 2021. 35: 225.

https://jpmi.org.pk/index.php/jpmi/article/view/2849

354.Taher, Y., et al. Mp48-11 Prospective Randomized Controlled Study to Assess the Effect of Perineal Region Cleansing with Povidone Iodine before Transrectal Needle Biopsy of the Prostate on Infectious Complications. Journal of Urology, 2015. 193: e598.

https://www.auajournals.org/doi/abs/10.1016/j.juro.2015.02.1685

355.Yu, L., et al. [Impact of insertion timing of iodophor cotton ball on the control of infection complications after transrectal ultrasound guided prostate biopsy]. Zhonghua Yi Xue Za Zhi, 2014. 94: 609.

https://pubmed.ncbi.nlm.nih.gov/24762693

356.Pilatz, A., et al. Antibiotic Prophylaxis for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 224.

https://pubmed.ncbi.nlm.nih.gov/32105195

357.European Medicines Agency. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. 2019. EMA/175398/2019.

https://www.ema.europa.eu/en/documents/referral/quinolone-fluoroquinolone-article-31-referral-disabling-potentially-permanent-side-effects-lead_en.pdf

358.Carignan, A., et al. Effectiveness of fosfomycin tromethamine prophylaxis in preventing infection following transrectal ultrasound-guided prostate needle biopsy: Results from a large Canadian cohort. J Glob Antimicrob Resist, 2019. 17: 112.

https://pubmed.ncbi.nlm.nih.gov/30553114

359.Wegelin, O., et al. Complications and Adverse Events of Three Magnetic Resonance Imaging-based Target Biopsy Techniques in the Diagnosis of Prostate Cancer Among Men with Prior Negative Biopsies: Results from the FUTURE Trial, a Multicentre Randomised Controlled Trial. Eur Urol Oncol, 2019. 2: 617.

https://pubmed.ncbi.nlm.nih.gov/31519516

360.Borghesi, M., et al. Complications After Systematic, Random, and Image-guided Prostate Biopsy. Eur Urol, 2017. 71: 353.

https://pubmed.ncbi.nlm.nih.gov/27543165

361.Giannarini, G., et al. Continuing or discontinuing low-dose aspirin before transrectal prostate biopsy: results of a prospective randomized trial. Urology, 2007. 70: 501.

https://pubmed.ncbi.nlm.nih.gov/17688919

362.Garcia, C., et al. Does transperineal prostate biopsy reduce complications compared with transrectal biopsy? a systematic review and meta-analysis of randomised controlled trials. 2016. 195:4 SUPPL. 1 p. e328.

https://www.auajournals.org/doi/10.1016/j.juro.2016.02.2879

363.Xue, J., et al. Comparison between transrectal and transperineal prostate biopsy for detection of prostate cancer: a meta-analysis and trial sequential analysis. Oncotarget, 2017. 8: 23322.

https://pubmed.ncbi.nlm.nih.gov/28177897

364.Padhani, A.R., et al. PI-RADS Steering Committee: The PI-RADS Multiparametric MRI and MRI-directed Biopsy Pathway. Radiology, 2019. 292: 464.

https://pubmed.ncbi.nlm.nih.gov/31184561

365.Stranne, J., et al. Systematic Biopsies as a Complement to Magnetic Resonance Imaging-targeted Biopsies: “To Be or Not To Be”? Eur Urol, 2023. 83: 381.

https://pubmed.ncbi.nlm.nih.gov/36737297

366.Schoots, I.G., et al. Analysis of Magnetic Resonance Imaging-directed Biopsy Strategies for Changing the Paradigm of Prostate Cancer Diagnosis. Eur Urol Oncol, 2020. 3: 32.

https://pubmed.ncbi.nlm.nih.gov/31706946

367.Bittencourt, L.K., et al. Risk-based MRI-directed diagnostic pathway outperforms non-risk-based pathways in suspected prostate cancer biopsy-naive men: a large cohort validation study. Eur Radiol, 2022. 32: 2330.

https://pubmed.ncbi.nlm.nih.gov/35028750

368.Stroomberg, H.V., et al. Standardized prostate cancer incidence and mortality rates following initial non-malignant biopsy result. BJU Int, 2023. 132: 181.

https://pubmed.ncbi.nlm.nih.gov/36847603

369.Grivas, N., et al. Prostate Cancer Detection Percentages of Repeat Biopsy in Patients with Positive Multiparametric Magnetic Resonance Imaging (Prostate Imaging Reporting and Data System/Likert 3-5) and Negative Initial Biopsy. A Mini Systematic Review. Eur Urol, 2022. 82: 452.

https://pubmed.ncbi.nlm.nih.gov/35985901

370.Ericson, K.J., et al. Prostate cancer detection following diagnosis of atypical small acinar proliferation. Can J Urol, 2017. 24: 8714.

https://pubmed.ncbi.nlm.nih.gov/28436357

371.Wiener, S., et al. Incidence of Clinically Significant Prostate Cancer After a Diagnosis of Atypical Small Acinar Proliferation, High-grade Prostatic Intraepithelial Neoplasia, or Benign Tissue. Urology, 2017. 110: 161.

https://pubmed.ncbi.nlm.nih.gov/28888752

372.Walz, J., et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol, 2006. 50: 498.

https://pubmed.ncbi.nlm.nih.gov/16631303

373.Moran, B.J., et al. Re-biopsy of the prostate using a stereotactic transperineal technique. J Urol, 2006. 176: 1376.

https://pubmed.ncbi.nlm.nih.gov/16952636

374.Panebianco, V., et al. Negative Multiparametric Magnetic Resonance Imaging for Prostate Cancer: What’s Next? Eur Urol, 2018. 74: 48.

https://pubmed.ncbi.nlm.nih.gov/29566957

375.Linzer, D.G., et al. Seminal vesicle biopsy: accuracy and implications for staging of prostate cancer. Urology, 1996. 48: 757.

https://pubmed.ncbi.nlm.nih.gov/8911521

376.Pelzer, A.E., et al. Are transition zone biopsies still necessary to improve prostate cancer detection? Results from the tyrol screening project. Eur Urol, 2005. 48: 916.

https://pubmed.ncbi.nlm.nih.gov/16126324

377.Paner, G.P., et al. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur Urol, 2018. 73: 560.

https://pubmed.ncbi.nlm.nih.gov/29325693

378.Expert Panel on Urologic, I., et al. ACR Appropriateness Criteria((R)) Prostate Cancer-Pretreatment Detection, Surveillance, and Staging. J Am Coll Radiol, 2017. 14: S245.

https://pubmed.ncbi.nlm.nih.gov/28473080

379.de Rooij, M., et al. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur Urol, 2016. 70: 233.

https://pubmed.ncbi.nlm.nih.gov/26215604

380.Christophe, C., et al. Prostate cancer local staging using biparametric MRI: assessment and comparison with multiparametric MRI. Eur J Radiol, 2020. 132: 109350.

https://pubmed.ncbi.nlm.nih.gov/33080549

381.Soeterik, T.F.W., et al. Multiparametric Magnetic Resonance Imaging Should Be Preferred Over Digital Rectal Examination for Prostate Cancer Local Staging and Disease Risk Classification. Urology, 2021. 147: 205.

https://pubmed.ncbi.nlm.nih.gov/33129868

382.Futterer, J.J., et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology, 2005. 237: 541.

https://pubmed.ncbi.nlm.nih.gov/16244263

383.Kim, T.H., et al. The Diagnostic Performance of the Length of Tumor Capsular Contact on MRI for Detecting Prostate Cancer Extraprostatic Extension: A Systematic Review and Meta-Analysis. Korean J Radiol, 2020. 21: 684.

https://pubmed.ncbi.nlm.nih.gov/32410407

384.Valentin, B., et al. Magnetic resonance imaging improves the prediction of tumor staging in localized prostate cancer. Abdom Radiol (NY), 2021. 46: 2751.

https://pubmed.ncbi.nlm.nih.gov/33452898

385.Gatti, M., et al. mEPE-score: a comprehensive grading system for predicting pathologic extraprostatic extension of prostate cancer at multiparametric magnetic resonance imaging. Eur Radiol, 2022. 32: 4942.

https://pubmed.ncbi.nlm.nih.gov/35290508

386.Park, K.J., et al. Extraprostatic Tumor Extension: Comparison of Preoperative Multiparametric MRI Criteria and Histopathologic Correlation after Radical Prostatectomy. Radiology, 2020. 296: 87.

https://pubmed.ncbi.nlm.nih.gov/32368959

387.Morlacco, A., et al. Nomograms in Urologic Oncology: Lights and Shadows. J Clin Med, 2021. 10.

https://pubmed.ncbi.nlm.nih.gov/33801184

388.Leyh-Bannurah, S.R., et al. Combined systematic versus stand-alone multiparametric MRI-guided targeted fusion biopsy: nomogram prediction of non-organ-confined prostate cancer. World J Urol, 2021. 39: 81.

https://pubmed.ncbi.nlm.nih.gov/32248363

389.Diamand, R., et al. External Validation of a Multiparametric Magnetic Resonance Imaging-based Nomogram for the Prediction of Extracapsular Extension and Seminal Vesicle Invasion in Prostate Cancer Patients Undergoing Radical Prostatectomy. Eur Urol, 2021. 79: 180.

https://pubmed.ncbi.nlm.nih.gov/33023770

390.Alves, J.R., et al. Independent external validation of nomogram to predict extracapsular extension in patients with prostate cancer. Eur Radiol, 2020. 30: 5004.

https://pubmed.ncbi.nlm.nih.gov/32307562

391.Abuzallouf, S., et al. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol, 2004. 171: 2122.

https://pubmed.ncbi.nlm.nih.gov/15126770

392.Kiss, B., et al. Current Status of Lymph Node Imaging in Bladder and Prostate Cancer. Urology, 2016. 96: 1.

https://pubmed.ncbi.nlm.nih.gov/26966038

393.Harisinghani, M.G., et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med, 2003. 348: 2491.

https://pubmed.ncbi.nlm.nih.gov/12815134

394.Hovels, A.M., et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol, 2008. 63: 387.

https://pubmed.ncbi.nlm.nih.gov/18325358

395.Valentin, B., et al. Comparison of 3 T mpMRI and pelvic CT examinations for detection of lymph node metastases in patients with prostate cancer. Eur J Radiol, 2022. 147: 110110.

https://pubmed.ncbi.nlm.nih.gov/34952329

396.Lebastchi, A.H., et al. Comparison of cross-sectional imaging techniques for the detection of prostate cancer lymph node metastasis: a critical review. Transl Androl Urol, 2020. 9: 1415.

https://pubmed.ncbi.nlm.nih.gov/32676426

397.Center, M.S.K.C. Dynamic Prostate Cancer Nomogram: Coefficients. 2021.

https://www.mskcc.org/nomograms/prostate/pre_op/coefficients

398.Briganti, A., et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol, 2012. 61: 480.

https://pubmed.ncbi.nlm.nih.gov/22078338

399.Gandaglia, G., et al. Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer. Eur Urol, 2017. 72: 632.

https://pubmed.ncbi.nlm.nih.gov/28412062

400.Draulans, C., et al. Development and External Validation of a Multiparametric Magnetic Resonance Imaging and International Society of Urological Pathology Based Add-On Prediction Tool to Identify Prostate Cancer Candidates for Pelvic Lymph Node Dissection. J Urol, 2020. 203: 713.

https://pubmed.ncbi.nlm.nih.gov/31718396

401.Gandaglia, G., et al. External Validation of the 2019 Briganti Nomogram for the Identification of Prostate Cancer Patients Who Should Be Considered for an Extended Pelvic Lymph Node Dissection. Eur Urol, 2020. 78: 138.

https://pubmed.ncbi.nlm.nih.gov/32268944

402.Di Pierro, G.B., et al. Comparison of Four Validated Nomograms (Memorial Sloan Kettering Cancer Center, Briganti 2012, 2017, and 2019) Predicting Lymph Node Invasion in Patients with High-Risk Prostate Cancer Candidates for Radical Prostatectomy and Extended Pelvic Lymph Node Dissection: Clinical Experience and Review of the Literature. Cancers (Basel), 2023. 15.

https://pubmed.ncbi.nlm.nih.gov/36980571

403.von Eyben, F.E., et al. Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun, 2014. 35: 221.

https://pubmed.ncbi.nlm.nih.gov/24240194

404.Van den Bergh, L., et al. Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol, 2015. 33: 109 e23.

https://pubmed.ncbi.nlm.nih.gov/25655681

405.Schiavina, R., et al. Preoperative Staging With (11)C-Choline PET/CT Is Adequately Accurate in Patients With Very High-Risk Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 305.

https://pubmed.ncbi.nlm.nih.gov/29859737

406.Maurer, T., et al. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol, 2016. 13: 226.

https://pubmed.ncbi.nlm.nih.gov/26902337

407.Werner, R.A., et al. (18)F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics, 2020. 10: 1.

https://pubmed.ncbi.nlm.nih.gov/31903102

408.Hope, T.A., et al. Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol, 2021. 7: 1635.

https://pubmed.ncbi.nlm.nih.gov/34529005

409.van Kalmthout, L.W.M., et al. Prospective Validation of Gallium-68 Prostate Specific Membrane Antigen-Positron Emission Tomography/Computerized Tomography for Primary Staging of Prostate Cancer. J Urol, 2020. 203: 537.

https://pubmed.ncbi.nlm.nih.gov/31487220

410.Jansen, B.H.E., et al. Pelvic lymph-node staging with (18)F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer - the SALT trial. Eur J Nucl Med Mol Imaging, 2021. 48: 509.

https://pubmed.ncbi.nlm.nih.gov/32789599

411.Pienta, K.J., et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol, 2021. 206: 52.

https://pubmed.ncbi.nlm.nih.gov/33634707

412.Perera, M., et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur Urol, 2020. 77: 403.

https://pubmed.ncbi.nlm.nih.gov/30773328

413.Wu, H., et al. Diagnostic Performance of (68)Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-analysis. World J Mens Health, 2020. 38: 208.

https://pubmed.ncbi.nlm.nih.gov/31081294

414.Van Damme, J., et al. Comparison of (68)Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography Computed Tomography (PET-CT) and Whole-Body Magnetic Resonance Imaging (WB-MRI) with Diffusion Sequences (DWI) in the Staging of Advanced Prostate Cancer. Cancers (Basel), 2021. 13.

https://pubmed.ncbi.nlm.nih.gov/34771449

415.Meijer, D., et al. External Validation and Addition of Prostate-specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-node Metastases: an International Multicenter Study. Eur Urol, 2021. 80: 234.

https://pubmed.ncbi.nlm.nih.gov/34024652

416.Shen, G., et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol, 2014. 43: 1503.

https://pubmed.ncbi.nlm.nih.gov/24841276

417.Briganti, A., et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol, 2010. 57: 551.

https://pubmed.ncbi.nlm.nih.gov/20034730

418.Lin, Y., et al. When to perform bone scintigraphy in patients with newly diagnosed prostate cancer? a retrospective study. BMC Urol, 2017. 17: 41.

https://pubmed.ncbi.nlm.nih.gov/28606069

419.O’Sullivan, J.M., et al. Broadening the criteria for avoiding staging bone scans in prostate cancer: a retrospective study of patients at the Royal Marsden Hospital. BJU Int, 2003. 92: 685.

https://pubmed.ncbi.nlm.nih.gov/14616446

420.Ayyathurai, R., et al. A study on staging bone scans in newly diagnosed prostate cancer. Urol Int, 2006. 76: 209.

https://pubmed.ncbi.nlm.nih.gov/16601380

421.Tateishi, U., et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med, 2010. 24: 523.

https://pubmed.ncbi.nlm.nih.gov/20559896

422.Evangelista, L., et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging, 2016. 43: 1546.

https://pubmed.ncbi.nlm.nih.gov/26956538

423.Zacho, H.D., et al. No Added Value of (18)F-Sodium Fluoride PET/CT for the Detection of Bone Metastases in Patients with Newly Diagnosed Prostate Cancer with Normal Bone Scintigraphy. J Nucl Med, 2019. 60: 1713.

https://pubmed.ncbi.nlm.nih.gov/31147402

424.Brogsitter, C., et al. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging, 2013. 40 Suppl 1: S18.

https://pubmed.ncbi.nlm.nih.gov/23579863

425.Picchio, M., et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging, 2012. 39: 13.

https://pubmed.ncbi.nlm.nih.gov/21932120

426.Uprimny, C., et al. (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging, 2017. 44: 941.

https://pubmed.ncbi.nlm.nih.gov/28138747

427.Van Nieuwenhove, S., et al. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J Magn Reson Imaging, 2022. 55: 653.

https://pubmed.ncbi.nlm.nih.gov/33382151

428.Corfield, J., et al. (68)Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol, 2018. 36: 519.

https://pubmed.ncbi.nlm.nih.gov/29344682

429.Hofman, M.S., et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet, 2020. 395: 1208.

https://pubmed.ncbi.nlm.nih.gov/32209449

430.Anttinen, M., et al. A Prospective Comparison of (18)F-prostate-specific Membrane Antigen-1007 Positron Emission Tomography Computed Tomography, Whole-body 1.5 T Magnetic Resonance Imaging with Diffusion-weighted Imaging, and Single-photon Emission Computed Tomography/Computed Tomography with Traditional Imaging in Primary Distant Metastasis Staging of Prostate Cancer (PROSTAGE). Eur Urol Oncol, 2021. 4: 635.

https://pubmed.ncbi.nlm.nih.gov/32675047

431.Cornford, P., et al. Prostate-specific Membrane Antigen Positron Emission Tomography Scans Before Curative Treatment: Ready for Prime Time? Eur Urol, 2020. 78: e125.

https://pubmed.ncbi.nlm.nih.gov/32624287

432.Hicks, R.J., et al. Seduction by Sensitivity: Reality, Illusion, or Delusion? The Challenge of Assessing Outcomes after PSMA Imaging Selection of Patients for Treatment. J Nucl Med, 2017. 58: 1969.

https://pubmed.ncbi.nlm.nih.gov/28935839

433.Smith, B.D., et al. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol, 2009. 27: 2758.

https://pubmed.ncbi.nlm.nih.gov/19403886

434.Arnold, M., et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer, 2015. 51: 1164.

https://pubmed.ncbi.nlm.nih.gov/24120180

435.Liu, D., et al. Active surveillance versus surgery for low risk prostate cancer: a clinical decision analysis. J Urol, 2012. 187: 1241.

https://pubmed.ncbi.nlm.nih.gov/22335873

436.Bill-Axelson, A., et al. Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med, 2014. 370: 932.

https://pubmed.ncbi.nlm.nih.gov/24597866

437.Kupelian, P.A., et al. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. J Clin Oncol, 2002. 20: 3376.

https://pubmed.ncbi.nlm.nih.gov/12177097

438.Bubolz, T., et al. Treatments for prostate cancer in older men: 1984-1997. Urology, 2001. 58: 977.

https://pubmed.ncbi.nlm.nih.gov/11744472

439.Houterman, S., et al. Impact of comorbidity on treatment and prognosis of prostate cancer patients: a population-based study. Crit Rev Oncol Hematol, 2006. 58: 60.

https://pubmed.ncbi.nlm.nih.gov/16213153

440.Ries LAG, M.D., Krapcho M et al. eds. . SEER cancer Statistics Review, 1975-2005. 2008. 2022.

http://seer.cancer.gov/csr/1975_2011/

441.Scosyrev, E., et al. Prostate cancer in the elderly: frequency of advanced disease at presentation and disease-specific mortality. Cancer, 2012. 118: 3062.

https://pubmed.ncbi.nlm.nih.gov/22006014

442.Richstone, L., et al. Radical prostatectomy in men aged >or=70 years: effect of age on upgrading, upstaging, and the accuracy of a preoperative nomogram. BJU Int, 2008. 101: 541.

https://pubmed.ncbi.nlm.nih.gov/18257855

443.Sun, L., et al. Men older than 70 years have higher risk prostate cancer and poorer survival in the early and late prostate specific antigen eras. J Urol, 2009. 182: 2242.

https://pubmed.ncbi.nlm.nih.gov/19758616

444.Hamilton, A.S., et al. Trends in the treatment of localized prostate cancer using supplemented cancer registry data. BJU Int, 2011. 107: 576.

https://pubmed.ncbi.nlm.nih.gov/20735387

445.Studenski, S., et al. Gait speed and survival in older adults. JAMA, 2011. 305: 50.

https://pubmed.ncbi.nlm.nih.gov/21205966

446.Ethun, C.G., et al. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J Clin, 2017. 67: 362.

https://pubmed.ncbi.nlm.nih.gov/28731537

447.Bellera, C.A., et al. Screening older cancer patients: first evaluation of the G-8 geriatric screening tool. Ann Oncol, 2012. 23: 2166.

https://pubmed.ncbi.nlm.nih.gov/22250183

448.Hamaker, M.E., et al. The effect of a geriatric evaluation on treatment decisions and outcome for older cancer patients - A systematic review. J Geriatr Oncol, 2018. 9: 430.

https://pubmed.ncbi.nlm.nih.gov/29631898

449.Rockwood, K., et al. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can Geriatr J, 2020. 23: 210.

https://pubmed.ncbi.nlm.nih.gov/32904824

450.McIsaac, D.I., et al. Frailty as a Predictor of Death or New Disability After Surgery: A Prospective Cohort Study. Ann Surg, 2020. 271: 283.

https://pubmed.ncbi.nlm.nih.gov/30048320

451.van Walree, I.C., et al. Clinical judgment versus geriatric assessment for frailty in older patients with cancer. J Geriatr Oncol, 2020. 11: 1138.

https://pubmed.ncbi.nlm.nih.gov/32576520

452.Albertsen, P.C., et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol, 2011. 29: 1335.

https://pubmed.ncbi.nlm.nih.gov/21357791

453.Tewari, A., et al. Long-term survival probability in men with clinically localized prostate cancer: a case-control, propensity modeling study stratified by race, age, treatment and comorbidities. J Urol, 2004. 171: 1513.

https://pubmed.ncbi.nlm.nih.gov/15017210

454.Parmelee, P.A., et al. Validation of the Cumulative Illness Rating Scale in a geriatric residential population. J Am Geriatr Soc, 1995. 43: 130.

https://pubmed.ncbi.nlm.nih.gov/7836636

455.Groome, P.A., et al. Assessing the impact of comorbid illnesses on death within 10 years in prostate cancer treatment candidates. Cancer, 2011. 117: 3943.

https://pubmed.ncbi.nlm.nih.gov/21858801

456.Charlson, M.E., et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis, 1987. 40: 373.

https://pubmed.ncbi.nlm.nih.gov/3558716

457.Blanc-Bisson, C., et al. Undernutrition in elderly patients with cancer: target for diagnosis and intervention. Crit Rev Oncol Hematol, 2008. 67: 243.

https://pubmed.ncbi.nlm.nih.gov/18554922

458.Sachs, G.A., et al. Cognitive impairment: an independent predictor of excess mortality: a cohort study. Ann Intern Med, 2011. 155: 300.

https://pubmed.ncbi.nlm.nih.gov/21893623

459.Robinson, T.N., et al. Preoperative cognitive dysfunction is related to adverse postoperative outcomes in the elderly. J Am Coll Surg, 2012. 215: 12.

https://pubmed.ncbi.nlm.nih.gov/22626912

460.Borson, S., et al. The Mini-Cog as a screen for dementia: validation in a population-based sample. J Am Geriatr Soc, 2003. 51: 1451.

https://pubmed.ncbi.nlm.nih.gov/14511167

461.Korc-Grodzicki, B., et al. Prevention of post-operative delirium in older patients with cancer undergoing surgery. J Geriatr Oncol, 2015. 6: 60.

https://pubmed.ncbi.nlm.nih.gov/25454768

462.Oken, M.M., et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol, 1982. 5: 649.

https://pubmed.ncbi.nlm.nih.gov/7165009

463.Katz, S., et al. Studies of Illness in the Aged. The Index of Adl: A Standardized Measure of Biological and Psychosocial Function. JAMA, 1963. 185: 914.

https://pubmed.ncbi.nlm.nih.gov/14044222

464.Lawton, M.P., et al. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 1969. 9: 179.

https://pubmed.ncbi.nlm.nih.gov/5349366

465.Stineman, M.G., et al. All-cause 1-, 5-, and 10-year mortality in elderly people according to activities of daily living stage. J Am Geriatr Soc, 2012. 60: 485.

https://pubmed.ncbi.nlm.nih.gov/22352414

466.Paladino, J., et al. Communication Strategies for Sharing Prognostic Information With Patients: Beyond Survival Statistics. JAMA, 2019. 322: 1345.

https://pubmed.ncbi.nlm.nih.gov/31415085

467.Rostoft, S., et al. Shared decision-making in older patients with cancer - What does the patient want? J Geriatr Oncol, 2021. 12: 339.

https://pubmed.ncbi.nlm.nih.gov/32839118

468.Soubeyran, P., et al. Screening for vulnerability in older cancer patients: the ONCODAGE Prospective Multicenter Cohort Study. PLoS One, 2014. 9: e115060.

https://pubmed.ncbi.nlm.nih.gov/25503576

469.Klotz, L. Overdiagnosis in urologic cancer : For World Journal of Urology Symposium on active surveillance in prostate and renal cancer. World J Urol, 2022. 40: 1.

https://pubmed.ncbi.nlm.nih.gov/33492425

470.Johansson, J.E., et al. Natural history of localised prostatic cancer. A population-based study in 223 untreated patients. Lancet, 1989. 1: 799.

https://pubmed.ncbi.nlm.nih.gov/2564901

471.Jonsson, E., et al. Adenocarcinoma of the prostate in Iceland: a population-based study of stage, Gleason grade, treatment and long-term survival in males diagnosed between 1983 and 1987. Scand J Urol Nephrol, 2006. 40: 265.

https://pubmed.ncbi.nlm.nih.gov/16916765

472.Lu-Yao, G.L., et al. Outcomes of localized prostate cancer following conservative management. JAMA, 2009. 302: 1202.

https://pubmed.ncbi.nlm.nih.gov/19755699

473.Adolfsson, J., et al. The 20-Yr outcome in patients with well- or moderately differentiated clinically localized prostate cancer diagnosed in the pre-PSA era: the prognostic value of tumour ploidy and comorbidity. Eur Urol, 2007. 52: 1028.

https://pubmed.ncbi.nlm.nih.gov/17467883

474.Hamdy, F.C., et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med, 2023. 388: 1547.

https://pubmed.ncbi.nlm.nih.gov/36912538

475.Timilshina, N., et al. Long-term Outcomes Following Active Surveillance of Low-grade Prostate Cancer: A Population-based Study Using a Landmark Approach. J Urol, 2023. 209: 540.

https://pubmed.ncbi.nlm.nih.gov/36475730

476.Ventimiglia, E., et al. Long-term Outcomes Among Men Undergoing Active Surveillance for Prostate Cancer in Sweden. JAMA Netw Open, 2022. 5: e2231015.

https://pubmed.ncbi.nlm.nih.gov/36103180

477.Thurtle, D.R., et al. Individual prognosis at diagnosis in nonmetastatic prostate cancer: Development and external validation of the PREDICT Prostate multivariable model. PLoS Med, 2019. 16: e1002758.

https://pubmed.ncbi.nlm.nih.gov/30860997

478.Albertsen, P.C. Observational studies and the natural history of screen-detected prostate cancer. Curr Opin Urol, 2015. 25: 232.

https://pubmed.ncbi.nlm.nih.gov/25692723

479.Heidenreich, A. Identification of high-risk prostate cancer: role of prostate-specific antigen, PSA doubling time, and PSA velocity. Eur Urol, 2008. 54: 976.

https://pubmed.ncbi.nlm.nih.gov/18640768

480.Thomsen, F.B., et al. Survival benefit of early androgen receptor inhibitor therapy in locally advanced prostate cancer: long-term follow-up of the SPCG-6 study. Eur J Cancer, 2015. 51: 1283.

https://pubmed.ncbi.nlm.nih.gov/25892647

481.Bill-Axelson, A., et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer - 29-Year Follow-up. N Engl J Med, 2018. 379: 2319.

https://pubmed.ncbi.nlm.nih.gov/30575473

482.Wilt, T.J., et al. Radical Prostatectomy or Observation for Clinically Localized Prostate Cancer: Extended Follow-up of the Prostate Cancer Intervention Versus Observation Trial (PIVOT). Eur Urol, 2020. 77: 713.

https://pubmed.ncbi.nlm.nih.gov/32089359

483.Steineck, G., et al. Quality of life after radical prostatectomy or watchful waiting. N Engl J Med, 2002. 347: 790.

https://pubmed.ncbi.nlm.nih.gov/12226149

484.Vernooij, R.W., et al. Radical prostatectomy versus deferred treatment for localised prostate cancer. Cochrane Database Syst Rev, 2020. 6: CD006590.

https://pubmed.ncbi.nlm.nih.gov/32495338

485.Graversen, P.H., et al. Radical prostatectomy versus expectant primary treatment in stages I and II prostatic cancer. A fifteen-year follow-up. Urology, 1990. 36: 493.

https://pubmed.ncbi.nlm.nih.gov/2247914

486.Bruinsma, S.M., et al. Expert consensus document: Semantics in active surveillance for men with localized prostate cancer - results of a modified Delphi consensus procedure. Nat Rev Urol, 2017. 14: 312.

https://pubmed.ncbi.nlm.nih.gov/28290462

487.Thomsen, F.B., et al. Active surveillance for clinically localized prostate cancer--a systematic review. J Surg Oncol, 2014. 109: 830.

https://pubmed.ncbi.nlm.nih.gov/24610744

488.Tosoian, J.J., et al. Intermediate and Longer-Term Outcomes From a Prospective Active-Surveillance Program for Favorable-Risk Prostate Cancer. J Clin Oncol, 2015. 33: 3379.

https://pubmed.ncbi.nlm.nih.gov/26324359

489.Hamdy, F.C., et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med, 2016. 375: 1415.

https://pubmed.ncbi.nlm.nih.gov/27626136

490.Bryant, R.J., et al. The ProtecT trial: analysis of the patient cohort, baseline risk stratification and disease progression. BJU Int, 2020. 125: 506.

https://pubmed.ncbi.nlm.nih.gov/31900963

491.Willemse, P.M., et al. Systematic Review of Active Surveillance for Clinically Localised Prostate Cancer to Develop Recommendations Regarding Inclusion of Intermediate-risk Disease, Biopsy Characteristics at Inclusion and Monitoring, and Surveillance Repeat Biopsy Strategy. Eur Urol, 2022. 81: 337.

https://pubmed.ncbi.nlm.nih.gov/34980492

492.Loeb, S., et al. Active surveillance for prostate cancer: a systematic review of clinicopathologic variables and biomarkers for risk stratification. Eur Urol, 2015. 67: 619.

https://pubmed.ncbi.nlm.nih.gov/25457014

493.Ha, Y.S., et al. Prostate-specific antigen density toward a better cutoff to identify better candidates for active surveillance. Urology, 2014. 84: 365.

https://pubmed.ncbi.nlm.nih.gov/24925834

494.Moore, C.M., et al. Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer-A Report of a Movember International Consensus Meeting. Eur Urol Oncol, 2023. 6: 160.

https://pubmed.ncbi.nlm.nih.gov/36710133

495.Petrelli, F., et al. Predictive Factors for Reclassification and Relapse in Prostate Cancer Eligible for Active Surveillance: A Systematic Review and Meta-analysis. Urology, 2016. 91: 136.

https://pubmed.ncbi.nlm.nih.gov/26896733

496.Vigneswaran, H.T., et al. Progression on active surveillance for prostate cancer in Black men: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2022. 25: 165.

https://pubmed.ncbi.nlm.nih.gov/34239046

497.Marks, R.A., et al. The relationship between the extent of surgical margin positivity and prostate specific antigen recurrence in radical prostatectomy specimens. Hum Pathol, 2007. 38: 1207.

https://pubmed.ncbi.nlm.nih.gov/17490720

498.Moreira, D.M., et al. Baseline Perineural Invasion is Associated with Shorter Time to Progression in Men with Prostate Cancer Undergoing Active Surveillance: Results from the REDEEM Study. J Urol, 2015. 194: 1258.

https://pubmed.ncbi.nlm.nih.gov/25988518

499.Chiam, K., et al. Use of multiparametric magnetic resonance imaging (mpMRI) in active surveillance for low-risk prostate cancer: a scoping review on the benefits and harm of mpMRI in different biopsy scenarios. Prostate Cancer Prostatic Dis, 2021. 24: 662.

https://pubmed.ncbi.nlm.nih.gov/33654249

500.Dieffenbacher, S., et al. Standardized Magnetic Resonance Imaging Reporting Using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Criteria and Magnetic Resonance Imaging/Transrectal Ultrasound Fusion with Transperineal Saturation Biopsy to Select Men on Active Surveillance. Eur Urol Focus, 2021. 7: 102.

https://pubmed.ncbi.nlm.nih.gov/30878348

501.Dominique, G., et al. The utility of prostate MRI within active surveillance: description of the evidence. World J Urol, 2022. 40: 71.

https://pubmed.ncbi.nlm.nih.gov/34860274

502.Klotz, L., et al. Randomized Study of Systematic Biopsy Versus Magnetic Resonance Imaging and Targeted and Systematic Biopsy in Men on Active Surveillance (ASIST): 2-year Postbiopsy Follow-up. Eur Urol, 2020. 77: 311.

https://pubmed.ncbi.nlm.nih.gov/31708295

503.Schiavina, R., et al. The role of multiparametric MRI in active surveillance for low-risk prostate cancer: The ROMAS randomized controlled trial. Urol Oncol, 2021. 39: 433 e1.

https://pubmed.ncbi.nlm.nih.gov/33191117

504.Schoots, I.G., et al. Is magnetic resonance imaging-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int, 2018. 122: 946.

https://pubmed.ncbi.nlm.nih.gov/29679430

505.Amin, A., et al. The Magnetic Resonance Imaging in Active Surveillance (MRIAS) Trial: Use of Baseline Multiparametric Magnetic Resonance Imaging and Saturation Biopsy to Reduce the Frequency of Surveillance Prostate Biopsies. J Urol, 2020. 203: 910.

https://pubmed.ncbi.nlm.nih.gov/31825297

506.Heetman, J.G., et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Active Surveillance for Prostate Cancer Trial (PASPoRT). Eur Urol Oncol, 2023.

https://pubmed.ncbi.nlm.nih.gov/37296065

507.Moore, C.M., et al. Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations-A Report of a European School of Oncology Task Force. Eur Urol, 2017. 71: 648.

https://pubmed.ncbi.nlm.nih.gov/27349615

508.Chu, C.E., et al. Diagnostic Accuracy and Prognostic Value of Serial Prostate Multiparametric Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. Eur Urol Oncol, 2022. 5: 537.

https://pubmed.ncbi.nlm.nih.gov/33483265

509.Schoots, I.G., et al. Role of MRI in low-risk prostate cancer: finding the wolf in sheep’s clothing or the sheep in wolf’s clothing? Curr Opin Urol, 2017. 27: 238.

https://pubmed.ncbi.nlm.nih.gov/28306604

510.Hettiarachchi, D., et al. Can the Use of Serial Multiparametric Magnetic Resonance Imaging During Active Surveillance of Prostate Cancer Avoid the Need for Prostate Biopsies?-A Systematic Diagnostic Test Accuracy Review. Eur Urol Oncol, 2021. 4: 426.

https://pubmed.ncbi.nlm.nih.gov/32972894

511.Rajwa, P., et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur Urol, 2021. 80: 549.

https://pubmed.ncbi.nlm.nih.gov/34020828

512.Caglic, I., et al. MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur Radiol, 2021. 31: 2696.

https://pubmed.ncbi.nlm.nih.gov/33196886

513.Chu, C.E., et al. Multiparametric Magnetic Resonance Imaging Alone is Insufficient to Detect Grade Reclassification in Active Surveillance for Prostate Cancer. Eur Urol, 2020. 78: 515.

https://pubmed.ncbi.nlm.nih.gov/32631744

514.Deniffel, D., et al. Does the Visibility of Grade Group 1 Prostate Cancer on Baseline Multiparametric Magnetic Resonance Imaging Impact Clinical Outcomes? J Urol, 2020. 204: 1187.

https://pubmed.ncbi.nlm.nih.gov/32496160

515.Fujihara, A., et al. Multiparametric magnetic resonance imaging facilitates reclassification during active surveillance for prostate cancer. BJU Int, 2021. 127: 712.

https://pubmed.ncbi.nlm.nih.gov/33043575

516.Mamawala, M.K., et al. Utility of multiparametric magnetic resonance imaging in the risk stratification of men with Grade Group 1 prostate cancer on active surveillance. BJU Int, 2020. 125: 861.

https://pubmed.ncbi.nlm.nih.gov/32039537

517.Olivier, J., et al. Prostate Cancer Patients Under Active Surveillance with a Suspicious Magnetic Resonance Imaging Finding Are at Increased Risk of Needing Treatment: Results of the Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance (GAP3) Consortium. Eur Urol Open Sci, 2022. 35: 59.

https://pubmed.ncbi.nlm.nih.gov/35024633

518.Stavrinides, V., et al. Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models. Prostate Cancer Prostatic Dis, 2021. 24: 1028.

https://pubmed.ncbi.nlm.nih.gov/33958731

519.Gallagher, K.M., et al. Four-year outcomes from a multiparametric magnetic resonance imaging (MRI)-based active surveillance programme: PSA dynamics and serial MRI scans allow omission of protocol biopsies. BJU Int, 2019. 123: 429.

https://pubmed.ncbi.nlm.nih.gov/30113755

520.Olivier, J., et al. Low-risk prostate cancer selected for active surveillance with negative MRI at entry: can repeat biopsies at 1 year be avoided? A pilot study. World J Urol, 2019. 37: 253.

https://pubmed.ncbi.nlm.nih.gov/30039385

521.Chu, C.E., et al. The Clinical Significance of Multiple Negative Surveillance Prostate Biopsies for Men on Active Surveillance-Does Cancer Vanish or Simply Hide? J Urol, 2021. 205: 109.

https://pubmed.ncbi.nlm.nih.gov/33198555

522.O’Connor, L.P., et al. Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. Eur Urol Oncol, 2021. 4: 227.

https://pubmed.ncbi.nlm.nih.gov/33867045

523.Rajwa, P., et al. Association of Negative Followup Biopsy and Reclassification during Active Surveillance of Prostate Cancer: A Systematic Review and Meta-Analysis. J Urol, 2021. 205: 1559.

https://pubmed.ncbi.nlm.nih.gov/33683937

524.Klotz, L., et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol, 2010. 28: 126.

https://pubmed.ncbi.nlm.nih.gov/19917860

525.Cunningham, M., et al. Patient reported factors influencing the decision-making process of men with localised prostate cancer when considering Active Surveillance-A systematic review and thematic synthesis. Psychooncology, 2022. 31: 388.

https://pubmed.ncbi.nlm.nih.gov/34605104

526.Ahlberg, M.S., et al. Variations in the Uptake of Active Surveillance for Prostate Cancer and Its Impact on Outcomes. Eur Urol Open Sci, 2023. 52: 166.

https://pubmed.ncbi.nlm.nih.gov/37284040

527.Ross, A.E., et al. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol, 2010. 28: 2810.

https://pubmed.ncbi.nlm.nih.gov/20439642

528.Thomsen, F.B., et al. Association between PSA kinetics and cancer-specific mortality in patients with localised prostate cancer: analysis of the placebo arm of the SPCG-6 study. Ann Oncol, 2016. 27: 460.

https://pubmed.ncbi.nlm.nih.gov/26681677

529.Liu, J.L., et al. Advances in the selection of patients with prostate cancer for active surveillance. Nat Rev Urol, 2021. 18: 197.

https://pubmed.ncbi.nlm.nih.gov/33623103

530.Paudel, R., et al. The Use and Short-term Outcomes of Active Surveillance in Men With National Comprehensive Cancer Network Favorable Intermediate-risk Prostate Cancer: The Initial Michigan Urological Surgery Improvement Collaborative Experience. J Urol, 2023. 209: 170.

https://pubmed.ncbi.nlm.nih.gov/36265120

531.Adolfsson, J. Watchful waiting and active surveillance: the current position. BJU Int, 2008. 102: 10.

https://pubmed.ncbi.nlm.nih.gov/18422774

532.Hatzinger, M., et al. [The history of prostate cancer from the beginning to DaVinci]. Aktuelle Urol, 2012. 43: 228.

https://pubmed.ncbi.nlm.nih.gov/23035261

533.Kretschmer, A., et al. Perioperative patient education improves long-term satisfaction rates of low-risk prostate cancer patients after radical prostatectomy. World J Urol, 2017. 35: 1205.

https://pubmed.ncbi.nlm.nih.gov/28093628

534.Gyomber, D., et al. Improving informed consent for patients undergoing radical prostatectomy using multimedia techniques: a prospective randomized crossover study. BJU Int, 2010. 106: 1152.

https://pubmed.ncbi.nlm.nih.gov/20346048

535.Huber, J., et al. Multimedia support for improving preoperative patient education: a randomized controlled trial using the example of radical prostatectomy. Ann Surg Oncol, 2013. 20: 15.

https://pubmed.ncbi.nlm.nih.gov/22851045

536.Wake, N., et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med, 2019. 5: 4.

https://pubmed.ncbi.nlm.nih.gov/30783869

537.Lestingi, J.F.P., et al. Extended Versus Limited Pelvic Lymph Node Dissection During Radical Prostatectomy for Intermediate- and High-risk Prostate Cancer: Early Oncological Outcomes from a Randomized Phase 3 Trial. Eur Urol, 2021. 79: 595.

https://pubmed.ncbi.nlm.nih.gov/33293077

538.Touijer, K.A., et al. Limited versus Extended Pelvic Lymph Node Dissection for Prostate Cancer: A Randomized Clinical Trial. Eur Urol Oncol, 2021. 4: 532.

https://pubmed.ncbi.nlm.nih.gov/33865797

539.Mattei, A., et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur Urol, 2008. 53: 118.

https://pubmed.ncbi.nlm.nih.gov/17709171

540.Fossati, N., et al. The Benefits and Harms of Different Extents of Lymph Node Dissection During Radical Prostatectomy for Prostate Cancer: A Systematic Review. Eur Urol, 2017. 72: 84.

https://pubmed.ncbi.nlm.nih.gov/28126351

541.Engel, J., et al. Survival benefit of radical prostatectomy in lymph node-positive patients with prostate cancer. Eur Urol, 2010. 57: 754.

https://pubmed.ncbi.nlm.nih.gov/20106588

542.van der Poel, H.G., et al. Sentinel node biopsy for prostate cancer: report from a consensus panel meeting. BJU Int, 2017. 120: 204.

https://pubmed.ncbi.nlm.nih.gov/28188689

543.Harke, N.N., et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol, 2018. 36: 1817.

https://pubmed.ncbi.nlm.nih.gov/29767326

544.Wit, E.M.K., et al. Sentinel Node Procedure in Prostate Cancer: A Systematic Review to Assess Diagnostic Accuracy. Eur Urol, 2017. 71: 596.

https://pubmed.ncbi.nlm.nih.gov/27639533

545.Lannes, F., et al. Radioisotope-guided Lymphadenectomy for Pelvic Lymph Node Staging in Patients With Intermediate- and High-risk Prostate Cancer (The Prospective SENTINELLE Study). J Urol, 2023. 209: 364.

https://pubmed.ncbi.nlm.nih.gov/36331157

546.Weng, W.C., et al. Impact of prostatic anterior fat pads with lymph node staging in prostate cancer. J Cancer, 2018. 9: 3361.

https://pubmed.ncbi.nlm.nih.gov/30271497

547.Hosny, M., et al. Can Anterior Prostatic Fat Harbor Prostate Cancer Metastasis? A Prospective Cohort Study. Curr Urol, 2017. 10: 182.

https://pubmed.ncbi.nlm.nih.gov/29234260

548.Ball, M.W., et al. Pathological analysis of the prostatic anterior fat pad at radical prostatectomy: insights from a prospective series. BJU Int, 2017. 119: 444.

https://pubmed.ncbi.nlm.nih.gov/27611825

549.Kwon, Y.S., et al. Oncologic outcomes in men with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institution international study. BMC Urol, 2015. 15: 79.

https://pubmed.ncbi.nlm.nih.gov/26231860

550.Ozkan, B., et al. Role of anterior prostatic fat pad dissection for extended lymphadenectomy in prostate cancer: a non-randomized study of 100 patients. Int Urol Nephrol, 2015. 47: 959.

https://pubmed.ncbi.nlm.nih.gov/25899767

551.Kim, I.Y., et al. Detailed analysis of patients with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institutional study. J Urol, 2013. 190: 527.

https://pubmed.ncbi.nlm.nih.gov/23485503

552.Hansen, J., et al. Assessment of rates of lymph nodes and lymph node metastases in periprostatic fat pads in a consecutive cohort treated with retropubic radical prostatectomy. Urology, 2012. 80: 877.

https://pubmed.ncbi.nlm.nih.gov/22950996

553.Walsh, P.C., et al. Impotence following radical prostatectomy: insight into etiology and prevention. J Urol, 1982. 128: 492.

https://pubmed.ncbi.nlm.nih.gov/7120554

554.Rainwater, L.M., et al. Technical consideration in radical retropubic prostatectomy: blood loss after ligation of dorsal venous complex. J Urol, 1990. 143: 1163.

https://pubmed.ncbi.nlm.nih.gov/2342176

555.Woldu, S.L., et al. Outcomes with delayed dorsal vein complex ligation during robotic assisted laparoscopic prostatectomy. Can J Urol, 2013. 20: 7079.

https://pubmed.ncbi.nlm.nih.gov/24331354

556.Lei, Y., et al. Athermal division and selective suture ligation of the dorsal vein complex during robot-assisted laparoscopic radical prostatectomy: description of technique and outcomes. Eur Urol, 2011. 59: 235.

https://pubmed.ncbi.nlm.nih.gov/20863611

557.Wu, S.D., et al. Suture versus staple ligation of the dorsal venous complex during robot-assisted laparoscopic radical prostatectomy. BJU Int, 2010. 106: 385.

https://pubmed.ncbi.nlm.nih.gov/20067457

558.Walsh, P.C., et al. Radical prostatectomy and cystoprostatectomy with preservation of potency. Results using a new nerve-sparing technique. Br J Urol, 1984. 56: 694.

https://pubmed.ncbi.nlm.nih.gov/6534493

559.Walz, J., et al. A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy: An Update. Eur Urol, 2016. 70: 301.

https://pubmed.ncbi.nlm.nih.gov/26850969

560.Stolzenburg, J.U., et al. A comparison of outcomes for interfascial and intrafascial nerve-sparing radical prostatectomy. Urology, 2010. 76: 743.

https://pubmed.ncbi.nlm.nih.gov/20573384

561.Steineck, G., et al. Degree of preservation of the neurovascular bundles during radical prostatectomy and urinary continence 1 year after surgery. Eur Urol, 2015. 67: 559.

https://pubmed.ncbi.nlm.nih.gov/25457018

562.Shikanov, S., et al. Extrafascial versus interfascial nerve-sparing technique for robotic-assisted laparoscopic prostatectomy: comparison of functional outcomes and positive surgical margins characteristics. Urology, 2009. 74: 611.

https://pubmed.ncbi.nlm.nih.gov/19616830

563.Tewari, A.K., et al. Anatomical grades of nerve sparing: a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int, 2011. 108: 984.

https://pubmed.ncbi.nlm.nih.gov/21917101

564.Nielsen, M.E., et al. High anterior release of the levator fascia improves sexual function following open radical retropubic prostatectomy. J Urol, 2008. 180: 2557.

https://pubmed.ncbi.nlm.nih.gov/18930504

565.Ko, Y.H., et al. Retrograde versus antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol, 2013. 63: 169.

https://pubmed.ncbi.nlm.nih.gov/23092543

566.Tewari, A.K., et al. Functional outcomes following robotic prostatectomy using athermal, traction free risk-stratified grades of nerve sparing. World J Urol, 2013. 31: 471.

https://pubmed.ncbi.nlm.nih.gov/23354288

567.Basourakos, S.P., et al. Clipless Robotic-assisted Radical Prostatectomy and Impact on Outcomes. Eur Urol Focus, 2022. 8: 1176.

https://pubmed.ncbi.nlm.nih.gov/34246618

568.Preisser, F., et al. Association of neurovascular bundle preservation with oncological outcomes in patients with high-risk prostate cancer. Prostate Cancer Prostatic Dis, 2021. 24: 193.

https://pubmed.ncbi.nlm.nih.gov/32814844

569.Vis, A.N., et al. Selection of patients for nerve sparing surgery in robot-assisted radical prostatectomy. BJUI Compass, 2022. 3: 6.

https://pubmed.ncbi.nlm.nih.gov/35475150

570.Moris, L., et al. Evaluation of Oncological Outcomes and Data Quality in Studies Assessing Nerve-sparing Versus Non-Nerve-sparing Radical Prostatectomy in Nonmetastatic Prostate Cancer: A Systematic Review. Eur Urol Focus, 2022. 8: 690.

https://pubmed.ncbi.nlm.nih.gov/34147405

571.Kozikowski, M., et al. Clinical utility of MRI in the decision-making process before radical prostatectomy: Systematic review and meta-analysis. PLoS One, 2019. 14: e0210194.

https://pubmed.ncbi.nlm.nih.gov/30615661

572.Michl, U., et al. Nerve-sparing Surgery Technique, Not the Preservation of the Neurovascular Bundles, Leads to Improved Long-term Continence Rates After Radical Prostatectomy. Eur Urol, 2016. 69: 584.

https://pubmed.ncbi.nlm.nih.gov/26277303

573.Avulova, S., et al. The Effect of Nerve Sparing Status on Sexual and Urinary Function: 3-Year Results from the CEASAR Study. J Urol, 2018. 199: 1202.

https://pubmed.ncbi.nlm.nih.gov/29253578

574.Beulens, A.J.W., et al. Linking surgical skills to postoperative outcomes: a Delphi study on the robot-assisted radical prostatectomy. J Robot Surg, 2019. 13: 675.

https://pubmed.ncbi.nlm.nih.gov/30610535

575.Gilbert, S.M., et al. Functional Outcomes Following Nerve Sparing Prostatectomy Augmented with Seminal Vesicle Sparing Compared to Standard Nerve Sparing Prostatectomy: Results from a Randomized Controlled Trial. J Urol, 2017. 198: 600.

https://pubmed.ncbi.nlm.nih.gov/28392393

577.Li, H., et al. The Use of Unidirectional Barbed Suture for Urethrovesical Anastomosis during Robot-Assisted Radical Prostatectomy: A Systematic Review and Meta-Analysis of Efficacy and Safety. PLoS One, 2015. 10: e0131167.

https://pubmed.ncbi.nlm.nih.gov/26135310

578.Kowalewski, K.F., et al. Interrupted versus Continuous Suturing for Vesicourethral Anastomosis During Radical Prostatectomy: A Systematic Review and Meta-analysis. Eur Urol Focus, 2019. 5: 980.

https://pubmed.ncbi.nlm.nih.gov/29907547

579.Matsuyama, H., et al. Running suture versus interrupted suture for vesicourethral anastomosis in retropubic radical prostatectomy: a randomized study. Int J Urol, 2015. 22: 271.

https://pubmed.ncbi.nlm.nih.gov/25400263

580.Wiatr, T., et al. Single Running Suture versus Single-Knot Running Suture for Vesicourethral Anastomosis in Laparoscopic Radical Prostatectomy: A Prospective Randomised Comparative Study. Urol Int, 2015. 95: 445.

https://pubmed.ncbi.nlm.nih.gov/26655169

581.Van Velthoven, R.F., et al. Technique for laparoscopic running urethrovesical anastomosis:the single knot method. Urology, 2003. 61: 699.

https://pubmed.ncbi.nlm.nih.gov/12670546

582.Schoeppler, G.M., et al. The impact of bladder neck mucosal eversion during open radical prostatectomy on bladder neck stricture and urinary extravasation. Int Urol Nephrol, 2012. 44: 1403.

https://pubmed.ncbi.nlm.nih.gov/22585294

583.Borboroglu, P.G., et al. Risk factors for vesicourethral anastomotic stricture after radical prostatectomy. Urology, 2000. 56: 96.

https://pubmed.ncbi.nlm.nih.gov/10869633

584.Roemeling, S., et al. Active surveillance for prostate cancers detected in three subsequent rounds of a screening trial: characteristics, PSA doubling times, and outcome. Eur Urol, 2007. 51: 1244.

https://pubmed.ncbi.nlm.nih.gov/17161520

585.Bellangino, M., et al. Systematic Review of Studies Reporting Positive Surgical Margins After Bladder Neck Sparing Radical Prostatectomy. Curr Urol Rep, 2017. 18: 99.

https://pubmed.ncbi.nlm.nih.gov/29116405

586.Nyarangi-Dix, J.N., et al. Complete bladder neck preservation promotes long-term post-prostatectomy continence without compromising midterm oncological outcome: analysis of a randomised controlled cohort. World J Urol, 2018. 36: 349.

https://pubmed.ncbi.nlm.nih.gov/29214353

587.Ma, X., et al. Bladder neck preservation improves time to continence after radical prostatectomy: a systematic review and meta-analysis. Oncotarget, 2016. 7: 67463.

https://pubmed.ncbi.nlm.nih.gov/27634899

588.Veerman, H., et al. The detection rate of apical tumour involvement on preoperative MRI and its impact on clinical outcomes in patients with localized prostate cancer. J Robot Surg, 2022. 16: 1047.

https://pubmed.ncbi.nlm.nih.gov/34783953

589.Lardas, M., et al. Patient- and Tumour-related Prognostic Factors for Urinary Incontinence After Radical Prostatectomy for Nonmetastatic Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2022. 8: 674.

https://pubmed.ncbi.nlm.nih.gov/33967010

590.Mungovan, S.F., et al. Preoperative Membranous Urethral Length Measurement and Continence Recovery Following Radical Prostatectomy: A Systematic Review and Meta-analysis. Eur Urol, 2017. 71: 368.

https://pubmed.ncbi.nlm.nih.gov/27394644

591.van Dijk-de Haan, M.C., et al. Value of Different Magnetic Resonance Imaging-based Measurements of Anatomical Structures on Preoperative Prostate Imaging in Predicting Urinary Continence After Radical Prostatectomy in Men with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2022. 8: 1211.

https://pubmed.ncbi.nlm.nih.gov/35181284

592.Veerman, H., et al. A standardized method to measure the membranous urethral length (MUL) on MRI of the prostate with high inter- and intra-observer agreement. Eur Radiol, 2023. 33: 3295.

https://pubmed.ncbi.nlm.nih.gov/36512044

593.Guru, K.A., et al. Is a cystogram necessary after robot-assisted radical prostatectomy? Urol Oncol, 2007. 25: 465.

https://pubmed.ncbi.nlm.nih.gov/18047953

594.Tillier, C., et al. Vesico-urethral anastomosis (VUA) evaluation of short- and long-term outcome after robot-assisted laparoscopic radical prostatectomy (RARP): selective cystogram to improve outcome. J Robot Surg, 2017. 11: 441.

https://pubmed.ncbi.nlm.nih.gov/28078524

595.Yadav, R., et al. Selective indication for check cystogram before catheter removal following robot assisted radical prostatectomy. Indian J Urol, 2016. 32: 120.

https://pubmed.ncbi.nlm.nih.gov/27127354

596.Schoeppler, G.M., et al. Detection of urinary leakage after radical retropubic prostatectomy by contrast enhanced ultrasound - do we still need conventional retrograde cystography? BJU Int, 2010. 106: 1632.

https://pubmed.ncbi.nlm.nih.gov/20590540

597.Gratzke, C., et al. Early Catheter Removal after Robot-assisted Radical Prostatectomy: Surgical Technique and Outcomes for the Aalst Technique (ECaRemA Study). Eur Urol, 2016. 69: 917.

https://pubmed.ncbi.nlm.nih.gov/26578444

598.James, P., et al. Safe removal of the urethral catheter 2 days following laparoscopic radical prostatectomy. ISRN Oncol, 2012. 2012: 912642.

https://pubmed.ncbi.nlm.nih.gov/22957273

599.Lista, G., et al. Early Catheter Removal After Robot-assisted Radical Prostatectomy: Results from a Prospective Single-institutional Randomized Trial (Ripreca Study). Eur Urol Focus, 2020. 6: 259.

https://pubmed.ncbi.nlm.nih.gov/30413390

600.Brassetti, A., et al. Removing the urinary catheter on post-operative day 2 after robot-assisted laparoscopic radical prostatectomy: a feasibility study from a single high-volume referral centre. J Robot Surg, 2018. 12: 467.

https://pubmed.ncbi.nlm.nih.gov/29177945

601.Tilki, D., et al. The impact of time to catheter removal on short-, intermediate- and long-term urinary continence after radical prostatectomy. World J Urol, 2018. 36: 1247.

https://pubmed.ncbi.nlm.nih.gov/29582100

602.Berrondo, C., et al. Antibiotic prophylaxis at the time of catheter removal after radical prostatectomy: A prospective randomized clinical trial. Urol Oncol, 2019. 37: 181 e7.

https://pubmed.ncbi.nlm.nih.gov/30558984

603.Martinschek, A., et al. Transurethral versus suprapubic catheter at robot-assisted radical prostatectomy: a prospective randomized trial with 1-year follow-up. World J Urol, 2016. 34: 407.

https://pubmed.ncbi.nlm.nih.gov/26337521

604.Harke, N., et al. Postoperative patient comfort in suprapubic drainage versus transurethral catheterization following robot-assisted radical prostatectomy: a prospective randomized clinical trial. World J Urol, 2017. 35: 389.

https://pubmed.ncbi.nlm.nih.gov/27334135

605.Krane, L.S., et al. Impact of percutaneous suprapubic tube drainage on patient discomfort after radical prostatectomy. Eur Urol, 2009. 56: 325.

https://pubmed.ncbi.nlm.nih.gov/19394131

606.Morgan, M.S., et al. An Assessment of Patient Comfort and Morbidity After Robot-Assisted Radical Prostatectomy with Suprapubic Tube Versus Urethral Catheter Drainage. J Endourol, 2016. 30: 300.

https://pubmed.ncbi.nlm.nih.gov/26472083

607.Galfano, A., et al. Pain and discomfort after Retzius-sparing robot-assisted radical prostatectomy: a comparative study between suprapubic cystostomy and urethral catheter as urinary drainage. Minerva Urol Nefrol, 2019. 71: 381.

https://pubmed.ncbi.nlm.nih.gov/31144484

608.Prasad, S.M., et al. Early removal of urethral catheter with suprapubic tube drainage versus urethral catheter drainage alone after robot-assisted laparoscopic radical prostatectomy. J Urol, 2014. 192: 89.

https://pubmed.ncbi.nlm.nih.gov/24440236

609.Afzal, M.Z., et al. Modification of Technique for Suprapubic Catheter Placement After Robot-assisted Radical Prostatectomy Reduces Catheter-associated Complications. Urology, 2015. 86: 401.

https://pubmed.ncbi.nlm.nih.gov/26189333

610.Porcaro, A.B., et al. Is a Drain Needed After Robotic Radical Prostatectomy With or Without Pelvic Lymph Node Dissection? Results of a Single-Center Randomized Clinical Trial. J Endourol, 2021. 35: 922.

https://pubmed.ncbi.nlm.nih.gov/30398382

611.Chenam, A., et al. Prospective randomised non-inferiority trial of pelvic drain placement vs no pelvic drain placement after robot-assisted radical prostatectomy. BJU Int, 2018. 121: 357.

https://pubmed.ncbi.nlm.nih.gov/28872774

612.Ramsay, C., et al. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol Assess, 2012. 16: 1.

https://pubmed.ncbi.nlm.nih.gov/23127367

613.Novara, G., et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 382.

https://pubmed.ncbi.nlm.nih.gov/22749851

614.Novara, G., et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 431.

https://pubmed.ncbi.nlm.nih.gov/22749853

615.Ficarra, V., et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 418.

https://pubmed.ncbi.nlm.nih.gov/22749850

616.Ficarra, V., et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 405.

https://pubmed.ncbi.nlm.nih.gov/22749852

617.Maffezzini, M., et al. Evaluation of complications and results in a contemporary series of 300 consecutive radical retropubic prostatectomies with the anatomic approach at a single institution. Urology, 2003. 61: 982.

https://pubmed.ncbi.nlm.nih.gov/12736020

618.Haglind, E., et al. Urinary Incontinence and Erectile Dysfunction After Robotic Versus Open Radical Prostatectomy: A Prospective, Controlled, Nonrandomised Trial. Eur Urol, 2015. 68: 216.

https://pubmed.ncbi.nlm.nih.gov/25770484

619.Mukkala, A.N., et al. A systematic review and meta-analysis of unplanned hospital visits and re-admissions following radical prostatectomy for prostate cancer. Can Urol Assoc J, 2021. 15: E531.

https://pubmed.ncbi.nlm.nih.gov/33750517

620.Yaxley, J.W., et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet, 2016. 388: 1057.

https://pubmed.ncbi.nlm.nih.gov/27474375

621.Dindo, D., et al. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg, 2004. 240: 205.

https://pubmed.ncbi.nlm.nih.gov/15273542

622.Joshi, N., et al. Impact of posterior musculofascial reconstruction on early continence after robot-assisted laparoscopic radical prostatectomy: results of a prospective parallel group trial. Eur Urol, 2010. 58: 84.

https://pubmed.ncbi.nlm.nih.gov/20362386

623.Sutherland, D.E., et al. Posterior rhabdosphincter reconstruction during robotic assisted radical prostatectomy: results from a phase II randomized clinical trial. J Urol, 2011. 185: 1262.

https://pubmed.ncbi.nlm.nih.gov/21334025

624.Jeong, C.W., et al. Effects of new 1-step posterior reconstruction method on recovery of continence after robot-assisted laparoscopic prostatectomy: results of a prospective, single-blind, parallel group, randomized, controlled trial. J Urol, 2015. 193: 935.

https://pubmed.ncbi.nlm.nih.gov/25315960

625.Menon, M., et al. Assessment of early continence after reconstruction of the periprostatic tissues in patients undergoing computer assisted (robotic) prostatectomy: results of a 2 group parallel randomized controlled trial. J Urol, 2008. 180: 1018.

https://pubmed.ncbi.nlm.nih.gov/18639300

626.Stolzenburg, J.U., et al. Influence of bladder neck suspension stitches on early continence after radical prostatectomy: a prospective randomized study of 180 patients. Asian J Androl, 2011. 13: 806.

https://pubmed.ncbi.nlm.nih.gov/21909121

627.Hurtes, X., et al. Anterior suspension combined with posterior reconstruction during robot-assisted laparoscopic prostatectomy improves early return of urinary continence: a prospective randomized multicentre trial. BJU Int, 2012. 110: 875.

https://pubmed.ncbi.nlm.nih.gov/22260307

628.Student, V., Jr., et al. Advanced Reconstruction of Vesicourethral Support (ARVUS) during Robot-assisted Radical Prostatectomy: One-year Functional Outcomes in a Two-group Randomised Controlled Trial. Eur Urol, 2017. 71: 822.

https://pubmed.ncbi.nlm.nih.gov/27283216

629.Noguchi, M., et al. A randomized clinical trial of suspension technique for improving early recovery of urinary continence after radical retropubic prostatectomy. BJU Int, 2008. 102: 958.

https://pubmed.ncbi.nlm.nih.gov/18485031

630.Tikkinen, K.A.O., Cartwright, R., Gould,M.K., Naspro, R., Novara, G., Sandset, P.M., Violette, P.D., Guyatt, G.H. , EAU Guidelines on Thromboprophylaxis in Urological Surgery, in 32nd EAU Annual Congress, E.G. Office, Editor. 2017, EAU: London.

https://uroweb.org/guidelines/thromboprophylaxis

631.Burkhard, F.C., et al. The role of lymphadenectomy in prostate cancer. Nat Clin Pract Urol, 2005. 2: 336.

https://pubmed.ncbi.nlm.nih.gov/16474786

632.Briganti, A., et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol, 2006. 50: 1006.

https://pubmed.ncbi.nlm.nih.gov/16959399

633.Tyritzis, S.I., et al. Thromboembolic complications in 3,544 patients undergoing radical prostatectomy with or without lymph node dissection. J Urol, 2015. 193: 117.

https://pubmed.ncbi.nlm.nih.gov/25158271

634.Viani, G.A., et al. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: A randomized clinical trial. Cancer, 2016. 122: 2004.

https://pubmed.ncbi.nlm.nih.gov/27028170

635.Yu, T., et al. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures. PLoS One, 2016. 11: e0154499.

https://pubmed.ncbi.nlm.nih.gov/27171271

636.Zapatero, A., et al. Reduced late urinary toxicity with high-dose intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer. Clin Transl Oncol, 2017. 19: 1161.

https://pubmed.ncbi.nlm.nih.gov/28374321

637.de Crevoisier, R., et al. Daily Versus Weekly Prostate Cancer Image Guided Radiation Therapy: Phase 3 Multicenter Randomized Trial. Int J Radiat Oncol Biol Phys, 2018. 102: 1420.

https://pubmed.ncbi.nlm.nih.gov/30071296

638.Murray, J., et al. A randomised assessment of image guided radiotherapy within a phase 3 trial of conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer. Radiother Oncol, 2020. 142: 62.

https://pubmed.ncbi.nlm.nih.gov/31767473

639.Tocco, B.R., et al. MR-Guided Radiotherapy for Prostate Cancer. Front Oncol, 2020. 10: 616291.

https://pubmed.ncbi.nlm.nih.gov/33363041

640.Christiansen, R.L., et al. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother Oncol, 2022. 167: 165.

https://pubmed.ncbi.nlm.nih.gov/34923034

641.Tetar, S.U., et al. Magnetic Resonance-guided Stereotactic Radiotherapy for Localized Prostate Cancer: Final Results on Patient-reported Outcomes of a Prospective Phase 2 Study. Eur Urol Oncol, 2021. 4: 628.

https://pubmed.ncbi.nlm.nih.gov/32536573

642.Kishan, A.U., et al. Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial. JAMA Oncol, 2023. 9: 365.

https://pubmed.ncbi.nlm.nih.gov/36633877

643.Kishan, A.U., et al. Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. Eur Urol, 2020. 77: 201.

https://pubmed.ncbi.nlm.nih.gov/31718822

644.Michalski, J.M., et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol, 2018. 4: e180039.

https://pubmed.ncbi.nlm.nih.gov/29543933

645.Zietman, A.L., et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol, 2010. 28: 1106.

https://pubmed.ncbi.nlm.nih.gov/20124169

646.Viani, G.A., et al. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys, 2009. 74: 1405.

https://pubmed.ncbi.nlm.nih.gov/19616743

647.Peeters, S.T., et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol, 2006. 24: 1990.

https://pubmed.ncbi.nlm.nih.gov/16648499

648.Beckendorf, V., et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys, 2011. 80: 1056.

https://pubmed.ncbi.nlm.nih.gov/21147514

649.Heemsbergen, W.D., et al. Long-term results of the Dutch randomized prostate cancer trial: impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother Oncol, 2014. 110: 104.

https://pubmed.ncbi.nlm.nih.gov/24246414

650.Dearnaley, D.P., et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol, 2014. 15: 464.

https://pubmed.ncbi.nlm.nih.gov/24581940

651.Pasalic, D., et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int J Radiat Oncol Biol Phys, 2019. 104: 790.

https://pubmed.ncbi.nlm.nih.gov/30836166

652.Kalbasi, A., et al. Dose-Escalated Irradiation and Overall Survival in Men With Nonmetastatic Prostate Cancer. JAMA Oncol, 2015. 1: 897.

https://pubmed.ncbi.nlm.nih.gov/26181727

653.Kerkmeijer, L.G.W., et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J Clin Oncol, 2021. 39: 787.

https://pubmed.ncbi.nlm.nih.gov/33471548

654.Groen, V.H., et al. Patterns of Failure Following External Beam Radiotherapy With or Without an Additional Focal Boost in the Randomized Controlled FLAME Trial for Localized Prostate Cancer. Eur Urol, 2022. 82: 252.

https://pubmed.ncbi.nlm.nih.gov/34953603

655.Poon, D.M.C., et al. Magnetic Resonance Imaging–guided Focal Boost to Intraprostatic Lesions Using External Beam Radiotherapy for Localized Prostate Cancer: A Systematic Review and Meta-analysis. European Urology Oncology, 2023. 6: 116.

https://www.sciencedirect.com/science/article/pii/S2588931122001687?via%3Dihub

656.Fowler, J.F. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol, 2005. 44: 265.

https://pubmed.ncbi.nlm.nih.gov/16076699

657.Dasu, A., et al. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol, 2012. 51: 963.

https://pubmed.ncbi.nlm.nih.gov/22966812

658.Kuban, D.A., et al. Preliminary Report of a Randomized Dose Escalation Trial for Prostate Cancer using Hypofractionation. International Journal of Radiation Oncology*Biology*Physics, 2010. 78: S58.

http://www.redjournal.org/article/S0360-3016(10)01144-2/abstract

659.Pollack, A., et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol, 2013. 31: 3860.

https://pubmed.ncbi.nlm.nih.gov/24101042

660.Lee, W.R., et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J Clin Oncol, 2016. 34: 2325.

https://pubmed.ncbi.nlm.nih.gov/27044935

661.Dearnaley, D., et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol, 2016. 17: 1047.

https://pubmed.ncbi.nlm.nih.gov/27339115

662.Incrocci, L., et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol, 2016. 17: 1061.

https://pubmed.ncbi.nlm.nih.gov/27339116

663.Catton, C.N., et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol, 2017. 35: 1884.

https://pubmed.ncbi.nlm.nih.gov/28296582

664.Koontz, B.F., et al. A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol, 2015. 68: 683.

https://pubmed.ncbi.nlm.nih.gov/25171903

665.Hocht, S., et al. Hypofractionated radiotherapy for localized prostate cancer. Strahlenther Onkol, 2017. 193: 1.

https://pubmed.ncbi.nlm.nih.gov/27628966

666.Hickey, B.E., et al. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst Rev, 2019. 9: CD011462.

https://pubmed.ncbi.nlm.nih.gov/31476800

667.de Vries, K.C., et al. Hyprofractionated Versus Conventionally Fractionated Radiation Therapy for Patients with Intermediate- or High-Risk, Localized, Prostate Cancer: 7-Year Outcomes From the Randomized, Multicenter, Open-Label, Phase 3 HYPRO Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 108.

https://pubmed.ncbi.nlm.nih.gov/31593756

668.Widmark, A., et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet, 2019. 394: 385.

https://pubmed.ncbi.nlm.nih.gov/31227373

669.Jackson, W.C., et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int J Radiat Oncol Biol Phys, 2019. 104: 778.

https://pubmed.ncbi.nlm.nih.gov/30959121

670.Cushman, T.R., et al. Stereotactic body radiation therapy for prostate cancer: systematic review and meta-analysis of prospective trials. Oncotarget, 2019. 10: 5660.

https://pubmed.ncbi.nlm.nih.gov/31608141

671.Brand, D.H., et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol, 2019. 20: 1531.

https://pubmed.ncbi.nlm.nih.gov/31540791

672.Tree, A.C., et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol, 2022. 23: 1308.

https://pubmed.ncbi.nlm.nih.gov/36113498

673.Rasmusson, E., et al. Erectile Dysfunction and Absorbed Dose to Penile Base Structures in a Randomized Trial Comparing Ultrahypofractionated and Conventionally Fractionated Radiation Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys, 2020. 107: 143.

https://pubmed.ncbi.nlm.nih.gov/32004582

674.Greco, C., et al. Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients With Intermediate-Risk Prostate Cancer: Results From the PROSINT Phase 2 Randomized Clinical Trial. JAMA Oncol, 2021. 7: 700.

https://pubmed.ncbi.nlm.nih.gov/33704378

675.Bolla, M., et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol, 2010. 11: 1066.

https://pubmed.ncbi.nlm.nih.gov/20933466

676.Pilepich, M.V., et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma--long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys, 2005. 61: 1285.

https://pubmed.ncbi.nlm.nih.gov/15817329

677.Roach, M., 3rd, et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol, 2008. 26: 585.

https://pubmed.ncbi.nlm.nih.gov/18172188

678.D’Amico, A.V., et al. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA, 2008. 299: 289.

https://pubmed.ncbi.nlm.nih.gov/18212313

679.Denham, J.W., et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol, 2011. 12: 451.

https://pubmed.ncbi.nlm.nih.gov/21440505

680.Lawton, C.A., et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys, 2007. 69: 646.

https://pubmed.ncbi.nlm.nih.gov/17531401

681.Horwitz, E.M., et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol, 2008. 26: 2497.

https://pubmed.ncbi.nlm.nih.gov/18413638

682.Bolla, M., et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med, 2009. 360: 2516.

https://pubmed.ncbi.nlm.nih.gov/19516032

683.Pisansky, T.M., et al. Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol, 2015. 33: 332.

https://pubmed.ncbi.nlm.nih.gov/25534388

684.Nabid, A., et al. Androgen deprivation therapy and radiotherapy in intermediate-risk prostate cancer: A randomised phase III trial. Eur J Cancer, 2021. 143: 64.

https://pubmed.ncbi.nlm.nih.gov/33279855

685.Krauss, D.J., et al. Dose-Escalated Radiotherapy Alone or in Combination With Short-Term Androgen Deprivation for Intermediate-Risk Prostate Cancer: Results of a Phase III Multi-Institutional Trial. J Clin Oncol, 2023. 41: 3203.

https://pubmed.ncbi.nlm.nih.gov/37104748

686.Fossa, S.D., et al. Ten- and 15-yr Prostate Cancer-specific Mortality in Patients with Nonmetastatic Locally Advanced or Aggressive Intermediate Prostate Cancer, Randomized to Lifelong Endocrine Treatment Alone or Combined with Radiotherapy: Final Results of The Scandinavian Prostate Cancer Group-7. Eur Urol, 2016. 70: 684.

https://pubmed.ncbi.nlm.nih.gov/27025586

687.Mason, M.D., et al. Final Report of the Intergroup Randomized Study of Combined Androgen-Deprivation Therapy Plus Radiotherapy Versus Androgen-Deprivation Therapy Alone in Locally Advanced Prostate Cancer. J Clin Oncol, 2015. 33: 2143.

https://pubmed.ncbi.nlm.nih.gov/25691677

688.Sargos, P., et al. Long-term androgen deprivation, with or without radiotherapy, in locally advanced prostate cancer: updated results from a phase III randomised trial. BJU Int, 2020. 125: 810.

https://pubmed.ncbi.nlm.nih.gov/30946523

689.Kishan, A.U., et al. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. Lancet Oncol, 2022. 23: 304.

https://pubmed.ncbi.nlm.nih.gov/35051385

690.Zapatero, A., et al. Risk-adapted androgen deprivation and escalated three-dimensional conformal radiotherapy for prostate cancer: Does radiation dose influence outcome of patients treated with adjuvant androgen deprivation? A GICOR study. J Clin Oncol, 2005. 23: 6561.

https://pubmed.ncbi.nlm.nih.gov/16170164

691.Zapatero, A., et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol, 2015. 16: 320.

https://pubmed.ncbi.nlm.nih.gov/25702876

692.Bolla, M., et al. Short Androgen Suppression and Radiation Dose Escalation for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991. J Clin Oncol, 2016. 34: 1748.

https://pubmed.ncbi.nlm.nih.gov/26976418

693.Spratt, D.E., et al. Prostate Radiotherapy With Adjuvant Androgen Deprivation Therapy (ADT) Improves Metastasis-Free Survival Compared to Neoadjuvant ADT: An Individual Patient Meta-Analysis. J Clin Oncol, 2021. 39: 136.

https://pubmed.ncbi.nlm.nih.gov/33275486

694.Malone, S., et al. Sequencing of Androgen-Deprivation Therapy With External-Beam Radiotherapy in Localized Prostate Cancer: A Phase III Randomized Controlled Trial. J Clin Oncol, 2020. 38: 593.

https://pubmed.ncbi.nlm.nih.gov/31829912

695.Gray, P.J., et al. Patient-reported outcomes after 3-dimensional conformal, intensity-modulated, or proton beam radiotherapy for localized prostate cancer. Cancer, 2013. 119: 1729.

https://pubmed.ncbi.nlm.nih.gov/23436283

696.Sheets, N.C., et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA, 2012. 307: 1611.

https://pubmed.ncbi.nlm.nih.gov/22511689

697.Excellence, N.I.f.H.a.C. Biodegradable spacer insertion to reduce rectal toxicity during radiotherapy for prostate cancer. Interventional procedures guidance [IPG590]. 2017. 2022.

https://www.nice.org.uk/guidance/ipg590

698.Miller, L.E., et al. Association of the Placement of a Perirectal Hydrogel Spacer With the Clinical Outcomes of Men Receiving Radiotherapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open, 2020. 3: e208221.

https://pubmed.ncbi.nlm.nih.gov/32585020

699.Hamstra, D.A., et al. Continued Benefit to Rectal Separation for Prostate Radiation Therapy: Final Results of a Phase III Trial. Int J Radiat Oncol Biol Phys, 2017. 97: 976.

https://pubmed.ncbi.nlm.nih.gov/28209443

700.Aminsharifi, A., et al. Major Complications and Adverse Events Related to the Injection of the SpaceOAR Hydrogel System Before Radiotherapy for Prostate Cancer: Review of the Manufacturer and User Facility Device Experience Database. J Endourol, 2019. 33: 868.

https://pubmed.ncbi.nlm.nih.gov/31452385

701.Pinkawa, M., et al. Learning curve in the application of a hydrogel spacer to protect the rectal wall during radiotherapy of localized prostate cancer. Urology, 2013. 82: 963.

https://pubmed.ncbi.nlm.nih.gov/24074991

702.Henry, A., et al. GEC-ESTRO ACROP prostate brachytherapy guidelines. Radiother Oncol, 2022. 167: 244.

https://pubmed.ncbi.nlm.nih.gov/34999134

703.Martens, C., et al. Relationship of the International Prostate Symptom score with urinary flow studies, and catheterization rates following 125I prostate brachytherapy. Brachytherapy, 2006. 5: 9.

https://pubmed.ncbi.nlm.nih.gov/16563992

704.Michalski, J.M., et al. Effect of Brachytherapy With External Beam Radiation Therapy Versus Brachytherapy Alone for Intermediate-Risk Prostate Cancer: NRG Oncology RTOG 0232 Randomized Clinical Trial. J Clin Oncol, 2023. 41: 4035.

https://pubmed.ncbi.nlm.nih.gov/37315297

705.Le, H., et al. The influence of prostate volume on outcome after high-dose-rate brachytherapy alone for localized prostate cancer. Int J Radiat Oncol Biol Phys, 2013. 87: 270.

https://pubmed.ncbi.nlm.nih.gov/23849693

706.Salembier, C., et al. A history of transurethral resection of the prostate should not be a contra-indication for low-dose-rate (125)I prostate brachytherapy: results of a prospective Uro-GEC phase-II trial. J Contemp Brachytherapy, 2020. 12: 1.

https://pubmed.ncbi.nlm.nih.gov/32190063

707.Salembier, C., et al. Prospective multi-center dosimetry study of low-dose Iodine-125 prostate brachytherapy performed after transurethral resection. J Contemp Brachytherapy, 2013. 5: 63.

https://pubmed.ncbi.nlm.nih.gov/23878549

708.Stone, N.N., et al. Prostate brachytherapy in men with gland volume of 100cc or greater: Technique, cancer control, and morbidity. Brachytherapy, 2013. 12: 217.

https://pubmed.ncbi.nlm.nih.gov/23384439

709.Crook, J.M., et al. Comparison of health-related quality of life 5 years after SPIRIT: Surgical Prostatectomy Versus Interstitial Radiation Intervention Trial. J Clin Oncol, 2011. 29: 362.

https://pubmed.ncbi.nlm.nih.gov/21149658

710.Sylvester, J.E., et al. Fifteen-year biochemical relapse-free survival, cause-specific survival, and overall survival following I(125) prostate brachytherapy in clinically localized prostate cancer: Seattle experience. Int J Radiat Oncol Biol Phys, 2011. 81: 376.

https://pubmed.ncbi.nlm.nih.gov/20864269

711.Potters, L., et al. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol, 2005. 173: 1562.

https://pubmed.ncbi.nlm.nih.gov/15821486

712.Stone, N.N., et al. Intermediate term biochemical-free progression and local control following 125iodine brachytherapy for prostate cancer. J Urol, 2005. 173: 803.

https://pubmed.ncbi.nlm.nih.gov/15711273

713.Zelefsky, M.J., et al. Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys, 2007. 67: 327.

https://pubmed.ncbi.nlm.nih.gov/17084558

714.Lawton, C.A., et al. Results of a phase II trial of transrectal ultrasound-guided permanent radioactive implantation of the prostate for definitive management of localized adenocarcinoma of the prostate (radiation therapy oncology group 98-05). Int J Radiat Oncol Biol Phys, 2007. 67: 39.

https://pubmed.ncbi.nlm.nih.gov/17084551

715.Stock, R.G., et al. Importance of post-implant dosimetry in permanent prostate brachytherapy. Eur Urol, 2002. 41: 434.

https://pubmed.ncbi.nlm.nih.gov/12074816

716.Keyes, M., et al. American Brachytherapy Society Task Group Report: Use of androgen deprivation therapy with prostate brachytherapy-A systematic literature review. Brachytherapy, 2017. 16: 245.

https://pubmed.ncbi.nlm.nih.gov/28110898

717.Morris, W.J., et al. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int J Radiat Oncol Biol Phys, 2017. 98: 275.

https://pubmed.ncbi.nlm.nih.gov/28262473

718.Oh, J., et al. An Updated Analysis of the Survival Endpoints of ASCENDE-RT. Int J Radiat Oncol Biol Phys, 2023. 115: 1061.

https://pubmed.ncbi.nlm.nih.gov/36528488

719.Rodda, S., et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int J Radiat Oncol Biol Phys, 2017. 98: 286.

https://pubmed.ncbi.nlm.nih.gov/28433432

720.Hoskin, P.J., et al. GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update. Radiother Oncol, 2013. 107: 325.

https://pubmed.ncbi.nlm.nih.gov/23773409

721.Galalae, R.M., et al. Long-term outcome after elective irradiation of the pelvic lymphatics and local dose escalation using high-dose-rate brachytherapy for locally advanced prostate cancer. Int J Radiat Oncol Biol Phys, 2002. 52: 81.

https://pubmed.ncbi.nlm.nih.gov/11777625

722.Miszczyk, M., et al. Brachytherapy boost improves survival and decreases risk of developing distant metastases compared to external beam radiotherapy alone in intermediate and high risk group prostate cancer patients. Radiother Oncol, 2023. 183: 109632.

https://pubmed.ncbi.nlm.nih.gov/36963442

723.Pieters, B.R., et al. Comparison of three radiotherapy modalities on biochemical control and overall survival for the treatment of prostate cancer: a systematic review. Radiother Oncol, 2009. 93: 168.

https://pubmed.ncbi.nlm.nih.gov/19748692

724.Parry, M.G., et al. Impact of High-Dose-Rate and Low-Dose-Rate Brachytherapy Boost on Toxicity, Functional and Cancer Outcomes in Patients Receiving External Beam Radiation Therapy for Prostate Cancer: A National Population-Based Study. Int J Radiat Oncol Biol Phys, 2021. 109: 1219.

https://pubmed.ncbi.nlm.nih.gov/33279595

725.Hoskin, P.J., et al. Randomised trial of external-beam radiotherapy alone or with high-dose-rate brachytherapy for prostate cancer: Mature 12-year results. Radiother Oncol, 2021. 154: 214.

https://pubmed.ncbi.nlm.nih.gov/33011207

726.Joseph, D., et al. Radiation Dose Escalation or Longer Androgen Suppression to Prevent Distant Progression in Men With Locally Advanced Prostate Cancer: 10-Year Data From the TROG 03.04 RADAR Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 693.

https://pubmed.ncbi.nlm.nih.gov/32092343

727.Jackson, W.C., et al. Addition of Androgen-Deprivation Therapy or Brachytherapy Boost to External Beam Radiotherapy for Localized Prostate Cancer: A Network Meta-Analysis of Randomized Trials. J Clin Oncol, 2020. 38: 3024.

https://pubmed.ncbi.nlm.nih.gov/32396488

728.Viani, G.A., et al. HDR brachytherapy as monotherapy for prostate cancer: A systematic review with meta-analysis. Brachytherapy, 2021. 20: 307.

https://pubmed.ncbi.nlm.nih.gov/33461894

729.Morton, G., et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Early toxicity and quality-of life results from a randomized phase II clinical trial of one fraction of 19Gy or two fractions of 13.5Gy. Radiother Oncol, 2017. 122: 87.

https://pubmed.ncbi.nlm.nih.gov/27823821

730.Matzinger, O., et al. Acute toxicity of curative radiotherapy for intermediate- and high-risk localised prostate cancer in the EORTC trial 22991. Eur J Cancer, 2009. 45: 2825.

https://pubmed.ncbi.nlm.nih.gov/19682889

731.Hoskin, P., et al. High-dose-rate brachytherapy alone given as two or one fraction to patients for locally advanced prostate cancer: acute toxicity. Radiother Oncol, 2014. 110: 268.

https://pubmed.ncbi.nlm.nih.gov/24231242

732.King, C.R., et al. Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials. Int J Radiat Oncol Biol Phys, 2013. 87: 939.

https://pubmed.ncbi.nlm.nih.gov/24119836

733.Fahmy, W.E., et al. Cryosurgery for prostate cancer. Arch Androl, 2003. 49: 397.

https://pubmed.ncbi.nlm.nih.gov/12893518

734.Rees, J., et al. Cryosurgery for prostate cancer. BJU Int, 2004. 93: 710.

https://pubmed.ncbi.nlm.nih.gov/15049977

735.Han, K.R., et al. Third-generation cryosurgery for primary and recurrent prostate cancer. BJU Int, 2004. 93: 14.

https://pubmed.ncbi.nlm.nih.gov/14678360

736.van der Poel, H.G., et al. Focal Therapy in Primary Localised Prostate Cancer: The European Association of Urology Position in 2018. Eur Urol, 2018. 74: 84.

https://pubmed.ncbi.nlm.nih.gov/29373215

737.Valerio, M., et al. New and Established Technology in Focal Ablation of the Prostate: A Systematic Review. Eur Urol, 2017. 71: 17.

https://pubmed.ncbi.nlm.nih.gov/27595377

738.Ramsay, C.R., et al. Ablative therapy for people with localised prostate cancer: a systematic review and economic evaluation. Health Technol Assess, 2015. 19: 1.

https://pubmed.ncbi.nlm.nih.gov/26140518

739.Madersbacher, S., et al. High-energy shockwaves and extracorporeal high-intensity focused ultrasound. J Endourol, 2003. 17: 667.

https://pubmed.ncbi.nlm.nih.gov/14622487

740.Pan, Y., et al. Whole-gland high-intensity focused ultrasound ablation and transurethral resection of the prostate in the patients with prostate cancer: A systematic review and meta-analysis. Front Oncol, 2022. 12: 988490.

https://pubmed.ncbi.nlm.nih.gov/36313706

741.Brundl, J., et al. Oncological Long-term Outcome After Whole-gland High-intensity Focused Ultrasound for Prostate Cancer-21-yr Follow-up. Eur Urol Focus, 2022. 8: 134.

https://pubmed.ncbi.nlm.nih.gov/33483288

742.Dickinson, L., et al. Medium-term Outcomes after Whole-gland High-intensity Focused Ultrasound for the Treatment of Nonmetastatic Prostate Cancer from a Multicentre Registry Cohort. Eur Urol, 2016. 70: 668.

https://pubmed.ncbi.nlm.nih.gov/26951947

743.Mouraviev, V., et al. Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol, 2009. 6: 205.

https://pubmed.ncbi.nlm.nih.gov/19352395

744.Cooperberg, M.R., et al. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol, 2007. 178: S14.

https://pubmed.ncbi.nlm.nih.gov/17644125

745.Polascik, T.J., et al. Pathologic stage T2a and T2b prostate cancer in the recent prostate-specific antigen era: implications for unilateral ablative therapy. Prostate, 2008. 68: 1380.

https://pubmed.ncbi.nlm.nih.gov/18543281

746.Ahmed, H.U., et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat Clin Pract Oncol, 2007. 4: 632.

https://pubmed.ncbi.nlm.nih.gov/17965641

747.Eggener, S.E., et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol, 2007. 178: 2260.

https://pubmed.ncbi.nlm.nih.gov/17936815

748.Crawford, E.D., et al. Targeted focal therapy: a minimally invasive ablation technique for early prostate cancer. Oncology (Williston Park), 2007. 21: 27.

https://pubmed.ncbi.nlm.nih.gov/17313155

749.Hopstaken, J.S., et al. An Updated Systematic Review on Focal Therapy in Localized Prostate Cancer: What Has Changed over the Past 5 Years? Eur Urol, 2022. 81: 5.

https://pubmed.ncbi.nlm.nih.gov/34489140

750.Guillaumier, S., et al. A Multicentre Study of 5-year Outcomes Following Focal Therapy in Treating Clinically Significant Nonmetastatic Prostate Cancer. Eur Urol, 2018. 74: 422.

https://pubmed.ncbi.nlm.nih.gov/29960750

751.Hamdy, F.C., et al. Partial ablation versus radical prostatectomy in intermediate-risk prostate cancer: the PART feasibility RCT. Health Technol Assess, 2018. 22: 1.

https://pubmed.ncbi.nlm.nih.gov/30264692

752.Baco, E., Vlakovic, L., Rud, E. , MP21-79011397058899Focal ablation versus radical prostatectomy for intermediate-risk prostate cancer: interim analysis of a randomized controlled Trial, in AUA-2021. 2021, AUA: Las Vegas, USA.

https://www.auajournals.org/doi/abs/10.1097/JU.0000000000002067.06

753.Reddy, D., et al. Comparative healthcare research outcomes of novel Surgery in prostate cancer (IP4-CHRONOS): Pilot RCT assessing feasibility of randomization for focal therapy in localized prostate cancer. Journal of Clinical Oncology, 2022. 40: 5086.

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.5086

754.Shah, T.T., et al. Focal therapy compared to radical prostatectomy for non-metastatic prostate cancer: a propensity score-matched study. Prostate Cancer Prostatic Dis, 2021. 24: 567.

https://pubmed.ncbi.nlm.nih.gov/33504940

755.van Son, M.J., et al. Conventional radical versus focal treatment for localised prostate cancer: a propensity score weighted comparison of 6-year tumour control. Prostate Cancer Prostatic Dis, 2021. 24: 1120.

https://pubmed.ncbi.nlm.nih.gov/33934114

756.Lovegrove, C.E., et al. Evaluation of functional outcomes after a second focal high-intensity focused ultrasonography (HIFU) procedure in men with primary localized, non-metastatic prostate cancer: results from the HIFU Evaluation and Assessment of Treatment (HEAT) registry. BJU Int, 2020. 125: 853.

https://pubmed.ncbi.nlm.nih.gov/31971335

757.Marconi, L., et al. Robot-assisted Radical Prostatectomy After Focal Therapy: Oncological, Functional Outcomes and Predictors of Recurrence. Eur Urol, 2019. 76: 27.

https://pubmed.ncbi.nlm.nih.gov/30904357

758.Spitznagel, T., et al. Salvage Robotic-assisted Laparoscopic Radical Prostatectomy Following Focal High-Intensity Focused Ultrasound for ISUP 2/3 Cancer. Urology, 2021. 156: 147.

https://pubmed.ncbi.nlm.nih.gov/34186136

759.Gill, I.S., et al. Randomized Trial of Partial Gland Ablation with Vascular Targeted Phototherapy versus Active Surveillance for Low Risk Prostate Cancer: Extended Followup and Analyses of Effectiveness. J Urol, 2018. 200: 786.

https://pubmed.ncbi.nlm.nih.gov/29864437

760.Marra, G., et al. Long-term Outcomes of Focal Cryotherapy for Low- to Intermediate-risk Prostate Cancer: Results and Matched Pair Analysis with Active Surveillance. Eur Urol Focus, 2022. 8: 701.

https://pubmed.ncbi.nlm.nih.gov/33926838

761.MacLennan, S., et al. A core outcome set for localised prostate cancer effectiveness trials. BJU Int, 2017. 120: E64.

https://pubmed.ncbi.nlm.nih.gov/28346770

762.Bratt, O., et al. The Swedish national guidelines on prostate cancer, part 1: early detection, diagnostics, staging, patient support and primary management of non-metastatic disease. Scand J Urol, 2022. 56: 265.

https://pubmed.ncbi.nlm.nih.gov/35811480

763.Yerram, N.K., et al. Magnetic Resonance Imaging-Targeted and Systematic Biopsy for Detection of Grade Progression in Patients on Active Surveillance for Prostate Cancer. J Urol, 2021. 205: 1352.

https://pubmed.ncbi.nlm.nih.gov/33356479

764.McLeod, D.G., et al. Bicalutamide 150 mg plus standard care vs standard care alone for early prostate cancer. BJU Int, 2006. 97: 247.

https://pubmed.ncbi.nlm.nih.gov/16430622

765.Shore, N.D., et al. Enzalutamide Monotherapy vs Active Surveillance in Patients With Low-risk or Intermediate-risk Localized Prostate Cancer: The ENACT Randomized Clinical Trial. JAMA Oncol, 2022. 8: 1128.

https://pubmed.ncbi.nlm.nih.gov/35708696

766.Baboudjian, M., et al. Active Surveillance for Intermediate-risk Prostate Cancer: A Systematic Review, Meta-analysis, and Metaregression. Eur Urol Oncol, 2022. 5: 617.

https://pubmed.ncbi.nlm.nih.gov/35934625

767.Mukherjee, S., et al. Comparison of Outcomes of Active Surveillance in Intermediate-Risk Versus Low-Risk Localised Prostate Cancer Patients: A Systematic Review and Meta-Analysis. J Clin Med, 2023. 12.

https://pubmed.ncbi.nlm.nih.gov/37048815

768.Enikeev, D., et al. Active Surveillance for Intermediate-Risk Prostate Cancer: Systematic Review and Meta-analysis of Current Protocols and Outcomes. Clin Genitourin Cancer, 2020. 18: e739.

https://pubmed.ncbi.nlm.nih.gov/32768356

769.Morash, C., et al. Active surveillance for the management of localized prostate cancer: Guideline recommendations. Can Urol Assoc J, 2015. 9: 171.

https://pubmed.ncbi.nlm.nih.gov/26225165

770.Musunuru, H.B., et al. Active Surveillance for Intermediate Risk Prostate Cancer: Survival Outcomes in the Sunnybrook Experience. J Urol, 2016. 196: 1651.

https://pubmed.ncbi.nlm.nih.gov/27569437

771.Raldow, A.C., et al. Risk Group and Death From Prostate Cancer: Implications for Active Surveillance in Men With Favorable Intermediate-Risk Prostate Cancer. JAMA Oncol, 2015. 1: 334.

https://pubmed.ncbi.nlm.nih.gov/26181182

772.Luo, X., et al. Prostatectomy Versus Observation for Localized Prostate Cancer: A Meta-Analysis. Scand J Surg, 2021. 110: 78.

https://pubmed.ncbi.nlm.nih.gov/31662032

773.Studer, U.E., et al. Using PSA to guide timing of androgen deprivation in patients with T0-4 N0-2 M0 prostate cancer not suitable for local curative treatment (EORTC 30891). Eur Urol, 2008. 53: 941.

https://pubmed.ncbi.nlm.nih.gov/18191322

774.Kuperus, J.M., et al. Pelvic Lymph Node Dissection at Radical Prostatectomy for Intermediate Risk Prostate Cancer: Assessing Utility and Nodal Metastases Within a Statewide Quality Improvement Consortium. Urology, 2022. 165: 227.

https://pubmed.ncbi.nlm.nih.gov/35263639

775.James, N.D., et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet, 2016. 387: 1163.

https://pubmed.ncbi.nlm.nih.gov/26719232

776.Krauss, D., et al. Lack of benefit for the addition of androgen deprivation therapy to dose-escalated radiotherapy in the treatment of intermediate- and high-risk prostate cancer. Int J Radiat Oncol Biol Phys, 2011. 80: 1064.

https://pubmed.ncbi.nlm.nih.gov/20584576

777.Kupelian, P.A., et al. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys, 2008. 71: 16.

https://pubmed.ncbi.nlm.nih.gov/17996382

778.Nabid, A., et al. Optimizing Treatment in Intermediate-Risk Prostate Cancer: Secondary Analysis of a Randomized Phase 3 Trial. Int J Radiat Oncol Biol Phys, 2021. 111: 732.

https://pubmed.ncbi.nlm.nih.gov/33901566

779.King, M.T., et al. Low dose rate brachytherapy for primary treatment of localized prostate cancer: A systemic review and executive summary of an evidence-based consensus statement. Brachytherapy, 2021. 20: 1114.

https://pubmed.ncbi.nlm.nih.gov/34509378

780.Joniau, S., et al. Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study. Eur Urol, 2015. 67: 157.

https://pubmed.ncbi.nlm.nih.gov/24486307

781.Donohue, J.F., et al. Poorly differentiated prostate cancer treated with radical prostatectomy: long-term outcome and incidence of pathological downgrading. J Urol, 2006. 176: 991.

https://pubmed.ncbi.nlm.nih.gov/16890678

782.Laukhtina, E., et al. Oncologic impact of delaying radical prostatectomy in men with intermediate- and high-risk prostate cancer: a systematic review. World J Urol, 2021. 39: 4085.

https://pubmed.ncbi.nlm.nih.gov/34047825

783.Nguyen, D.D., et al. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer: Are Delays Associated with Worse Outcomes? J Urol, 2021. 205: 1263.

https://pubmed.ncbi.nlm.nih.gov/33443458

784.Yaxley, J.W., et al. Risk of metastatic disease on (68) gallium-prostate-specific membrane antigen positron emission tomography/computed tomography scan for primary staging of 1253 men at the diagnosis of prostate cancer. BJU Int, 2019. 124: 401.

https://pubmed.ncbi.nlm.nih.gov/31141284

785.Efstathiou, E., et al. Clinical and Biological Characterisation of Localised High-risk Prostate Cancer: Results of a Randomised Preoperative Study of a Luteinising Hormone-releasing Hormone Agonist with or Without Abiraterone Acetate plus Prednisone. Eur Urol, 2019. 76: 418.

https://pubmed.ncbi.nlm.nih.gov/31176622

786.Kumar, S., et al. Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Syst Rev, 2006. 2006: CD006019.

https://pubmed.ncbi.nlm.nih.gov/17054269

787.Johnstone, P.A., et al. Radical prostatectomy for clinical T4 prostate cancer. Cancer, 2006. 106: 2603.

https://pubmed.ncbi.nlm.nih.gov/16700037

788.Joniau, S., et al. Pretreatment tables predicting pathologic stage of locally advanced prostate cancer. Eur Urol, 2015. 67: 319.

https://pubmed.ncbi.nlm.nih.gov/24684960

789.Marra, G., et al. Management of Patients with Node-positive Prostate Cancer at Radical Prostatectomy and Pelvic Lymph Node Dissection: A Systematic Review. Eur Urol Oncol, 2020. 3: 565.

https://pubmed.ncbi.nlm.nih.gov/32933887

790.Roach, M., et al. Sequence of hormonal therapy and radiotherapy field size in unfavourable, localised prostate cancer (NRG/RTOG 9413): long-term results of a randomised, phase 3 trial. Lancet Oncol, 2018. 19: 1504.

https://pubmed.ncbi.nlm.nih.gov/30316827

791.Murthy, V., et al. Prostate-Only Versus Whole-Pelvic Radiation Therapy in High-Risk and Very High-Risk Prostate Cancer (POP-RT): Outcomes From Phase III Randomized Controlled Trial. J Clin Oncol, 2021. 39: 1234.

https://pubmed.ncbi.nlm.nih.gov/33497252

792.Murthy, V., et al. Late toxicity and quality of life with prostate only or whole pelvic radiation therapy in high risk prostate cancer (POP-RT): A randomised trial. Radiother Oncol, 2020. 145: 71.

https://pubmed.ncbi.nlm.nih.gov/31923712

793.Studer, U.E., et al. Immediate or deferred androgen deprivation for patients with prostate cancer not suitable for local treatment with curative intent: European Organisation for Research and Treatment of Cancer (EORTC) Trial 30891. J Clin Oncol, 2006. 24: 1868.

https://pubmed.ncbi.nlm.nih.gov/16622261

794.Moris, L., et al. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. Eur Urol, 2020. 77: 614.

https://pubmed.ncbi.nlm.nih.gov/32146018

795.Gongora, M., et al. Characteristics of Patients in SPCG-15-A Randomized Trial Comparing Radical Prostatectomy with Primary Radiotherapy plus Androgen Deprivation Therapy in Men with Locally Advanced Prostate Cancer. Eur Urol Open Sci, 2022. 41: 63.

https://pubmed.ncbi.nlm.nih.gov/35813256

796.Bastian, P.J., et al. Clinical and pathologic outcome after radical prostatectomy for prostate cancer patients with a preoperative Gleason sum of 8 to 10. Cancer, 2006. 107: 1265.

https://pubmed.ncbi.nlm.nih.gov/16900523

797.Yossepowitch, O., et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J Urol, 2007. 178: 493.

https://pubmed.ncbi.nlm.nih.gov/17561152

798.Trails.gov, C. Surgery Versus Radiotherapy for Locally Advanced Prostate Cancer (SPCG-15). 2014. 2022.

https://clinicaltrials.gov/ct2/show/NCT02102477

799.Chang, K., et al. Comparison of two adjuvant hormone therapy regimens in patients with high-risk localized prostate cancer after radical prostatectomy: primary results of study CU1005. Asian J Androl, 2016. 18: 452.

https://pubmed.ncbi.nlm.nih.gov/26323560

800.Walz, J., et al. Pathological results and rates of treatment failure in high-risk prostate cancer patients after radical prostatectomy. BJU Int, 2011. 107: 765.

https://pubmed.ncbi.nlm.nih.gov/20875089

801.Spahn, M., et al. Outcome predictors of radical prostatectomy in patients with prostate-specific antigen greater than 20 ng/ml: a European multi-institutional study of 712 patients. Eur Urol, 2010. 58: 1.

https://pubmed.ncbi.nlm.nih.gov/20299147

802.Zwergel, U., et al. Outcome of prostate cancer patients with initial PSA> or =20 ng/ml undergoing radical prostatectomy. Eur Urol, 2007. 52: 1058.

https://pubmed.ncbi.nlm.nih.gov/17418938

803.Magheli, A., et al. Importance of tumor location in patients with high preoperative prostate specific antigen levels (greater than 20 ng/ml) treated with radical prostatectomy. J Urol, 2007. 178: 1311.

https://pubmed.ncbi.nlm.nih.gov/17698095

804.Ward, J.F., et al. Radical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-year outcome. BJU Int, 2005. 95: 751.

https://pubmed.ncbi.nlm.nih.gov/15794776

805.Ventimiglia, E., et al. A Systematic Review of the Role of Definitive Local Treatment in Patients with Clinically Lymph Node-positive Prostate Cancer. Eur Urol Oncol, 2019. 2: 294.

https://pubmed.ncbi.nlm.nih.gov/31200844

806.Tward, J.D., et al. Radiation therapy for clinically node-positive prostate adenocarcinoma is correlated with improved overall and prostate cancer-specific survival. Pract Radiat Oncol, 2013. 3: 234.

https://pubmed.ncbi.nlm.nih.gov/24674370

807.Lin, C.C., et al. Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J Natl Cancer Inst, 2015. 107.

https://pubmed.ncbi.nlm.nih.gov/25957435

808.Seisen, T., et al. Efficacy of Local Treatment in Prostate Cancer Patients with Clinically Pelvic Lymph Node-positive Disease at Initial Diagnosis. Eur Urol, 2018. 73: 452.

https://pubmed.ncbi.nlm.nih.gov/28890245

809.James, N.D., et al. Failure-Free Survival and Radiotherapy in Patients With Newly Diagnosed Nonmetastatic Prostate Cancer: Data From Patients in the Control Arm of the STAMPEDE Trial. JAMA Oncol, 2016. 2: 348.

https://pubmed.ncbi.nlm.nih.gov/26606329

810.Rusthoven, C.G., et al. The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int J Radiat Oncol Biol Phys, 2014. 88: 1064.

https://pubmed.ncbi.nlm.nih.gov/24661660

811.Elumalai, T., et al. Impact of prostate radiotherapy on survival outcomes in clinically node-positive prostate cancer: A multicentre retrospective analysis. Radiother Oncol, 2023. 186: 109746.

https://pubmed.ncbi.nlm.nih.gov/37330057

812.Moschini, M., et al. Outcomes for Patients with Clinical Lymphadenopathy Treated with Radical Prostatectomy. Eur Urol, 2016. 69: 193.

https://pubmed.ncbi.nlm.nih.gov/26264160

813.Fischer-Valuck, B.W., et al. Overall survival comparison between androgen deprivation therapy (ADT) plus external beam radiation therapy (EBRT) vs ADT plus EBRT with brachytherapy boost in clinically node-positive prostate cancer. Brachytherapy, 2020. 19: 557.

https://pubmed.ncbi.nlm.nih.gov/32624405

814.James, N.D., et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N Engl J Med, 2017. 377: 338.

https://pubmed.ncbi.nlm.nih.gov/28578639

815.Fizazi, K., et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol, 2015. 16: 787.

https://pubmed.ncbi.nlm.nih.gov/26028518

816.Vale, C.L., et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol, 2016. 17: 243.

https://pubmed.ncbi.nlm.nih.gov/26718929

817.Attard, G., et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet, 2022. 399: 447.

https://pubmed.ncbi.nlm.nih.gov/34953525

818.Bryant, A.K., et al. Definitive Radiation Therapy and Survival in Clinically Node-Positive Prostate Cancer. Int J Radiat Oncol Biol Phys, 2018. 101: 1188.

https://pubmed.ncbi.nlm.nih.gov/29891203

819.Sarkar, R.R., et al. Association between Radical Prostatectomy and Survival in Men with Clinically Node-positive Prostate Cancer. Eur Urol Oncol, 2019. 2: 584.

https://pubmed.ncbi.nlm.nih.gov/31411995

820.Wurnschimmel, C., et al. Radical prostatectomy for localized prostate cancer: 20-year oncological outcomes from a German high-volume center. Urol Oncol, 2021. 39: 830 e17.

https://pubmed.ncbi.nlm.nih.gov/34092484

821.Bader, P., et al. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J Urol, 2002. 168: 514.

https://pubmed.ncbi.nlm.nih.gov/12131300

822.Briganti, A., et al. Two positive nodes represent a significant cut-off value for cancer specific survival in patients with node positive prostate cancer. A new proposal based on a two-institution experience on 703 consecutive N+ patients treated with radical prostatectomy, extended pelvic lymph node dissection and adjuvant therapy. Eur Urol, 2009. 55: 261.

https://pubmed.ncbi.nlm.nih.gov/18838212

823.Schumacher, M.C., et al. Good outcome for patients with few lymph node metastases after radical retropubic prostatectomy. Eur Urol, 2008. 54: 344.

https://pubmed.ncbi.nlm.nih.gov/18511183

824.Abdollah, F., et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol, 2015. 67: 212.

https://pubmed.ncbi.nlm.nih.gov/24882672

825.Pound, C.R., et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA, 1999. 281: 1591.

https://pubmed.ncbi.nlm.nih.gov/10235151

826.Aus, G., et al. Prognostic factors and survival in node-positive (N1) prostate cancer-a prospective study based on data from a Swedish population-based cohort. Eur Urol, 2003. 43: 627.

https://pubmed.ncbi.nlm.nih.gov/12767363

827.Cheng, L., et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer, 2001. 91: 66.

https://pubmed.ncbi.nlm.nih.gov/11148561

828.Seiler, R., et al. Removal of limited nodal disease in patients undergoing radical prostatectomy: long-term results confirm a chance for cure. J Urol, 2014. 191: 1280.

https://pubmed.ncbi.nlm.nih.gov/24262495

829.Passoni, N.M., et al. Prognosis of patients with pelvic lymph node (LN) metastasis after radical prostatectomy: value of extranodal extension and size of the largest LN metastasis. BJU Int, 2014. 114: 503.

https://pubmed.ncbi.nlm.nih.gov/24053552

830.Daneshmand, S., et al. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J Urol, 2004. 172: 2252.

https://pubmed.ncbi.nlm.nih.gov/15538242

831.Touijer, K.A., et al. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur Urol, 2014. 65: 20.

https://pubmed.ncbi.nlm.nih.gov/23619390

832.Spratt, D.E., et al. Individual Patient-Level Meta-Analysis of the Performance of the Decipher Genomic Classifier in High-Risk Men After Prostatectomy to Predict Development of Metastatic Disease. J Clin Oncol, 2017. 35: 1991.

https://pubmed.ncbi.nlm.nih.gov/28358655

833.Jairath, N.K., et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer. Eur Urol, 2021. 79: 374.

https://pubmed.ncbi.nlm.nih.gov/33293078

834.Wiegel, T., et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur Urol, 2014. 66: 243.

https://pubmed.ncbi.nlm.nih.gov/24680359

835.Thompson, I.M., et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol, 2009. 181: 956.

https://pubmed.ncbi.nlm.nih.gov/19167731

836.Bolla, M., et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet, 2012. 380: 2018.

https://pubmed.ncbi.nlm.nih.gov/23084481

837.Hackman, G., et al. Randomised Trial of Adjuvant Radiotherapy Following Radical Prostatectomy Versus Radical Prostatectomy Alone in Prostate Cancer Patients with Positive Margins or Extracapsular Extension. Eur Urol, 2019. 76: 586.

https://pubmed.ncbi.nlm.nih.gov/31375279

838.Fossati, N., et al. Long-term Impact of Adjuvant Versus Early Salvage Radiation Therapy in pT3N0 Prostate Cancer Patients Treated with Radical Prostatectomy: Results from a Multi-institutional Series. Eur Urol, 2017. 71: 886.

https://pubmed.ncbi.nlm.nih.gov/27484843

839.Buscariollo, D.L., et al. Long-term results of adjuvant versus early salvage postprostatectomy radiation: A large single-institutional experience. Pract Radiat Oncol, 2017. 7: e125.

https://pubmed.ncbi.nlm.nih.gov/28274403

840.Hwang, W.L., et al. Comparison Between Adjuvant and Early-Salvage Postprostatectomy Radiotherapy for Prostate Cancer With Adverse Pathological Features. JAMA Oncol, 2018. 4: e175230.

https://pubmed.ncbi.nlm.nih.gov/29372236

841.Parker, C.C., et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. Lancet, 2020. 396: 1413.

https://pubmed.ncbi.nlm.nih.gov/33002429

842.Kneebone, A., et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol, 2020. 21: 1331.

https://pubmed.ncbi.nlm.nih.gov/33002437

843.Sargos, P., et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol, 2020. 21: 1341.

https://pubmed.ncbi.nlm.nih.gov/33002438

844.Vale, C.L., et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet, 2020. 396: 1422.

https://pubmed.ncbi.nlm.nih.gov/33002431

845.Tilki, D., et al. Timing of radiotherapy after radical prostatectomy. Lancet, 2020. 396: 1374.

https://pubmed.ncbi.nlm.nih.gov/33002430

846.Ghadjar, P., et al. Postoperative radiotherapy in prostate cancer. Lancet, 2021. 397: 1623.

https://pubmed.ncbi.nlm.nih.gov/33933203

847.Tilki, D., et al. Adjuvant Versus Early Salvage Radiation Therapy for Men at High Risk for Recurrence Following Radical Prostatectomy for Prostate Cancer and the Risk of Death. J Clin Oncol, 2021. 39: 2284.

https://pubmed.ncbi.nlm.nih.gov/34086480

848.Iversen, P., et al. Antiandrogen monotherapy in patients with localized or locally advanced prostate cancer: final results from the bicalutamide Early Prostate Cancer programme at a median follow-up of 9.7 years. BJU Int, 2010. 105: 1074.

https://pubmed.ncbi.nlm.nih.gov/22129214

849.Ahlgren, G.M., et al. Docetaxel Versus Surveillance After Radical Prostatectomy for High-risk Prostate Cancer: Results from the Prospective Randomised, Open-label Phase 3 Scandinavian Prostate Cancer Group 12 Trial. Eur Urol, 2018. 73: 870.

https://pubmed.ncbi.nlm.nih.gov/29395502

850.Schweizer, M.T., et al. Adjuvant leuprolide with or without docetaxel in patients with high-risk prostate cancer after radical prostatectomy (TAX-3501): important lessons for future trials. Cancer, 2013. 119: 3610.

https://pubmed.ncbi.nlm.nih.gov/23943299

851.Ghavamian, R., et al. Radical retropubic prostatectomy plus orchiectomy versus orchiectomy alone for pTxN+ prostate cancer: a matched comparison. J Urol, 1999. 161: 1223.

https://pubmed.ncbi.nlm.nih.gov/10081874

852.Messing, E.M., et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol, 2006. 7: 472.

https://pubmed.ncbi.nlm.nih.gov/16750497

853.Abdollah, F., et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J Clin Oncol, 2014. 32: 3939.

https://pubmed.ncbi.nlm.nih.gov/25245445

854.Tilki, D., et al. Adjuvant Versus Early Salvage Radiation Therapy After Radical Prostatectomy for pN1 Prostate Cancer and the Risk of Death. J Clin Oncol, 2022. 40: 2186.

https://pubmed.ncbi.nlm.nih.gov/35290082

855.Abdollah, F., et al. Impact of Adjuvant Radiotherapy in Node-positive Prostate Cancer Patients: The Importance of Patient Selection. Eur Urol, 2018. 74: 253.

https://pubmed.ncbi.nlm.nih.gov/29720348

856.Gupta, M., et al. Adjuvant radiation with androgen-deprivation therapy for men with lymph node metastases after radical prostatectomy: identifying men who benefit. BJU Int, 2019. 123: 252.

https://pubmed.ncbi.nlm.nih.gov/29626845

857.Tilki, D., et al. Adjuvant radiation therapy is associated with better oncological outcome compared with salvage radiation therapy in patients with pN1 prostate cancer treated with radical prostatectomy. BJU Int, 2017. 119: 717.

https://pubmed.ncbi.nlm.nih.gov/27743493

858.Mandel, P., et al. Long-term oncological outcomes in patients with limited nodal disease undergoing radical prostatectomy and pelvic lymph node dissection without adjuvant treatment. World J Urol, 2017. 35: 1833.

https://pubmed.ncbi.nlm.nih.gov/28828530

859.Kimura, S., et al. Prognostic Significance of Prostate-Specific Antigen Persistence after Radical Prostatectomy: A Systematic Review and Meta-Analysis. Cancers (Basel), 2021. 13.

https://pubmed.ncbi.nlm.nih.gov/33668270

860.Ploussard, G., et al. Management of Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy: A Systematic Review of the Literature. Eur Urol Oncol, 2021. 4: 150.

https://pubmed.ncbi.nlm.nih.gov/33574012

861.Moreira, D.M., et al. Natural history of persistently elevated prostate specific antigen after radical prostatectomy: results from the SEARCH database. J Urol, 2009. 182: 2250.

https://pubmed.ncbi.nlm.nih.gov/19758614

862.Moreira, D.M., et al. Definition and preoperative predictors of persistently elevated prostate-specific antigen after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int, 2010. 105: 1541.

https://pubmed.ncbi.nlm.nih.gov/19912191

863.Spratt, D.E., et al. Performance of a Prostate Cancer Genomic Classifier in Predicting Metastasis in Men with Prostate-specific Antigen Persistence Postprostatectomy. Eur Urol, 2018. 74: 107.

https://pubmed.ncbi.nlm.nih.gov/29233664

864.Preisser, F., et al. Persistent Prostate-Specific Antigen After Radical Prostatectomy and Its Impact on Oncologic Outcomes. Eur Urol, 2019. 76: 106.

https://pubmed.ncbi.nlm.nih.gov/30772034

865.Xiang, C., et al. Prediction of Biochemical Recurrence Following Radiotherapy among Patients with Persistent PSA after Radical Prostatectomy: A Single-Center Experience. Urol Int, 2018. 101: 47.

https://pubmed.ncbi.nlm.nih.gov/29627830

866.Rogers, C.G., et al. Natural history of disease progression in patients who fail to achieve an undetectable prostate-specific antigen level after undergoing radical prostatectomy. Cancer, 2004. 101: 2549.

https://pubmed.ncbi.nlm.nih.gov/15470681

867.Perera, M., et al. Sensitivity, Specificity, and Predictors of Positive (68)Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2016. 70: 926.

https://pubmed.ncbi.nlm.nih.gov/27363387

868.Farolfi, A., et al. (68)Ga-PSMA-11 PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy and PSA <0.5 ng/ml. Efficacy and impact on treatment strategy. Eur J Nucl Med Mol Imaging, 2019. 46: 11.

https://pubmed.ncbi.nlm.nih.gov/29905907

869.Ceci, F., et al. (68)Ga-PSMA-11 PET/CT in recurrent prostate cancer: efficacy in different clinical stages of PSA failure after radical therapy. Eur J Nucl Med Mol Imaging, 2019. 46: 31.

https://pubmed.ncbi.nlm.nih.gov/30350010

870.Rauscher, I., et al. Efficacy, Predictive Factors, and Prediction Nomograms for (68)Ga-labeled Prostate-specific Membrane Antigen-ligand Positron-emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer After Radical Prostatectomy. Eur Urol, 2018. 73: 656.

https://pubmed.ncbi.nlm.nih.gov/29358059

871.Wondergem, M., et al. Early lesion detection with (18)F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2019. 46: 1911.

https://pubmed.ncbi.nlm.nih.gov/31230088

872.Mena, E., et al. Clinical impact of PSMA-based (18)F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. Eur J Nucl Med Mol Imaging, 2018. 45: 4.

https://pubmed.ncbi.nlm.nih.gov/28894899

873.Habl, G., et al. (68) Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. Prostate, 2017. 77: 920.

https://pubmed.ncbi.nlm.nih.gov/28317152

874.Schmidt-Hegemann, N.S., et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat Oncol, 2018. 13: 37.

https://pubmed.ncbi.nlm.nih.gov/29499730

875.Farolfi, A., et al. (68)Ga-PSMA-11 Positron Emission Tomography Detects Residual Prostate Cancer after Prostatectomy in a Multicenter Retrospective Study. J Urol, 2019. 202: 1174.

https://pubmed.ncbi.nlm.nih.gov/31233369

876.Meijer, D., et al. Biochemical Persistence of Prostate-Specific Antigen After Robot-Assisted Laparoscopic Radical Prostatectomy: Tumor Localizations Using PSMA PET/CT Imaging. J Nucl Med, 2021. 62: 961.

https://pubmed.ncbi.nlm.nih.gov/33158904

877.Bartkowiak, D., et al. The impact of prostate-specific antigen persistence after radical prostatectomy on the efficacy of salvage radiotherapy in patients with primary N0 prostate cancer. BJU Int, 2019. 124: 785.

https://pubmed.ncbi.nlm.nih.gov/31220400

878.Wiegel, T., et al. Prostate-specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial. Int J Radiat Oncol Biol Phys, 2015. 91: 288.

https://pubmed.ncbi.nlm.nih.gov/25445556

879.Choo, R., et al. Prospective study evaluating postoperative radiotherapy plus 2-year androgen suppression for post-radical prostatectomy patients with pathologic T3 disease and/or positive surgical margins. Int J Radiat Oncol Biol Phys, 2009. 75: 407.

https://pubmed.ncbi.nlm.nih.gov/19211197

880.Gandaglia, G., et al. Impact of Postoperative Radiotherapy in Men with Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy for Prostate Cancer: A Long-term Survival Analysis. Eur Urol, 2017. 72: 910.

https://pubmed.ncbi.nlm.nih.gov/28622831

881.Garcia-Barreras, S., et al. Predictive factors and the important role of detectable prostate-specific antigen for detection of clinical recurrence and cancer-specific mortality following robot-assisted radical prostatectomy. Clin Transl Oncol, 2018. 20: 1004.

https://pubmed.ncbi.nlm.nih.gov/29243074

882.Lohm, G., et al. Salvage radiotherapy in patients with persistently detectable PSA or PSA rising from an undetectable range after radical prostatectomy gives comparable results. World J Urol, 2013. 31: 423.

https://pubmed.ncbi.nlm.nih.gov/22460203

883.Ploussard, G., et al. Clinical outcomes after salvage radiotherapy without androgen deprivation therapy in patients with persistently detectable PSA after radical prostatectomy: results from a national multicentre study. World J Urol, 2014. 32: 1331.

https://pubmed.ncbi.nlm.nih.gov/24270970

884.Fossati, N., et al. Impact of Early Salvage Radiation Therapy in Patients with Persistently Elevated or Rising Prostate-specific Antigen After Radical Prostatectomy. Eur Urol, 2018. 73: 436.

https://pubmed.ncbi.nlm.nih.gov/28779974

885.Guerif, S.G., et al. The acute toxicity results of the GETUG-AFU 22 study: A multicenter randomized phase II trial comparing the efficacy of a short hormone therapy in combination with radiotherapy to radiotherapy alone as a salvage treatment for patients with detectable PSA after radical prostatectomy. Journal of Clinical Oncology, 2017. 35: 16.

https://ascopubs.org/doi/abs/10.1200/JCO.2017.35.6_suppl.16

886.Arlen, P.M., et al. Prostate Specific Antigen Working Group guidelines on prostate specific antigen doubling time. J Urol, 2008. 179: 2181.

https://pubmed.ncbi.nlm.nih.gov/18423743

887.Vickers, A.J., et al. PSA Velocity and Doubling Time in Diagnosis and Prognosis of Prostate Cancer. Br J Med Surg Urol, 2012. 5: 162.

https://pubmed.ncbi.nlm.nih.gov/22712027

888.O’Brien, M.F., et al. Pretreatment prostate-specific antigen (PSA) velocity and doubling time are associated with outcome but neither improves prediction of outcome beyond pretreatment PSA alone in patients treated with radical prostatectomy. J Clin Oncol, 2009. 27: 3591.

https://pubmed.ncbi.nlm.nih.gov/19506163

889.Ramirez, M.L., et al. Current applications for prostate-specific antigen doubling time. Eur Urol, 2008. 54: 291.

https://pubmed.ncbi.nlm.nih.gov/18439749

890.Vickers, A.J., et al. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol, 2009. 27: 398.

https://pubmed.ncbi.nlm.nih.gov/19064972

891.Lee, A.K., et al. Utility of prostate-specific antigen kinetics in addition to clinical factors in the selection of patients for salvage local therapy. J Clin Oncol, 2005. 23: 8192.

https://pubmed.ncbi.nlm.nih.gov/16278472

892.Campbell, S.R., et al. Integrating Prostate-specific Antigen Kinetics into Contemporary Predictive Nomograms of Salvage Radiotherapy After Radical Prostatectomy. Eur Urol Oncol, 2022. 5: 304.

https://pubmed.ncbi.nlm.nih.gov/34016556

893.Smith, M.R., et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol, 2005. 23: 2918.

https://pubmed.ncbi.nlm.nih.gov/15860850

894.Amling, C.L., et al. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J Urol, 2001. 165: 1146.

https://pubmed.ncbi.nlm.nih.gov/11257657

895.Toussi, A., et al. Standardizing the Definition of Biochemical Recurrence after Radical Prostatectomy-What Prostate Specific Antigen Cut Point Best Predicts a Durable Increase and Subsequent Systemic Progression? J Urol, 2016. 195: 1754.

https://pubmed.ncbi.nlm.nih.gov/26721226

896.Stephenson, A.J., et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol, 2006. 24: 3973.

https://pubmed.ncbi.nlm.nih.gov/16921049

897.Roach, M., 3rd, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys, 2006. 65: 965.

https://pubmed.ncbi.nlm.nih.gov/16798415

898.Van den Broeck, T., et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol, 2019. 75: 967.

https://pubmed.ncbi.nlm.nih.gov/30342843

899.Jackson, W.C., et al. Intermediate Endpoints After Postprostatectomy Radiotherapy: 5-Year Distant Metastasis to Predict Overall Survival. Eur Urol, 2018. 74: 413.

https://pubmed.ncbi.nlm.nih.gov/29306514

900.Choueiri, T.K., et al. Impact of postoperative prostate-specific antigen disease recurrence and the use of salvage therapy on the risk of death. Cancer, 2010. 116: 1887.

https://pubmed.ncbi.nlm.nih.gov/20162710

901.Freiberger, C., et al. Long-term prognostic significance of rising PSA levels following radiotherapy for localized prostate cancer - focus on overall survival. Radiat Oncol, 2017. 12: 98.

https://pubmed.ncbi.nlm.nih.gov/28615058

902.Royce, T.J., et al. Surrogate End Points for All-Cause Mortality in Men With Localized Unfavorable-Risk Prostate Cancer Treated With Radiation Therapy vs Radiation Therapy Plus Androgen Deprivation Therapy: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2017. 3: 652.

https://pubmed.ncbi.nlm.nih.gov/28097317

903.Tilki, D., et al. External Validation of the European Association of Urology Biochemical Recurrence Risk Groups to Predict Metastasis and Mortality After Radical Prostatectomy in a European Cohort. Eur Urol, 2019. 75: 896.

https://pubmed.ncbi.nlm.nih.gov/30955970

904.Zagars, G.K., et al. Kinetics of serum prostate-specific antigen after external beam radiation for clinically localized prostate cancer. Radiother Oncol, 1997. 44: 213.

https://pubmed.ncbi.nlm.nih.gov/9380819

905.Rouviere, O., et al. Imaging of prostate cancer local recurrences: why and how? Eur Radiol, 2010. 20: 1254.

https://pubmed.ncbi.nlm.nih.gov/19921202

906.Beresford, M.J., et al. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin Oncol (R Coll Radiol), 2010. 22: 46.

https://pubmed.ncbi.nlm.nih.gov/19948393

907.Gomez, P., et al. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int, 2004. 94: 299.

https://pubmed.ncbi.nlm.nih.gov/15291855

908.Kane, C.J., et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology, 2003. 61: 607.

https://pubmed.ncbi.nlm.nih.gov/12639656

909.Evangelista, L., et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med, 2013. 38: 305.

https://pubmed.ncbi.nlm.nih.gov/23486334

910.Fanti, S., et al. PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging, 2016. 43: 55.

https://pubmed.ncbi.nlm.nih.gov/26450693

911.Fuccio, C., et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med, 2010. 24: 485.

https://pubmed.ncbi.nlm.nih.gov/20544323

912.Fuccio, C., et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol, 2012. 81: e893.

https://pubmed.ncbi.nlm.nih.gov/22621862

913.Castellucci, P., et al. Early biochemical relapse after radical prostatectomy: which prostate cancer patients may benefit from a restaging 11C-Choline PET/CT scan before salvage radiation therapy? J Nucl Med, 2014. 55: 1424.

https://pubmed.ncbi.nlm.nih.gov/24935990

914.Treglia, G., et al. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med, 2014. 52: 725.

https://pubmed.ncbi.nlm.nih.gov/24310773

915.Mitchell, C.R., et al. Operational characteristics of (11)c-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol, 2013. 189: 1308.

https://pubmed.ncbi.nlm.nih.gov/23123372

916.Soyka, J.D., et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2012. 39: 936.

https://pubmed.ncbi.nlm.nih.gov/22415598

917.Ceci, F., et al. Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial. Eur J Nucl Med Mol Imaging, 2014. 41: 2222.

https://pubmed.ncbi.nlm.nih.gov/25182750

918.Beer, A.J., et al. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol, 2011. 12: 181.

https://pubmed.ncbi.nlm.nih.gov/20599424

919.Beheshti, M., et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging, 2008. 35: 1766.

https://pubmed.ncbi.nlm.nih.gov/18465129

920.Songmen, S., et al. Axumin Positron Emission Tomography: Novel Agent for Prostate Cancer Biochemical Recurrence. J Clin Imaging Sci, 2019. 9: 49.

https://pubmed.ncbi.nlm.nih.gov/31819826

921.United States Food and Drug Administration. FDA approves new diagnostic imaging agent to detect recurrent prostate cancer - axumin. 2016.

https://www.fda.gov/news-events/press-announcements/fda-approves-new-diagnostic-imaging-agent-detect-recurrent-prostate-cancer

922.European Medicines Agency. axumin 2017. 2021.

https://www.ema.europa.eu/en/medicines/human/EPAR/axumin

923.Nanni, C., et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging, 2016. 43: 1601.

https://pubmed.ncbi.nlm.nih.gov/26960562

924.Bach-Gansmo, T., et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine ((18)F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol, 2017. 197: 676.

https://pubmed.ncbi.nlm.nih.gov/27746282

925.Abiodun-Ojo, O.A., et al. Salvage Radiotherapy Management Decisions in Postprostatectomy Patients with Recurrent Prostate Cancer Based on (18)F-Fluciclovine PET/CT Guidance. J Nucl Med, 2021. 62: 1089.

https://pubmed.ncbi.nlm.nih.gov/33517323

926.Morigi, J.J., et al. Prospective Comparison of 18F-Fluoromethylcholine Versus 68Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy. J Nucl Med, 2015. 56: 1185.

https://pubmed.ncbi.nlm.nih.gov/26112024

927.Afshar-Oromieh, A., et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2014. 41: 11.

https://pubmed.ncbi.nlm.nih.gov/24072344

928.Caroli, P., et al. (68)Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients. Eur J Nucl Med Mol Imaging, 2018. 45: 2035.

https://pubmed.ncbi.nlm.nih.gov/29922948

929.Fendler, W.P., et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol, 2019. 5: 856.

https://pubmed.ncbi.nlm.nih.gov/30920593

930.Morris, M.J., et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin Cancer Res, 2021. 27: 3674.

https://pubmed.ncbi.nlm.nih.gov/33622706

931.Giesel, F.L., et al. Intraindividual Comparison of (18)F-PSMA-1007 and (18)F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J Nucl Med, 2018. 59: 1076.

https://pubmed.ncbi.nlm.nih.gov/29269569

932.Oprea-Lager, D.E., et al. [(18)F]DCFPyL PET/CT versus [(18)F]fluoromethylcholine PET/CT in Biochemical Recurrence of Prostate Cancer (PYTHON): a prospective, open label, cross-over, comparative study. Eur J Nucl Med Mol Imaging, 2023. 50: 3439.

https://pubmed.ncbi.nlm.nih.gov/37341747

933.Olivier, P., et al. Phase III Study of (18)F-PSMA-1007 Versus (18)F-Fluorocholine PET/CT for Localization of Prostate Cancer Biochemical Recurrence: A Prospective, Randomized, Crossover Multicenter Study. J Nucl Med, 2023. 64: 579.

https://pubmed.ncbi.nlm.nih.gov/36418170

934.Eiber, M., et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging, 2011. 33: 1160.

https://pubmed.ncbi.nlm.nih.gov/21509875

935.Zacho, H.D., et al. Prospective comparison of (68)Ga-PSMA PET/CT, (18)F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2018. 45: 1884.

https://pubmed.ncbi.nlm.nih.gov/29876619

936.Renard-Penna, R., et al. Targeting Local Recurrence After Surgery With MRI Imaging for Prostate Cancer in the Setting of Salvage Radiation Therapy. Front Oncol, 2022. 12: 775387.

https://pubmed.ncbi.nlm.nih.gov/35242702

937.Song, W., et al. Prognostic factors after salvage radiotherapy alone in patients with biochemical recurrence after radical prostatectomy. Int J Urol, 2016. 23: 56.

https://pubmed.ncbi.nlm.nih.gov/26502086

938.Sharma, V., et al. Multiparametric Magnetic Resonance Imaging Is an Independent Predictor of Salvage Radiotherapy Outcomes After Radical Prostatectomy. Eur Urol, 2018. 73: 879.

https://pubmed.ncbi.nlm.nih.gov/29195777

939.Farneti, A., et al. The Prognostic Value of DCE-MRI Findings before Salvage Radiotherapy after Radical Prostatectomy. Cancers (Basel), 2023. 15.

https://pubmed.ncbi.nlm.nih.gov/36831588

940.Panebianco, V., et al. Prostate Magnetic Resonance Imaging for Local Recurrence Reporting (PI-RR): International Consensus -based Guidelines on Multiparametric Magnetic Resonance Imaging for Prostate Cancer Recurrence after Radiation Therapy and Radical Prostatectomy. Eur Urol Oncol, 2021. 4: 868.

https://pubmed.ncbi.nlm.nih.gov/33582104

941.Abreu-Gomez, J., et al. PI-RR: The Prostate Imaging for Recurrence Reporting System for MRI Assessment of Local Prostate Cancer Recurrence After Radiation Therapy or Radical Prostatectomy-A Review. AJR Am J Roentgenol, 2023. 220: 852.

https://pubmed.ncbi.nlm.nih.gov/36722763

942.Achard, V., et al. Recurrent prostate cancer after radical prostatectomy: restaging performance of 18F-choline hybrid PET/MRI. Med Oncol, 2019. 36: 67.

https://pubmed.ncbi.nlm.nih.gov/31190232

943.Luiting, H.B., et al. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int, 2020. 125: 206.

https://pubmed.ncbi.nlm.nih.gov/31680398

944.Boreta, L., et al. Location of Recurrence by Gallium-68 PSMA-11 PET Scan in Prostate Cancer Patients Eligible for Salvage Radiotherapy. Urology, 2019. 129: 165.

https://pubmed.ncbi.nlm.nih.gov/30928607

945.Guberina, N., et al. Whole-Body Integrated [(68)Ga]PSMA-11-PET/MR Imaging in Patients with Recurrent Prostate Cancer: Comparison with Whole-Body PET/CT as the Standard of Reference. Mol Imaging Biol, 2020. 22: 788.

https://pubmed.ncbi.nlm.nih.gov/31482413

946.Metser, U., et al. The Contribution of Multiparametric Pelvic and Whole-Body MRI to Interpretation of (18)F-Fluoromethylcholine or (68)Ga-HBED-CC PSMA-11 PET/CT in Patients with Biochemical Failure After Radical Prostatectomy. J Nucl Med, 2019. 60: 1253.

https://pubmed.ncbi.nlm.nih.gov/30902875

947.Freitag, M.T., et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in (68)Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging, 2017. 44: 776.

https://pubmed.ncbi.nlm.nih.gov/27988802

948.Jani, A.B., et al. (18)F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. Lancet, 2021. 397: 1895.

https://pubmed.ncbi.nlm.nih.gov/33971152

949.Dinis Fernandes, C., et al. Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Reson Imaging, 2019. 50: 269.

https://pubmed.ncbi.nlm.nih.gov/30585368

950.Donati, O.F., et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology, 2013. 268: 440.

https://pubmed.ncbi.nlm.nih.gov/23481164

951.Dinis Fernandes, C., et al. Quantitative 3-T multi-parametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy. Eur Radiol, 2019. 29: 4160.

https://pubmed.ncbi.nlm.nih.gov/30421016

952.Rasing, M., et al. Value of Targeted Biopsies and Combined PSMA PET/CT and mp-MRI Imaging in Locally Recurrent Prostate Cancer after Primary Radiotherapy. Cancers (Basel), 2022. 14.

https://pubmed.ncbi.nlm.nih.gov/35159048

953.Boorjian, S.A., et al. Radiation therapy after radical prostatectomy: impact on metastasis and survival. J Urol, 2009. 182: 2708.

https://pubmed.ncbi.nlm.nih.gov/19836762

954.Kneebone, A., et al. A Phase III Multi-Centre Randomised Trial comparing adjuvant versus early salvage Radiotherapy following a Radical Prostatectomy: Results of the TROG 08.03 and ANZUP “RAVES” Trial. International Journal of Radiation Oncology*Biology*Physics, 2019. 105: S37.

http://www.redjournal.org/article/S0360-3016(10)01144-2/abstract

955.Tilki, D., et al. Salvage Radiotherapy versus Observation for Biochemical Recurrence following Radical Prostatectomy for Prostate Cancer: A Matched Pair Analysis. Cancers (Basel), 2022. 14.

https://pubmed.ncbi.nlm.nih.gov/35159007

956.Stish, B.J., et al. Improved Metastasis-Free and Survival Outcomes With Early Salvage Radiotherapy in Men With Detectable Prostate-Specific Antigen After Prostatectomy for Prostate Cancer. J Clin Oncol, 2016. 34: 3864.

https://pubmed.ncbi.nlm.nih.gov/27480153

957.Pfister, D., et al. Early salvage radiotherapy following radical prostatectomy. Eur Urol, 2014. 65: 1034.

https://pubmed.ncbi.nlm.nih.gov/23972524

958.Ohri, N., et al. Can early implementation of salvage radiotherapy for prostate cancer improve the therapeutic ratio? A systematic review and regression meta-analysis with radiobiological modelling. Eur J Cancer, 2012. 48: 837.

https://pubmed.ncbi.nlm.nih.gov/21945099

959.Wiegel, T., et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome--results of a retrospective study. Int J Radiat Oncol Biol Phys, 2009. 73: 1009.

https://pubmed.ncbi.nlm.nih.gov/18963539

960.Trock, B.J., et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA, 2008. 299: 2760.

https://pubmed.ncbi.nlm.nih.gov/18560003

961.Tilki, D., et al. Prostate-Specific Antigen Level at the Time of Salvage Therapy After Radical Prostatectomy for Prostate Cancer and the Risk of Death. J Clin Oncol, 2023. 41: 2428.

https://pubmed.ncbi.nlm.nih.gov/36857638

962.Group, I.C.W., et al. The Development of Intermediate Clinical Endpoints in Cancer of the Prostate (ICECaP). J Natl Cancer Inst, 2015. 107: djv261.

https://pubmed.ncbi.nlm.nih.gov/26409187

963.Xie, W., et al. Metastasis-Free Survival Is a Strong Surrogate of Overall Survival in Localized Prostate Cancer. J Clin Oncol, 2017. 35: 3097.

https://pubmed.ncbi.nlm.nih.gov/28796587

964.Bartkowiak, D., et al. Prostate-specific antigen after salvage radiotherapy for postprostatectomy biochemical recurrence predicts long-term outcome including overall survival. Acta Oncol, 2018. 57: 362.

https://pubmed.ncbi.nlm.nih.gov/28816074

965.Tendulkar, R.D., et al. Contemporary Update of a Multi-Institutional Predictive Nomogram for Salvage Radiotherapy After Radical Prostatectomy. J Clin Oncol, 2016. 34: 3648.

https://pubmed.ncbi.nlm.nih.gov/27528718

966.Jackson, W.C., et al. Combining prostate-specific antigen nadir and time to nadir allows for early identification of patients at highest risk for development of metastasis and death following salvage radiation therapy. Pract Radiat Oncol, 2014. 4: 99.

https://pubmed.ncbi.nlm.nih.gov/24890350

967.Shipley, W., et al. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N Eng J Med, 2017. 376: 417.

https://www.nejm.org/doi/full/10.1056/nejmoa1607529

968.Carrie, C., et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol, 2019. 20: 1740.

https://pubmed.ncbi.nlm.nih.gov/31629656

969.Pollack, A., et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial. Lancet, 2022. 399: 1886.

https://pubmed.ncbi.nlm.nih.gov/35569466

970.Ramey, S.J., et al. Multi-institutional Evaluation of Elective Nodal Irradiation and/or Androgen Deprivation Therapy with Postprostatectomy Salvage Radiotherapy for Prostate Cancer. Eur Urol, 2018. 74: 99.

https://pubmed.ncbi.nlm.nih.gov/29128208

971.Dess, R.T., et al. Association of Presalvage Radiotherapy PSA Levels After Prostatectomy With Outcomes of Long-term Antiandrogen Therapy in Men With Prostate Cancer. JAMA Oncol, 2020. 6: 735.

https://pubmed.ncbi.nlm.nih.gov/32215583

972.Spratt, D.E., et al. A Systematic Review and Framework for the Use of Hormone Therapy with Salvage Radiation Therapy for Recurrent Prostate Cancer. Eur Urol, 2018. 73: 156.

https://pubmed.ncbi.nlm.nih.gov/28716370

973.Malone, S., et al. Postoperative radiotherapy for prostate cancer: a comparison of four consensus guidelines and dosimetric evaluation of 3D-CRT versus tomotherapy IMRT. Int J Radiat Oncol Biol Phys, 2012. 84: 725.

https://pubmed.ncbi.nlm.nih.gov/22444999

974.Dal Pra, A., et al. ESTRO ACROP guideline on prostate bed delineation for postoperative radiotherapy in prostate cancer. Clin Transl Radiat Oncol, 2023. 41: 100638.

https://pubmed.ncbi.nlm.nih.gov/37251620

975.Pisansky, T.M., et al. Salvage Radiation Therapy Dose Response for Biochemical Failure of Prostate Cancer After Prostatectomy-A Multi-Institutional Observational Study. Int J Radiat Oncol Biol Phys, 2016. 96: 1046.

https://pubmed.ncbi.nlm.nih.gov/27745980

976.King, C.R. The dose-response of salvage radiotherapy following radical prostatectomy: A systematic review and meta-analysis. Radiother Oncol, 2016. 121: 199.

https://pubmed.ncbi.nlm.nih.gov/27863963

977.Fossati, N., et al. Assessing the Optimal Timing for Early Salvage Radiation Therapy in Patients with Prostate-specific Antigen Rise After Radical Prostatectomy. Eur Urol, 2016. 69: 728.

https://pubmed.ncbi.nlm.nih.gov/26497924

978.Abugharib, A., et al. Very Early Salvage Radiotherapy Improves Distant Metastasis-Free Survival. J Urol, 2017. 197: 662.

https://pubmed.ncbi.nlm.nih.gov/27614333

979.Fiorino, C., et al. Predicting the 5-Year Risk of Biochemical Relapse After Postprostatectomy Radiation Therapy in >/=PT2, pN0 Patients With a Comprehensive Tumor Control Probability Model. Int J Radiat Oncol Biol Phys, 2016. 96: 333.

https://pubmed.ncbi.nlm.nih.gov/27497691

980.Ghadjar, P., et al. Dose-intensified Versus Conventional-dose Salvage Radiotherapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: The SAKK 09/10 Randomized Phase 3 Trial. Eur Urol, 2021. 80: 306.

https://pubmed.ncbi.nlm.nih.gov/34140144

981.Qi, X., et al. Toxicity and Biochemical Outcomes of Dose-Intensified Postoperative Radiation Therapy for Prostate Cancer: Results of a Randomized Phase III Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 282.

https://pubmed.ncbi.nlm.nih.gov/31669564

982.Ghadjar, P., et al. Acute Toxicity and Quality of Life After Dose-Intensified Salvage Radiation Therapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: First Results of the Randomized Trial SAKK 09/10. J Clin Oncol, 2015. 33: 4158.

https://pubmed.ncbi.nlm.nih.gov/26527774

983.Ghadjar, P., et al. Impact of dose intensified salvage radiation therapy on urinary continence recovery after radical prostatectomy: Results of the randomized trial SAKK 09/10. Radiother Oncol, 2018. 126: 257.

https://pubmed.ncbi.nlm.nih.gov/29103826

984.Goenka, A., et al. Improved toxicity profile following high-dose postprostatectomy salvage radiation therapy with intensity-modulated radiation therapy. Eur Urol, 2011. 60: 1142.

https://pubmed.ncbi.nlm.nih.gov/21855208

985.Ost, P., et al. High-dose salvage intensity-modulated radiotherapy with or without androgen deprivation after radical prostatectomy for rising or persisting prostate-specific antigen: 5-year results. Eur Urol, 2011. 60: 842.

https://pubmed.ncbi.nlm.nih.gov/21514039

986.Roach, P.J., et al. The Impact of (68)Ga-PSMA PET/CT on Management Intent in Prostate Cancer: Results of an Australian Prospective Multicenter Study. J Nucl Med, 2018. 59: 82.

https://pubmed.ncbi.nlm.nih.gov/28646014

987.Emmett, L., et al. Treatment Outcomes from (68)Ga-PSMA PET/CT-Informed Salvage Radiation Treatment in Men with Rising PSA After Radical Prostatectomy: Prognostic Value of a Negative PSMA PET. J Nucl Med, 2017. 58: 1972.

https://pubmed.ncbi.nlm.nih.gov/28747524

988.Meijer, D., et al. Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Is Associated with Improved Oncological Outcome in Men Treated with Salvage Radiation Therapy for Biochemically Recurrent Prostate Cancer. Eur Urol Oncol, 2022. 5: 146.

https://pubmed.ncbi.nlm.nih.gov/35074282

989.Steuber, T., et al. Standard of Care Versus Metastases-directed Therapy for PET-detected Nodal Oligorecurrent Prostate Cancer Following Multimodality Treatment: A Multi-institutional Case-control Study. Eur Urol Focus, 2019. 5: 1007.

https://pubmed.ncbi.nlm.nih.gov/29530632

990.De Bleser, E., et al. Metastasis-directed Therapy in Treating Nodal Oligorecurrent Prostate Cancer: A Multi-institutional Analysis Comparing the Outcome and Toxicity of Stereotactic Body Radiotherapy and Elective Nodal Radiotherapy. Eur Urol, 2019. 76: 732.

https://pubmed.ncbi.nlm.nih.gov/31331782

991.Suardi, N., et al. Long-term outcomes of salvage lymph node dissection for clinically recurrent prostate cancer: results of a single-institution series with a minimum follow-up of 5 years. Eur Urol, 2015. 67: 299.

https://pubmed.ncbi.nlm.nih.gov/24571959

992.Tilki, D., et al. Salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy. J Urol, 2015. 193: 484.

https://pubmed.ncbi.nlm.nih.gov/25180792

993.Fossati, N., et al. Identifying the Optimal Candidate for Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer: Results from a Large, Multi-institutional Analysis. Eur Urol, 2019. 75: 176.

https://pubmed.ncbi.nlm.nih.gov/30301694

994.Ploussard, G., et al. Salvage Lymph Node Dissection for Nodal Recurrent Prostate Cancer: A Systematic Review. Eur Urol, 2019. 76: 493.

https://pubmed.ncbi.nlm.nih.gov/30391078

995.Ost, P., et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol, 2015. 67: 852.

https://pubmed.ncbi.nlm.nih.gov/25240974

996.Rischke, H.C., et al. Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only. Strahlenther Onkol, 2015. 191: 310.

https://pubmed.ncbi.nlm.nih.gov/25326142

997.Bravi, C.A., et al. Long-term Outcomes of Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer After Radical Prostatectomy: Not as Good as Previously Thought. Eur Urol, 2020. 78: 661.

https://pubmed.ncbi.nlm.nih.gov/32624288

998.Knipper, S., et al. Cohort Study of Oligorecurrent Prostate Cancer Patients: Oncological Outcomes of Patients Treated with Salvage Lymph Node Dissection via Prostate-specific Membrane Antigen-radioguided Surgery. Eur Urol, 2023. 83: 62.

https://pubmed.ncbi.nlm.nih.gov/35718637

999.Valle, L.F., et al. A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). Eur Urol, 2021. 80: 280.

https://pubmed.ncbi.nlm.nih.gov/33309278

1000.Gontero, P., et al. Salvage Radical Prostatectomy for Recurrent Prostate Cancer: Morbidity and Functional Outcomes from a Large Multicenter Series of Open versus Robotic Approaches. J Urol, 2019. 202: 725.

https://pubmed.ncbi.nlm.nih.gov/31075058

1001.Chade, D.C., et al. Cancer control and functional outcomes of salvage radical prostatectomy for radiation-recurrent prostate cancer: a systematic review of the literature. Eur Urol, 2012. 61: 961.

https://pubmed.ncbi.nlm.nih.gov/22280856

1002.Marra, G., et al. Oncological outcomes of salvage radical prostatectomy for recurrent prostate cancer in the contemporary era: A multicenter retrospective study. Urol Oncol, 2021. 39: 296 e21.

https://pubmed.ncbi.nlm.nih.gov/33436329

1003.Chade, D.C., et al. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur Urol, 2011. 60: 205.

https://pubmed.ncbi.nlm.nih.gov/21420229

1004.Mandel, P., et al. Salvage radical prostatectomy for recurrent prostate cancer: verification of European Association of Urology guideline criteria. BJU Int, 2016. 117: 55.

https://pubmed.ncbi.nlm.nih.gov/25711672

1005.Ogaya-Pinies, G., et al. Salvage robotic-assisted radical prostatectomy: oncologic and functional outcomes from two high-volume institutions. World J Urol, 2019. 37: 1499.

https://pubmed.ncbi.nlm.nih.gov/30006908

1006.Gotto, G.T., et al. Impact of prior prostate radiation on complications after radical prostatectomy. J Urol, 2010. 184: 136.

https://pubmed.ncbi.nlm.nih.gov/20478594

1007.Ginsburg, K.B., et al. Avoidance of androgen deprivation therapy in radiorecurrent prostate cancer as a clinically meaningful endpoint for salvage cryoablation. Prostate, 2017. 77: 1446.

https://pubmed.ncbi.nlm.nih.gov/28856702

1008.Spiess, P.E., et al. A pretreatment nomogram predicting biochemical failure after salvage cryotherapy for locally recurrent prostate cancer. BJU Int, 2010. 106: 194.

https://pubmed.ncbi.nlm.nih.gov/19922545

1009.Li, R., et al. The Effect of Androgen Deprivation Therapy Before Salvage Whole-gland Cryoablation After Primary Radiation Failure in Prostate Cancer Treatment. Urology, 2015. 85: 1137.

https://pubmed.ncbi.nlm.nih.gov/25799176

1010.Kovac, E., et al. Five-Year Biochemical Progression-Free Survival Following Salvage Whole-Gland Prostate Cryoablation: Defining Success with Nadir Prostate-Specific Antigen. J Endourol, 2016. 30: 624.

https://pubmed.ncbi.nlm.nih.gov/26915721

1011.Ahmad, I., et al. Prostate gland lengths and iceball dimensions predict micturition functional outcome following salvage prostate cryotherapy in men with radiation recurrent prostate cancer. PLoS One, 2013. 8: e69243.

https://pubmed.ncbi.nlm.nih.gov/23950886

1012.Pisters, L.L., et al. Salvage prostate cryoablation: initial results from the cryo on-line data registry. J Urol, 2008. 180: 559.

https://pubmed.ncbi.nlm.nih.gov/18554664

1013.Henriquez Lopez, I., et al. Salvage brachytherapy for locally-recurrent prostate cancer after radiation therapy: A comparison of efficacy and toxicity outcomes with high-dose rate and low-dose rate brachytherapy. Radiother Oncol, 2019. 141: 156.

https://pubmed.ncbi.nlm.nih.gov/31570236

1014.Crook, J.M., et al. A Prospective Phase 2 Trial of Transperineal Ultrasound-Guided Brachytherapy for Locally Recurrent Prostate Cancer After External Beam Radiation Therapy (NRG Oncology/RTOG-0526). Int J Radiat Oncol Biol Phys, 2019. 103: 335.

https://pubmed.ncbi.nlm.nih.gov/30312717

1015.Smith, W.H., et al. Salvage low dose rate brachytherapy for prostate cancer recurrence following definitive external beam radiation therapy. Radiother Oncol, 2021. 155: 42.

https://pubmed.ncbi.nlm.nih.gov/33075391

1016.Lyczek, J., et al. HDR brachytherapy as a solution in recurrences of locally advanced prostate cancer. J Contemp Brachytherapy, 2009. 1: 105.

https://pubmed.ncbi.nlm.nih.gov/27795720

1017.Pasquier, D., et al. Salvage Stereotactic Body Radiation Therapy for Local Prostate Cancer Recurrence After Radiation Therapy: A Retrospective Multicenter Study of the GETUG. Int J Radiat Oncol Biol Phys, 2019. 105: 727.

https://pubmed.ncbi.nlm.nih.gov/31344433

1018.Fuller, D., et al. Retreatment for Local Recurrence of Prostatic Carcinoma After Prior Therapeutic Irradiation: Efficacy and Toxicity of HDR-Like SBRT. Int J Radiat Oncol Biol Phys, 2020. 106: 291.

https://pubmed.ncbi.nlm.nih.gov/31629838

1019.Bergamin, S., et al. Interim Results of a Prospective Prostate-Specific Membrane Antigen-Directed Focal Stereotactic Reirradiation Trial for Locally Recurrent Prostate Cancer. Int J Radiat Oncol Biol Phys, 2020. 108: 1172.

https://pubmed.ncbi.nlm.nih.gov/32659332

1020.Crouzet, S., et al. Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: Multi-institutional analysis of 418 patients. BJU Int, 2017. 119: 896.

https://pubmed.ncbi.nlm.nih.gov/28063191

1021.Murat, F.J., et al. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol, 2009. 55: 640.

https://pubmed.ncbi.nlm.nih.gov/18508188

1022.Kanthabalan, A., et al. Focal salvage high-intensity focused ultrasound in radiorecurrent prostate cancer. BJU Int, 2017. 120: 246.

https://pubmed.ncbi.nlm.nih.gov/28258616

1023.Jones, T.A., et al. High Intensity Focused Ultrasound for Radiorecurrent Prostate Cancer: A North American Clinical Trial. J Urol, 2018. 199: 133.

https://pubmed.ncbi.nlm.nih.gov/28652121

1024.van den Bergh, R.C., et al. Role of Hormonal Treatment in Prostate Cancer Patients with Nonmetastatic Disease Recurrence After Local Curative Treatment: A Systematic Review. Eur Urol, 2016. 69: 802.

https://pubmed.ncbi.nlm.nih.gov/26691493

1025.Duchesne, G.M., et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol, 2016. 17: 727.

https://pubmed.ncbi.nlm.nih.gov/27155740

1026.Siddiqui, S.A., et al. Timing of androgen deprivation therapy and its impact on survival after radical prostatectomy: a matched cohort study. J Urol, 2008. 179: 1830.

https://pubmed.ncbi.nlm.nih.gov/18353378

1027.Boorjian, S.A., et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol, 2011. 59: 893.

https://pubmed.ncbi.nlm.nih.gov/21388736

1028.Crook, J.M., et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N Engl J Med, 2012. 367: 895.

https://pubmed.ncbi.nlm.nih.gov/22931259

1029.Levine, G.N., et al. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation, 2010. 121: 833.

https://pubmed.ncbi.nlm.nih.gov/20124128

1030.O’Farrell, S., et al. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol, 2015. 33: 1243.

https://pubmed.ncbi.nlm.nih.gov/25732167

1031.Freedland, S.J., et al. Improved Outcomes with Enzalutamide in Biochemically Recurrent Prostate Cancer. New England Journal of Medicine, 2023. 389: 1453.

https://pubmed.ncbi.nlm.nih.gov/37851874

1032.FDA approves enzalutamide for non-metastatic castration-sensitive prostate cancer with biochemical recurrence. 2023

www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-enzalutamide-non-metastatic-castration-sensitive-prostate-cancer-biochemical-recurrence

1033.Aparicio, A. Biochemical Recurrence in Prostate Cancer — Tilting the Scale. New England Journal of Medicine, 2023. 389: 1522.

https://pubmed.ncbi.nlm.nih.gov/37851879

1034.Pagliarulo, V., et al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur Urol, 2012. 61: 11.

https://pubmed.ncbi.nlm.nih.gov/21871711

1035.Oefelein, M.G., et al. Reassessment of the definition of castrate levels of testosterone: implications for clinical decision making. Urology, 2000. 56: 1021.

https://pubmed.ncbi.nlm.nih.gov/11113751

1036.Morote, J., et al. Individual variations of serum testosterone in patients with prostate cancer receiving androgen deprivation therapy. BJU Int, 2009. 103: 332.

https://pubmed.ncbi.nlm.nih.gov/19007366

1037.Pickles, T., et al. Incomplete testosterone suppression with luteinizing hormone-releasing hormone agonists: does it happen and does it matter? BJU Int, 2012. 110: E500.

https://pubmed.ncbi.nlm.nih.gov/22564197

1038.Klotz, L., et al. Mp74-01 Nadir Testosterone on Adt Predicts for Time to Castrate Resistant Progression: A Secondary Analysis of the Pr-7 Intermittent Vs Continuous Adt Trial. Journal of Urology, 2014. 191: e855.

http://www.jurology.com/article/S0022-5347(14)02593-2/abstract

1039.Desmond, A.D., et al. Subcapsular orchiectomy under local anaesthesia. Technique, results and implications. Br J Urol, 1988. 61: 143.

https://pubmed.ncbi.nlm.nih.gov/3349279

1040.Scherr, D.S., et al. The nonsteroidal effects of diethylstilbestrol: the rationale for androgen deprivation therapy without estrogen deprivation in the treatment of prostate cancer. J Urol, 2003. 170: 1703.

https://pubmed.ncbi.nlm.nih.gov/14532759

1041.Farrugia, D., et al. Stilboestrol plus adrenal suppression as salvage treatment for patients failing treatment with luteinizing hormone-releasing hormone analogues and orchidectomy. BJU Int, 2000. 85: 1069.

https://pubmed.ncbi.nlm.nih.gov/10848697

1042.Hedlund, P.O., et al. Parenteral estrogen versus combined androgen deprivation in the treatment of metastatic prostatic cancer: part 2. Final evaluation of the Scandinavian Prostatic Cancer Group (SPCG) Study No. 5. Scand J Urol Nephrol, 2008. 42: 220.

https://pubmed.ncbi.nlm.nih.gov/18432528

1043.Gilbert, D.C., et al. Transdermal oestradiol as a method of androgen suppression for prostate cancer within the STAMPEDE trial platform. BJU Int, 2018. 121: 680.

https://pubmed.ncbi.nlm.nih.gov/29388336

1044.Bubley, G.J. Is the flare phenomenon clinically significant? Urology, 2001. 58: 5.

https://pubmed.ncbi.nlm.nih.gov/11502435

1045.Krakowsky, Y., et al. Risk of Testosterone Flare in the Era of the Saturation Model: One More Historical Myth. Eur Urol Focus, 2019. 5: 81.

https://pubmed.ncbi.nlm.nih.gov/28753828

1046.Klotz, L., et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int, 2008. 102: 1531.

https://pubmed.ncbi.nlm.nih.gov/19035858

1047.Seidenfeld, J., et al. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med, 2000. 132: 566.

https://pubmed.ncbi.nlm.nih.gov/10744594

1048.Ostergren, P.B., et al. Luteinizing Hormone-Releasing Hormone Agonists are Superior to Subcapsular Orchiectomy in Lowering Testosterone Levels of Men with Prostate Cancer: Results from a Randomized Clinical Trial. J Urol, 2017. 197: 1441.

https://pubmed.ncbi.nlm.nih.gov/27939836

1049.Shore, N.D. Experience with degarelix in the treatment of prostate cancer. Ther Adv Urol, 2013. 5: 11.

https://pubmed.ncbi.nlm.nih.gov/23372607

1050.Sciarra, A., et al. A meta-analysis and systematic review of randomized controlled trials with degarelix versus gonadotropin-releasing hormone agonists for advanced prostate cancer. Medicine (Baltimore), 2016. 95: e3845.

https://pubmed.ncbi.nlm.nih.gov/27399062

1051.Cirne, F., et al. The cardiovascular effects of gonadotropin-releasing hormone antagonists in men with prostate cancer. Eur Heart J Cardiovasc Pharmacother, 2022. 8: 253.

https://pubmed.ncbi.nlm.nih.gov/33470403

1052.Abufaraj, M., et al. Differential Impact of Gonadotropin-releasing Hormone Antagonist Versus Agonist on Clinical Safety and Oncologic Outcomes on Patients with Metastatic Prostate Cancer: A Meta-analysis of Randomized Controlled Trials. Eur Urol, 2021. 79: 44.

https://pubmed.ncbi.nlm.nih.gov/32605859

1053.Shore, N.D., et al. Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. N Engl J Med, 2020. 382: 2187.

https://pubmed.ncbi.nlm.nih.gov/32469183

1054.United States Food and Drug Administration. FDA approves relugolix for advanced prostate cancer. 2020.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-relugolix-advanced-prostate-cancer

1055.European Medicines Agency. Orgovyx approved for advanced prostate cancer.

https://www.ema.europa.eu/en/medicines/human/EPAR/orgovyx

1056.Moffat, L.E. Comparison of Zoladex, diethylstilbestrol and cyproterone acetate treatment in advanced prostate cancer. Eur Urol, 1990. 18 Suppl 3: 26.

https://pubmed.ncbi.nlm.nih.gov/2151272

1057.Schroder, F.H., et al. Metastatic prostate cancer treated by flutamide versus cyproterone acetate. Final analysis of the “European Organization for Research and Treatment of Cancer” (EORTC) Protocol 30892. Eur Urol, 2004. 45: 457.

https://pubmed.ncbi.nlm.nih.gov/15041109

1058.Smith, M.R., et al. Bicalutamide monotherapy versus leuprolide monotherapy for prostate cancer: effects on bone mineral density and body composition. J Clin Oncol, 2004. 22: 2546.

https://pubmed.ncbi.nlm.nih.gov/15226323

1059.Iversen, P. Antiandrogen monotherapy: indications and results. Urology, 2002. 60: 64.

https://pubmed.ncbi.nlm.nih.gov/12231053

1060.Wadhwa, V.K., et al. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU Int, 2009. 104: 800.

https://pubmed.ncbi.nlm.nih.gov/19338564

1061.Montgomery, R.B., et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res, 2008. 68: 4447.

https://pubmed.ncbi.nlm.nih.gov/18519708

1062.United States Food and Drug Administration. FDA approves abiraterone acetate in combination with prednisone for high-risk metastatic castration-sensitive prostate cancer. 2018.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abiraterone-acetate-combination-prednisone-high-risk-metastatic-castration-sensitive

1063.United States Food and Drug Administration. FDA approves apalutamide for metastatic castration-sensitive prostate cancer. 2019.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-apalutamide-metastatic-castration-sensitive-prostate-cancer

1064.European Medicines Agency. Zytiga.

https://www.ema.europa.eu/en/medicines/human/EPAR/zytiga

1065.European Medicines Agency. Erleada (apalutamide).

https://www.ema.europa.eu/en/medicines/human/EPAR/erleada

1066.European Medicines Agency. Nubeqa (darolutamide).

https://www.ema.europa.eu/en/medicines/human/EPAR/nubeqa

1067.European Medicines Agency. Xtandi (enzalutamide).

https://www.ema.europa.eu/en/medicines/human/EPAR/xtandi

1068.Chi, K.N., et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med, 2019. 381: 13.

https://pubmed.ncbi.nlm.nih.gov/31150574

1069.Armstrong, A.J., et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol, 2019. 37: 2974.

https://pubmed.ncbi.nlm.nih.gov/31329516

1070.Fizazi, K., et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med, 2017. 377: 352.

https://pubmed.ncbi.nlm.nih.gov/28578607

1071.Moilanen, A.M., et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep, 2015. 5: 12007.

https://pubmed.ncbi.nlm.nih.gov/26137992

1072.Zurth, C., et al. Blood-brain barrier penetration of [14C]darolutamide compared with [14C]enzalutamide in rats using whole body autoradiography. Journal of Clinical Oncology, 2018. 36: 345.

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.345

1073.Sousa-Pimenta, M., et al. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front Pharmacol, 2023. 14: 1157306.

https://pubmed.ncbi.nlm.nih.gov/37229270

1074.Xue, B., et al. Synthesis of Taxol and Docetaxel by Using 10-Deacetyl-7-xylosyltaxanes. Chem Biodivers, 2020. 17: e1900631.

https://pubmed.ncbi.nlm.nih.gov/31967396

1075.Geng, C.X., et al. Docetaxel inhibits SMMC-7721 human hepatocellular carcinoma cells growth and induces apoptosis. World J Gastroenterol, 2003. 9: 696.

https://pubmed.ncbi.nlm.nih.gov/12679913

1076.Lord, C.J., et al. PARP inhibitors: Synthetic lethality in the clinic. Science, 2017. 355: 1152.

https://pubmed.ncbi.nlm.nih.gov/28302823

1077.de Bono, J.S., et al. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res, 2019. 25: 928.

https://pubmed.ncbi.nlm.nih.gov/30037818

1078.Sarker, D., et al. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 2009. 15: 4799.

https://pubmed.ncbi.nlm.nih.gov/19638457

1079.Hargadon, K.M., et al. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol, 2018. 62: 29.

https://pubmed.ncbi.nlm.nih.gov/29990692

1080.Le, D.T., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med, 2015. 372: 2509.

https://pubmed.ncbi.nlm.nih.gov/26028255

1081.Sgouros, G., et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov, 2020. 19: 589.

https://pubmed.ncbi.nlm.nih.gov/32728208

1082.United States Food and Drug Administration. FDA approval of Pluvicto (lutetium Lu 177 vipivotide tetraxetan) for the treatment of adult patients with prostate-specific membrane antigen-positive metastatic castration-resistant prostate cancer who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy. 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-pluvicto-lutetium-lu-177-vipivotide-tetraxetan-treatment-adult

1083.European Medicines Agency. Summary of product characteristics - Pluvicto.

https://www.ema.europa.eu/en/documents/product-information/pluvicto-epar-product-information_en.pdf

1084.Napoli, G., et al. A Systematic Review and a Meta-analysis of Randomized Controlled Trials’ Control Groups in Metastatic Hormone-Sensitive Prostate Cancer (mHSPC). Curr Oncol Rep, 2022. 24: 1633.

https://pubmed.ncbi.nlm.nih.gov/35953601

1085.Glass, T.R., et al. Metastatic carcinoma of the prostate: identifying prognostic groups using recursive partitioning. J Urol, 2003. 169: 164.

https://pubmed.ncbi.nlm.nih.gov/12478127

1086.Gravis, G., et al. Prognostic Factors for Survival in Noncastrate Metastatic Prostate Cancer: Validation of the Glass Model and Development of a Novel Simplified Prognostic Model. Eur Urol, 2015. 68: 196.

https://pubmed.ncbi.nlm.nih.gov/25277272

1087.Gravis, G., et al. Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. Eur Urol, 2016. 70: 256.

https://pubmed.ncbi.nlm.nih.gov/26610858

1088.Sweeney, C.J., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med, 2015. 373: 737.

https://pubmed.ncbi.nlm.nih.gov/26244877

1089.Kyriakopoulos, C.E., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol, 2018. 36: 1080.

https://pubmed.ncbi.nlm.nih.gov/29384722

1090.Gravis, G., et al. Burden of Metastatic Castrate Naive Prostate Cancer Patients, to Identify Men More Likely to Benefit from Early Docetaxel: Further Analyses of CHAARTED and GETUG-AFU15 Studies. Eur Urol, 2018. 73: 847.

https://pubmed.ncbi.nlm.nih.gov/29475737

1091.Parker, C.C., et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet, 2018. 392: 2353.

https://pubmed.ncbi.nlm.nih.gov/30355464

1092.Francini, E., et al. Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate, 2018. 78: 889.

https://pubmed.ncbi.nlm.nih.gov/29707790

1093.Hussain, M., et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J Clin Oncol, 2006. 24: 3984.

https://pubmed.ncbi.nlm.nih.gov/16921051

1094.Harshman, L.C., et al. Seven-Month Prostate-Specific Antigen Is Prognostic in Metastatic Hormone-Sensitive Prostate Cancer Treated With Androgen Deprivation With or Without Docetaxel. J Clin Oncol, 2018. 36: 376.

https://pubmed.ncbi.nlm.nih.gov/29261442

1095.Matsubara, N., et al. Correlation of Prostate-specific Antigen Kinetics with Overall Survival and Radiological Progression-free Survival in Metastatic Castration-sensitive Prostate Cancer Treated with Abiraterone Acetate plus Prednisone or Placebos Added to Androgen Deprivation Therapy: Post Hoc Analysis of Phase 3 LATITUDE Study. Eur Urol, 2020. 77: 494.

https://pubmed.ncbi.nlm.nih.gov/31843335

1096.Chowdhury, S., et al. Deep, rapid, and durable prostate-specific antigen decline with apalutamide plus androgen deprivation therapy is associated with longer survival and improved clinical outcomes in TITAN patients with metastatic castration-sensitive prostate cancer. Ann Oncol, 2023. 34: 477.

https://pubmed.ncbi.nlm.nih.gov/36858151

1097.Davey, P., et al. Cardiovascular risk profiles of GnRH agonists and antagonists: real-world analysis from UK general practice. World J Urol, 2021. 39: 307.

https://pubmed.ncbi.nlm.nih.gov/32979057

1098.Boland, J., et al. Cardiovascular Toxicity of Androgen Deprivation Therapy. Curr Cardiol Rep, 2021. 23: 109.

https://pubmed.ncbi.nlm.nih.gov/34216282

1099.Gu, L., et al. Adverse cardiovascular effect following gonadotropin-releasing hormone antagonist versus GnRH agonist for prostate cancer treatment: A systematic review and meta-analysis. Front Endocrinol (Lausanne), 2023. 14: 1157857.

https://pubmed.ncbi.nlm.nih.gov/37065739

1100.Kunath, F., et al. Non-steroidal antiandrogen monotherapy compared with luteinising hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst Rev, 2014. 6: CD009266.

https://pubmed.ncbi.nlm.nih.gov/24979481

1101.Niraula, S., et al. Treatment of prostate cancer with intermittent versus continuous androgen deprivation: a systematic review of randomized trials. J Clin Oncol, 2013. 31: 2029.

https://pubmed.ncbi.nlm.nih.gov/23630216

1102.Botrel, T.E., et al. Intermittent versus continuous androgen deprivation for locally advanced, recurrent or metastatic prostate cancer: a systematic review and meta-analysis. BMC Urol, 2014. 14: 9.

https://pubmed.ncbi.nlm.nih.gov/24460605

1103.Tsai, H.T., et al. Efficacy of intermittent androgen deprivation therapy vs conventional continuous androgen deprivation therapy for advanced prostate cancer: a meta-analysis. Urology, 2013. 82: 327.

https://pubmed.ncbi.nlm.nih.gov/23896094

1104.Brungs, D., et al. Intermittent androgen deprivation is a rational standard-of-care treatment for all stages of progressive prostate cancer: results from a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2014. 17: 105.

https://pubmed.ncbi.nlm.nih.gov/24686773

1105.Magnan, S., et al. Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Oncol, 2015. 1: 1261.

https://pubmed.ncbi.nlm.nih.gov/26378418

1106.Hussain, M., et al. Intermittent versus continuous androgen deprivation in prostate cancer. N Engl J Med, 2013. 368: 1314.

https://pubmed.ncbi.nlm.nih.gov/23550669

1107.Kunath, F., et al. Early versus deferred standard androgen suppression therapy for advanced hormone-sensitive prostate cancer. Cochrane Database Syst Rev, 2019. 6: CD003506.

https://pubmed.ncbi.nlm.nih.gov/31194882

1108.Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council Trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. Br J Urol, 1997. 79: 235.

https://pubmed.ncbi.nlm.nih.gov/9052476

1109.Walsh, P.C. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. J Urol, 1997. 158: 1623.

https://pubmed.ncbi.nlm.nih.gov/9302187

1110.Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet, 2000. 355: 1491.

https://pubmed.ncbi.nlm.nih.gov/10801170

1111.Schmitt, B., et al. Maximal androgen blockade for advanced prostate cancer. Cochrane Database Syst Rev, 2000: CD001526.

https://pubmed.ncbi.nlm.nih.gov/10796804

1112.Davis, I.D., et al. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N Engl J Med, 2019. 381: 121.

https://pubmed.ncbi.nlm.nih.gov/31157964

1113.Gu, W., et al. Rezvilutamide versus bicalutamide in combination with androgen-deprivation therapy in patients with high-volume, metastatic, hormone-sensitive prostate cancer (CHART): a randomised, open-label, phase 3 trial. Lancet Oncol, 2022. 23: 1249.

https://pubmed.ncbi.nlm.nih.gov/36075260

1114.Gravis, G., et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol, 2013. 14: 149.

https://pubmed.ncbi.nlm.nih.gov/23306100

1115.Clarke, N.W., et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol, 2019. 30: 1992.

https://pubmed.ncbi.nlm.nih.gov/31560068

1116.Smith, T.J., et al. Recommendations for the Use of WBC Growth Factors: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol, 2015. 33: 3199.

https://pubmed.ncbi.nlm.nih.gov/26169616

1117.Sathianathen, N.J., et al. Taxane-based chemohormonal therapy for metastatic hormone-sensitive prostate cancer. Cochrane Database Syst Rev, 2018. 10: CD012816.

https://pubmed.ncbi.nlm.nih.gov/30320443

1118.Vale, C.L., et al. Which patients with metastatic hormone-sensitive prostate cancer benefit from docetaxel: a systematic review and meta-analysis of individual participant data from randomised trials. Lancet Oncol, 2023. 24: 783.

https://pubmed.ncbi.nlm.nih.gov/37414011

1119.Rydzewska, L.H.M., et al. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: A systematic review and meta-analysis. Eur J Cancer, 2017. 84: 88.

https://pubmed.ncbi.nlm.nih.gov/28800492

1120.Hoyle, A.P., et al. Abiraterone in “High-” and “Low-risk” Metastatic Hormone-sensitive Prostate Cancer. Eur Urol, 2019. 76: 719.

https://pubmed.ncbi.nlm.nih.gov/31447077

1121.Armstrong, A.J., et al. Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol, 2022. 40: 1616.

https://pubmed.ncbi.nlm.nih.gov/35420921

1122.Sweeney, C.J., et al. Testosterone suppression plus enzalutamide versus testosterone suppression plus standard antiandrogen therapy for metastatic hormone-sensitive prostate cancer (ENZAMET): an international, open-label, randomised, phase 3 trial. Lancet Oncol, 2023. 24: 323.

https://pubmed.ncbi.nlm.nih.gov/36990608

1123.Chi, K.N., et al. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J Clin Oncol, 2021. 39: 2294.

https://pubmed.ncbi.nlm.nih.gov/33914595

1124.Sweeney, C.J., et al. Overall Survival of Men with Metachronous Metastatic Hormone-sensitive Prostate Cancer Treated with Enzalutamide and Androgen Deprivation Therapy. Eur Urol, 2021. 80: 275.

https://pubmed.ncbi.nlm.nih.gov/34030924

1125.Merseburger, A.S., et al. Apalutamide plus androgen deprivation therapy in clinical subgroups of patients with metastatic castration-sensitive prostate cancer: A subgroup analysis of the randomised clinical TITAN study. Eur J Cancer, 2023. 193: 113290.

https://pubmed.ncbi.nlm.nih.gov/37708629

1126.Fizazi, K., et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 x 2 factorial design. Lancet, 2022. 399: 1695.

https://pubmed.ncbi.nlm.nih.gov/35405085

1127.Fizazi, K., et al. A phase 3 trial with a 2x2 factorial design of abiraterone acetate plus prednisone and/or local radiotherapy in men with de novo metastatic castration-sensitive prostate cancer (mCSPC): First results of PEACE-1. Journal of Clinical Oncology, 2021. 39: 5000.

https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.5000

1128.Smith, M.R., et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N Engl J Med, 2022. 386: 1132.

https://pubmed.ncbi.nlm.nih.gov/35179323

1129.Hussain, M., et al. Darolutamide Plus Androgen-Deprivation Therapy and Docetaxel in Metastatic Hormone-Sensitive Prostate Cancer by Disease Volume and Risk Subgroups in the Phase III ARASENS Trial. J Clin Oncol, 2023. 41: 3595.

https://pubmed.ncbi.nlm.nih.gov/36795843

1130.Jian, T., et al. Systemic triplet therapy for metastatic hormone-sensitive prostate cancer: A systematic review and network meta-analysis. Front Pharmacol, 2022. 13: 955925.

https://pubmed.ncbi.nlm.nih.gov/36278154

1131.Fiorica, F., et al. Addition of New Androgen Receptor Pathway Inhibitors to Docetaxel and Androgen Deprivation Therapy in Metastatic Hormone-Sensitive Prostate Cancer: A Systematic Review and Metanalysis. Curr Oncol, 2022. 29: 9511.

https://pubmed.ncbi.nlm.nih.gov/36547161

1132.Marchioni, M., et al. New Antiandrogen Compounds Compared to Docetaxel for Metastatic Hormone Sensitive Prostate Cancer: Results from a Network Meta-Analysis. J Urol, 2020. 203: 751.

https://pubmed.ncbi.nlm.nih.gov/31689158

1133.Sathianathen, N.J., et al. Indirect Comparisons of Efficacy between Combination Approaches in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Network Meta-analysis. Eur Urol, 2020. 77: 365.

https://pubmed.ncbi.nlm.nih.gov/31679970

1134.Chen, X., et al. Comparative efficacy of second-generation androgen receptor inhibitors for treating prostate cancer: A systematic review and network meta-analysis. Front Endocrinol (Lausanne), 2023. 14: 1134719.

https://pubmed.ncbi.nlm.nih.gov/36967752

1135.Fallara, G., et al. Chemotherapy and advanced androgen blockage, alone or combined, for metastatic hormone-sensitive prostate cancer a systematic review and meta-analysis. Cancer Treat Rev, 2022. 110: 102441.

https://pubmed.ncbi.nlm.nih.gov/35939976

1136.Hoeh, B., et al. Triplet or Doublet Therapy in Metastatic Hormone-sensitive Prostate Cancer: Updated Network Meta-analysis Stratified by Disease Volume. Eur Urol Focus, 2023. 9: 838.

https://pubmed.ncbi.nlm.nih.gov/37055323

1137.Ramos-Esquivel, A., et al. A systematic review and meta-analysis on overall survival, failure-free survival and safety outcomes in patients with metastatic hormone-sensitive prostate cancer treated with new anti-androgens. Anticancer Drugs, 2023. 34: 405.

https://pubmed.ncbi.nlm.nih.gov/36730553

1138.Rajwa, P., et al. Association between age and efficacy of combination systemic therapies in patients with metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2023. 26: 170.

https://pubmed.ncbi.nlm.nih.gov/36284192

1139.Riaz, I.B., et al. First-line Systemic Treatment Options for Metastatic Castration-Sensitive Prostate Cancer: A Living Systematic Review and Network Meta-analysis. JAMA Oncol, 2023. 9: 635.

https://pubmed.ncbi.nlm.nih.gov/36862387

1140.Roy, S., et al. Addition of Docetaxel to Androgen Receptor Axis-targeted Therapy and Androgen Deprivation Therapy in Metastatic Hormone-sensitive Prostate Cancer: A Network Meta-analysis. Eur Urol Oncol, 2022. 5: 494.

https://pubmed.ncbi.nlm.nih.gov/35811293

1141.Wang, L., et al. Comparison of doublet and triplet therapies for metastatic hormone-sensitive prostate cancer: A systematic review and network meta-analysis. Front Oncol, 2023. 13: 1104242.

https://pubmed.ncbi.nlm.nih.gov/36959793

1142.Yanagisawa, T., et al. Androgen Receptor Signaling Inhibitors in Addition to Docetaxel with Androgen Deprivation Therapy for Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2022. 82: 584.

https://pubmed.ncbi.nlm.nih.gov/35995644

1143.Boeve, L.M.S., et al. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur Urol, 2019. 75: 410.

https://pubmed.ncbi.nlm.nih.gov/30266309

1144.Parker, C.C., et al. Radiotherapy to the prostate for men with metastatic prostate cancer in the UK and Switzerland: Long-term results from the STAMPEDE randomised controlled trial. PLoS Med, 2022. 19: e1003998.

https://pubmed.ncbi.nlm.nih.gov/35671327

1145.Ali, A., et al. Association of Bone Metastatic Burden With Survival Benefit From Prostate Radiotherapy in Patients With Newly Diagnosed Metastatic Prostate Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2021. 7: 555.

https://pubmed.ncbi.nlm.nih.gov/33599706

1146.Burdett, S., et al. Prostate Radiotherapy for Metastatic Hormone-sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-analysis. Eur Urol, 2019. 76: 115.

https://pubmed.ncbi.nlm.nih.gov/30826218

1147.Milenkovic, U., et al. Predictors of Recurrence After Metastasis-directed Therapy in Oligorecurrent Prostate Cancer Following Radical Prostatectomy. Eur Urol Oncol, 2023. 6: 582.

https://pubmed.ncbi.nlm.nih.gov/36878753

1148.Ost, P., et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J Clin Oncol, 2018. 36: 446.

https://pubmed.ncbi.nlm.nih.gov/29240541

1149.Phillips, R., et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol, 2020. 6: 650.

https://pubmed.ncbi.nlm.nih.gov/32215577

1150.Deek, M.P., et al. Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials. J Clin Oncol, 2022. 40: 3377.

https://pubmed.ncbi.nlm.nih.gov/36001857

1151.Glicksman, R.M., et al. Curative-intent Metastasis-directed Therapies for Molecularly-defined Oligorecurrent Prostate Cancer: A Prospective Phase II Trial Testing the Oligometastasis Hypothesis. Eur Urol, 2021. 80: 374.

https://pubmed.ncbi.nlm.nih.gov/33685838

1152.Battaglia, A., et al. Novel Insights into the Management of Oligometastatic Prostate Cancer: A Comprehensive Review. Eur Urol Oncol, 2019. 2: 174.

https://pubmed.ncbi.nlm.nih.gov/31017094

1153.Connor, M.J., et al. Targeting Oligometastasis with Stereotactic Ablative Radiation Therapy or Surgery in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review of Prospective Clinical Trials. Eur Urol Oncol, 2020. 3: 582.

https://pubmed.ncbi.nlm.nih.gov/32891600

1154.Marvaso, G., et al. Oligorecurrent Prostate Cancer and Stereotactic Body Radiotherapy: Where Are We Now? A Systematic Review and Meta-analysis of Prospective Studies. Eur Urol Open Sci, 2021. 27: 19.

https://pubmed.ncbi.nlm.nih.gov/34337513

1155.Devos, G., et al. Oncological Outcomes of Metastasis-Directed Therapy in Oligorecurrent Prostate Cancer Patients Following Radical Prostatectomy. Cancers (Basel), 2020. 12.

https://pubmed.ncbi.nlm.nih.gov/32823690

1156.Eisenhauer, E.A., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45: 228.

https://pubmed.ncbi.nlm.nih.gov/19097774

1157.FDA approves liquid biopsy NGS companion diagnostic test for multiple cancers and biomarkers. 2020.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-liquid-biopsy-ngs-companion-diagnostic-test-multiple-cancers-and-biomarkers

1158.Lotan, T.L., et al. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol, 2020. 44: e15.

https://pubmed.ncbi.nlm.nih.gov/32044806

1159.Dienstmann, R., et al. Standardized decision support in next generation sequencing reports of somatic cancer variants. Mol Oncol, 2014. 8: 859.

https://pubmed.ncbi.nlm.nih.gov/24768039

1160.Beer, T.M., et al. Enzalutamide in Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer: Extended Analysis of the Phase 3 PREVAIL Study. Eur Urol, 2017. 71: 151.

https://pubmed.ncbi.nlm.nih.gov/27477525

1161.Hussain, M., et al. PROfound: Phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations. Annals of Oncology, 2019. 30: v881.

https://www.sciencedirect.com/science/article/pii/S0923753419603996

1162.Hussain, M., et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 383: 2345.

https://pubmed.ncbi.nlm.nih.gov/32955174

1163.pembrolizumab (KEYTRUDA). 2017.

https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature

1164.de Wit, R., et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med, 2019. 381: 2506.

https://pubmed.ncbi.nlm.nih.gov/31566937

1165.Loriot, Y., et al. Prior long response to androgen deprivation predicts response to next-generation androgen receptor axis targeted drugs in castration resistant prostate cancer. Eur J Cancer, 2015. 51: 1946.

https://pubmed.ncbi.nlm.nih.gov/26208462

1166.Smith, M.R., et al. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. Cancer, 2011. 117: 2077.

https://pubmed.ncbi.nlm.nih.gov/21523719

1167.Crawford, E.D., et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology, 2014. 83: 664.

https://pubmed.ncbi.nlm.nih.gov/24411213

1168.Fendler, W.P., et al. Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clin Cancer Res, 2019. 25: 7448.

https://pubmed.ncbi.nlm.nih.gov/31511295

1169.Hussain, M., et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2018. 378: 2465.

https://pubmed.ncbi.nlm.nih.gov/29949494

1170.Smith, M.R., et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N Engl J Med, 2018. 378: 1408.

https://pubmed.ncbi.nlm.nih.gov/29420164

1171.Fizazi, K., et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2019. 380: 1235.

https://pubmed.ncbi.nlm.nih.gov/30763142

1172.Fizazi, K., et al. Nonmetastatic, Castration-Resistant Prostate Cancer and Survival with Darolutamide. N Engl J Med, 2020. 383: 1040.

https://pubmed.ncbi.nlm.nih.gov/32905676

1173.Sternberg, C.N., et al. Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 382: 2197.

https://pubmed.ncbi.nlm.nih.gov/32469184

1174.Smith, M.R., et al. Apalutamide and Overall Survival in Prostate Cancer. Eur Urol, 2021. 79: 150.

https://pubmed.ncbi.nlm.nih.gov/32907777

1175.Hussain, M., et al. Effects of continued androgen-deprivation therapy and other prognostic factors on response and survival in phase II chemotherapy trials for hormone-refractory prostate cancer: a Southwest Oncology Group report. J Clin Oncol, 1994. 12: 1868.

https://pubmed.ncbi.nlm.nih.gov/8083710

1176.Taylor, C.D., et al. Importance of continued testicular suppression in hormone-refractory prostate cancer. J Clin Oncol, 1993. 11: 2167.

https://pubmed.ncbi.nlm.nih.gov/8229130

1177.Ryan, C.J., et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med, 2013. 368: 138.

https://pubmed.ncbi.nlm.nih.gov/23228172

1178.Ryan, C.J., et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol, 2015. 16: 152.

https://pubmed.ncbi.nlm.nih.gov/25601341

1179.Roviello, G., et al. Targeting the androgenic pathway in elderly patients with castration-resistant prostate cancer: A meta-analysis of randomized trials. Medicine (Baltimore), 2016. 95: e4636.

https://pubmed.ncbi.nlm.nih.gov/27787354

1180.Beer, T.M., et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med, 2014. 371: 424.

https://pubmed.ncbi.nlm.nih.gov/24881730

1181.Graff, J.N., et al. Efficacy and safety of enzalutamide in patients 75 years or older with chemotherapy-naive metastatic castration-resistant prostate cancer: results from PREVAIL. Ann Oncol, 2016. 27: 286.

https://pubmed.ncbi.nlm.nih.gov/26578735

1182.Evans, C.P., et al. The PREVAIL Study: Primary Outcomes by Site and Extent of Baseline Disease for Enzalutamide-treated Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer. Eur Urol, 2016. 70: 675.

https://pubmed.ncbi.nlm.nih.gov/27006332

1183.Shore, N.D., et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol, 2016. 17: 153.

https://pubmed.ncbi.nlm.nih.gov/26774508

1184.de Bono, J.S., et al. Subsequent Chemotherapy and Treatment Patterns After Abiraterone Acetate in Patients with Metastatic Castration-resistant Prostate Cancer: Post Hoc Analysis of COU-AA-302. Eur Urol, 2017. 71: 656.

https://pubmed.ncbi.nlm.nih.gov/27402060

1185.Tannock, I.F., et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 2004. 351: 1502.

https://pubmed.ncbi.nlm.nih.gov/15470213

1186.Berthold, D.R., et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol, 2008. 26: 242.

https://pubmed.ncbi.nlm.nih.gov/18182665

1187.Armstrong, A.J., et al. Prediction of survival following first-line chemotherapy in men with castration-resistant metastatic prostate cancer. Clin Cancer Res, 2010. 16: 203.

https://pubmed.ncbi.nlm.nih.gov/20008841

1188.Italiano, A., et al. Docetaxel-based chemotherapy in elderly patients (age 75 and older) with castration-resistant prostate cancer. Eur Urol, 2009. 55: 1368.

https://pubmed.ncbi.nlm.nih.gov/18706755

1189.Horgan, A.M., et al. Tolerability and efficacy of docetaxel in older men with metastatic castrate-resistant prostate cancer (mCRPC) in the TAX 327 trial. J Geriatr Oncol, 2014. 5: 119.

https://pubmed.ncbi.nlm.nih.gov/24495703

1190.Kellokumpu-Lehtinen, P.L., et al. 2-Weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: a randomised, phase 3 trial. Lancet Oncol, 2013. 14: 117.

https://pubmed.ncbi.nlm.nih.gov/23294853

1191.Kantoff, P.W., et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363: 411.

https://pubmed.ncbi.nlm.nih.gov/20818862

1192.Sweeney, C., et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet, 2021. 398: 131.

https://pubmed.ncbi.nlm.nih.gov/34246347

1193.Clarke, N.W., et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evidence, 2022. 1: EVIDoa2200043.

https://evidence.nejm.org/doi/abs/10.1056/EVIDoa2200043

1194.Saad, F., et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol, 2023. 24: 1094.

https://pubmed.ncbi.nlm.nih.gov/37714168

1195.FDA approves olaparib with abiraterone and prednisone (or prednisolone) for BRCA-mutated metastatic castration-resistant prostate cancer. 2023.

https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-abiraterone-and-prednisone-or-prednisolone-brca-mutated-metastatic-castration

1196.Lynparza (olaparib).

https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza

1197.FDA D.I.S.C.O. Burst Edition: FDA approval of Lynparza (olaparib), with abiraterone and prednisone, for BRCA-mutated metastatic castration-resistant prostate cancer. 2023.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-lynparza-olaparib-abiraterone-and-prednisone-brca-mutated

1198.Chi, K.N., et al. Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. Journal of Clinical Oncology, 2022. 40: 12.

https://doi.org/10.1200/JCO.2022.40.6_suppl.012

1199.Chi, K.N., et al. Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: second interim analysis of the randomized phase III MAGNITUDE trial. Ann Oncol, 2023. 34: 772.

https://pubmed.ncbi.nlm.nih.gov/37399894

1200.European Medicines Agency. Akeega.

https://www.ema.europa.eu/en/medicines/human/EPAR/akeega

1201.FDA approves talazoparib with enzalutamide for HRR gene-mutated metastatic castration-resistant prostate cancer. 2023.

https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-talazoparib-enzalutamide-hrr-gene-mutated-metastatic-castration-resistant-prostate

1202.Agarwal, N., et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet, 2023. 402: 291.

https://pubmed.ncbi.nlm.nih.gov/37285865

1203.Fizazi, K., et al. First-line talazoparib with enzalutamide in HRR-deficient metastatic castration-resistant prostate cancer: the phase 3 TALAPRO-2 trial. Nature Medicine, 2023.

https://doi.org/10.1038/s41591-023-02704-x

1204.Petrylak, D.P., et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351: 1513.

https://pubmed.ncbi.nlm.nih.gov/15470214

1205.Rathkopf, D.E., et al. Updated interim efficacy analysis and long-term safety of abiraterone acetate in metastatic castration-resistant prostate cancer patients without prior chemotherapy (COU-AA-302). Eur Urol, 2014. 66: 815.

https://pubmed.ncbi.nlm.nih.gov/24647231

1206.Small, E.J., et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol, 2006. 24: 3089.

https://pubmed.ncbi.nlm.nih.gov/16809734

1207.Chi, K.N., et al. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, 2023. 41: 3339.

https://pubmed.ncbi.nlm.nih.gov/36952634

1208.de Bono, J.S., et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 2010. 376: 1147.

https://pubmed.ncbi.nlm.nih.gov/20888992

1209.Sartor, A., et al. Cabazitaxel vs docetaxel in chemotherapy-naive (CN) patients with metastatic castration-resistant prostate cancer (mCRPC): A three-arm phase III study (FIRSTANA). J Clin Oncol 2016. 34: Abstract 5006.

https://ascopubs.org/doi/10.1200/JCO.2016.34.15_suppl.5006

1210.Eisenberger, M., et al. Phase III Study Comparing a Reduced Dose of Cabazitaxel (20 mg/m(2)) and the Currently Approved Dose (25 mg/m(2)) in Postdocetaxel Patients With Metastatic Castration-Resistant Prostate Cancer-PROSELICA. J Clin Oncol, 2017. 35: 3198.

https://pubmed.ncbi.nlm.nih.gov/28809610

1211.Di Lorenzo, G., et al. Peg-filgrastim and cabazitaxel in prostate cancer patients. Anticancer Drugs, 2013. 24: 84.

https://pubmed.ncbi.nlm.nih.gov/23044721

1212.de Bono, J.S., et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med, 2011. 364: 1995.

https://pubmed.ncbi.nlm.nih.gov/21612468

1213.Fizazi, K., et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol, 2012. 13: 983.

https://pubmed.ncbi.nlm.nih.gov/22995653

1214.Scher, H.I., et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med, 2012. 367: 1187.

https://pubmed.ncbi.nlm.nih.gov/22894553

1215.Parker, C., et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med, 2013. 369: 213.

https://pubmed.ncbi.nlm.nih.gov/23863050

1216.Hoskin, P., et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol, 2014. 15: 1397.

https://pubmed.ncbi.nlm.nih.gov/25439694

1217.European Medicines Agency. EMA restricts use of prostate cancer medicine Xofigo.

https://www.ema.europa.eu/en/news/ema-restricts-use-prostate-cancer-medicine-xofigo

1218.Smith, M., et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2019. 20: 408.

https://pubmed.ncbi.nlm.nih.gov/30738780

1219.Fizazi, K., et al. Rucaparib or Physician’s Choice in Metastatic Prostate Cancer. N Engl J Med, 2023. 388: 719.

https://pubmed.ncbi.nlm.nih.gov/36795891

1220.Bryce, A.H., et al. Rucaparib for metastatic castration-resistant prostate cancer (mCRPC): TRITON3 interim overall survival and efficacy of rucaparib vs docetaxel or second-generation androgen pathway inhibitor therapy. Journal of Clinical Oncology, 2023. 41: 18.

https://meetings.asco.org/abstracts-presentations/216883

1221.Rubin, K.H., et al. Comparison of different screening tools (FRAX(R), OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone, 2013. 56: 16.

https://pubmed.ncbi.nlm.nih.gov/23669650

1222.Conde, F.A., et al. Risk factors for male osteoporosis. Urol Oncol, 2003. 21: 380.

https://pubmed.ncbi.nlm.nih.gov/14670549

1223.Mateo, J., et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med, 2015. 373: 1697.

https://pubmed.ncbi.nlm.nih.gov/26510020

1224.de Bono, J.S., Mateo, J., Fizazi, K., et al. Final overall survival (OS) analysis of PROfound: Olaparib vs physician’s choice of enzalutamide or abiraterone in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) gene alterations. Ann Oncol 2020. 31: S507.

https://www.nejm.org/doi/full/10.1056/NEJMoa1911440

1225.Badrising, S., et al. Clinical activity and tolerability of enzalutamide (MDV3100) in patients with metastatic, castration-resistant prostate cancer who progress after docetaxel and abiraterone treatment. Cancer, 2014. 120: 968.

https://pubmed.ncbi.nlm.nih.gov/24382803

1226.Zhang, T., et al. Enzalutamide versus abiraterone acetate for the treatment of men with metastatic castration-resistant prostate cancer. Expert Opin Pharmacother, 2015. 16: 473.

https://pubmed.ncbi.nlm.nih.gov/25534660

1227.Antonarakis, E.S., et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med, 2014. 371: 1028.

https://pubmed.ncbi.nlm.nih.gov/25184630

1228.Attard, G., et al. Abiraterone Alone or in Combination With Enzalutamide in Metastatic Castration-Resistant Prostate Cancer With Rising Prostate-Specific Antigen During Enzalutamide Treatment. J Clin Oncol, 2018. 36: 2639.

https://pubmed.ncbi.nlm.nih.gov/30028657

1229.Serafini, A.N. Current status of systemic intravenous radiopharmaceuticals for the treatment of painful metastatic bone disease. Int J Radiat Oncol Biol Phys, 1994. 30: 1187.

https://pubmed.ncbi.nlm.nih.gov/7525518

1230.Ballinger, J.R. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol, 2018. 91: 20170969.

https://pubmed.ncbi.nlm.nih.gov/29474096

1231.Emmett, L., et al. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci, 2017. 64: 52.

https://pubmed.ncbi.nlm.nih.gov/28303694

1232.Calopedos, R.J.S., et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2017. 20: 352.

https://pubmed.ncbi.nlm.nih.gov/28440324

1233.Hofman, M.S., et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol, 2018. 19: 825.

https://pubmed.ncbi.nlm.nih.gov/29752180

1234.Emmett, L., et al. Results of a Prospective Phase 2 Pilot Trial of (177)Lu-PSMA-617 Therapy for Metastatic Castration-Resistant Prostate Cancer Including Imaging Predictors of Treatment Response and Patterns of Progression. Clin Genitourin Cancer, 2019. 17: 15.

https://pubmed.ncbi.nlm.nih.gov/30425003

1235.Hofman, M.S., et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet, 2021. 397: 797.

https://pubmed.ncbi.nlm.nih.gov/33581798

1236.Hofman, M.S., et al. TheraP: 177Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic castration-resistant prostate cancer (mCRPC) progressing after docetaxel—Overall survival after median follow-up of 3 years (ANZUP 1603). Journal of Clinical Oncology, 2022. 40: 5000.

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.5000

1237.Sartor, O., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2021. 385: 1091.

https://pubmed.ncbi.nlm.nih.gov/34161051

1238.Sadaghiani, M.S., et al. (177) Lu-PSMA radioligand therapy effectiveness in metastatic castration-resistant prostate cancer: An updated systematic review and meta-analysis. Prostate, 2022. 82: 826.

https://pubmed.ncbi.nlm.nih.gov/35286735

1239.Lee, D.Y., et al. Effects of (225)Ac-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis. J Nucl Med, 2022. 63: 840.

https://pubmed.ncbi.nlm.nih.gov/34503960

1240.European Medicines Agency. Lynparza (olaparib).

https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza

1241.Abida, W., et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol, 2020. 38: 3763.

https://pubmed.ncbi.nlm.nih.gov/32795228

1242.FDA grants accelerated approval to rucaparib for BRCA-mutated metastatic castration-resistant prostate cancer. 2020.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate

1243.Wilt, T.J., et al. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med, 2017. 377: 132.

https://pubmed.ncbi.nlm.nih.gov/28700844

1244.Beesley, L.J., et al. Individual and Population Comparisons of Surgery and Radiotherapy Outcomes in Prostate Cancer Using Bayesian Multistate Models. JAMA Netw Open, 2019. 2: e187765.

https://pubmed.ncbi.nlm.nih.gov/30707231

1245.Khalaf, D.J., et al. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol, 2019. 20: 1730.

https://pubmed.ncbi.nlm.nih.gov/31727538

1246.Miyake, H., et al. Comparative Assessment of Efficacies Between 2 Alternative Therapeutic Sequences With Novel Androgen Receptor-Axis-Targeted Agents in Patients With Chemotherapy-Naive Metastatic Castration-Resistant Prostate Cancer. Clin Genitourin Cancer, 2017. 15: e591.

https://pubmed.ncbi.nlm.nih.gov/28063845

1247.Terada, N., et al. Exploring the optimal sequence of abiraterone and enzalutamide in patients with chemotherapy-naive castration-resistant prostate cancer: The Kyoto-Baltimore collaboration. Int J Urol, 2017. 24: 441.

https://pubmed.ncbi.nlm.nih.gov/28455853

1248.Azad, A.A., et al. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol, 2015. 67: 23.

https://pubmed.ncbi.nlm.nih.gov/25018038

1249.Kobayashi, T., et al. Sequential Use of Androgen Receptor Axis-targeted Agents in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Retrospective Analysis With 3-Year Follow-up. Clin Genitourin Cancer, 2020. 18: e46.

https://pubmed.ncbi.nlm.nih.gov/31759831

1250.Komura, K., et al. Comparison of Radiographic Progression-Free Survival and PSA Response on Sequential Treatment Using Abiraterone and Enzalutamide for Newly Diagnosed Castration-Resistant Prostate Cancer: A Propensity Score Matched Analysis from Multicenter Cohort. J Clin Med, 2019. 8.

https://pubmed.ncbi.nlm.nih.gov/31430900

1251.Matsubara, N., et al. Abiraterone Followed by Enzalutamide Versus Enzalutamide Followed by Abiraterone in Chemotherapy-naive Patients With Metastatic Castration-resistant Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 142.

https://pubmed.ncbi.nlm.nih.gov/29042308

1252.Maughan, B.L., et al. Comparing Sequencing of Abiraterone and Enzalutamide in Men With Metastatic Castration-Resistant Prostate Cancer: A Retrospective Study. Prostate, 2017. 77: 33.

https://pubmed.ncbi.nlm.nih.gov/27527643

1253.de Bono, J.S., et al. Antitumour Activity and Safety of Enzalutamide in Patients with Metastatic Castration-resistant Prostate Cancer Previously Treated with Abiraterone Acetate Plus Prednisone for >/=24 weeks in Europe. Eur Urol, 2018. 74: 37.

https://pubmed.ncbi.nlm.nih.gov/28844372

1254.Mori, K., et al. Sequential therapy of abiraterone and enzalutamide in castration-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2020. 23: 539.

https://pubmed.ncbi.nlm.nih.gov/32152435

1255.Lavaud, P., et al. Anticancer Activity and Tolerance of Treatments Received Beyond Progression in Men Treated Upfront with Androgen Deprivation Therapy With or Without Docetaxel for Metastatic Castration-naive Prostate Cancer in the GETUG-AFU 15 Phase 3 Trial. Eur Urol, 2018. 73: 696.

https://pubmed.ncbi.nlm.nih.gov/29074061

1256.Bahl, A., et al. Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol, 2013. 24: 2402.

https://pubmed.ncbi.nlm.nih.gov/23723295

1257.Hager, S., et al. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann Oncol, 2016. 27: 975.

https://pubmed.ncbi.nlm.nih.gov/27052650

1258.Corn, P.G., et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial. Lancet Oncol, 2019. 20: 1432.

https://pubmed.ncbi.nlm.nih.gov/31515154

1259.Aparicio, A.M., et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res, 2013. 19: 3621.

https://pubmed.ncbi.nlm.nih.gov/23649003

1260.Mota, J.M., et al. Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precis Oncol, 2020. 4: 355.

https://pubmed.ncbi.nlm.nih.gov/32856010

1261.Gillessen, S., et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol, 2015. 26: 1589.

https://pubmed.ncbi.nlm.nih.gov/26041764

1262.Saad, F., et al. Prostate-specific Antigen Progression in Enzalutamide-treated Men with Nonmetastatic Castration-resistant Prostate Cancer: Any Rise in Prostate-specific Antigen May Require Closer Monitoring. Eur Urol, 2020. 78: 847.

https://pubmed.ncbi.nlm.nih.gov/33010985

1263.Aggarwal, R., et al. Heterogeneous Flare in Prostate-specific Membrane Antigen Positron Emission Tomography Tracer Uptake with Initiation of Androgen Pathway Blockade in Metastatic Prostate Cancer. Eur Urol Oncol, 2018. 1: 78.

https://pubmed.ncbi.nlm.nih.gov/31100231

1264.Payne, H., et al. Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol, 2011. 29: 593.

https://pubmed.ncbi.nlm.nih.gov/20060331

1265.Pezaro, C., et al. Visceral disease in castration-resistant prostate cancer. Eur Urol, 2014. 65: 270.

https://pubmed.ncbi.nlm.nih.gov/24295792

1266.Scher, H.I., et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol, 2016. 34: 1402.

https://pubmed.ncbi.nlm.nih.gov/26903579

1267.Ohlmann C, O.E., Wille S, et al. . Second-line chemotherapy with docetaxel for prostate-specific antigen relapse in men with hormone refractory prostate cancer previously treated with docetaxel

https://pubmed.ncbi.nlm.nih.gov/27946848

1268.Gillessen, S., et al. Management of Patients with Advanced Prostate Cancer: Report of the Advanced Prostate Cancer Consensus Conference 2019. Eur Urol, 2020. 77: 508.

https://pubmed.ncbi.nlm.nih.gov/32001144

1269.Gillessen, S., et al. Management of patients with advanced prostate cancer-metastatic and/or castration-resistant prostate cancer: Report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022. Eur J Cancer, 2023. 185: 178.

https://pubmed.ncbi.nlm.nih.gov/37003085

1270.Rao, K., et al. Uro-oncology multidisciplinary meetings at an Australian tertiary referral centre--impact on clinical decision-making and implications for patient inclusion. BJU Int, 2014. 114 Suppl 1: 50.

https://pubmed.ncbi.nlm.nih.gov/25070295

1271.Cereceda, L.E., et al. Management of vertebral metastases in prostate cancer: a retrospective analysis in 119 patients. Clin Prostate Cancer, 2003. 2: 34.

https://pubmed.ncbi.nlm.nih.gov/15046682

1272.Chaichana, K.L., et al. Outcome following decompressive surgery for different histological types of metastatic tumors causing epidural spinal cord compression. Clinical article. J Neurosurg Spine, 2009. 11: 56.

https://pubmed.ncbi.nlm.nih.gov/19569942

1273.Hoskin, P., et al. A Multicenter Randomized Trial of Ibandronate Compared With Single-Dose Radiotherapy for Localized Metastatic Bone Pain in Prostate Cancer. J Natl Cancer Inst, 2015. 107.

https://pubmed.ncbi.nlm.nih.gov/26242893

1274.Frankel, B.M., et al. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty. Spine J, 2007. 7: 575.

https://pubmed.ncbi.nlm.nih.gov/17905320

1275.Dutka, J., et al. Time of survival and quality of life of the patients operatively treated due to pathological fractures due to bone metastases. Ortop Traumatol Rehabil, 2003. 5: 276.

https://pubmed.ncbi.nlm.nih.gov/18034018

1276.Frankel, B.M., et al. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery, 2007. 61: 531.

https://pubmed.ncbi.nlm.nih.gov/17881965

1277.Lawton, A.J., et al. Assessment and Management of Patients With Metastatic Spinal Cord Compression: A Multidisciplinary Review. J Clin Oncol, 2019. 37: 61.

https://pubmed.ncbi.nlm.nih.gov/30395488

1278.Saad, F., et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst, 2002. 94: 1458.

https://pubmed.ncbi.nlm.nih.gov/12359855

1279.Fizazi, K., et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet, 2011. 377: 813.

https://pubmed.ncbi.nlm.nih.gov/21353695

1280.Smith, M.R., et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 2012. 379: 39.

https://pubmed.ncbi.nlm.nih.gov/22093187

1281.Marco, R.A., et al. Functional and oncological outcome of acetabular reconstruction for the treatment of metastatic disease. J Bone Joint Surg Am, 2000. 82: 642.

https://pubmed.ncbi.nlm.nih.gov/10819275

1282.Stopeck, A.T., et al. Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Support Care Cancer, 2016. 24: 447.

https://pubmed.ncbi.nlm.nih.gov/26335402

1283.Aapro, M., et al. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Ann Oncol, 2008. 19: 420.

https://pubmed.ncbi.nlm.nih.gov/17906299

1284.Otto, S., Medication-Related Osteonecrosis of the Jaws, ed. S. Otto. 2015, Berlin Heidelberg.

https://link.springer.com/book/10.1007/978-3-662-43733-9

1285.European Medicines Agency. Xgeva.

https://www.ema.europa.eu/en/medicines/human/EPAR/xgeva

1286.Stopeck, A.T., et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol, 2010. 28: 5132.

https://pubmed.ncbi.nlm.nih.gov/21060033

1287.Body, J.J., et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer, 2015. 51: 1812.

https://pubmed.ncbi.nlm.nih.gov/26093811

1288.Rice, S.M., et al. Depression and Prostate Cancer: Examining Comorbidity and Male-Specific Symptoms. Am J Mens Health, 2018. 12: 1864.

https://pubmed.ncbi.nlm.nih.gov/29957106

1289.van Stam, M.A., et al. Prevalence and correlates of mental health problems in prostate cancer survivors: A case-control study comparing survivors with general population peers. Urol Oncol, 2017. 35: 531 e1.

https://pubmed.ncbi.nlm.nih.gov/28457651

1290.Horwitz, E.M., et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J Urol, 2005. 173: 797.

https://pubmed.ncbi.nlm.nih.gov/15711272

1291.Stamey, T.A., et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J Urol, 1989. 141: 1076.

https://pubmed.ncbi.nlm.nih.gov/2468795

1292.Jackson, W.C., et al. Impact of Biochemical Failure After Salvage Radiation Therapy on Prostate Cancer-specific Mortality: Competition Between Age and Time to Biochemical Failure. Eur Urol Oncol, 2018. 1: 276.

https://pubmed.ncbi.nlm.nih.gov/31100248

1293.Grivas, N., et al. Ultrasensitive prostate-specific antigen level as a predictor of biochemical progression after robot-assisted radical prostatectomy: Towards risk adapted follow-up. J Clin Lab Anal, 2019. 33: e22693.

https://pubmed.ncbi.nlm.nih.gov/30365194

1294.Shen, S., et al. Ultrasensitive serum prostate specific antigen nadir accurately predicts the risk of early relapse after radical prostatectomy. J Urol, 2005. 173: 777.

https://pubmed.ncbi.nlm.nih.gov/15711268

1295.Zakaria, A.S., et al. Detectable Prostate-specific antigen value between 0.01 and 0.1 ng/ml following robotic-assisted radical prostatectomy (RARP): does it correlate with future biochemical recurrence? World J Urol, 2021. 39: 1853.

https://pubmed.ncbi.nlm.nih.gov/32696130

1296.Ray, M.E., et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys, 2006. 64: 1140.

https://pubmed.ncbi.nlm.nih.gov/16198506

1297.Oefelein, M.G., et al. The incidence of prostate cancer progression with undetectable serum prostate specific antigen in a series of 394 radical prostatectomies. J Urol, 1995. 154: 2128.

https://pubmed.ncbi.nlm.nih.gov/7500474

1298.Doneux, A., et al. The utility of digital rectal examination after radical radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol), 2005. 17: 172.

https://pubmed.ncbi.nlm.nih.gov/15901001

1299.Chaplin, B.J., et al. Digital rectal examination is no longer necessary in the routine follow-up of men with undetectable prostate specific antigen after radical prostatectomy: the implications for follow-up. Eur Urol, 2005. 48: 906.

https://pubmed.ncbi.nlm.nih.gov/16126322

1300.Warren, K.S., et al. Is routine digital rectal examination required for the followup of prostate cancer? J Urol, 2007. 178: 115.

https://pubmed.ncbi.nlm.nih.gov/17499293

1301.Marshall, C.H., et al. Timing of Androgen Deprivation Treatment for Men with Biochemical Recurrent Prostate Cancer in the Context of Novel Therapies. J Urol, 2021. 206: 623.

https://pubmed.ncbi.nlm.nih.gov/34003011

1302.Loblaw, A., et al. Follow-up Care for Survivors of Prostate Cancer - Clinical Management: a Program in Evidence-Based Care Systematic Review and Clinical Practice Guideline. Clin Oncol (R Coll Radiol), 2017. 29: 711.

https://pubmed.ncbi.nlm.nih.gov/28928084

1303.Thorstenson, A., et al. Incidence of fractures causing hospitalisation in prostate cancer patients: results from the population-based PCBaSe Sweden. Eur J Cancer, 2012. 48: 1672.

https://pubmed.ncbi.nlm.nih.gov/22386317

1304.Franck Lissbrant, I., et al. Set-up and preliminary results from the Patient-overview Prostate Cancer. Longitudinal registration of treatment of advanced prostate cancer in the National Prostate Cancer Register of Sweden. Scand J Urol, 2020. 54: 227.

https://pubmed.ncbi.nlm.nih.gov/32363988

1305.Saad, F., et al. Testosterone Breakthrough Rates during Androgen Deprivation Therapy for Castration Sensitive Prostate Cancer. J Urol, 2020. 204: 416.

https://pubmed.ncbi.nlm.nih.gov/32096678

1306.Rouleau, M., et al. Discordance between testosterone measurement methods in castrated prostate cancer patients. Endocr Connect, 2019. 8: 132.

https://pubmed.ncbi.nlm.nih.gov/30673630

1307.Morote, J., et al. Serum Testosterone Levels in Prostate Cancer Patients Undergoing Luteinizing Hormone-Releasing Hormone Agonist Therapy. Clin Genitourin Cancer, 2018. 16: e491.

https://pubmed.ncbi.nlm.nih.gov/29198640

1308.Long, M.E., et al. Decreased testosterone recovery after androgen deprivation therapy for prostate cancer. Can J Urol, 2021. 28: 10738.

https://pubmed.ncbi.nlm.nih.gov/34378507

1309.Nascimento, B., et al. Testosterone Recovery Profiles After Cessation of Androgen Deprivation Therapy for Prostate Cancer. J Sex Med, 2019. 16: 872.

https://pubmed.ncbi.nlm.nih.gov/31080102

1310.Beer, T.M., et al. Hepatic effects assessed by review of safety data in enzalutamide castration-resistant prostate cancer (CRPC) trials. Journal of Clinical Oncology, 2018. 36: 199.

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.199

1311.Yanagisawa, T., et al. Abiraterone acetate versus nonsteroidal antiandrogen with androgen deprivation therapy for high-risk metastatic hormone-sensitive prostate cancer. Prostate, 2022. 82: 3.

https://pubmed.ncbi.nlm.nih.gov/34559410

1312.Daniell, H.W. Osteoporosis due to androgen deprivation therapy in men with prostate cancer. Urology, 2001. 58: 101.

https://pubmed.ncbi.nlm.nih.gov/11502461

1313.Beer, T.M., et al. The prognostic value of hemoglobin change after initiating androgen-deprivation therapy for newly diagnosed metastatic prostate cancer: A multivariate analysis of Southwest Oncology Group Study 8894. Cancer, 2006. 107: 489.

https://pubmed.ncbi.nlm.nih.gov/16804926

1314.Ebbinge, M., et al. Clinical and prognostic significance of changes in haemoglobin concentration during 1 year of androgen-deprivation therapy for hormone-naive bone-metastatic prostate cancer. BJU Int, 2018. 122: 583.

https://pubmed.ncbi.nlm.nih.gov/29611275

1315.Sini, C., et al. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother Oncol, 2016. 118: 79.

https://pubmed.ncbi.nlm.nih.gov/26702990

1316.Turner, P.G., et al. Toxicity and Efficacy of Concurrent Androgen Deprivation Therapy, Pelvic Radiotherapy, and Radium-223 in Patients with De Novo Metastatic Hormone-Sensitive Prostate Cancer. Clin Cancer Res, 2021. 27: 4549.

https://pubmed.ncbi.nlm.nih.gov/34187853

1317.Iacovelli, R., et al. The Cardiovascular Toxicity of Abiraterone and Enzalutamide in Prostate Cancer. Clin Genitourin Cancer, 2018. 16: e645.

https://pubmed.ncbi.nlm.nih.gov/29339044

1318.Rizzo, A., et al. Risk of cardiovascular toxicities and hypertension in nonmetastatic castration-resistant prostate cancer patients treated with novel hormonal agents: a systematic review and meta-analysis. Expert Opin Drug Metab Toxicol, 2021. 17: 1237.

https://pubmed.ncbi.nlm.nih.gov/34407702

1319.Gong, J., et al. Reduced Cardiorespiratory Fitness and Increased Cardiovascular Mortality After Prolonged Androgen Deprivation Therapy for Prostate Cancer. JACC CardioOncol, 2020. 2: 553.

https://pubmed.ncbi.nlm.nih.gov/34396266

1320.Lopes, R.D., et al. Cardiovascular Safety of Degarelix Versus Leuprolide in Patients With Prostate Cancer: The Primary Results of the PRONOUNCE Randomized Trial. Circulation, 2021. 144: 1295.

https://pubmed.ncbi.nlm.nih.gov/34459214

1321.Attard, G., et al. Assessment of the Safety of Glucocorticoid Regimens in Combination With Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer: A Randomized, Open-label Phase 2 Study. JAMA Oncol, 2019. 5: 1159.

https://pubmed.ncbi.nlm.nih.gov/31246234

1322.James, N., et al. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer. Health Technol Assess, 2016. 20: 1.

https://pubmed.ncbi.nlm.nih.gov/27434595

1323.Ng, H.S., et al. Development of comorbidities in men with prostate cancer treated with androgen deprivation therapy: an Australian population-based cohort study. Prostate Cancer Prostatic Dis, 2018. 21: 403.

https://pubmed.ncbi.nlm.nih.gov/29720722

1324.Kanis, J.A., et al. Case finding for the management of osteoporosis with FRAX--assessment and intervention thresholds for the UK. Osteoporos Int, 2008. 19: 1395.

https://pubmed.ncbi.nlm.nih.gov/18751937

1325.Cianferotti, L., et al. The prevention of fragility fractures in patients with non-metastatic prostate cancer: a position statement by the international osteoporosis foundation. Oncotarget, 2017. 8: 75646.

https://pubmed.ncbi.nlm.nih.gov/29088899

1326.Hamdy, R.C., et al. Algorithm for the management of osteoporosis. South Med J, 2010. 103: 1009.

https://pubmed.ncbi.nlm.nih.gov/20818296

1327.Higano, C.S. Bone loss and the evolving role of bisphosphonate therapy in prostate cancer. Urol Oncol, 2003. 21: 392.

https://pubmed.ncbi.nlm.nih.gov/14670551

1328.Sharma, A., et al. A prospective longitudinal study to evaluate bone health, implication of FRAX tool and impact on quality of life (FACT-P) in advanced prostate cancer patients. Am J Clin Exp Urol, 2021. 9: 211.

https://pubmed.ncbi.nlm.nih.gov/34327260

1329.Edmunds, K., et al. Incidence of the adverse effects of androgen deprivation therapy for prostate cancer: a systematic literature review. Support Care Cancer, 2020. 28: 2079.

https://pubmed.ncbi.nlm.nih.gov/31912360

1330.Edmunds, K., et al. The role of exercise in the management of adverse effects of androgen deprivation therapy for prostate cancer: a rapid review. Support Care Cancer, 2020. 28: 5661.

https://pubmed.ncbi.nlm.nih.gov/32699997

1331.Thomas, H.R., et al. Association Between Androgen Deprivation Therapy and Patient-reported Depression in Men With Recurrent Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 313.

https://pubmed.ncbi.nlm.nih.gov/29866496

1332.Hoogland, A.I., et al. Systemic inflammation and symptomatology in patients with prostate cancer treated with androgen deprivation therapy: Preliminary findings. Cancer, 2021. 127: 1476.

https://pubmed.ncbi.nlm.nih.gov/33378113

1333.Gonzalez, B.D., et al. Course and Predictors of Cognitive Function in Patients With Prostate Cancer Receiving Androgen-Deprivation Therapy: A Controlled Comparison. J Clin Oncol, 2015. 33: 2021.

https://pubmed.ncbi.nlm.nih.gov/25964245

1334.Duthie, C.J., et al. Maintenance of sexual activity following androgen deprivation in males. Crit Rev Oncol Hematol, 2020. 153: 103064.

https://pubmed.ncbi.nlm.nih.gov/32712517

1336.Bryce, A.H., et al. Patterns of Cancer Progression of Metastatic Hormone-sensitive Prostate Cancer in the ECOG3805 CHAARTED Trial. Eur Urol Oncol, 2020. 3: 717.

https://pubmed.ncbi.nlm.nih.gov/32807727

1337.Padhani, A.R., et al. Rationale for Modernising Imaging in Advanced Prostate Cancer. Eur Urol Focus, 2017. 3: 223.

https://pubmed.ncbi.nlm.nih.gov/28753774

1338.Lecouvet, F.E., et al. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer, 2014. 50: 2519.

https://pubmed.ncbi.nlm.nih.gov/25139492

1339.Ulmert, D., et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol, 2012. 62: 78.

https://pubmed.ncbi.nlm.nih.gov/22306323

1340.Padhani, A.R., et al. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur Urol, 2017. 71: 81.

https://pubmed.ncbi.nlm.nih.gov/27317091

1341.Trabulsi, E.J., et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline. J Clin Oncol, 2020. 38: 1963.

https://pubmed.ncbi.nlm.nih.gov/31940221

1342.Bourke, L., et al. Survivorship and improving quality of life in men with prostate cancer. Eur Urol, 2015. 68: 374.

https://pubmed.ncbi.nlm.nih.gov/25941049

1343.Prashar, J., et al. Supportive care needs of men with prostate cancer: A systematic review update. Eur J Cancer Care (Engl), 2022. 31: e13541.

https://pubmed.ncbi.nlm.nih.gov/35038783

1344.Resnick, M.J., et al. Prostate cancer survivorship care guideline: American Society of Clinical Oncology Clinical Practice Guideline endorsement. J Clin Oncol, 2015. 33: 1078.

https://pubmed.ncbi.nlm.nih.gov/25667275

1345.Yiannopoulou, K.G., et al. Cognitive and Psychological Impacts of Different Treatment Options for Prostate Cancer: A Critical Analysis. Curr Urol, 2020. 14: 169.

https://pubmed.ncbi.nlm.nih.gov/33488334

1346.Venderbos, L.D.F., et al. Europa Uomo Patient Reported Outcome Study (EUPROMS): Descriptive Statistics of a Prostate Cancer Survey from Patients for Patients. Eur Urol Focus, 2021. 7: 987.

https://pubmed.ncbi.nlm.nih.gov/33281109

1347.Downing, A., et al. Quality of life in men living with advanced and localised prostate cancer in the UK: a population-based study. Lancet Oncol, 2019. 20: 436.

https://pubmed.ncbi.nlm.nih.gov/30713036

1348.Luckenbaugh, A.N., et al. Association between Treatment for Localized Prostate Cancer and Mental Health Outcomes. J Urol, 2022. 207: 1029.

https://pubmed.ncbi.nlm.nih.gov/34978488

1349.Thompson, D., et al. Long-term Health-related Quality of Life in Patients on Active Surveillance for Prostate Cancer: A Systematic Review. Eur Urol Oncol, 2023. 6: 4.

https://pubmed.ncbi.nlm.nih.gov/36156268

1350.Marzouk, K., et al. Long-Term Cancer Specific Anxiety in Men Undergoing Active Surveillance of Prostate Cancer: Findings from a Large Prospective Cohort. J Urol, 2018. 200: 1250.

https://pubmed.ncbi.nlm.nih.gov/29886089

1351.Carlsson, S., et al. Surgery-related complications in 1253 robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University Hospital, Sweden. Urology, 2010. 75: 1092.

https://pubmed.ncbi.nlm.nih.gov/20022085

1352.Ficarra, V., et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol, 2009. 55: 1037.

https://pubmed.ncbi.nlm.nih.gov/19185977

1353.Rabbani, F., et al. Comprehensive standardized report of complications of retropubic and laparoscopic radical prostatectomy. Eur Urol, 2010. 57: 371.

https://pubmed.ncbi.nlm.nih.gov/19945779

1354.Resnick, M.J., et al. Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med, 2013. 368: 436.

https://pubmed.ncbi.nlm.nih.gov/23363497

1355.Parekh, A., et al. Reduced penile size and treatment regret in men with recurrent prostate cancer after surgery, radiotherapy plus androgen deprivation, or radiotherapy alone. Urology, 2013. 81: 130.

https://pubmed.ncbi.nlm.nih.gov/23273077

1356.Msezane, L.P., et al. Bladder neck contracture after robot-assisted laparoscopic radical prostatectomy: evaluation of incidence and risk factors and impact on urinary function. J Endourol, 2008. 22: 377.

https://pubmed.ncbi.nlm.nih.gov/18095861

1357.Haglind, E., et al. Corrigendum re: “Urinary Incontinence and Erectile Dysfunction After Robotic Versus Open Radical Prostatectomy: A Prospective, Controlled, Nonrandomised Trial” [Eur Urol 2015;68:216-25]. Eur Urol, 2017. 72: e81.

https://pubmed.ncbi.nlm.nih.gov/28552613

1358.Park, M.Y., et al. Comparison of biopsy strategies for prostate biopsy according to lesion size and PSA density in MRI-directed biopsy pathway. Abdom Radiol (NY), 2020. 45: 4166.

https://pubmed.ncbi.nlm.nih.gov/32737545

1359.Coughlin, G.D., et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol, 2018. 19: 1051.

https://pubmed.ncbi.nlm.nih.gov/30017351

1360.Alder, R., et al. Incidence of Inguinal Hernia after Radical Prostatectomy: A Systematic Review and Meta-Analysis. J Urol, 2020. 203: 265.

https://pubmed.ncbi.nlm.nih.gov/31039101

1361.Fernando, H., et al. Incidence, Predictive Factors and Preventive Measures for Inguinal Hernia following Robotic and Laparoscopic Radical Prostatectomy: A Systematic Review. J Urol, 2019. 201: 1072.

https://pubmed.ncbi.nlm.nih.gov/30730406

1362.Chiong, E., et al. Port-site hernias occurring after the use of bladeless radially expanding trocars. Urology, 2010. 75: 574.

https://pubmed.ncbi.nlm.nih.gov/19854489

1363.Clinckaert, A., et al. The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review. Cancers (Basel), 2022. 14.

https://pubmed.ncbi.nlm.nih.gov/36428759

1364.Donovan, J.L., et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med, 2016. 375: 1425.

https://pubmed.ncbi.nlm.nih.gov/27626365

1365.Barocas, D.A., et al. Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA, 2017. 317: 1126.

https://pubmed.ncbi.nlm.nih.gov/28324093

1366.Wallis, C.J., et al. Second malignancies after radiotherapy for prostate cancer: systematic review and meta-analysis. BMJ, 2016. 352: i851.

https://pubmed.ncbi.nlm.nih.gov/26936410

1367.Movsas, B., et al. Dose-Escalated Radiation Alone or in Combination With Short-Term Total Androgen Suppression for Intermediate-Risk Prostate Cancer: Patient-Reported Outcomes From NRG/Radiation Therapy Oncology Group 0815 Randomized Trial. J Clin Oncol, 2023. 41: 3217.

https://pubmed.ncbi.nlm.nih.gov/37104723

1368.Budaus, L., et al. Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol, 2012. 61: 112.

https://pubmed.ncbi.nlm.nih.gov/22001105

1369.Donovan, K.A., et al. Psychological effects of androgen-deprivation therapy on men with prostate cancer and their partners. Cancer, 2015. 121: 4286.

https://pubmed.ncbi.nlm.nih.gov/26372364

1370.Nguyen, P.L., et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol, 2015. 67: 825.

https://pubmed.ncbi.nlm.nih.gov/25097095

1371.Cherrier, M.M., et al. Cognitive and mood changes in men undergoing intermittent combined androgen blockade for non-metastatic prostate cancer. Psychooncology, 2009. 18: 237.

https://pubmed.ncbi.nlm.nih.gov/18636420

1372.Alibhai, S.M., et al. Effects of long-term androgen deprivation therapy on cognitive function over 36 months in men with prostate cancer. Cancer, 2017. 123: 237.

https://pubmed.ncbi.nlm.nih.gov/27583806

1373.Herr, H.W., et al. Quality of life of asymptomatic men with nonmetastatic prostate cancer on androgen deprivation therapy. J Urol, 2000. 163: 1743.

https://pubmed.ncbi.nlm.nih.gov/10799173

1374.Potosky, A.L., et al. Quality-of-life outcomes after primary androgen deprivation therapy: results from the Prostate Cancer Outcomes Study. J Clin Oncol, 2001. 19: 3750.

https://pubmed.ncbi.nlm.nih.gov/11533098

1375.Walker, L.M., et al. Luteinizing hormone--releasing hormone agonists: a quick reference for prevalence rates of potential adverse effects. Clin Genitourin Cancer, 2013. 11: 375.

https://pubmed.ncbi.nlm.nih.gov/23891497

1376.Elliott, S., et al. Androgen deprivation therapy for prostate cancer: recommendations to improve patient and partner quality of life. J Sex Med, 2010. 7: 2996.

https://pubmed.ncbi.nlm.nih.gov/20626600

1377.Iversen, P., et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol, 2000. 164: 1579.

https://pubmed.ncbi.nlm.nih.gov/11025708

1378.Iversen, P., et al. Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function. BJU Int, 2001. 87: 47.

https://pubmed.ncbi.nlm.nih.gov/11121992

1379.Boccardo, F., et al. Bicalutamide monotherapy versus flutamide plus goserelin in prostate cancer patients: results of an Italian Prostate Cancer Project study. J Clin Oncol, 1999. 17: 2027.

https://pubmed.ncbi.nlm.nih.gov/10561254

1380.Irani, J., et al. Efficacy of venlafaxine, medroxyprogesterone acetate, and cyproterone acetate for the treatment of vasomotor hot flushes in men taking gonadotropin-releasing hormone analogues for prostate cancer: a double-blind, randomised trial. Lancet Oncol, 2010. 11: 147.

https://pubmed.ncbi.nlm.nih.gov/19963436

1381.Russell, N., et al. Effects of oestradiol treatment on hot flushes in men undergoing androgen deprivation therapy for prostate cancer: a randomised placebo-controlled trial. Eur J Endocrinol, 2022. 187: 617.

https://pubmed.ncbi.nlm.nih.gov/36806623

1382.Sloan, J.A., et al. Methodologic lessons learned from hot flash studies. J Clin Oncol, 2001. 19: 4280.

https://pubmed.ncbi.nlm.nih.gov/11731510

1383.Moraska, A.R., et al. Gabapentin for the management of hot flashes in prostate cancer survivors: a longitudinal continuation Study-NCCTG Trial N00CB. J Support Oncol, 2010. 8: 128.

https://pubmed.ncbi.nlm.nih.gov/20552926

1384.Frisk, J., et al. Two modes of acupuncture as a treatment for hot flushes in men with prostate cancer--a prospective multicenter study with long-term follow-up. Eur Urol, 2009. 55: 156.

https://pubmed.ncbi.nlm.nih.gov/18294761

1385.Smith, M.R., et al. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol, 2006. 175: 136.

https://pubmed.ncbi.nlm.nih.gov/16406890

1386.Cree, M., et al. Mortality and institutionalization following hip fracture. J Am Geriatr Soc, 2000. 48: 283.

https://pubmed.ncbi.nlm.nih.gov/10733054

1387.Compston, J.E., et al. Osteoporosis. Lancet, 2019. 393: 364.

https://pubmed.ncbi.nlm.nih.gov/30696576

1388.Saylor, P.J., et al. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol, 2009. 181: 1998.

https://pubmed.ncbi.nlm.nih.gov/19286225

1389.Gonnelli, S., et al. Obesity and fracture risk. Clin Cases Miner Bone Metab, 2014. 11: 9.

https://pubmed.ncbi.nlm.nih.gov/25002873

1390.Myint, Z.W., et al. Evaluation of Fall and Fracture Risk Among Men With Prostate Cancer Treated With Androgen Receptor Inhibitors: A Systematic Review and Meta-analysis. JAMA Netw Open, 2020. 3: e2025826.

https://pubmed.ncbi.nlm.nih.gov/33201234

1391.Sieber, P.R., et al. Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. J Urol, 2004. 171: 2272.

https://pubmed.ncbi.nlm.nih.gov/15126801

1392.Wadhwa, V.K., et al. Bicalutamide monotherapy preserves bone mineral density, muscle strength and has significant health-related quality of life benefits for osteoporotic men with prostate cancer. BJU Int, 2011. 107: 1923.

https://pubmed.ncbi.nlm.nih.gov/20950306

1393.Higano, C., et al. Bone mineral density in patients with prostate cancer without bone metastases treated with intermittent androgen suppression. Urology, 2004. 64: 1182.

https://pubmed.ncbi.nlm.nih.gov/15596194

1394.Nobes, J.P., et al. A prospective, randomized pilot study evaluating the effects of metformin and lifestyle intervention on patients with prostate cancer receiving androgen deprivation therapy. BJU Int, 2012. 109: 1495.

https://pubmed.ncbi.nlm.nih.gov/21933330

1395.Grundy, S.M., et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 2005. 112: 2735.

https://pubmed.ncbi.nlm.nih.gov/16157765

1396.Braga-Basaria, M., et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol, 2006. 24: 3979.

https://pubmed.ncbi.nlm.nih.gov/16921050

1397.Cheung, A.S., et al. Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer, 2014. 21: R371.

https://pubmed.ncbi.nlm.nih.gov/25056176

1398.Smith, M.R., et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol, 2012. 30: 3271.

https://pubmed.ncbi.nlm.nih.gov/22649143

1399.Lu-Yao, G., et al. Changing patterns in competing causes of death in men with prostate cancer: a population based study. J Urol, 2004. 171: 2285.

https://pubmed.ncbi.nlm.nih.gov/15126804

1400.Saigal, C.S., et al. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer, 2007. 110: 1493.

https://pubmed.ncbi.nlm.nih.gov/17657815

1401.Keating, N.L., et al. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst, 2010. 102: 39.

https://pubmed.ncbi.nlm.nih.gov/19996060

1402.Efstathiou, J.A., et al. Cardiovascular mortality and duration of androgen deprivation for locally advanced prostate cancer: analysis of RTOG 92-02. Eur Urol, 2008. 54: 816.

https://pubmed.ncbi.nlm.nih.gov/18243498

1403.Jones, C.U., et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med, 2011. 365: 107.

https://pubmed.ncbi.nlm.nih.gov/21751904

1404.Butler, S.S., et al. Risk of cardiovascular mortality with androgen deprivation therapy in prostate cancer: A secondary analysis of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Randomized Controlled Trial. Cancer, 2021. 127: 2213.

https://pubmed.ncbi.nlm.nih.gov/33905530

1405.Nguyen, P.L., et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA, 2011. 306: 2359.

https://pubmed.ncbi.nlm.nih.gov/22147380

1406.Bourke, L., et al. Endocrine therapy in prostate cancer: time for reappraisal of risks, benefits and cost-effectiveness? Br J Cancer, 2013. 108: 9.

https://pubmed.ncbi.nlm.nih.gov/23321508

1407.Blankfield, R.P. Androgen deprivation therapy for prostate cancer and cardiovascular death. JAMA, 2012. 307: 1252; author reply 1252.

https://pubmed.ncbi.nlm.nih.gov/22453560

1408.Bosco, C., et al. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol, 2015. 68: 386.

https://pubmed.ncbi.nlm.nih.gov/25484142

1409.Swaby, J., et al. Association of Androgen Deprivation Therapy with Metabolic Disease in Prostate Cancer Patients: An Updated Meta-Analysis. Clin Genitourin Cancer, 2023. 21: e182.

https://pubmed.ncbi.nlm.nih.gov/36621463

1410.Nguyen, P.L., et al. Influence of androgen deprivation therapy on all-cause mortality in men with high-risk prostate cancer and a history of congestive heart failure or myocardial infarction. Int J Radiat Oncol Biol Phys, 2012. 82: 1411.

https://pubmed.ncbi.nlm.nih.gov/21708431

1411.Tsai, H.K., et al. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J Natl Cancer Inst, 2007. 99: 1516.

https://pubmed.ncbi.nlm.nih.gov/17925537

1412.Tisseverasinghe, S., et al. Should Prostate Cancer Patients With History of Cardiovascular Events Be Preferentially Treated With Luteinizing Hormone-Releasing Hormone Antagonists? J Clin Oncol, 2022. 40: 4173.

https://pubmed.ncbi.nlm.nih.gov/35862876

1413.Gilbert, S.E., et al. Effects of a lifestyle intervention on endothelial function in men on long-term androgen deprivation therapy for prostate cancer. Br J Cancer, 2016. 114: 401.

https://pubmed.ncbi.nlm.nih.gov/26766737

1414.Cao, B., et al. Adverse Events and Androgen Receptor Signaling Inhibitors in the Treatment of Prostate Cancer: A Systematic Review and Multivariate Network Meta-analysis. Eur Urol Oncol, 2023. 6: 237.

https://pubmed.ncbi.nlm.nih.gov/36682938

1415.Wilding, S., et al. Cancer-related symptoms, mental well-being, and psychological distress in men diagnosed with prostate cancer treated with androgen deprivation therapy. Qual Life Res, 2019. 28: 2741.

https://pubmed.ncbi.nlm.nih.gov/31115843

1416.Bourke, L., et al. Exercise for Men with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2016. 69: 693.

https://pubmed.ncbi.nlm.nih.gov/26632144

1417.Meng, F., et al. Stroke related to androgen deprivation therapy for prostate cancer: a meta-analysis and systematic review. BMC Cancer, 2016. 16: 180.

https://pubmed.ncbi.nlm.nih.gov/26940836

1418.Nead, K.T., et al. Androgen Deprivation Therapy and Future Alzheimer’s Disease Risk. J Clin Oncol, 2016. 34: 566.

https://pubmed.ncbi.nlm.nih.gov/26644522

1419.Delmas, P.D. Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic bone diseases. J Clin Densitom, 2008. 11: 325.

https://pubmed.ncbi.nlm.nih.gov/18375161

1420.Cummings, S.R., et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med, 2009. 361: 756.

https://pubmed.ncbi.nlm.nih.gov/19671655

1421.Smith, M.R., et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med, 2009. 361: 745.

https://pubmed.ncbi.nlm.nih.gov/19671656

1422.Gupta, M., et al., Bisphosphonate Related Jaw Osteonecrosis, in StatPearls. 2023, StatPearls Publishing

https://pubmed.ncbi.nlm.nih.gov/30521192

1423.Boquete-Castro, A., et al. Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. Clin Oral Implants Res, 2016. 27: 367.

https://pubmed.ncbi.nlm.nih.gov/25639776

1424.Bennett, D., et al. Factors influencing job loss and early retirement in working men with prostate cancer-findings from the population-based Life After Prostate Cancer Diagnosis (LAPCD) study. J Cancer Surviv, 2018. 12: 669.

https://pubmed.ncbi.nlm.nih.gov/30058009

1425.Roberts, C., et al. The Experiences and Unmet Supportive Care Needs of Partners of Men Diagnosed With Prostate Cancer: A Meta-aggregation Systematic Review. Clin Neuropharmacol, 2022.

https://pubmed.ncbi.nlm.nih.gov/36480350

1426.James, C., et al. Fear of cancer recurrence and PSA anxiety in patients with prostate cancer: a systematic review. Support Care Cancer, 2022. 30: 5577.

https://pubmed.ncbi.nlm.nih.gov/35106656

1427.Mundle, R., et al. The effectiveness of psychological intervention for depression, anxiety, and distress in prostate cancer: a systematic review of literature. Prostate Cancer Prostatic Dis, 2021. 24: 674.

https://pubmed.ncbi.nlm.nih.gov/33750905

1428.Borji, M., et al. Positive Effects of Cognitive Behavioral Therapy on Depression, Anxiety and Stress of Family Caregivers of Patients with Prostate Cancer: A Randomized Clinical Trial. Asian Pac J Cancer Prev, 2017. 18: 3207.

https://pubmed.ncbi.nlm.nih.gov/29281868

1429.Bourke, L., et al. A qualitative study evaluating experiences of a lifestyle intervention in men with prostate cancer undergoing androgen suppression therapy. Trials, 2012. 13: 208.

https://pubmed.ncbi.nlm.nih.gov/23151126

1430.Berruti, A., et al. Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. J Urol, 2000. 164: 1248.

https://pubmed.ncbi.nlm.nih.gov/10992374

1431.Carlin, B.I., et al. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer, 2000. 88: 2989.

https://pubmed.ncbi.nlm.nih.gov/10898342

1432.Smith, D.P., et al. Quality of life three years after diagnosis of localised prostate cancer: population based cohort study. BMJ, 2009. 339: b4817.

https://pubmed.ncbi.nlm.nih.gov/19945997

1433.Taylor, K.L., et al. Long-term disease-specific functioning among prostate cancer survivors and noncancer controls in the prostate, lung, colorectal, and ovarian cancer screening trial. J Clin Oncol, 2012. 30: 2768.

https://pubmed.ncbi.nlm.nih.gov/22734029

1434.Bhanvadia, S.K., et al. Financial Toxicity Among Patients with Prostate, Bladder, and Kidney Cancer: A Systematic Review and Call to Action. Eur Urol Oncol, 2021. 4: 396.

https://pubmed.ncbi.nlm.nih.gov/33820747

1435.Ratti, M.M., et al. Standardising the Assessment of Patient-reported Outcome Measures in Localised Prostate Cancer. A Systematic Review. Eur Urol Oncol, 2022. 5: 153.

https://pubmed.ncbi.nlm.nih.gov/34785188

1436.Groenvold, M., et al. Validation of the EORTC QLQ-C30 quality of life questionnaire through combined qualitative and quantitative assessment of patient-observer agreement. J Clin Epidemiol, 1997. 50: 441.

https://pubmed.ncbi.nlm.nih.gov/9179103

1437.van Andel, G., et al. An international field study of the EORTC QLQ-PR25: a questionnaire for assessing the health-related quality of life of patients with prostate cancer. Eur J Cancer, 2008. 44: 2418.

https://pubmed.ncbi.nlm.nih.gov/18774706

1438.Cella, D.F., et al. The Functional Assessment of Cancer Therapy scale: development and validation of the general measure. J Clin Oncol, 1993. 11: 570.

https://pubmed.ncbi.nlm.nih.gov/8445433

1439.Esper, P., et al. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology, 1997. 50: 920.

https://pubmed.ncbi.nlm.nih.gov/9426724

1440.Wei, J.T., et al. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology, 2000. 56: 899.

https://pubmed.ncbi.nlm.nih.gov/11113727

1441.Szymanski, K.M., et al. Development and validation of an abbreviated version of the expanded prostate cancer index composite instrument for measuring health-related quality of life among prostate cancer survivors. Urology, 2010. 76: 1245.

https://pubmed.ncbi.nlm.nih.gov/20350762

1442.Litwin, M.S., et al. The UCLA Prostate Cancer Index: development, reliability, and validity of a health-related quality of life measure. Med Care, 1998. 36: 1002.

https://pubmed.ncbi.nlm.nih.gov/9674618

1443.Giesler, R.B., et al. Assessing quality of life in men with clinically localized prostate cancer: development of a new instrument for use in multiple settings. Qual Life Res, 2000. 9: 645.

https://pubmed.ncbi.nlm.nih.gov/11236855

1444.Lane, J.A., et al. Functional and quality of life outcomes of localised prostate cancer treatments (Prostate Testing for Cancer and Treatment [ProtecT] study). BJU Int, 2022. 130: 370.

https://pubmed.ncbi.nlm.nih.gov/35373443

1445.Aksnessaether, B.Y., et al. Second Cancers in Patients With Locally Advanced Prostate Cancer Randomized to Lifelong Endocrine Treatment With or Without Radical Radiation Therapy: Long-Term Follow-up of the Scandinavian Prostate Cancer Group-7 Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 706.

https://pubmed.ncbi.nlm.nih.gov/31786279

1446.Fransson, P., et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncol, 2021. 22: 235.

https://pubmed.ncbi.nlm.nih.gov/33444529

1447.Hoffman, K.E., et al. Patient-Reported Outcomes Through 5 Years for Active Surveillance, Surgery, Brachytherapy, or External Beam Radiation With or Without Androgen Deprivation Therapy for Localized Prostate Cancer. JAMA, 2020. 323: 149.

https://pubmed.ncbi.nlm.nih.gov/31935027

1448.Lantz, A., et al. Functional and Oncological Outcomes After Open Versus Robot-assisted Laparoscopic Radical Prostatectomy for Localised Prostate Cancer: 8-Year Follow-up. Eur Urol, 2021. 80: 650.

https://pubmed.ncbi.nlm.nih.gov/34538508

1449.Hunt, A.A., et al. Risk of erectile dysfunction after modern radiotherapy for intact prostate cancer. Prostate Cancer Prostatic Dis, 2021. 24: 128.

https://pubmed.ncbi.nlm.nih.gov/32647352

1450.Giesler, R.B., et al. Improving the quality of life of patients with prostate carcinoma: a randomized trial testing the efficacy of a nurse-driven intervention. Cancer, 2005. 104: 752.

https://pubmed.ncbi.nlm.nih.gov/15986401

1451.Schumacher, O., et al. Effects of Exercise During Radiation Therapy on Physical Function and Treatment-Related Side Effects in Men With Prostate Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys, 2021. 111: 716.

https://pubmed.ncbi.nlm.nih.gov/34246737

1452.Kang, D.W., et al. Effects of Exercise on Cardiorespiratory Fitness and Biochemical Progression in Men With Localized Prostate Cancer Under Active Surveillance: The ERASE Randomized Clinical Trial. JAMA Oncol, 2021. 7: 1487.

https://pubmed.ncbi.nlm.nih.gov/34410322

1453.Anderson, C.A., et al. Conservative management for postprostatectomy urinary incontinence. Cochrane Database Syst Rev, 2015. 1: CD001843.

https://pubmed.ncbi.nlm.nih.gov/25602133

1454.Chen, Y.C., et al. Surgical treatment for urinary incontinence after prostatectomy: A meta-analysis and systematic review. PLoS One, 2017. 12: e0130867.

https://pubmed.ncbi.nlm.nih.gov/28467435

1455.Crivellaro, S., et al. Systematic review of surgical treatment of post radical prostatectomy stress urinary incontinence. Neurourol Urodyn, 2016. 35: 875.

https://pubmed.ncbi.nlm.nih.gov/26397171

1456.Cornu, J.-N., et al. , EAU Guidelines on Non-neurogenic Male LUTS, E.G. Office, Editor. 2023, EAU Guidelines Office: EAU Guidelines published at the 38th EAU Annual Congress, Milan.

https://uroweb.org/guidelines/management-of-non-neurogenic-male-luts

1457.Skolarus, T.A., et al. Androgen-deprivation-associated bone disease. Curr Opin Urol, 2014. 24: 601.

https://pubmed.ncbi.nlm.nih.gov/25144145

1458.Patel, H.R., et al. Effects of tadalafil treatment after bilateral nerve-sparing radical prostatectomy: quality of life, psychosocial outcomes, and treatment satisfaction results from a randomized, placebo-controlled phase IV study. BMC Urol, 2015. 15: 31.

https://pubmed.ncbi.nlm.nih.gov/25879460

1459.Philippou, Y.A., et al. Penile rehabilitation for postprostatectomy erectile dysfunction. Cochrane Database Syst Rev, 2018. 10: CD012414.

https://pubmed.ncbi.nlm.nih.gov/30352488

1460.Salonia, A., et al., EAU Guidelines on Sexual and Reproductive Health. Edn. presented at the 38th Annual Congress, Milan T.N. EAU Guidelines Office, Editor. 2023: Arnhem, The Netherlands.

https://uroweb.org/guidelines/sexual-and-reproductive-health

1461.Schubach, K., et al. Experiences of sexual well-being interventions in males affected by genitourinary cancers and their partners: an integrative systematic review. Support Care Cancer, 2023. 31: 265.

https://pubmed.ncbi.nlm.nih.gov/37058163

1462.Dieperink, K.B., et al. The effects of multidisciplinary rehabilitation: RePCa-a randomised study among primary prostate cancer patients. Br J Cancer, 2013. 109: 3005.

https://pubmed.ncbi.nlm.nih.gov/24169342

1463.Dieperink, K.B., et al. Long-term follow-up 3 years after a randomized rehabilitation study among radiated prostate cancer survivors. J Cancer Surviv, 2021. 15: 668.

https://pubmed.ncbi.nlm.nih.gov/33079329

1464.Galvao, D.A., et al. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol, 2010. 28: 340.

https://pubmed.ncbi.nlm.nih.gov/19949016

1465.Bourke, L., et al. Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: a randomised controlled trial. Eur Urol, 2014. 65: 865.

https://pubmed.ncbi.nlm.nih.gov/24119318

1466.Cella, D., et al. Estimating clinically meaningful changes for the Functional Assessment of Cancer Therapy--Prostate: results from a clinical trial of patients with metastatic hormone-refractory prostate cancer. Value Health, 2009. 12: 124.

https://pubmed.ncbi.nlm.nih.gov/18647260

1467.Galvao, D.A., et al. Psychological distress in men with prostate cancer undertaking androgen deprivation therapy: modifying effects of exercise from a year-long randomized controlled trial. Prostate Cancer Prostatic Dis, 2021. 24: 758.

https://pubmed.ncbi.nlm.nih.gov/33558661

1468.Lopez, P., et al. Resistance Exercise Dosage in Men with Prostate Cancer: Systematic Review, Meta-analysis, and Meta-regression. Med Sci Sports Exerc, 2021. 53: 459.

https://pubmed.ncbi.nlm.nih.gov/32890199

1469.Shao, W., et al. The effects of exercise on body composition of prostate cancer patients receiving androgen deprivation therapy: An update systematic review and meta-analysis. PLoS One, 2022. 17: e0263918.

https://pubmed.ncbi.nlm.nih.gov/35167609

1470.Ussing, A., et al. Supervised exercise therapy compared with no exercise therapy to reverse debilitating effects of androgen deprivation therapy in patients with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2022. 25: 491.

https://pubmed.ncbi.nlm.nih.gov/34489536

1471.Toohey, K., et al. Exercise Adherence in Men with Prostate Cancer Undergoing Androgen Deprivation Therapy: A Systematic Review and Meta-Analysis. Cancers (Basel), 2022. 14.

https://pubmed.ncbi.nlm.nih.gov/35626058

1472.Nair-Shalliker, V., et al. Post-treatment levels of plasma 25- and 1,25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Sci Rep, 2020. 10: 7736.

https://pubmed.ncbi.nlm.nih.gov/32385370

1473.Grant, W.B. Review of Recent Advances in Understanding the Role of Vitamin D in Reducing Cancer Risk: Breast, Colorectal, Prostate, and Overall Cancer. Anticancer Res, 2020. 40: 491.

https://pubmed.ncbi.nlm.nih.gov/31892604

1474.Coleman, R., et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann Oncol, 2020. 31: 1650.

https://pubmed.ncbi.nlm.nih.gov/32801018

1475.Shapiro, C.L., et al. Management of Osteoporosis in Survivors of Adult Cancers With Nonmetastatic Disease: ASCO Clinical Practice Guideline. J Clin Oncol, 2019. 37: 2916.

https://pubmed.ncbi.nlm.nih.gov/31532726

1476.Briot, K., et al. French recommendations for osteoporosis prevention and treatment in patients with prostate cancer treated by androgen deprivation. Joint Bone Spine, 2019. 86: 21.

https://pubmed.ncbi.nlm.nih.gov/30287350

1477.Saylor, P.J., et al. Bone Health and Bone-Targeted Therapies for Prostate Cancer: ASCO Endorsement of a Cancer Care Ontario Guideline. J Clin Oncol, 2020. 38: 1736.

https://pubmed.ncbi.nlm.nih.gov/31990618

1478.Brown, J.E., et al. Guidance for the assessment and management of prostate cancer treatment-induced bone loss. A consensus position statement from an expert group. J Bone Oncol, 2020. 25: 100311.

https://pubmed.ncbi.nlm.nih.gov/32995252

1479.Smith, M.R., et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol, 2003. 169: 2008.

https://pubmed.ncbi.nlm.nih.gov/12771706

1480.Michaelson, M.D., et al. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol, 2007. 25: 1038.

https://pubmed.ncbi.nlm.nih.gov/17369566

1481.Migliorati, C.A., et al. Bisphosphonate-associated osteonecrosis: a long-term complication of bisphosphonate treatment. Lancet Oncol, 2006. 7: 508.

https://pubmed.ncbi.nlm.nih.gov/16750501

1482.Wadhwa, V.K., et al. Frequency of zoledronic acid to prevent further bone loss in osteoporotic patients undergoing androgen deprivation therapy for prostate cancer. BJU Int, 2010. 105: 1082.

https://pubmed.ncbi.nlm.nih.gov/19912210

1483.Clemons, M., et al. A randomised trial of 4- versus 12-weekly administration of bone-targeted agents in patients with bone metastases from breast or castration-resistant prostate cancer. Eur J Cancer, 2021. 142: 132.

https://pubmed.ncbi.nlm.nih.gov/33023785

1484.Chen, R.C., et al. Association Between Choice of Radical Prostatectomy, External Beam Radiotherapy, Brachytherapy, or Active Surveillance and Patient-Reported Quality of Life Among Men With Localized Prostate Cancer. JAMA, 2017. 317: 1141.

https://pubmed.ncbi.nlm.nih.gov/28324092

1485.Sanda, M.G., et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J Urol, 2018. 199: 683.

https://pubmed.ncbi.nlm.nih.gov/29203269

1486.Makarov, D.V., et al. AUA White Paper on Implementation of Shared Decision Making into Urological Practice. Urol Pract, 2016. 3: 355.

https://pubmed.ncbi.nlm.nih.gov/37592546

1487.Stiggelbout, A.M., et al. Shared decision making: Concepts, evidence, and practice. Patient Educ Couns, 2015. 98: 1172.

https://pubmed.ncbi.nlm.nih.gov/26215573

1488.Violette, P.D., et al. Decision aids for localized prostate cancer treatment choice: Systematic review and meta-analysis. CA Cancer J Clin, 2015. 65: 239.

https://pubmed.ncbi.nlm.nih.gov/25772796

1489.Ramsey, S.D., et al. Unanticipated and underappreciated outcomes during management of local stage prostate cancer: a prospective survey. J Urol, 2010. 184: 120.

https://pubmed.ncbi.nlm.nih.gov/20478590

1490.Connolly, T., et al. Regret in Decision Making. Current Directions in Psychological Science, 2016. 11: 212.

https://journals.sagepub.com/doi/10.1111/1467-8721.00203

1491.Maguire, R., et al. Expecting the worst? The relationship between retrospective and prospective appraisals of illness on quality of life in prostate cancer survivors. Psychooncology, 2018. 27: 1237.

https://pubmed.ncbi.nlm.nih.gov/29430755

1492.Schroeck, F.R., et al. Satisfaction and regret after open retropubic or robot-assisted laparoscopic radical prostatectomy. Eur Urol, 2008. 54: 785.

https://pubmed.ncbi.nlm.nih.gov/18585849

1493.Steentjes, L., et al. Factors associated with current and severe physical side-effects after prostate cancer treatment: What men report. Eur J Cancer Care (Engl), 2018. 27.

https://pubmed.ncbi.nlm.nih.gov/27726215

1494.Orom, H., et al. What Is a “Good” Treatment Decision? Decisional Control, Knowledge, Treatment Decision Making, and Quality of Life in Men with Clinically Localized Prostate Cancer. Med Decis Making, 2016. 36: 714.

https://pubmed.ncbi.nlm.nih.gov/26957566

1495.Davison, B.J., et al. Quality of life, sexual function and decisional regret at 1 year after surgical treatment for localized prostate cancer. BJU Int, 2007. 100: 780.

https://pubmed.ncbi.nlm.nih.gov/17578466

1496.Wilding, S., et al. Decision regret in men living with and beyond nonmetastatic prostate cancer in the United Kingdom: A population-based patient-reported outcome study. Psychooncology, 2020. 29: 886.

https://pubmed.ncbi.nlm.nih.gov/32065691

1497.Martinez-Gonzalez, N.A., et al. Shared decision making for men facing prostate cancer treatment: a systematic review of randomized controlled trials. Patient Prefer Adherence, 2019. 13: 1153.

https://pubmed.ncbi.nlm.nih.gov/31413545

1498.Menichetti, J., et al. Quality of life in active surveillance and the associations with decision-making-a literature review. Transl Androl Urol, 2018. 7: 160.

https://pubmed.ncbi.nlm.nih.gov/29594030

1499.Ivlev, I., et al. Prostate Cancer Screening Patient Decision Aids: A Systematic Review and Meta-analysis. Am J Prev Med, 2018. 55: 896.

https://pubmed.ncbi.nlm.nih.gov/30337235

1500.Kinsella, N., et al. A Single Educational Seminar Increases Confidence and Decreases Dropout from Active Surveillance by 5 Years After Diagnosis of Prostate Cancer. Eur Urol Oncol, 2019. 2: 464.

https://pubmed.ncbi.nlm.nih.gov/31277784

1501.Hoffman, R.M., et al. Selecting Active Surveillance: Decision Making Factors for Men with a Low-Risk Prostate Cancer. Med Decis Making, 2019. 39: 962.

https://pubmed.ncbi.nlm.nih.gov/31631745

1502.Berry, D.L., et al. Decision Support with the Personal Patient Profile-Prostate: A Multicenter Randomized Trial. J Urol, 2018. 199: 89.

https://pubmed.ncbi.nlm.nih.gov/28754540

1503.Campagna, J.P., et al. Prostate Cancer Survival Estimates by the General Public Using Unrestricted Internet Searches and Online Nomograms. Eur Urol Focus, 2020. 6: 959.

https://pubmed.ncbi.nlm.nih.gov/30723050

1504.de Freitas, H.M., et al. Patient Preferences for Metastatic Hormone-Sensitive Prostate Cancer Treatments: A Discrete Choice Experiment Among Men in Three European Countries. Adv Ther, 2019. 36: 318.

https://pubmed.ncbi.nlm.nih.gov/30617763

1505.Lorent, M., et al. Meta-analysis of predictive models to assess the clinical validity and utility for patient-centered medical decision making: application to the CAncer of the Prostate Risk Assessment (CAPRA). BMC Med Inform Decis Mak, 2019. 19: 2.

https://pubmed.ncbi.nlm.nih.gov/30616621

1506.Riikonen, J.M., et al. Decision Aids for Prostate Cancer Screening Choice: A Systematic Review and Meta-analysis. JAMA Intern Med, 2019. 179: 1072.

https://pubmed.ncbi.nlm.nih.gov/31233091

1507.Vromans, R.D., et al. Communicative aspects of decision aids for localized prostate cancer treatment - A systematic review. Urol Oncol, 2019. 37: 409.

https://pubmed.ncbi.nlm.nih.gov/31053529