9. REFERENCES
1.Mottet, N., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol, 2021. 79: 243.
https://pubmed.ncbi.nlm.nih.gov/33172724
2.Cornford, P., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur Urol, 2021. 79: 263.
https://pubmed.ncbi.nlm.nih.gov/33039206
3.Phillips, B. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 1998.
4.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.
https://pubmed.ncbi.nlm.nih.gov/18467413
5.Culp, M.B., et al. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur Urol, 2020. 77: 38.
https://pubmed.ncbi.nlm.nih.gov/31493960
6.Organization, I.A.f.R.o.C.I.W.H. Data visualization tools for exploring the global cancer burden in 2020. 2020. 2021.
https://gco.iarc.fr/today/home
7.Union, E. Prostate cancer burden in EU-27. 2021.
8.Bell, K.J., et al. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer, 2015. 137: 1749.
https://pubmed.ncbi.nlm.nih.gov/25821151
9.Haas, G.P., et al. The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol, 2008. 15: 3866.
https://pubmed.ncbi.nlm.nih.gov/18304396
10.Fleshner, K., et al. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat Rev Urol, 2017. 14: 26.
https://pubmed.ncbi.nlm.nih.gov/27995937
11.Kimura, T., et al. Global Trends of Latent Prostate Cancer in Autopsy Studies. Cancers (Basel), 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/33478075
12.IARC. IARC France All Cancers (excluding non-melanoma skin cancer) Estimated Incidence, Mortality and Prevalence Worldwide in 2012. 2014.
http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.
13.Hemminki, K. Familial risk and familial survival in prostate cancer. World J Urol, 2012. 30: 143.
https://pubmed.ncbi.nlm.nih.gov/22116601
14.Jansson, K.F., et al. Concordance of tumor differentiation among brothers with prostate cancer. Eur Urol, 2012. 62: 656.
https://pubmed.ncbi.nlm.nih.gov/22386193
15.Nyame, Y.A., et al. Deconstructing, Addressing, and Eliminating Racial and Ethnic Inequities in Prostate Cancer Care. Eur Urol, 2022. 82: 341.
https://pubmed.ncbi.nlm.nih.gov/35367082
16.Karami, S., et al. Earlier age at diagnosis: another dimension in cancer disparity? Cancer Detect Prev, 2007. 31: 29.
https://pubmed.ncbi.nlm.nih.gov/17303347
17.Sanchez-Ortiz, R.F., et al. African-American men with nonpalpable prostate cancer exhibit greater tumor volume than matched white men. Cancer, 2006. 107: 75.
https://pubmed.ncbi.nlm.nih.gov/16736511
18.Chen, F., et al. Evidence of Novel Susceptibility Variants for Prostate Cancer and a Multiancestry Polygenic Risk Score Associated with Aggressive Disease in Men of African Ancestry. Eur Urol, 2023. 84: 13.
https://pubmed.ncbi.nlm.nih.gov/36872133
19.Mahal, B.A., et al. Prostate Cancer Racial Disparities: A Systematic Review by the Prostate Cancer Foundation Panel. Eur Urol Oncol, 2022. 5: 18.
https://pubmed.ncbi.nlm.nih.gov/34446369
20.Randazzo, M., et al. A positive family history as a risk factor for prostate cancer in a population-based study with organised prostate-specific antigen screening: results of the Swiss European Randomised Study of Screening for Prostate Cancer (ERSPC, Aarau). BJU Int, 2016. 117: 576.
https://pubmed.ncbi.nlm.nih.gov/26332304
21.Beebe-Dimmer, J.L., et al. Risk of Prostate Cancer Associated With Familial and Hereditary Cancer Syndromes. J Clin Oncol, 2020. 38: 1807.
https://pubmed.ncbi.nlm.nih.gov/32208047
22.Bratt, O., et al. Family History and Probability of Prostate Cancer, Differentiated by Risk Category: A Nationwide Population-Based Study. J Natl Cancer Inst, 2016. 108.
https://pubmed.ncbi.nlm.nih.gov/27400876
23.Amin Al Olama, A., et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Hum Mol Genet, 2015. 24: 5589.
https://pubmed.ncbi.nlm.nih.gov/26025378
24.Gulati, R., et al. Screening Men at Increased Risk for Prostate Cancer Diagnosis: Model Estimates of Benefits and Harms. Cancer Epidemiol Biomarkers Prev, 2017. 26: 222.
https://pubmed.ncbi.nlm.nih.gov/27742670
25.Nicolosi, P., et al. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol, 2019. 5: 523.
https://pubmed.ncbi.nlm.nih.gov/30730552
26.Giri, V.N., et al. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate, 2019. 79: 333.
https://pubmed.ncbi.nlm.nih.gov/30450585
27.Pritchard, C.C., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med, 2016. 375: 443.
https://pubmed.ncbi.nlm.nih.gov/27433846
28.Castro, E., et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, 2019. 37: 490.
https://pubmed.ncbi.nlm.nih.gov/30625039
29.Ewing, C.M., et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med, 2012. 366: 141.
https://pubmed.ncbi.nlm.nih.gov/22236224
30.Lynch, H.T., et al. Screening for familial and hereditary prostate cancer. Int J Cancer, 2016. 138: 2579.
https://pubmed.ncbi.nlm.nih.gov/26638190
31.Nyberg, T., et al. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. Eur Urol, 2020. 77: 24.
https://pubmed.ncbi.nlm.nih.gov/31495749
32.Castro, E., et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol, 2013. 31: 1748.
https://pubmed.ncbi.nlm.nih.gov/23569316
33.Castro, E., et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol, 2015. 68: 186.
https://pubmed.ncbi.nlm.nih.gov/25454609
34.Na, R., et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur Urol, 2017. 71: 740.
https://pubmed.ncbi.nlm.nih.gov/27989354
35.Mano, R., et al. Malignant Abnormalities in Male BRCA Mutation Carriers: Results From a Prospectively Screened Cohort. JAMA Oncol, 2018. 4: 872.
https://pubmed.ncbi.nlm.nih.gov/29710070
36.Edwards, S.M., et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet, 2003. 72: 1.
https://pubmed.ncbi.nlm.nih.gov/12474142
37.Agalliu, I., et al. Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer, 2007. 97: 826.
https://pubmed.ncbi.nlm.nih.gov/17700570
38.Leongamornlert, D., et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer, 2014. 110: 1663.
https://pubmed.ncbi.nlm.nih.gov/24556621
39.Wang, Y., et al. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med, 2015. 8: 15708.
https://pubmed.ncbi.nlm.nih.gov/26629066
40.Zhen, J.T., et al. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer, 2018. 124: 3105.
https://pubmed.ncbi.nlm.nih.gov/29669169
41.Leongamornlert, D., et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer, 2012. 106: 1697.
https://pubmed.ncbi.nlm.nih.gov/22516946
42.Thompson, D., et al. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst, 2002. 94: 1358.
https://pubmed.ncbi.nlm.nih.gov/12237281
43.Karlsson, R., et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol, 2014. 65: 169.
https://pubmed.ncbi.nlm.nih.gov/22841674
44.Storebjerg, T.M., et al. Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int, 2016. 118: 646.
https://pubmed.ncbi.nlm.nih.gov/26779768
45.Ryan, S., et al. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev, 2014. 23: 437.
https://pubmed.ncbi.nlm.nih.gov/24425144
46.Carlsson, S., et al. Influence of blood prostate specific antigen levels at age 60 on benefits and harms of prostate cancer screening: population based cohort study. BMJ, 2014. 348: g2296.
https://pubmed.ncbi.nlm.nih.gov/24682399
47.Rosty, C., et al. High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer, 2014. 13: 573.
https://pubmed.ncbi.nlm.nih.gov/25117503
48.Leitzmann, M.F., et al. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin Epidemiol, 2012. 4: 1.
https://pubmed.ncbi.nlm.nih.gov/22291478
49.Cook, L.S., et al. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J Urol, 1999. 161: 152.
https://pubmed.ncbi.nlm.nih.gov/10037388
50.Blanc-Lapierre, A., et al. Metabolic syndrome and prostate cancer risk in a population-based case-control study in Montreal, Canada. BMC Public Health, 2015. 15: 913.
https://pubmed.ncbi.nlm.nih.gov/26385727
51.Esposito, K., et al. Effect of metabolic syndrome and its components on prostate cancer risk: meta-analysis. J Endocrinol Invest, 2013. 36: 132.
https://pubmed.ncbi.nlm.nih.gov/23481613
52.Vidal, A.C., et al. Obesity increases the risk for high-grade prostate cancer: results from the REDUCE study. Cancer Epidemiol Biomarkers Prev, 2014. 23: 2936.
https://pubmed.ncbi.nlm.nih.gov/25261967
53.Davies, N.M., et al. The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes Control, 2015. 26: 1603.
https://pubmed.ncbi.nlm.nih.gov/26387087
54.Rivera-Izquierdo, M., et al. Obesity as a Risk Factor for Prostate Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of 280,199 Patients. Cancers (Basel), 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/34439328
55.Preston, M.A., et al. Metformin use and prostate cancer risk. Eur Urol, 2014. 66: 1012.
https://pubmed.ncbi.nlm.nih.gov/24857538
56.Li, Y., et al. Effect of Statins on the Risk of Different Stages of Prostate Cancer: A Meta-Analysis. Urol Int, 2022. 106: 869.
https://pubmed.ncbi.nlm.nih.gov/34518476
57.Dickerman, B.A., et al. Alcohol intake, drinking patterns, and prostate cancer risk and mortality: a 30-year prospective cohort study of Finnish twins. Cancer Causes Control, 2016. 27: 1049.
https://pubmed.ncbi.nlm.nih.gov/27351919
58.Zhao, J., et al. Is alcohol consumption a risk factor for prostate cancer? A systematic review and meta-analysis. BMC Cancer, 2016. 16: 845.
https://pubmed.ncbi.nlm.nih.gov/27842506
59.Chen, X., et al. Coffee consumption and risk of prostate cancer: a systematic review and meta-analysis. BMJ Open, 2021. 11: e038902.
https://pubmed.ncbi.nlm.nih.gov/33431520
60.Key, T.J. Nutrition, hormones and prostate cancer risk: results from the European prospective investigation into cancer and nutrition. Recent Results Cancer Res, 2014. 202: 39.
https://pubmed.ncbi.nlm.nih.gov/24531775
61.Alexander, D.D., et al. Meta-Analysis of Long-Chain Omega-3 Polyunsaturated Fatty Acids (LComega-3PUFA) and Prostate Cancer. Nutr Cancer, 2015. 67: 543.
https://pubmed.ncbi.nlm.nih.gov/25826711
62.Lippi, G., et al. Fried food and prostate cancer risk: systematic review and meta-analysis. Int J Food Sci Nutr, 2015. 66: 587.
https://pubmed.ncbi.nlm.nih.gov/26114920
63.Ilic, D., et al. Lycopene for the prevention and treatment of benign prostatic hyperplasia and prostate cancer: a systematic review. Maturitas, 2012. 72: 269.
https://pubmed.ncbi.nlm.nih.gov/22633187
64.Bylsma, L.C., et al. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr J, 2015. 14: 125.
https://pubmed.ncbi.nlm.nih.gov/26689289
65.Nouri-Majd, S., et al. Association Between Red and Processed Meat Consumption and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Front Nutr, 2022. 9: 801722.
https://pubmed.ncbi.nlm.nih.gov/35198587
66.Zhang, M., et al. Is phytoestrogen intake associated with decreased risk of prostate cancer? A systematic review of epidemiological studies based on 17,546 cases. Andrology, 2016. 4: 745.
https://pubmed.ncbi.nlm.nih.gov/27260185
67.Applegate, C.C., et al. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients, 2018. 10.
https://pubmed.ncbi.nlm.nih.gov/29300347
68.Kristal, A.R., et al. Plasma vitamin D and prostate cancer risk: results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev, 2014. 23: 1494.
https://pubmed.ncbi.nlm.nih.gov/24732629
69.Nyame, Y.A., et al. Associations Between Serum Vitamin D and Adverse Pathology in Men Undergoing Radical Prostatectomy. J Clin Oncol, 2016. 34: 1345.
https://pubmed.ncbi.nlm.nih.gov/26903577
70.Cui, Z., et al. Serum selenium levels and prostate cancer risk: A MOOSE-compliant meta-analysis. Medicine (Baltimore), 2017. 96: e5944.
https://pubmed.ncbi.nlm.nih.gov/28151881
71.Allen, N.E., et al. Selenium and Prostate Cancer: Analysis of Individual Participant Data From Fifteen Prospective Studies. J Natl Cancer Inst, 2016. 108.
https://pubmed.ncbi.nlm.nih.gov/27385803
72.Lippman, S.M., et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009. 301: 39.
https://pubmed.ncbi.nlm.nih.gov/19066370
73.Knijnik, P.G., et al. The impact of 5-alpha-reductase inhibitors on mortality in a prostate cancer chemoprevention setting: a meta-analysis. World J Urol, 2021. 39: 365.
https://pubmed.ncbi.nlm.nih.gov/32314009
74.Thompson, I.M., et al. The influence of finasteride on the development of prostate cancer. N Engl J Med, 2003. 349: 215.
https://pubmed.ncbi.nlm.nih.gov/12824459
75.Haider, A., et al. Incidence of prostate cancer in hypogonadal men receiving testosterone therapy: observations from 5-year median followup of 3 registries. J Urol, 2015. 193: 80.
https://pubmed.ncbi.nlm.nih.gov/24980615
76.Watts, E.L., et al. Low Free Testosterone and Prostate Cancer Risk: A Collaborative Analysis of 20 Prospective Studies. Eur Urol, 2018. 74: 585.
https://pubmed.ncbi.nlm.nih.gov/30077399
77.Golla, V., et al. Testosterone Therapy on Active Surveillance and Following Definitive Treatment for Prostate Cancer. Curr Urol Rep, 2017. 18: 49.
https://pubmed.ncbi.nlm.nih.gov/28589395
78.Burns, J.A., et al. Inflammatory Bowel Disease and the Risk of Prostate Cancer. Eur Urol, 2019. 75: 846.
https://pubmed.ncbi.nlm.nih.gov/30528221
79.Zhou, C.K., et al. Male Pattern Baldness in Relation to Prostate Cancer-Specific Mortality: A Prospective Analysis in the NHANES I Epidemiologic Follow-up Study. Am J Epidemiol, 2016. 183: 210.
https://pubmed.ncbi.nlm.nih.gov/26764224
80.Lian, W.Q., et al. Gonorrhea and Prostate Cancer Incidence: An Updated Meta-Analysis of 21 Epidemiologic Studies. Med Sci Monit, 2015. 21: 1902.
https://pubmed.ncbi.nlm.nih.gov/26126881
81.Rao, D., et al. Does night-shift work increase the risk of prostate cancer? a systematic review and meta-analysis. Onco Targets Ther, 2015. 8: 2817.
https://pubmed.ncbi.nlm.nih.gov/26491356
82.Islami, F., et al. A systematic review and meta-analysis of tobacco use and prostate cancer mortality and incidence in prospective cohort studies. Eur Urol, 2014. 66: 1054.
https://pubmed.ncbi.nlm.nih.gov/25242554
83.Brookman-May, S.D., et al. Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of Oncological Urology (ESOU). Eur Urol Focus, 2019. 5: 756.
https://pubmed.ncbi.nlm.nih.gov/29576530
84.Ju-Kun, S., et al. Association Between Cd Exposure and Risk of Prostate Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore), 2016. 95: e2708.
https://pubmed.ncbi.nlm.nih.gov/26871808
85.Russo, G.I., et al. Human papillomavirus and risk of prostate cancer: a systematic review and meta-analysis. Aging Male, 2020. 23: 132.
https://pubmed.ncbi.nlm.nih.gov/29571270
86.Multigner, L., et al. Chlordecone exposure and risk of prostate cancer. J Clin Oncol, 2010. 28: 3457.
https://pubmed.ncbi.nlm.nih.gov/20566993
87.Bhindi, B., et al. The Association Between Vasectomy and Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Intern Med, 2017. 177: 1273.
https://pubmed.ncbi.nlm.nih.gov/28715534
88.Cremers, R.G., et al. Self-reported acne is not associated with prostate cancer. Urol Oncol, 2014. 32: 941.
https://pubmed.ncbi.nlm.nih.gov/25011577
89.Huang, T.B., et al. Aspirin use and the risk of prostate cancer: a meta-analysis of 24 epidemiologic studies. Int Urol Nephrol, 2014. 46: 1715.
https://pubmed.ncbi.nlm.nih.gov/24687637
90.Bhindi, B., et al. The impact of the use of aspirin and other nonsteroidal anti-inflammatory drugs on the risk of prostate cancer detection on biopsy. Urology, 2014. 84: 1073.
https://pubmed.ncbi.nlm.nih.gov/25443907
91.Lin, S.W., et al. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int J Cancer, 2012. 131: E1015.
https://pubmed.ncbi.nlm.nih.gov/22539073
92.Pabalan, N., et al. Association of male circumcision with risk of prostate cancer: a meta-analysis. Prostate Cancer Prostatic Dis, 2015. 18: 352.
https://pubmed.ncbi.nlm.nih.gov/26215783
93.Rider, J.R., et al. Ejaculation Frequency and Risk of Prostate Cancer: Updated Results with an Additional Decade of Follow-up. Eur Urol, 2016. 70: 974.
https://pubmed.ncbi.nlm.nih.gov/27033442
94.Brierley, J.D., et al., TNM classification of malignant tumors. UICC International Union Against Cancer. 8th edn. 2017.
95.D’Amico, A.V., et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. Jama, 1998. 280: 969.
https://pubmed.ncbi.nlm.nih.gov/9749478
96.Ploussard, G., et al. Decreased accuracy of the prostate cancer EAU risk group classification in the era of imaging-guided diagnostic pathway: proposal for a new classification based on MRI-targeted biopsies and early oncologic outcomes after surgery. World J Urol, 2020. 38: 2493.
https://pubmed.ncbi.nlm.nih.gov/31838560
97.Ceci, F., et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging, 2021. 48: 1626.
https://pubmed.ncbi.nlm.nih.gov/33604691
98.van den Bergh, R.C.N., et al. Re: Andrew Vickers, Sigrid V. Carlsson, Matthew Cooperberg. Routine Use of Magnetic Resonance Imaging for Early Detection of Prostate Cancer Is Not Justified by the Clinical Trial Evidence. Eur Urol 2020;78:304-6: Prebiopsy MRI: Through the Looking Glass. Eur Urol, 2020. 78: 310.
https://pubmed.ncbi.nlm.nih.gov/32660749
99.Epstein, J.I., et al. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol, 2005. 29: 1228.
https://pubmed.ncbi.nlm.nih.gov/16096414
100.Epstein, J.I., et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol, 2016. 40: 244.
https://pubmed.ncbi.nlm.nih.gov/26492179
101.van Leenders, G., et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol, 2020. 44: e87.
https://pubmed.ncbi.nlm.nih.gov/32459716
102.Epstein, J.I., et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur Urol, 2016. 69: 428.
https://pubmed.ncbi.nlm.nih.gov/26166626
103.Moyer, V.A., et al. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med, 2012. 157: 120.
https://pubmed.ncbi.nlm.nih.gov/22801674
104.Sauter, G., et al. Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol, 2018. 73: 674.
https://pubmed.ncbi.nlm.nih.gov/28117112
105.Anderson, B.B., et al. Extraprostatic Extension Is Extremely Rare for Contemporary Gleason Score 6 Prostate Cancer. Eur Urol, 2017. 72: 455.
https://pubmed.ncbi.nlm.nih.gov/27986368
106.Ross, H.M., et al. Do adenocarcinomas of the prostate with Gleason score (GS) </=6 have the potential to metastasize to lymph nodes? Am J Surg Pathol, 2012. 36: 1346.
https://pubmed.ncbi.nlm.nih.gov/22531173
107.Alberts, A.R., et al. Biopsy undergrading in men with Gleason score 6 and fatal prostate cancer in the European Randomized study of Screening for Prostate Cancer Rotterdam. Int J Urol, 2017. 24: 281.
https://pubmed.ncbi.nlm.nih.gov/28173626
108.Baboudjian, M., et al. Grade group 1 prostate cancer on biopsy: are we still missing aggressive disease in the era of image-directed therapy? World J Urol, 2022. 40: 2423.
https://pubmed.ncbi.nlm.nih.gov/35980449
109.Zareba, P., et al. The impact of the 2005 International Society of Urological Pathology (ISUP) consensus on Gleason grading in contemporary practice. Histopathology, 2009. 55: 384.
https://pubmed.ncbi.nlm.nih.gov/19817888
110.Goel, S., et al. Concordance Between Biopsy and Radical Prostatectomy Pathology in the Era of Targeted Biopsy: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2020. 3: 10.
https://pubmed.ncbi.nlm.nih.gov/31492650
111.Wang, Y., et al. Predictive Factors for Gleason Score Upgrading in Patients with Prostate Cancer after Radical Prostatectomy: A Systematic Review and Meta-Analysis. Urol Int, 2023. 107: 460.
https://pubmed.ncbi.nlm.nih.gov/36990065
112.Schoots, I.G., et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol, 2015. 67: 627.
https://pubmed.ncbi.nlm.nih.gov/25511988
113.Inoue, L.Y., et al. Modeling grade progression in an active surveillance study. Stat Med, 2014. 33: 930.
https://pubmed.ncbi.nlm.nih.gov/24123208
114.Labbate, C.V., et al. Should Grade Group 1 (GG1) be called cancer? World J Urol, 2022. 40: 15.
https://pubmed.ncbi.nlm.nih.gov/33432506
115.Berlin, A., et al. The influence of the “cancer” label on perceptions and management decisions for low-grade prostate cancer. J Natl Cancer Inst, 2023. 115: 1364.
https://pubmed.ncbi.nlm.nih.gov/37285311
116.Saoud, R., et al. Physician Perception of Grade Group 1 Prostate Cancer. Eur Urol Focus, 2023.
https://pubmed.ncbi.nlm.nih.gov/37117112
117.Iczkowski, K.A., et al. Low-grade prostate cancer should still be labelled cancer. BJU Int, 2022. 130: 741.
https://pubmed.ncbi.nlm.nih.gov/36083240
118.Van der Kwast, T.H., et al. Defining the threshold for significant versus insignificant prostate cancer. Nat Rev Urol, 2013. 10: 473.
https://pubmed.ncbi.nlm.nih.gov/23712205
119.Preisser, F., et al. Intermediate-risk Prostate Cancer: Stratification and Management. Eur Urol Oncol, 2020. 3: 270.
https://pubmed.ncbi.nlm.nih.gov/32303478
120.Overland, M.R., et al. Active surveillance for intermediate-risk prostate cancer: yes, but for whom? Curr Opin Urol, 2019. 29: 605.
https://pubmed.ncbi.nlm.nih.gov/31436567
121.Kasivisvanathan, V., et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med, 2018. 378: 1767.
https://pubmed.ncbi.nlm.nih.gov/29552975
122.Emmett, L., et al. The Additive Diagnostic Value of Prostate-specific Membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the Diagnosis of Prostate Cancer (PRIMARY): A Prospective Multicentre Study. Eur Urol, 2021. 80: 682.
https://pubmed.ncbi.nlm.nih.gov/34465492
123.Ahmed, H.U., et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet, 2017. 389: 815.
https://pubmed.ncbi.nlm.nih.gov/28110982
124.Thompson, J.E., et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol, 2014. 192: 67.
https://pubmed.ncbi.nlm.nih.gov/24518762
125.Kane, C.J., et al. Variability in Outcomes for Patients with Intermediate-risk Prostate Cancer (Gleason Score 7, International Society of Urological Pathology Gleason Group 2-3) and Implications for Risk Stratification: A Systematic Review. Eur Urol Focus, 2017. 3: 487.
https://pubmed.ncbi.nlm.nih.gov/28753804
126.Zumsteg, Z.S., et al. Unification of favourable intermediate-, unfavourable intermediate-, and very high-risk stratification criteria for prostate cancer. BJU Int, 2017. 120: E87.
https://pubmed.ncbi.nlm.nih.gov/28464446
127.Gnanapragasam, V.J., et al. Improving Clinical Risk Stratification at Diagnosis in Primary Prostate Cancer: A Prognostic Modelling Study. PLoS Med, 2016. 13: e1002063.
https://pubmed.ncbi.nlm.nih.gov/27483464
128.Gnanapragasam, V.J., et al. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study. BMC Med, 2018. 16: 31.
https://pubmed.ncbi.nlm.nih.gov/29490658
129.Parry, M.G., et al. Risk stratification for prostate cancer management: value of the Cambridge Prognostic Group classification for assessing treatment allocation. BMC Med, 2020. 18: 114.
https://pubmed.ncbi.nlm.nih.gov/32460859
130.Kensler, K.H., et al. Prostate Cancer Screening in African American Men: A Review of the Evidence. J Natl Cancer Inst, 2023.
https://pubmed.ncbi.nlm.nih.gov/37713266
131.Page, E.C., et al. Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. Eur Urol, 2019. 76: 831.
https://pubmed.ncbi.nlm.nih.gov/31537406
132.Bokhorst, L.P., et al. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. Eur Urol, 2014. 65: 329.
https://pubmed.ncbi.nlm.nih.gov/23954085
133.Arnsrud Godtman, R., et al. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg randomized population-based prostate cancer screening trial. Eur Urol, 2015. 68: 354.
https://pubmed.ncbi.nlm.nih.gov/25556937
134.Bjerner, J., et al. Baseline Serum Prostate-specific Antigen Value Predicts the Risk of Subsequent Prostate Cancer Death-Results from the Norwegian Prostate Cancer Consortium. Eur Urol, 2023.
https://pubmed.ncbi.nlm.nih.gov/37169639
135.Vickers, A.J., et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study. BMJ, 2013. 346: f2023.
https://pubmed.ncbi.nlm.nih.gov/23596126
136.Boyle, H.J., et al. Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. Eur J Cancer, 2019. 116: 116.
https://pubmed.ncbi.nlm.nih.gov/31195356
137.Loeb, S., et al. Pathological characteristics of prostate cancer detected through prostate specific antigen based screening. J Urol, 2006. 175: 902.
https://pubmed.ncbi.nlm.nih.gov/16469576
138.Etzioni, R., et al. Limitations of basing screening policies on screening trials: The US Preventive Services Task Force and Prostate Cancer Screening. Med Care, 2013. 51: 295.
https://pubmed.ncbi.nlm.nih.gov/23269114
139.Ilic, D., et al. Screening for prostate cancer. Cochrane Database Syst Rev, 2013. 2013: CD004720.
https://pubmed.ncbi.nlm.nih.gov/23440794
140.Ilic, D., et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ, 2018. 362: k3519.
https://pubmed.ncbi.nlm.nih.gov/30185521
141.Hayes, J.H., et al. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA, 2014. 311: 1143.
https://pubmed.ncbi.nlm.nih.gov/24643604
142.Hugosson, J., et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur Urol, 2019. 76: 43.
https://pubmed.ncbi.nlm.nih.gov/30824296
143.Independent, U.K.P.o.B.C.S. The benefits and harms of breast cancer screening: an independent review. Lancet, 2012. 380: 1778.
https://pubmed.ncbi.nlm.nih.gov/23117178
144.de, V., II, et al. A Detailed Evaluation of the Effect of Prostate-specific Antigen-based Screening on Morbidity and Mortality of Prostate Cancer: 21-year Follow-up Results of the Rotterdam Section of the European Randomised Study of Screening for Prostate Cancer. Eur Urol, 2023. 84: 426.
https://pubmed.ncbi.nlm.nih.gov/37029074
145.Hugosson, J., et al. Eighteen-year follow-up of the Goteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol, 2018. 52: 27.
https://pubmed.ncbi.nlm.nih.gov/29254399
146.Heijnsdijk, E.A., et al. Quality-of-life effects of prostate-specific antigen screening. N Engl J Med, 2012. 367: 595.
https://pubmed.ncbi.nlm.nih.gov/22894572
147.Vasarainen, H., et al. Effects of prostate cancer screening on health-related quality of life: results of the Finnish arm of the European randomized screening trial (ERSPC). Acta Oncol, 2013. 52: 1615.
https://pubmed.ncbi.nlm.nih.gov/23786174
148.Martin, R.M., et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP Randomized Clinical Trial. JAMA, 2018. 319: 883.
https://pubmed.ncbi.nlm.nih.gov/29509864
149.Gelfond, J., et al. Intermediate-Term Risk of Prostate Cancer is Directly Related to Baseline Prostate Specific Antigen: Implications for Reducing the Burden of Prostate Specific Antigen Screening. J Urol, 2015. 194: 46.
https://pubmed.ncbi.nlm.nih.gov/25686543
150.Roobol, M.J., et al. Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculator for Initial Prostate Biopsy by Incorporating the 2014 International Society of Urological Pathology Gleason Grading and Cribriform growth. Eur Urol, 2017. 72: 45.
https://pubmed.ncbi.nlm.nih.gov/28162815
151.Bancroft, E.K., et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol, 2014. 66: 489.
https://pubmed.ncbi.nlm.nih.gov/24484606
152.Bancroft, E.K., et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol, 2021. 22: 1618.
https://pubmed.ncbi.nlm.nih.gov/34678156
153.Mark, J.R., et al. Genetic Testing Guidelines and Education of Health Care Providers Involved in Prostate Cancer Care. Urol Clin North Am, 2021. 48: 311.
https://pubmed.ncbi.nlm.nih.gov/34210487
154.Giri, V.N., et al. Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J Clin Oncol, 2020. 38: 2798.
https://pubmed.ncbi.nlm.nih.gov/32516092
155.John, E.M., et al. Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA, 2007. 298: 2869.
https://pubmed.ncbi.nlm.nih.gov/18159056
156.Carvalhal, G.F., et al. Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng./ml. or less. J Urol, 1999. 161: 835.
https://pubmed.ncbi.nlm.nih.gov/10022696
157.Gosselaar, C., et al. The role of the digital rectal examination in subsequent screening visits in the European randomized study of screening for prostate cancer (ERSPC), Rotterdam. Eur Urol, 2008. 54: 581.
https://pubmed.ncbi.nlm.nih.gov/18423977
158.Herrera-Caceres, J.O., et al. Utility of digital rectal examination in a population with prostate cancer treated with active surveillance. Can Urol Assoc J, 2020. 14: E453.
https://pubmed.ncbi.nlm.nih.gov/32223879
159.Okotie, O.T., et al. Characteristics of prostate cancer detected by digital rectal examination only. Urology, 2007. 70: 1117.
https://pubmed.ncbi.nlm.nih.gov/18158030
160.Prebay, Z.J., et al. The prognostic value of digital rectal exam for the existence of advanced pathologic features after prostatectomy. Prostate, 2021. 81: 1064.
https://pubmed.ncbi.nlm.nih.gov/34297858
161.Stamey, T.A., et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med, 1987. 317: 909.
https://pubmed.ncbi.nlm.nih.gov/2442609
162.Semjonow, A., et al. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate Suppl, 1996. 7: 3.
https://pubmed.ncbi.nlm.nih.gov/8950358
163.Thompson, I.M., et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med, 2004. 350: 2239.
https://pubmed.ncbi.nlm.nih.gov/15163773
164.Schroder, F.H., et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med, 2012. 366: 981.
https://pubmed.ncbi.nlm.nih.gov/22417251
165.Merriel, S.W.D., et al. Systematic review and meta-analysis of the diagnostic accuracy of prostate-specific antigen (PSA) for the detection of prostate cancer in symptomatic patients. BMC Med, 2022. 20: 54.
https://pubmed.ncbi.nlm.nih.gov/35125113
166.Habib, F.K., et al. Differential effect of finasteride on the tissue androgen concentrations in benign prostatic hyperplasia. Clin Endocrinol (Oxf), 1997. 46: 137.
https://pubmed.ncbi.nlm.nih.gov/9135694
167.Eastham, J.A., et al. Variations among individual surgeons in the rate of positive surgical margins in radical prostatectomy specimens. J Urol, 2003. 170: 2292.
https://pubmed.ncbi.nlm.nih.gov/14634399
168.Stephan, C., et al. Interchangeability of measurements of total and free prostate-specific antigen in serum with 5 frequently used assay combinations: an update. Clin Chem, 2006. 52: 59.
https://pubmed.ncbi.nlm.nih.gov/16391327
169.Gill, N., et al. Prostate-Specific Antigen: a Review of Assay Techniques, Variability and Their Clinical Implications. BioNanoScience, 2017. 8: 707.
https://link.springer.com/article/10.1007/s12668-017-0465-4
170.Nordstrom, T., et al. Repeat Prostate-Specific Antigen Tests Before Prostate Biopsy Decisions. J Natl Cancer Inst, 2016. 108.
https://pubmed.ncbi.nlm.nih.gov/27418620
171.Rosario, D.J., et al. Contribution of a single repeat PSA test to prostate cancer risk assessment: experience from the ProtecT study. Eur Urol, 2008. 53: 777.
https://pubmed.ncbi.nlm.nih.gov/18079051
172.De Nunzio, C., et al. Repeat prostate-specific antigen (PSA) test before prostate biopsy: a 20% decrease in PSA values is associated with a reduced risk of cancer and particularly of high-grade cancer. BJU Int, 2018. 122: 83.
https://pubmed.ncbi.nlm.nih.gov/29533522
173.Maggi, M., et al. Prostate Imaging Reporting and Data System 3 Category Cases at Multiparametric Magnetic Resonance for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2020. 6: 463.
https://pubmed.ncbi.nlm.nih.gov/31279677
174.Nordstrom, T., et al. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis, 2018. 21: 57.
https://pubmed.ncbi.nlm.nih.gov/29259293
175.Yusim, I., et al. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci Rep, 2020. 10: 20015.
https://pubmed.ncbi.nlm.nih.gov/33203873
176.Hamzaoui, D., et al. Prostate volume prediction on MRI: tools, accuracy and variability. Eur Radiol, 2022. 32: 4931.
https://pubmed.ncbi.nlm.nih.gov/35169895
177.Choe, S., et al. MRI vs Transrectal Ultrasound to Estimate Prostate Volume and PSAD: Impact on Prostate Cancer Detection. Urology, 2023. 171: 172.
https://pubmed.ncbi.nlm.nih.gov/36152871
178.de, V., II, et al. Prostate cancer risk assessment by the primary care physician and urologist: transabdominal- versus transrectal ultrasound prostate volume-based use of the Rotterdam Prostate Cancer Risk Calculator. Transl Androl Urol, 2023. 12: 241.
https://pubmed.ncbi.nlm.nih.gov/36915892
179.Eldred-Evans, D., et al. Population-Based Prostate Cancer Screening With Magnetic Resonance Imaging or Ultrasonography: The IP1-PROSTAGRAM Study. JAMA Oncol, 2021. 7: 395.
https://pubmed.ncbi.nlm.nih.gov/33570542
180.Turkbey, B., et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol, 2019. 76: 340.
https://pubmed.ncbi.nlm.nih.gov/30898406
181.Weinreb, J.C., et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol, 2016. 69: 16.
https://pubmed.ncbi.nlm.nih.gov/26427566
182.Bratan, F., et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol, 2013. 23: 2019.
https://pubmed.ncbi.nlm.nih.gov/23494494
183.Borofsky, S., et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology, 2018. 286: 186.
https://pubmed.ncbi.nlm.nih.gov/29053402
184.Johnson, D.C., et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. Eur Urol, 2019. 75: 712.
https://pubmed.ncbi.nlm.nih.gov/30509763
185.Yaxley, W.J., et al. Histological findings of totally embedded robot assisted laparoscopic radical prostatectomy (RALP) specimens in 1197 men with a negative (low risk) preoperative multiparametric magnetic resonance imaging (mpMRI) prostate lobe and clinical implications. Prostate Cancer Prostatic Dis, 2021. 24: 398.
https://pubmed.ncbi.nlm.nih.gov/32999464
186.Drost, F.H., et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev, 2019. 4: CD012663.
https://pubmed.ncbi.nlm.nih.gov/31022301
187.Oerther, B., et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level. Prostate Cancer Prostatic Dis, 2022. 25: 256.
https://pubmed.ncbi.nlm.nih.gov/34230616
188.Klotz, L., et al. Comparison of Multiparametric Magnetic Resonance Imaging-Targeted Biopsy With Systematic Transrectal Ultrasonography Biopsy for Biopsy-Naive Men at Risk for Prostate Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol, 2021. 7: 534.
https://pubmed.ncbi.nlm.nih.gov/33538782
189.van der Leest, M., et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naive Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol, 2019. 75: 570.
https://pubmed.ncbi.nlm.nih.gov/30477981
190.Rouviere, O., et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol, 2019. 20: 100.
https://pubmed.ncbi.nlm.nih.gov/30470502
191.Exterkate, L., et al. Is There Still a Need for Repeated Systematic Biopsies in Patients with Previous Negative Biopsies in the Era of Magnetic Resonance Imaging-targeted Biopsies of the Prostate? Eur Urol Oncol, 2020. 3: 216.
https://pubmed.ncbi.nlm.nih.gov/31239236
192.Smeenge, M., et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a Consensus Panel. BJU Int, 2012. 110: 942.
https://pubmed.ncbi.nlm.nih.gov/22462566
193.Correas, J.M., et al. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol, 2021. 39: 661.
https://pubmed.ncbi.nlm.nih.gov/32306060
194.Mannaerts, C.K., et al. Detection of clinically significant prostate cancer in biopsy-naive men: direct comparison of systematic biopsy, multiparametric MRI- and contrast-ultrasound-dispersion imaging-targeted biopsy. BJU Int, 2020. 126: 481.
https://pubmed.ncbi.nlm.nih.gov/32315112
195.Grey, A.D.R., et al. Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study. Lancet Oncol, 2022. 23: 428.
https://pubmed.ncbi.nlm.nih.gov/35240084
196.Hofbauer, S.L., et al. A non-inferiority comparative analysis of micro-ultrasonography and MRI-targeted biopsy in men at risk of prostate cancer. BJU Int, 2022. 129: 648.
https://pubmed.ncbi.nlm.nih.gov/34773679
197.Ghai, S., et al. Comparison of Micro-US and Multiparametric MRI for Prostate Cancer Detection in Biopsy-Naive Men. Radiology, 2022. 305: 390.
https://pubmed.ncbi.nlm.nih.gov/35852425
198.Dias, A.B., et al. Multiparametric ultrasound and micro-ultrasound in prostate cancer: a comprehensive review. Br J Radiol, 2022. 95: 20210633.
https://pubmed.ncbi.nlm.nih.gov/34752132
199.Kawada, T., et al. Diagnostic Performance of Prostate-specific Membrane Antigen Positron Emission Tomography-targeted biopsy for Detection of Clinically Significant Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2022. 5: 390.
https://pubmed.ncbi.nlm.nih.gov/35715320
200.Kretschmer, A., et al. Biomarkers in prostate cancer - Current clinical utility and future perspectives. Crit Rev Oncol Hematol, 2017. 120: 180.
https://pubmed.ncbi.nlm.nih.gov/29198331
201.Wagaskar, V.G., et al. A 4K score/MRI-based nomogram for predicting prostate cancer, clinically significant prostate cancer, and unfavorable prostate cancer. Cancer Rep (Hoboken), 2021. 4: e1357.
https://pubmed.ncbi.nlm.nih.gov/33661541
202.Hendriks, R.J., et al. Clinical use of the SelectMDx urinary-biomarker test with or without mpMRI in prostate cancer diagnosis: a prospective, multicenter study in biopsy-naive men. Prostate Cancer Prostatic Dis, 2021. 24: 1110.
https://pubmed.ncbi.nlm.nih.gov/33941866
203.Bryant, R.J., et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study. J Natl Cancer Inst, 2015. 107.
https://pubmed.ncbi.nlm.nih.gov/25863334
204.Catalona, W.J., et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol, 2011. 185: 1650.
https://pubmed.ncbi.nlm.nih.gov/21419439
205.Nordstrom, T., et al. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur Urol, 2015. 68: 139.
https://pubmed.ncbi.nlm.nih.gov/25151013
206.Wagaskar, V.G., et al. Clinical Utility of Negative Multiparametric Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer and Clinically Significant Prostate Cancer. Eur Urol Open Sci, 2021. 28: 9.
https://pubmed.ncbi.nlm.nih.gov/34337520
207.Gronberg, H., et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur Urol, 2018. 74: 722.
https://pubmed.ncbi.nlm.nih.gov/30001824
208.Nordstrom, T., et al. Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncol, 2021. 22: 1240.
https://pubmed.ncbi.nlm.nih.gov/34391509
209.Morote, J., et al. Improving the Early Detection of Clinically Significant Prostate Cancer in Men in the Challenging Prostate Imaging-Reporting and Data System 3 Category. Eur Urol Open Sci, 2022. 37: 38.
https://pubmed.ncbi.nlm.nih.gov/35243388
210.Ploussard, G., et al. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther, 2018. 18: 1013.
https://pubmed.ncbi.nlm.nih.gov/30016891
211.Van Neste, L., et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker-Based Risk Score. Eur Urol, 2016. 70: 740.
https://pubmed.ncbi.nlm.nih.gov/27108162
212.Maggi, M., et al. SelectMDx and Multiparametric Magnetic Resonance Imaging of the Prostate for Men Undergoing Primary Prostate Biopsy: A Prospective Assessment in a Multi-Institutional Study. Cancers (Basel), 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/33922626
213.Lendinez-Cano, G., et al. Prospective study of diagnostic accuracy in the detection of high-grade prostate cancer in biopsy-naive patients with clinical suspicion of prostate cancer who underwent the Select MDx test. Prostate, 2021. 81: 857.
https://pubmed.ncbi.nlm.nih.gov/34184761
214.Roumiguie, M., et al. Independent Evaluation of the Respective Predictive Values for High-Grade Prostate Cancer of Clinical Information and RNA Biomarkers after Upfront MRI and Image-Guided Biopsies. Cancers (Basel), 2020. 12.
https://pubmed.ncbi.nlm.nih.gov/31991591
215.Tomlins, S.A., et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005. 310: 644.
https://pubmed.ncbi.nlm.nih.gov/16254181
216.Tomlins, S.A., et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol, 2016. 70: 45.
https://pubmed.ncbi.nlm.nih.gov/25985884
217.Donovan, M.J., et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis, 2015. 18: 370.
https://pubmed.ncbi.nlm.nih.gov/26345389
218.McKiernan, J., et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol, 2016. 2: 882.
https://pubmed.ncbi.nlm.nih.gov/27032035
219.Vedder, M.M., et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur Urol, 2014. 66: 1109.
https://pubmed.ncbi.nlm.nih.gov/25168616
220.Lamy, P.J., et al. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review. Eur Urol Focus, 2018. 4: 790.
https://pubmed.ncbi.nlm.nih.gov/28753865
221.Iczkowski, K.A., et al. Needle core length in sextant biopsy influences prostate cancer detection rate. Urology, 2002. 59: 698.
https://pubmed.ncbi.nlm.nih.gov/11992843
222.Egevad, L., et al. Dataset for the reporting of prostate carcinoma in core needle biopsy and transurethral resection and enucleation specimens: recommendations from the International Collaboration on Cancer Reporting (ICCR). Pathology, 2019. 51: 11.
https://pubmed.ncbi.nlm.nih.gov/30477882
223.Van der Kwast, T., et al. Guidelines on processing and reporting of prostate biopsies: the 2013 update of the pathology committee of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Virchows Arch, 2013. 463: 367.
https://pubmed.ncbi.nlm.nih.gov/23918245
224.Epstein, J.I., et al. Best practices recommendations in the application of immunohistochemistry in the prostate: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol, 2014. 38: e6.
https://pubmed.ncbi.nlm.nih.gov/25029122
225.Chen, R.C., et al. Active Surveillance for the Management of Localized Prostate Cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J Clin Oncol, 2016. 34: 2182.
https://pubmed.ncbi.nlm.nih.gov/26884580
226.Deng, F.M., et al. Size-adjusted Quantitative Gleason Score as a Predictor of Biochemical Recurrence after Radical Prostatectomy. Eur Urol, 2016. 70: 248.
https://pubmed.ncbi.nlm.nih.gov/26525839
227.Kweldam, C.F., et al. Disease-specific survival of patients with invasive cribriform and intraductal prostate cancer at diagnostic biopsy. Mod Pathol, 2016. 29: 630.
https://pubmed.ncbi.nlm.nih.gov/26939875
228.Kweldam, C.F., et al. On cribriform prostate cancer. Transl Androl Urol, 2018. 7: 145.
https://pubmed.ncbi.nlm.nih.gov/29594028
229.van der Kwast, T.H., et al. ISUP Consensus Definition of Cribriform Pattern Prostate Cancer. Am J Surg Pathol, 2021. 45: 1118.
https://pubmed.ncbi.nlm.nih.gov/33999555
230.Zhou, M. High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod Pathol, 2018. 31: S71.
https://pubmed.ncbi.nlm.nih.gov/29297491
231.Saeter, T., et al. Intraductal Carcinoma of the Prostate on Diagnostic Needle Biopsy Predicts Prostate Cancer Mortality: A Population-Based Study. Prostate, 2017. 77: 859.
https://pubmed.ncbi.nlm.nih.gov/28240424
232.Miura, N., et al. The Prognostic Impact of Intraductal Carcinoma of the Prostate: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 909.
https://pubmed.ncbi.nlm.nih.gov/32698712
233.Shah, R.B., et al. Atypical intraductal proliferation detected in prostate needle biopsy is a marker of unsampled intraductal carcinoma and other adverse pathological features: a prospective clinicopathological study of 62 cases with emphasis on pathological outcomes. Histopathology, 2019. 75: 346.
https://pubmed.ncbi.nlm.nih.gov/31012493
234.Hickman, R.A., et al. Atypical Intraductal Cribriform Proliferations of the Prostate Exhibit Similar Molecular and Clinicopathologic Characteristics as Intraductal Carcinoma of the Prostate. Am J Surg Pathol, 2017. 41: 550.
https://pubmed.ncbi.nlm.nih.gov/28009609
235.Pepdjonovic, L., et al. Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J Urol, 2017. 35: 1199.
https://pubmed.ncbi.nlm.nih.gov/27987032
236.Epstein, J.I., et al. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med, 2021. 145: 461.
https://pubmed.ncbi.nlm.nih.gov/32589068
237.Tumours, E.B.W.C.o., WHO Classification of Tumours. Urinary and male genital tumours. 8th ed, ed. I.A.f.R.o. Cancer. Vol. 5th Edn.; vol 8. 2022, Lyon (France).
https://publications.iarc.fr/610
238.Gordetsky, J.B., et al. Histologic findings associated with false-positive multiparametric magnetic resonance imaging performed for prostate cancer detection. Hum Pathol, 2019. 83: 159.
https://pubmed.ncbi.nlm.nih.gov/30179687
239.Srigley, J.R., et al. Controversial issues in Gleason and International Society of Urological Pathology (ISUP) prostate cancer grading: proposed recommendations for international implementation. Pathology, 2019. 51: 463.
https://pubmed.ncbi.nlm.nih.gov/31279442
240.Strom, P., et al. Prognostic value of perineural invasion in prostate needle biopsies: a population-based study of patients treated by radical prostatectomy. J Clin Pathol, 2020. 73: 630.
https://pubmed.ncbi.nlm.nih.gov/32034057
241.Fleshner, K., et al. Clinical Findings and Treatment Outcomes in Patients with Extraprostatic Extension Identified on Prostate Biopsy. J Urol, 2016. 196: 703.
https://pubmed.ncbi.nlm.nih.gov/27049874
242.Morozov, A., et al. A systematic review and meta-analysis of artificial intelligence diagnostic accuracy in prostate cancer histology identification and grading. Prostate Cancer Prostatic Dis, 2023. 26: 681.
https://pubmed.ncbi.nlm.nih.gov/37185992
243.Freedland, S.J., et al. Preoperative model for predicting prostate specific antigen recurrence after radical prostatectomy using percent of biopsy tissue with cancer, biopsy Gleason grade and serum prostate specific antigen. J Urol, 2004. 171: 2215.
https://pubmed.ncbi.nlm.nih.gov/15126788
244.Grossklaus, D.J., et al. Percent of cancer in the biopsy set predicts pathological findings after prostatectomy. J Urol, 2002. 167: 2032.
https://pubmed.ncbi.nlm.nih.gov/11956432
245.Brimo, F., et al. Prognostic value of various morphometric measurements of tumour extent in prostate needle core tissue. Histopathology, 2008. 53: 177.
https://pubmed.ncbi.nlm.nih.gov/18752501
246.Bangma, C.H., et al. Active surveillance for low-risk prostate cancer. Crit Rev Oncol Hematol, 2013. 85: 295.
https://pubmed.ncbi.nlm.nih.gov/22878262
247.Nguyen, P.L., et al. Analysis of a Biopsy-Based Genomic Classifier in High-Risk Prostate Cancer: Meta-Analysis of the NRG Oncology/Radiation Therapy Oncology Group 9202, 9413, and 9902 Phase 3 Randomized Trials. Int J Radiat Oncol Biol Phys, 2023. 116: 521.
https://pubmed.ncbi.nlm.nih.gov/36596347
248.de Bono, J., et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 382: 2091.
https://pubmed.ncbi.nlm.nih.gov/32343890
249.Mateo, J., et al. Genomics of lethal prostate cancer at diagnosis and castration resistance. J Clin Invest, 2020. 130: 1743.
https://pubmed.ncbi.nlm.nih.gov/31874108
250.Schweizer, M.T., et al. Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncol, 2021. 7: 1.
https://pubmed.ncbi.nlm.nih.gov/34086042
251.Robinson, D., et al. Integrative clinical genomics of advanced prostate cancer. Cell, 2015. 161: 1215.
https://pubmed.ncbi.nlm.nih.gov/26000489
252.Matsubara, N., et al. Olaparib Efficacy in Patients with Metastatic Castration-resistant Prostate Cancer and BRCA1, BRCA2, or ATM Alterations Identified by Testing Circulating Tumor DNA. Clin Cancer Res, 2023. 29: 92.
https://pubmed.ncbi.nlm.nih.gov/36318705
253.Chi, K.N., et al. Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clin Cancer Res, 2023. 29: 81.
https://pubmed.ncbi.nlm.nih.gov/36043882
254.Iremashvili, V., et al. Partial sampling of radical prostatectomy specimens: detection of positive margins and extraprostatic extension. Am J Surg Pathol, 2013. 37: 219.
https://pubmed.ncbi.nlm.nih.gov/23095506
255.Kench, J.G., et al. Dataset for the reporting of prostate carcinoma in radical prostatectomy specimens: updated recommendations from the International Collaboration on Cancer Reporting. Virchows Arch, 2019. 475: 263.
https://pubmed.ncbi.nlm.nih.gov/31098802
256.Gandaglia, G., et al. A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies. Eur Urol, 2019. 75: 506.
https://pubmed.ncbi.nlm.nih.gov/30342844
257.Partin, A.W., et al. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology, 2001. 58: 843.
https://pubmed.ncbi.nlm.nih.gov/11744442
258.Magi-Galluzzi, C., et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol, 2011. 24: 26.
https://pubmed.ncbi.nlm.nih.gov/20802467
259.van Veggel, B.A., et al. Quantification of extraprostatic extension in prostate cancer: different parameters correlated to biochemical recurrence after radical prostatectomy. Histopathology, 2011. 59: 692.
https://pubmed.ncbi.nlm.nih.gov/22014050
260.Aydin, H., et al. Positive proximal (bladder neck) margin at radical prostatectomy confers greater risk of biochemical progression. Urology, 2004. 64: 551.
https://pubmed.ncbi.nlm.nih.gov/15351591
261.Ploussard, G., et al. The prognostic significance of bladder neck invasion in prostate cancer: is microscopic involvement truly a T4 disease? BJU Int, 2010. 105: 776.
https://pubmed.ncbi.nlm.nih.gov/19863529
262.Stamey, T.A., et al. Prostate cancer is highly predictable: a prognostic equation based on all morphological variables in radical prostatectomy specimens. J Urol, 2000. 163: 1155.
https://pubmed.ncbi.nlm.nih.gov/10737486
263.van Oort, I.M., et al. Maximum tumor diameter is not an independent prognostic factor in high-risk localized prostate cancer. World J Urol, 2008. 26: 237.
https://pubmed.ncbi.nlm.nih.gov/18265988
264.van der Kwast, T.H., et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 2: T2 substaging and prostate cancer volume. Mod Pathol, 2011. 24: 16.
https://pubmed.ncbi.nlm.nih.gov/20818340
265.Epstein, J.I., et al. Prognostic factors and reporting of prostate carcinoma in radical prostatectomy and pelvic lymphadenectomy specimens. Scand J Urol Nephrol Suppl, 2005: 34.
https://pubmed.ncbi.nlm.nih.gov/16019758
266.Evans, A.J., et al. Interobserver variability between expert urologic pathologists for extraprostatic extension and surgical margin status in radical prostatectomy specimens. Am J Surg Pathol, 2008. 32: 1503.
https://pubmed.ncbi.nlm.nih.gov/18708939
267.Chuang, A.Y., et al. Positive surgical margins in areas of capsular incision in otherwise organ-confined disease at radical prostatectomy: histologic features and pitfalls. Am J Surg Pathol, 2008. 32: 1201.
https://pubmed.ncbi.nlm.nih.gov/18580493
268.Hollemans, E., et al. Prostate Carcinoma Grade and Length But Not Cribriform Architecture at Positive Surgical Margins Are Predictive for Biochemical Recurrence After Radical Prostatectomy. Am J Surg Pathol, 2020. 44: 191.
https://pubmed.ncbi.nlm.nih.gov/31592799
269.Cao, D., et al. Ability of linear length of positive margin in radical prostatectomy specimens to predict biochemical recurrence. Urology, 2011. 77: 1409.
https://pubmed.ncbi.nlm.nih.gov/21256540
270.Sammon, J.D., et al. Risk factors for biochemical recurrence following radical perineal prostatectomy in a large contemporary series: a detailed assessment of margin extent and location. Urol Oncol, 2013. 31: 1470.
https://pubmed.ncbi.nlm.nih.gov/22534086
271.Chapin, B.F., et al. Positive margin length and highest Gleason grade of tumor at the margin predict for biochemical recurrence after radical prostatectomy in patients with organ-confined prostate cancer. Prostate Cancer Prostatic Dis, 2018. 21: 221.
https://pubmed.ncbi.nlm.nih.gov/29230008
272.Dinneen, E.P., et al. Intraoperative Frozen Section for Margin Evaluation During Radical Prostatectomy: A Systematic Review. Eur Urol Focus, 2020. 6: 664.
https://pubmed.ncbi.nlm.nih.gov/31787570
273.Schlomm, T., et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol, 2012. 62: 333.
https://pubmed.ncbi.nlm.nih.gov/22591631
274.Mirmilstein, G., et al. The neurovascular structure-adjacent frozen-section examination (NeuroSAFE) approach to nerve sparing in robot-assisted laparoscopic radical prostatectomy in a British setting - a prospective observational comparative study. BJU Int, 2018. 121: 854.
https://pubmed.ncbi.nlm.nih.gov/29124889
275.van der Slot, M.A., et al. NeuroSAFE in radical prostatectomy increases the rate of nerve-sparing surgery without affecting oncological outcome. BJU Int, 2022. 130: 628.
https://pubmed.ncbi.nlm.nih.gov/35536200
276.Koseoglu, E., et al. Intraoperative Frozen Section via Neurosafe During Robotic Radical Prostatectomy in the Era of Preoperative Risk Stratifications and Primary Staging With mpMRI and PSMA-PET CT: Is There a Perfect Candidate? Clin Genitourin Cancer, 2023. 21: 602.
https://pubmed.ncbi.nlm.nih.gov/37451883
277.Dinneen, E., et al. NeuroSAFE PROOF: study protocol for a single-blinded, IDEAL stage 3, multi-centre, randomised controlled trial of NeuroSAFE robotic-assisted radical prostatectomy versus standard robotic-assisted radical prostatectomy in men with localized prostate cancer. Trials, 2022. 23: 584.
https://pubmed.ncbi.nlm.nih.gov/35869497
278.Farrell, C., et al. Prostate Multiparametric Magnetic Resonance Imaging Program Implementation and Impact: Initial Clinical Experience in a Community Based Health System. Urol Pract, 2018. 5: 165.
https://pubmed.ncbi.nlm.nih.gov/37300235
279.Reesink, D.J., et al. Comparison of risk-calculator and MRI and consecutive pathways as upfront stratification for prostate biopsy. World J Urol, 2021. 39: 2453.
https://pubmed.ncbi.nlm.nih.gov/33090259
280.Louie, K.S., et al. Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis. Ann Oncol, 2015. 26: 848.
https://pubmed.ncbi.nlm.nih.gov/25403590
281.Mannaerts, C.K., et al. Prostate Cancer Risk Assessment in Biopsy-naĂŻve Patients: The Rotterdam Prostate Cancer Risk Calculator in Multiparametric Magnetic Resonance Imaging-Transrectal Ultrasound (TRUS) Fusion Biopsy and Systematic TRUS Biopsy. Eur Urol Oncol, 2018. 1: 109.
https://pubmed.ncbi.nlm.nih.gov/31100233
282.Kim, L., et al. Clinical utility and cost modelling of the phi test to triage referrals into image-based diagnostic services for suspected prostate cancer: the PRIM (Phi to RefIne Mri) study. BMC Med, 2020. 18: 95.
https://pubmed.ncbi.nlm.nih.gov/32299423
283.Morote, J., et al. A Clinically Significant Prostate Cancer Predictive Model Using Digital Rectal Examination Prostate Volume Category to Stratify Initial Prostate Cancer Suspicion and Reduce Magnetic Resonance Imaging Demand. Cancers (Basel), 2022. 14.
https://pubmed.ncbi.nlm.nih.gov/36291883
284.Moldovan, P.C., et al. What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur Urol, 2017. 72: 250.
https://pubmed.ncbi.nlm.nih.gov/28336078
285.Kamal, O., et al. Intermediate-term oncological outcomes after a negative endorectal coil multiparametric MRI of the prostate in patients without biopsy proven prostate cancer. Clin Imaging, 2022. 92: 112.
https://pubmed.ncbi.nlm.nih.gov/36306588
286.Wagensveld, I.M., et al. A Prospective Multicenter Comparison Study of Risk-adapted Ultrasound-directed and Magnetic Resonance Imaging-directed Diagnostic Pathways for Suspected Prostate Cancer in Biopsy-naive Men. Eur Urol, 2022. 82: 318.
https://pubmed.ncbi.nlm.nih.gov/35341658
287.Distler, F.A., et al. The Value of PSA Density in Combination with PI-RADS for the Accuracy of Prostate Cancer Prediction. J Urol, 2017. 198: 575.
https://pubmed.ncbi.nlm.nih.gov/28373135
288.Washino, S., et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naive patients. BJU Int, 2017. 119: 225.
https://pubmed.ncbi.nlm.nih.gov/26935594
289.Schoots, I.G., et al. Risk-adapted biopsy decision based on prostate magnetic resonance imaging and prostate-specific antigen density for enhanced biopsy avoidance in first prostate cancer diagnostic evaluation. BJU Int, 2021. 127: 175.
https://pubmed.ncbi.nlm.nih.gov/33089586
290.Hansen, N.L., et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int, 2017. 120: 631.
https://pubmed.ncbi.nlm.nih.gov/27862869
291.Pagniez, M.A., et al. Predictive Factors of Missed Clinically Significant Prostate Cancers in Men with Negative Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 24.
https://pubmed.ncbi.nlm.nih.gov/31967522
292.Boesen, L., et al. Prebiopsy Biparametric Magnetic Resonance Imaging Combined with Prostate-specific Antigen Density in Detecting and Ruling out Gleason 7-10 Prostate Cancer in Biopsy-naive Men. Eur Urol Oncol, 2019. 2: 311.
https://pubmed.ncbi.nlm.nih.gov/31200846
293.Hansen, N.L., et al. The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7-10 prostate cancer in a repeat biopsy setting. BJU Int, 2017. 119: 724.
https://pubmed.ncbi.nlm.nih.gov/27488931
294.Oishi, M., et al. Which Patients with Negative Magnetic Resonance Imaging Can Safely Avoid Biopsy for Prostate Cancer? J Urol, 2019. 201: 268.
https://pubmed.ncbi.nlm.nih.gov/30189186
295.Sigle, A., et al. Prediction of Significant Prostate Cancer in Equivocal Magnetic Resonance Imaging Lesions: A High-volume International Multicenter Study. Eur Urol Focus, 2023. 9: 606.
https://pubmed.ncbi.nlm.nih.gov/36804191
296.Kortenbach, K.C., et al. Early experience in avoiding biopsies for biopsy-naive men with clinical suspicion of prostate cancer but non-suspicious biparametric magnetic resonance imaging results and prostate-specific antigen density < 0.15 ng/mL(2): A 2-year follow-up study. Acta Radiol Open, 2022. 11: 20584601221094825.
https://pubmed.ncbi.nlm.nih.gov/35464293
297.Konishi, T., et al. Combination of biparametric magnetic resonance imaging with prostate-specific antigen density to stratify the risk of significant prostate cancer: Initial biopsy and long-term follow-up results. Int J Urol, 2022. 29: 1031.
https://pubmed.ncbi.nlm.nih.gov/35697503
298.Schoots, I.G., et al. Multivariate risk prediction tools including MRI for individualized biopsy decision in prostate cancer diagnosis: current status and future directions. World J Urol, 2020. 38: 517.
https://pubmed.ncbi.nlm.nih.gov/30868240
299.Saba, K., et al. External Validation and Comparison of Prostate Cancer Risk Calculators Incorporating Multiparametric Magnetic Resonance Imaging for Prediction of Clinically Significant Prostate Cancer. J Urol, 2020. 203: 719.
https://pubmed.ncbi.nlm.nih.gov/31651228
300.Radtke, J.P., et al. Prediction of significant prostate cancer in biopsy-naive men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. PLoS One, 2019. 14: e0221350.
https://pubmed.ncbi.nlm.nih.gov/31450235
301.Pallauf, M., et al. External validation of two mpMRI-risk calculators predicting risk of prostate cancer before biopsy. World J Urol, 2022. 40: 2451.
https://pubmed.ncbi.nlm.nih.gov/35941246
302.Peters, M., et al. Predicting the Need for Biopsy to Detect Clinically Significant Prostate Cancer in Patients with a Magnetic Resonance Imaging-detected Prostate Imaging Reporting and Data System/Likert >/=3 Lesion: Development and Multinational External Validation of the Imperial Rapid Access to Prostate Imaging and Diagnosis Risk Score. Eur Urol, 2022. 82: 559.
https://pubmed.ncbi.nlm.nih.gov/35963650
303.Eklund, M., et al. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med, 2021. 385: 908.
https://pubmed.ncbi.nlm.nih.gov/34237810
304.Van Poppel, H., et al. Early Detection of Prostate Cancer in 2020 and Beyond: Facts and Recommendations for the European Union and the European Commission. Eur Urol, 2021. 79: 327.
https://pubmed.ncbi.nlm.nih.gov/33384200
305.Hugosson, J., et al. Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. N Engl J Med, 2022. 387: 2126.
https://pubmed.ncbi.nlm.nih.gov/36477032
306.Eldred-Evans, D., et al. An Evaluation of Screening Pathways Using a Combination of Magnetic Resonance Imaging and Prostate-specific Antigen: Results from the IP1-PROSTAGRAM Study. Eur Urol Oncol, 2023. 6: 295.
https://pubmed.ncbi.nlm.nih.gov/37080821
307.Eichler, K., et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol, 2006. 175: 1605.
https://pubmed.ncbi.nlm.nih.gov/16600713
308.Watts, K.L., et al. Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol, 2020. 38: 734 e19.
https://pubmed.ncbi.nlm.nih.gov/32321689
309.Wegelin, O., et al. The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. Eur Urol, 2019. 75: 582.
https://pubmed.ncbi.nlm.nih.gov/30522912
310.Wegelin, O., et al. Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies: A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique? Eur Urol, 2017. 71: 517.
https://pubmed.ncbi.nlm.nih.gov/27568655
311.Goldberg, H., et al. Comparison of Magnetic Resonance Imaging and Transrectal Ultrasound Informed Prostate Biopsy for Prostate Cancer Diagnosis in Biopsy Naive Men: A Systematic Review and Meta-Analysis. J Urol, 2020. 203: 1085.
https://pubmed.ncbi.nlm.nih.gov/31609177
312.Leow, J.J., et al. Can we omit systematic biopsies in patients undergoing MRI fusion-targeted prostate biopsies? Asian J Androl, 2023. 25: 43.
https://pubmed.ncbi.nlm.nih.gov/35488666
313.Deniffel, D., et al. Prostate biopsy in the era of MRI-targeting: towards a judicious use of additional systematic biopsy. Eur Radiol, 2022. 32: 7544.
https://pubmed.ncbi.nlm.nih.gov/35507051
314.Barrett, T., et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway. Nat Rev Urol, 2023. 20: 9.
https://pubmed.ncbi.nlm.nih.gov/36168056
315.Brisbane, W.G., et al. Targeted Prostate Biopsy: Umbra, Penumbra, and Value of Perilesional Sampling. Eur Urol, 2022. 82: 303.
https://pubmed.ncbi.nlm.nih.gov/35115177
316.Noujeim, J.P., et al. Optimizing multiparametric magnetic resonance imaging-targeted biopsy and detection of clinically significant prostate cancer: the role of perilesional sampling. Prostate Cancer Prostatic Dis, 2023. 26: 575.
https://pubmed.ncbi.nlm.nih.gov/36509930
317.Hagens, M.J., et al. An Magnetic Resonance Imaging-directed Targeted-plus-perilesional Biopsy Approach for Prostate Cancer Diagnosis: “Less Is More”. Eur Urol Open Sci, 2022. 43: 68.
https://pubmed.ncbi.nlm.nih.gov/36353069
318.Hsieh, P.F., et al. Learning Curve of Transperineal MRI/US Fusion Prostate Biopsy: 4-Year Experience. Life (Basel), 2023. 13.
https://pubmed.ncbi.nlm.nih.gov/36983794
319.Diamand, R., et al. The role of perilesional and multiparametric resonance imaging-targeted biopsies to reduce the risk of upgrading at radical prostatectomy pathology: A retrospective monocentric study. Urol Oncol, 2022. 40: 192 e11.
https://pubmed.ncbi.nlm.nih.gov/35236622
320.Ahdoot, M., et al. Using Prostate Imaging-Reporting and Data System (PI-RADS) Scores to Select an Optimal Prostate Biopsy Method: A Secondary Analysis of the Trio Study. Eur Urol Oncol, 2022. 5: 176.
https://pubmed.ncbi.nlm.nih.gov/33846112
321.Barletta, F., et al. Assessing the need for systematic biopsies in addition to targeted biopsies according to the characteristics of the index lesion at mpMRI. Results from a large, multi-institutional database. World J Urol, 2022. 40: 2683.
https://pubmed.ncbi.nlm.nih.gov/36149448
322.Hou, Y., et al. A clinical available decision support scheme for optimizing prostate biopsy based on mpMRI. Prostate Cancer Prostatic Dis, 2022. 25: 727.
https://pubmed.ncbi.nlm.nih.gov/35067674
323.Di Franco, F., et al. Characterization of high-grade prostate cancer at multiparametric MRI: assessment of PI-RADS version 2.1 and version 2 descriptors across 21 readers with varying experience (MULTI study). Insights Imaging, 2023. 14: 49.
https://pubmed.ncbi.nlm.nih.gov/36939970
324.de Rooij, M., et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training. Eur Radiol, 2020. 30: 5404.
https://pubmed.ncbi.nlm.nih.gov/32424596
325.Meng, X., et al. The Institutional Learning Curve of Magnetic Resonance Imaging-Ultrasound Fusion Targeted Prostate Biopsy: Temporal Improvements in Cancer Detection in 4 Years. J Urol, 2018. 200: 1022.
https://pubmed.ncbi.nlm.nih.gov/29886090
326.Rouviere, O., et al. Artificial intelligence algorithms aimed at characterizing or detecting prostate cancer on MRI: How accurate are they when tested on independent cohorts? - A systematic review. Diagn Interv Imaging, 2023. 104: 221.
https://pubmed.ncbi.nlm.nih.gov/36517398
327.Dell’Oglio, P., et al. Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy. World J Urol, 2019. 37: 221.
https://pubmed.ncbi.nlm.nih.gov/29948044
328.Faiena, I., et al. PI-RADS Version 2 Category on 3 Tesla Multiparametric Prostate Magnetic Resonance Imaging Predicts Oncologic Outcomes in Gleason 3 + 4 Prostate Cancer on Biopsy. J Urol, 2019. 201: 91.
https://pubmed.ncbi.nlm.nih.gov/30142318
329.Houlahan, K.E., et al. Molecular Hallmarks of Multiparametric Magnetic Resonance Imaging Visibility in Prostate Cancer. Eur Urol, 2019. 76: 18.
https://pubmed.ncbi.nlm.nih.gov/30685078
330.Lam, T.B.L., et al. EAU-EANM-ESTRO-ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment with Curative Intent for Localised Prostate Cancer from an International Collaborative Study (DETECTIVE Study). Eur Urol, 2019. 76: 790.
https://pubmed.ncbi.nlm.nih.gov/31587989
331.Hagens, M.J., et al. Diagnostic Performance of a Magnetic Resonance Imaging-directed Targeted plus Regional Biopsy Approach in Prostate Cancer Diagnosis: A Systematic Review and Meta-analysis. Eur Urol Open Sci, 2022. 40: 95.
https://pubmed.ncbi.nlm.nih.gov/35540708
332.Kurniawati, I., et al. Targeting Castration-Resistant Prostate Cancer Using Mesenchymal Stem Cell Exosomes for Therapeutic MicroRNA-let-7c Delivery. Front Biosci (Landmark Ed), 2022. 27: 256.
https://pubmed.ncbi.nlm.nih.gov/36224011
333.Kanagarajah, A., et al. A systematic review on the outcomes of local anaesthetic transperineal prostate biopsy. BJU Int, 2023. 131: 408.
https://pubmed.ncbi.nlm.nih.gov/36177521
334.Tu, X., et al. Transperineal Magnetic Resonance Imaging-Targeted Biopsy May Perform Better Than Transrectal Route in the Detection of Clinically Significant Prostate Cancer: Systematic Review and Meta-analysis. Clin Genitourin Cancer, 2019. 17: e860.
https://pubmed.ncbi.nlm.nih.gov/31281065
335.Roberts, M.J., et al. Prostate Biopsy-related Infection: A Systematic Review of Risk Factors, Prevention Strategies, and Management Approaches. Urology, 2017. 104: 11.
https://pubmed.ncbi.nlm.nih.gov/28007492
336.Pilatz, A., et al. Update on Strategies to Reduce Infectious Complications After Prostate Biopsy. Eur Urol Focus, 2019. 5: 20.
https://pubmed.ncbi.nlm.nih.gov/30503175
337.von Knobloch, R., et al. Bilateral fine-needle administered local anaesthetic nerve block for pain control during TRUS-guided multi-core prostate biopsy: a prospective randomised trial. Eur Urol, 2002. 41: 508.
https://pubmed.ncbi.nlm.nih.gov/12074792
338.Adamakis, I., et al. Pain during transrectal ultrasonography guided prostate biopsy: a randomized prospective trial comparing periprostatic infiltration with lidocaine with the intrarectal instillation of lidocaine-prilocain cream. World J Urol, 2004. 22: 281.
https://pubmed.ncbi.nlm.nih.gov/14689224
339.Bass, E.J., et al. Magnetic resonance imaging targeted transperineal prostate biopsy: a local anaesthetic approach. Prostate Cancer Prostatic Dis, 2017. 20: 311.
https://pubmed.ncbi.nlm.nih.gov/28485391
340.Xiang, J., et al. Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis. World J Surg Oncol, 2019. 17: 31.
https://pubmed.ncbi.nlm.nih.gov/30760274
341.Iremashvili, V.V., et al. Periprostatic local anesthesia with pudendal block for transperineal ultrasound-guided prostate biopsy: a randomized trial. Urology, 2010. 75: 1023.
https://pubmed.ncbi.nlm.nih.gov/20080288
342.Meyer, A.R., et al. Initial Experience Performing In-office Ultrasound-guided Transperineal Prostate Biopsy Under Local Anesthesia Using the PrecisionPoint Transperineal Access System. Urology, 2018. 115: 8.
https://pubmed.ncbi.nlm.nih.gov/29409845
343.He, B.M., et al. Perineal nerve block versus periprostatic block for patients undergoing transperineal prostate biopsy (APROPOS): a prospective, multicentre, randomised controlled study. EClinicalMedicine, 2023. 58: 101919.
https://pubmed.ncbi.nlm.nih.gov/37007736
344.Lam, W., Wong, A., Chun, S., Wong, T., et al. Prostate cancer detection, tolerability and safety of transperineal prostate biopsy under local-anaesthesia vs standard transrectal biopsy in biopsy-naive men: a pragmatic, parallel group, randomized controlled study. BJU Int, 2022. 129: 9.
https://doi.org/10.1111/bju.15675
345.Pradere, B., et al. Nonantibiotic Strategies for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol, 2021. 205: 653.
https://pubmed.ncbi.nlm.nih.gov/33026903
346.Bennett, H.Y., et al. The global burden of major infectious complications following prostate biopsy. Epidemiol Infect, 2016. 144: 1784.
https://pubmed.ncbi.nlm.nih.gov/26645476
347.Berry, B., et al. Comparison of complications after transrectal and transperineal prostate biopsy: a national population-based study. BJU Int, 2020. 126: 97.
https://pubmed.ncbi.nlm.nih.gov/32124525
348.Castellani, D., et al. Infection Rate after Transperineal Prostate Biopsy with and without Prophylactic Antibiotics: Results from a Systematic Review and Meta-Analysis of Comparative Studies. J Urol, 2022. 207: 25.
https://pubmed.ncbi.nlm.nih.gov/34555932
349.Basourakos, S.P., et al. Role of Prophylactic Antibiotics in Transperineal Prostate Biopsy: A Systematic Review and Meta-analysis. Eur Urol Open Sci, 2022. 37: 53.
https://pubmed.ncbi.nlm.nih.gov/35243391
350.Chernysheva, D.Y., Popov S.V., Orlov I.N., Tsoy A.V., Neradovskiy V.A. . The first experience of transperineal prostate biopsy without antibiotic prophylaxis. Cancer Urology. 2021;17(2):46-52. (In Russ.). Cancer Urology: 46.
https://oncourology.abvpress.ru/oncur/article/view/1392
351.Jacewicz, M., et al. Antibiotic prophylaxis versus no antibiotic prophylaxis in transperineal prostate biopsies (NORAPP): a randomised, open-label, non-inferiority trial. Lancet Infect Dis, 2022. 22: 1465.
https://pubmed.ncbi.nlm.nih.gov/35839791
352.Shaker, H.S., et al. Does The Use Of Povidone Iodine Suppository Decrease The Infective Complications Of TRUS Guided Prostate Biopsies? A Randomized Prospective Study. QJM: An International Journal of Medicine, 2020. 113.
https://doi.org/10.1093/qjmed/hcaa070.024
353.Farooq, K., et al. Role of Povidone-Iodine-Soaked Gauze in Preventing Infectious Complications Following Trans Rectal Digital Guided Prostate Biopsy. Journal of Postgraduate Medical Institute, 2021. 35: 225.
https://jpmi.org.pk/index.php/jpmi/article/view/2849
354.Taher, Y., et al. Mp48-11 Prospective Randomized Controlled Study to Assess the Effect of Perineal Region Cleansing with Povidone Iodine before Transrectal Needle Biopsy of the Prostate on Infectious Complications. Journal of Urology, 2015. 193: e598.
https://www.auajournals.org/doi/abs/10.1016/j.juro.2015.02.1685
355.Yu, L., et al. [Impact of insertion timing of iodophor cotton ball on the control of infection complications after transrectal ultrasound guided prostate biopsy]. Zhonghua Yi Xue Za Zhi, 2014. 94: 609.
https://pubmed.ncbi.nlm.nih.gov/24762693
356.Pilatz, A., et al. Antibiotic Prophylaxis for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 224.
https://pubmed.ncbi.nlm.nih.gov/32105195
357.European Medicines Agency. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. 2019. EMA/175398/2019.
358.Carignan, A., et al. Effectiveness of fosfomycin tromethamine prophylaxis in preventing infection following transrectal ultrasound-guided prostate needle biopsy: Results from a large Canadian cohort. J Glob Antimicrob Resist, 2019. 17: 112.
https://pubmed.ncbi.nlm.nih.gov/30553114
359.Wegelin, O., et al. Complications and Adverse Events of Three Magnetic Resonance Imaging-based Target Biopsy Techniques in the Diagnosis of Prostate Cancer Among Men with Prior Negative Biopsies: Results from the FUTURE Trial, a Multicentre Randomised Controlled Trial. Eur Urol Oncol, 2019. 2: 617.
https://pubmed.ncbi.nlm.nih.gov/31519516
360.Borghesi, M., et al. Complications After Systematic, Random, and Image-guided Prostate Biopsy. Eur Urol, 2017. 71: 353.
https://pubmed.ncbi.nlm.nih.gov/27543165
361.Giannarini, G., et al. Continuing or discontinuing low-dose aspirin before transrectal prostate biopsy: results of a prospective randomized trial. Urology, 2007. 70: 501.
https://pubmed.ncbi.nlm.nih.gov/17688919
362.Garcia, C., et al. Does transperineal prostate biopsy reduce complications compared with transrectal biopsy? a systematic review and meta-analysis of randomised controlled trials. 2016. 195:4 SUPPL. 1 p. e328.
https://www.auajournals.org/doi/10.1016/j.juro.2016.02.2879
363.Xue, J., et al. Comparison between transrectal and transperineal prostate biopsy for detection of prostate cancer: a meta-analysis and trial sequential analysis. Oncotarget, 2017. 8: 23322.
https://pubmed.ncbi.nlm.nih.gov/28177897
364.Padhani, A.R., et al. PI-RADS Steering Committee: The PI-RADS Multiparametric MRI and MRI-directed Biopsy Pathway. Radiology, 2019. 292: 464.
https://pubmed.ncbi.nlm.nih.gov/31184561
365.Stranne, J., et al. Systematic Biopsies as a Complement to Magnetic Resonance Imaging-targeted Biopsies: “To Be or Not To Be”? Eur Urol, 2023. 83: 381.
https://pubmed.ncbi.nlm.nih.gov/36737297
366.Schoots, I.G., et al. Analysis of Magnetic Resonance Imaging-directed Biopsy Strategies for Changing the Paradigm of Prostate Cancer Diagnosis. Eur Urol Oncol, 2020. 3: 32.
https://pubmed.ncbi.nlm.nih.gov/31706946
367.Bittencourt, L.K., et al. Risk-based MRI-directed diagnostic pathway outperforms non-risk-based pathways in suspected prostate cancer biopsy-naive men: a large cohort validation study. Eur Radiol, 2022. 32: 2330.
https://pubmed.ncbi.nlm.nih.gov/35028750
368.Stroomberg, H.V., et al. Standardized prostate cancer incidence and mortality rates following initial non-malignant biopsy result. BJU Int, 2023. 132: 181.
https://pubmed.ncbi.nlm.nih.gov/36847603
369.Grivas, N., et al. Prostate Cancer Detection Percentages of Repeat Biopsy in Patients with Positive Multiparametric Magnetic Resonance Imaging (Prostate Imaging Reporting and Data System/Likert 3-5) and Negative Initial Biopsy. A Mini Systematic Review. Eur Urol, 2022. 82: 452.
https://pubmed.ncbi.nlm.nih.gov/35985901
370.Ericson, K.J., et al. Prostate cancer detection following diagnosis of atypical small acinar proliferation. Can J Urol, 2017. 24: 8714.
https://pubmed.ncbi.nlm.nih.gov/28436357
371.Wiener, S., et al. Incidence of Clinically Significant Prostate Cancer After a Diagnosis of Atypical Small Acinar Proliferation, High-grade Prostatic Intraepithelial Neoplasia, or Benign Tissue. Urology, 2017. 110: 161.
https://pubmed.ncbi.nlm.nih.gov/28888752
372.Walz, J., et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol, 2006. 50: 498.
https://pubmed.ncbi.nlm.nih.gov/16631303
373.Moran, B.J., et al. Re-biopsy of the prostate using a stereotactic transperineal technique. J Urol, 2006. 176: 1376.
https://pubmed.ncbi.nlm.nih.gov/16952636
374.Panebianco, V., et al. Negative Multiparametric Magnetic Resonance Imaging for Prostate Cancer: What’s Next? Eur Urol, 2018. 74: 48.
https://pubmed.ncbi.nlm.nih.gov/29566957
375.Linzer, D.G., et al. Seminal vesicle biopsy: accuracy and implications for staging of prostate cancer. Urology, 1996. 48: 757.
https://pubmed.ncbi.nlm.nih.gov/8911521
376.Pelzer, A.E., et al. Are transition zone biopsies still necessary to improve prostate cancer detection? Results from the tyrol screening project. Eur Urol, 2005. 48: 916.
https://pubmed.ncbi.nlm.nih.gov/16126324
377.Paner, G.P., et al. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur Urol, 2018. 73: 560.
https://pubmed.ncbi.nlm.nih.gov/29325693
378.Expert Panel on Urologic, I., et al. ACR Appropriateness Criteria((R)) Prostate Cancer-Pretreatment Detection, Surveillance, and Staging. J Am Coll Radiol, 2017. 14: S245.
https://pubmed.ncbi.nlm.nih.gov/28473080
379.de Rooij, M., et al. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur Urol, 2016. 70: 233.
https://pubmed.ncbi.nlm.nih.gov/26215604
380.Christophe, C., et al. Prostate cancer local staging using biparametric MRI: assessment and comparison with multiparametric MRI. Eur J Radiol, 2020. 132: 109350.
https://pubmed.ncbi.nlm.nih.gov/33080549
381.Soeterik, T.F.W., et al. Multiparametric Magnetic Resonance Imaging Should Be Preferred Over Digital Rectal Examination for Prostate Cancer Local Staging and Disease Risk Classification. Urology, 2021. 147: 205.
https://pubmed.ncbi.nlm.nih.gov/33129868
382.Futterer, J.J., et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology, 2005. 237: 541.
https://pubmed.ncbi.nlm.nih.gov/16244263
383.Kim, T.H., et al. The Diagnostic Performance of the Length of Tumor Capsular Contact on MRI for Detecting Prostate Cancer Extraprostatic Extension: A Systematic Review and Meta-Analysis. Korean J Radiol, 2020. 21: 684.
https://pubmed.ncbi.nlm.nih.gov/32410407
384.Valentin, B., et al. Magnetic resonance imaging improves the prediction of tumor staging in localized prostate cancer. Abdom Radiol (NY), 2021. 46: 2751.
https://pubmed.ncbi.nlm.nih.gov/33452898
385.Gatti, M., et al. mEPE-score: a comprehensive grading system for predicting pathologic extraprostatic extension of prostate cancer at multiparametric magnetic resonance imaging. Eur Radiol, 2022. 32: 4942.
https://pubmed.ncbi.nlm.nih.gov/35290508
386.Park, K.J., et al. Extraprostatic Tumor Extension: Comparison of Preoperative Multiparametric MRI Criteria and Histopathologic Correlation after Radical Prostatectomy. Radiology, 2020. 296: 87.
https://pubmed.ncbi.nlm.nih.gov/32368959
387.Morlacco, A., et al. Nomograms in Urologic Oncology: Lights and Shadows. J Clin Med, 2021. 10.
https://pubmed.ncbi.nlm.nih.gov/33801184
388.Leyh-Bannurah, S.R., et al. Combined systematic versus stand-alone multiparametric MRI-guided targeted fusion biopsy: nomogram prediction of non-organ-confined prostate cancer. World J Urol, 2021. 39: 81.
https://pubmed.ncbi.nlm.nih.gov/32248363
389.Diamand, R., et al. External Validation of a Multiparametric Magnetic Resonance Imaging-based Nomogram for the Prediction of Extracapsular Extension and Seminal Vesicle Invasion in Prostate Cancer Patients Undergoing Radical Prostatectomy. Eur Urol, 2021. 79: 180.
https://pubmed.ncbi.nlm.nih.gov/33023770
390.Alves, J.R., et al. Independent external validation of nomogram to predict extracapsular extension in patients with prostate cancer. Eur Radiol, 2020. 30: 5004.
https://pubmed.ncbi.nlm.nih.gov/32307562
391.Abuzallouf, S., et al. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol, 2004. 171: 2122.
https://pubmed.ncbi.nlm.nih.gov/15126770
392.Kiss, B., et al. Current Status of Lymph Node Imaging in Bladder and Prostate Cancer. Urology, 2016. 96: 1.
https://pubmed.ncbi.nlm.nih.gov/26966038
393.Harisinghani, M.G., et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med, 2003. 348: 2491.
https://pubmed.ncbi.nlm.nih.gov/12815134
394.Hovels, A.M., et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol, 2008. 63: 387.
https://pubmed.ncbi.nlm.nih.gov/18325358
395.Valentin, B., et al. Comparison of 3 T mpMRI and pelvic CT examinations for detection of lymph node metastases in patients with prostate cancer. Eur J Radiol, 2022. 147: 110110.
https://pubmed.ncbi.nlm.nih.gov/34952329
396.Lebastchi, A.H., et al. Comparison of cross-sectional imaging techniques for the detection of prostate cancer lymph node metastasis: a critical review. Transl Androl Urol, 2020. 9: 1415.
https://pubmed.ncbi.nlm.nih.gov/32676426
397.Center, M.S.K.C. Dynamic Prostate Cancer Nomogram: Coefficients. 2021.
https://www.mskcc.org/nomograms/prostate/pre_op/coefficients
398.Briganti, A., et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol, 2012. 61: 480.
https://pubmed.ncbi.nlm.nih.gov/22078338
399.Gandaglia, G., et al. Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer. Eur Urol, 2017. 72: 632.
https://pubmed.ncbi.nlm.nih.gov/28412062
400.Draulans, C., et al. Development and External Validation of a Multiparametric Magnetic Resonance Imaging and International Society of Urological Pathology Based Add-On Prediction Tool to Identify Prostate Cancer Candidates for Pelvic Lymph Node Dissection. J Urol, 2020. 203: 713.
https://pubmed.ncbi.nlm.nih.gov/31718396
401.Gandaglia, G., et al. External Validation of the 2019 Briganti Nomogram for the Identification of Prostate Cancer Patients Who Should Be Considered for an Extended Pelvic Lymph Node Dissection. Eur Urol, 2020. 78: 138.
https://pubmed.ncbi.nlm.nih.gov/32268944
402.Di Pierro, G.B., et al. Comparison of Four Validated Nomograms (Memorial Sloan Kettering Cancer Center, Briganti 2012, 2017, and 2019) Predicting Lymph Node Invasion in Patients with High-Risk Prostate Cancer Candidates for Radical Prostatectomy and Extended Pelvic Lymph Node Dissection: Clinical Experience and Review of the Literature. Cancers (Basel), 2023. 15.
https://pubmed.ncbi.nlm.nih.gov/36980571
403.von Eyben, F.E., et al. Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun, 2014. 35: 221.
https://pubmed.ncbi.nlm.nih.gov/24240194
404.Van den Bergh, L., et al. Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol, 2015. 33: 109 e23.
https://pubmed.ncbi.nlm.nih.gov/25655681
405.Schiavina, R., et al. Preoperative Staging With (11)C-Choline PET/CT Is Adequately Accurate in Patients With Very High-Risk Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 305.
https://pubmed.ncbi.nlm.nih.gov/29859737
406.Maurer, T., et al. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol, 2016. 13: 226.
https://pubmed.ncbi.nlm.nih.gov/26902337
407.Werner, R.A., et al. (18)F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics, 2020. 10: 1.
https://pubmed.ncbi.nlm.nih.gov/31903102
408.Hope, T.A., et al. Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol, 2021. 7: 1635.
https://pubmed.ncbi.nlm.nih.gov/34529005
409.van Kalmthout, L.W.M., et al. Prospective Validation of Gallium-68 Prostate Specific Membrane Antigen-Positron Emission Tomography/Computerized Tomography for Primary Staging of Prostate Cancer. J Urol, 2020. 203: 537.
https://pubmed.ncbi.nlm.nih.gov/31487220
410.Jansen, B.H.E., et al. Pelvic lymph-node staging with (18)F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer - the SALT trial. Eur J Nucl Med Mol Imaging, 2021. 48: 509.
https://pubmed.ncbi.nlm.nih.gov/32789599
411.Pienta, K.J., et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol, 2021. 206: 52.
https://pubmed.ncbi.nlm.nih.gov/33634707
412.Perera, M., et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur Urol, 2020. 77: 403.
https://pubmed.ncbi.nlm.nih.gov/30773328
413.Wu, H., et al. Diagnostic Performance of (68)Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-analysis. World J Mens Health, 2020. 38: 208.
https://pubmed.ncbi.nlm.nih.gov/31081294
414.Van Damme, J., et al. Comparison of (68)Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography Computed Tomography (PET-CT) and Whole-Body Magnetic Resonance Imaging (WB-MRI) with Diffusion Sequences (DWI) in the Staging of Advanced Prostate Cancer. Cancers (Basel), 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/34771449
415.Meijer, D., et al. External Validation and Addition of Prostate-specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-node Metastases: an International Multicenter Study. Eur Urol, 2021. 80: 234.
https://pubmed.ncbi.nlm.nih.gov/34024652
416.Shen, G., et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol, 2014. 43: 1503.
https://pubmed.ncbi.nlm.nih.gov/24841276
417.Briganti, A., et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol, 2010. 57: 551.
https://pubmed.ncbi.nlm.nih.gov/20034730
418.Lin, Y., et al. When to perform bone scintigraphy in patients with newly diagnosed prostate cancer? a retrospective study. BMC Urol, 2017. 17: 41.
https://pubmed.ncbi.nlm.nih.gov/28606069
419.O’Sullivan, J.M., et al. Broadening the criteria for avoiding staging bone scans in prostate cancer: a retrospective study of patients at the Royal Marsden Hospital. BJU Int, 2003. 92: 685.
https://pubmed.ncbi.nlm.nih.gov/14616446
420.Ayyathurai, R., et al. A study on staging bone scans in newly diagnosed prostate cancer. Urol Int, 2006. 76: 209.
https://pubmed.ncbi.nlm.nih.gov/16601380
421.Tateishi, U., et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med, 2010. 24: 523.
https://pubmed.ncbi.nlm.nih.gov/20559896
422.Evangelista, L., et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging, 2016. 43: 1546.
https://pubmed.ncbi.nlm.nih.gov/26956538
423.Zacho, H.D., et al. No Added Value of (18)F-Sodium Fluoride PET/CT for the Detection of Bone Metastases in Patients with Newly Diagnosed Prostate Cancer with Normal Bone Scintigraphy. J Nucl Med, 2019. 60: 1713.
https://pubmed.ncbi.nlm.nih.gov/31147402
424.Brogsitter, C., et al. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging, 2013. 40 Suppl 1: S18.
https://pubmed.ncbi.nlm.nih.gov/23579863
425.Picchio, M., et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging, 2012. 39: 13.
https://pubmed.ncbi.nlm.nih.gov/21932120
426.Uprimny, C., et al. (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging, 2017. 44: 941.
https://pubmed.ncbi.nlm.nih.gov/28138747
427.Van Nieuwenhove, S., et al. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J Magn Reson Imaging, 2022. 55: 653.
https://pubmed.ncbi.nlm.nih.gov/33382151
428.Corfield, J., et al. (68)Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol, 2018. 36: 519.
https://pubmed.ncbi.nlm.nih.gov/29344682
429.Hofman, M.S., et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet, 2020. 395: 1208.
https://pubmed.ncbi.nlm.nih.gov/32209449
430.Anttinen, M., et al. A Prospective Comparison of (18)F-prostate-specific Membrane Antigen-1007 Positron Emission Tomography Computed Tomography, Whole-body 1.5 T Magnetic Resonance Imaging with Diffusion-weighted Imaging, and Single-photon Emission Computed Tomography/Computed Tomography with Traditional Imaging in Primary Distant Metastasis Staging of Prostate Cancer (PROSTAGE). Eur Urol Oncol, 2021. 4: 635.
https://pubmed.ncbi.nlm.nih.gov/32675047
431.Cornford, P., et al. Prostate-specific Membrane Antigen Positron Emission Tomography Scans Before Curative Treatment: Ready for Prime Time? Eur Urol, 2020. 78: e125.
https://pubmed.ncbi.nlm.nih.gov/32624287
432.Hicks, R.J., et al. Seduction by Sensitivity: Reality, Illusion, or Delusion? The Challenge of Assessing Outcomes after PSMA Imaging Selection of Patients for Treatment. J Nucl Med, 2017. 58: 1969.
https://pubmed.ncbi.nlm.nih.gov/28935839
433.Smith, B.D., et al. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol, 2009. 27: 2758.
https://pubmed.ncbi.nlm.nih.gov/19403886
434.Arnold, M., et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer, 2015. 51: 1164.
https://pubmed.ncbi.nlm.nih.gov/24120180
435.Liu, D., et al. Active surveillance versus surgery for low risk prostate cancer: a clinical decision analysis. J Urol, 2012. 187: 1241.
https://pubmed.ncbi.nlm.nih.gov/22335873
436.Bill-Axelson, A., et al. Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med, 2014. 370: 932.
https://pubmed.ncbi.nlm.nih.gov/24597866
437.Kupelian, P.A., et al. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. J Clin Oncol, 2002. 20: 3376.
https://pubmed.ncbi.nlm.nih.gov/12177097
438.Bubolz, T., et al. Treatments for prostate cancer in older men: 1984-1997. Urology, 2001. 58: 977.
https://pubmed.ncbi.nlm.nih.gov/11744472
439.Houterman, S., et al. Impact of comorbidity on treatment and prognosis of prostate cancer patients: a population-based study. Crit Rev Oncol Hematol, 2006. 58: 60.
https://pubmed.ncbi.nlm.nih.gov/16213153
440.Ries LAG, M.D., Krapcho M et al. eds. . SEER cancer Statistics Review, 1975-2005. 2008. 2022.
http://seer.cancer.gov/csr/1975_2011/
441.Scosyrev, E., et al. Prostate cancer in the elderly: frequency of advanced disease at presentation and disease-specific mortality. Cancer, 2012. 118: 3062.
https://pubmed.ncbi.nlm.nih.gov/22006014
442.Richstone, L., et al. Radical prostatectomy in men aged >or=70 years: effect of age on upgrading, upstaging, and the accuracy of a preoperative nomogram. BJU Int, 2008. 101: 541.
https://pubmed.ncbi.nlm.nih.gov/18257855
443.Sun, L., et al. Men older than 70 years have higher risk prostate cancer and poorer survival in the early and late prostate specific antigen eras. J Urol, 2009. 182: 2242.
https://pubmed.ncbi.nlm.nih.gov/19758616
444.Hamilton, A.S., et al. Trends in the treatment of localized prostate cancer using supplemented cancer registry data. BJU Int, 2011. 107: 576.
https://pubmed.ncbi.nlm.nih.gov/20735387
445.Studenski, S., et al. Gait speed and survival in older adults. JAMA, 2011. 305: 50.
https://pubmed.ncbi.nlm.nih.gov/21205966
446.Ethun, C.G., et al. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J Clin, 2017. 67: 362.
https://pubmed.ncbi.nlm.nih.gov/28731537
447.Bellera, C.A., et al. Screening older cancer patients: first evaluation of the G-8 geriatric screening tool. Ann Oncol, 2012. 23: 2166.
https://pubmed.ncbi.nlm.nih.gov/22250183
448.Hamaker, M.E., et al. The effect of a geriatric evaluation on treatment decisions and outcome for older cancer patients - A systematic review. J Geriatr Oncol, 2018. 9: 430.
https://pubmed.ncbi.nlm.nih.gov/29631898
449.Rockwood, K., et al. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can Geriatr J, 2020. 23: 210.
https://pubmed.ncbi.nlm.nih.gov/32904824
450.McIsaac, D.I., et al. Frailty as a Predictor of Death or New Disability After Surgery: A Prospective Cohort Study. Ann Surg, 2020. 271: 283.
https://pubmed.ncbi.nlm.nih.gov/30048320
451.van Walree, I.C., et al. Clinical judgment versus geriatric assessment for frailty in older patients with cancer. J Geriatr Oncol, 2020. 11: 1138.
https://pubmed.ncbi.nlm.nih.gov/32576520
452.Albertsen, P.C., et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol, 2011. 29: 1335.
https://pubmed.ncbi.nlm.nih.gov/21357791
453.Tewari, A., et al. Long-term survival probability in men with clinically localized prostate cancer: a case-control, propensity modeling study stratified by race, age, treatment and comorbidities. J Urol, 2004. 171: 1513.
https://pubmed.ncbi.nlm.nih.gov/15017210
454.Parmelee, P.A., et al. Validation of the Cumulative Illness Rating Scale in a geriatric residential population. J Am Geriatr Soc, 1995. 43: 130.
https://pubmed.ncbi.nlm.nih.gov/7836636
455.Groome, P.A., et al. Assessing the impact of comorbid illnesses on death within 10 years in prostate cancer treatment candidates. Cancer, 2011. 117: 3943.
https://pubmed.ncbi.nlm.nih.gov/21858801
456.Charlson, M.E., et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis, 1987. 40: 373.
https://pubmed.ncbi.nlm.nih.gov/3558716
457.Blanc-Bisson, C., et al. Undernutrition in elderly patients with cancer: target for diagnosis and intervention. Crit Rev Oncol Hematol, 2008. 67: 243.
https://pubmed.ncbi.nlm.nih.gov/18554922
458.Sachs, G.A., et al. Cognitive impairment: an independent predictor of excess mortality: a cohort study. Ann Intern Med, 2011. 155: 300.
https://pubmed.ncbi.nlm.nih.gov/21893623
459.Robinson, T.N., et al. Preoperative cognitive dysfunction is related to adverse postoperative outcomes in the elderly. J Am Coll Surg, 2012. 215: 12.
https://pubmed.ncbi.nlm.nih.gov/22626912
460.Borson, S., et al. The Mini-Cog as a screen for dementia: validation in a population-based sample. J Am Geriatr Soc, 2003. 51: 1451.
https://pubmed.ncbi.nlm.nih.gov/14511167
461.Korc-Grodzicki, B., et al. Prevention of post-operative delirium in older patients with cancer undergoing surgery. J Geriatr Oncol, 2015. 6: 60.
https://pubmed.ncbi.nlm.nih.gov/25454768
462.Oken, M.M., et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol, 1982. 5: 649.
https://pubmed.ncbi.nlm.nih.gov/7165009
463.Katz, S., et al. Studies of Illness in the Aged. The Index of Adl: A Standardized Measure of Biological and Psychosocial Function. JAMA, 1963. 185: 914.
https://pubmed.ncbi.nlm.nih.gov/14044222
464.Lawton, M.P., et al. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 1969. 9: 179.
https://pubmed.ncbi.nlm.nih.gov/5349366
465.Stineman, M.G., et al. All-cause 1-, 5-, and 10-year mortality in elderly people according to activities of daily living stage. J Am Geriatr Soc, 2012. 60: 485.
https://pubmed.ncbi.nlm.nih.gov/22352414
466.Paladino, J., et al. Communication Strategies for Sharing Prognostic Information With Patients: Beyond Survival Statistics. JAMA, 2019. 322: 1345.
https://pubmed.ncbi.nlm.nih.gov/31415085
467.Rostoft, S., et al. Shared decision-making in older patients with cancer - What does the patient want? J Geriatr Oncol, 2021. 12: 339.
https://pubmed.ncbi.nlm.nih.gov/32839118
468.Soubeyran, P., et al. Screening for vulnerability in older cancer patients: the ONCODAGE Prospective Multicenter Cohort Study. PLoS One, 2014. 9: e115060.
https://pubmed.ncbi.nlm.nih.gov/25503576
469.Klotz, L. Overdiagnosis in urologic cancer : For World Journal of Urology Symposium on active surveillance in prostate and renal cancer. World J Urol, 2022. 40: 1.
https://pubmed.ncbi.nlm.nih.gov/33492425
470.Johansson, J.E., et al. Natural history of localised prostatic cancer. A population-based study in 223 untreated patients. Lancet, 1989. 1: 799.
https://pubmed.ncbi.nlm.nih.gov/2564901
471.Jonsson, E., et al. Adenocarcinoma of the prostate in Iceland: a population-based study of stage, Gleason grade, treatment and long-term survival in males diagnosed between 1983 and 1987. Scand J Urol Nephrol, 2006. 40: 265.
https://pubmed.ncbi.nlm.nih.gov/16916765
472.Lu-Yao, G.L., et al. Outcomes of localized prostate cancer following conservative management. JAMA, 2009. 302: 1202.
https://pubmed.ncbi.nlm.nih.gov/19755699
473.Adolfsson, J., et al. The 20-Yr outcome in patients with well- or moderately differentiated clinically localized prostate cancer diagnosed in the pre-PSA era: the prognostic value of tumour ploidy and comorbidity. Eur Urol, 2007. 52: 1028.
https://pubmed.ncbi.nlm.nih.gov/17467883
474.Hamdy, F.C., et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med, 2023. 388: 1547.
https://pubmed.ncbi.nlm.nih.gov/36912538
475.Timilshina, N., et al. Long-term Outcomes Following Active Surveillance of Low-grade Prostate Cancer: A Population-based Study Using a Landmark Approach. J Urol, 2023. 209: 540.
https://pubmed.ncbi.nlm.nih.gov/36475730
476.Ventimiglia, E., et al. Long-term Outcomes Among Men Undergoing Active Surveillance for Prostate Cancer in Sweden. JAMA Netw Open, 2022. 5: e2231015.
https://pubmed.ncbi.nlm.nih.gov/36103180
477.Thurtle, D.R., et al. Individual prognosis at diagnosis in nonmetastatic prostate cancer: Development and external validation of the PREDICT Prostate multivariable model. PLoS Med, 2019. 16: e1002758.
https://pubmed.ncbi.nlm.nih.gov/30860997
478.Albertsen, P.C. Observational studies and the natural history of screen-detected prostate cancer. Curr Opin Urol, 2015. 25: 232.
https://pubmed.ncbi.nlm.nih.gov/25692723
479.Heidenreich, A. Identification of high-risk prostate cancer: role of prostate-specific antigen, PSA doubling time, and PSA velocity. Eur Urol, 2008. 54: 976.
https://pubmed.ncbi.nlm.nih.gov/18640768
480.Thomsen, F.B., et al. Survival benefit of early androgen receptor inhibitor therapy in locally advanced prostate cancer: long-term follow-up of the SPCG-6 study. Eur J Cancer, 2015. 51: 1283.
https://pubmed.ncbi.nlm.nih.gov/25892647
481.Bill-Axelson, A., et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer - 29-Year Follow-up. N Engl J Med, 2018. 379: 2319.
https://pubmed.ncbi.nlm.nih.gov/30575473
482.Wilt, T.J., et al. Radical Prostatectomy or Observation for Clinically Localized Prostate Cancer: Extended Follow-up of the Prostate Cancer Intervention Versus Observation Trial (PIVOT). Eur Urol, 2020. 77: 713.
https://pubmed.ncbi.nlm.nih.gov/32089359
483.Steineck, G., et al. Quality of life after radical prostatectomy or watchful waiting. N Engl J Med, 2002. 347: 790.
https://pubmed.ncbi.nlm.nih.gov/12226149
484.Vernooij, R.W., et al. Radical prostatectomy versus deferred treatment for localised prostate cancer. Cochrane Database Syst Rev, 2020. 6: CD006590.
https://pubmed.ncbi.nlm.nih.gov/32495338
485.Graversen, P.H., et al. Radical prostatectomy versus expectant primary treatment in stages I and II prostatic cancer. A fifteen-year follow-up. Urology, 1990. 36: 493.
https://pubmed.ncbi.nlm.nih.gov/2247914
486.Bruinsma, S.M., et al. Expert consensus document: Semantics in active surveillance for men with localized prostate cancer - results of a modified Delphi consensus procedure. Nat Rev Urol, 2017. 14: 312.
https://pubmed.ncbi.nlm.nih.gov/28290462
487.Thomsen, F.B., et al. Active surveillance for clinically localized prostate cancer--a systematic review. J Surg Oncol, 2014. 109: 830.
https://pubmed.ncbi.nlm.nih.gov/24610744
488.Tosoian, J.J., et al. Intermediate and Longer-Term Outcomes From a Prospective Active-Surveillance Program for Favorable-Risk Prostate Cancer. J Clin Oncol, 2015. 33: 3379.
https://pubmed.ncbi.nlm.nih.gov/26324359
489.Hamdy, F.C., et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med, 2016. 375: 1415.
https://pubmed.ncbi.nlm.nih.gov/27626136
490.Bryant, R.J., et al. The ProtecT trial: analysis of the patient cohort, baseline risk stratification and disease progression. BJU Int, 2020. 125: 506.
https://pubmed.ncbi.nlm.nih.gov/31900963
491.Willemse, P.M., et al. Systematic Review of Active Surveillance for Clinically Localised Prostate Cancer to Develop Recommendations Regarding Inclusion of Intermediate-risk Disease, Biopsy Characteristics at Inclusion and Monitoring, and Surveillance Repeat Biopsy Strategy. Eur Urol, 2022. 81: 337.
https://pubmed.ncbi.nlm.nih.gov/34980492
492.Loeb, S., et al. Active surveillance for prostate cancer: a systematic review of clinicopathologic variables and biomarkers for risk stratification. Eur Urol, 2015. 67: 619.
https://pubmed.ncbi.nlm.nih.gov/25457014
493.Ha, Y.S., et al. Prostate-specific antigen density toward a better cutoff to identify better candidates for active surveillance. Urology, 2014. 84: 365.
https://pubmed.ncbi.nlm.nih.gov/24925834
494.Moore, C.M., et al. Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer-A Report of a Movember International Consensus Meeting. Eur Urol Oncol, 2023. 6: 160.
https://pubmed.ncbi.nlm.nih.gov/36710133
495.Petrelli, F., et al. Predictive Factors for Reclassification and Relapse in Prostate Cancer Eligible for Active Surveillance: A Systematic Review and Meta-analysis. Urology, 2016. 91: 136.
https://pubmed.ncbi.nlm.nih.gov/26896733
496.Vigneswaran, H.T., et al. Progression on active surveillance for prostate cancer in Black men: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2022. 25: 165.
https://pubmed.ncbi.nlm.nih.gov/34239046
497.Marks, R.A., et al. The relationship between the extent of surgical margin positivity and prostate specific antigen recurrence in radical prostatectomy specimens. Hum Pathol, 2007. 38: 1207.
https://pubmed.ncbi.nlm.nih.gov/17490720
498.Moreira, D.M., et al. Baseline Perineural Invasion is Associated with Shorter Time to Progression in Men with Prostate Cancer Undergoing Active Surveillance: Results from the REDEEM Study. J Urol, 2015. 194: 1258.
https://pubmed.ncbi.nlm.nih.gov/25988518
499.Chiam, K., et al. Use of multiparametric magnetic resonance imaging (mpMRI) in active surveillance for low-risk prostate cancer: a scoping review on the benefits and harm of mpMRI in different biopsy scenarios. Prostate Cancer Prostatic Dis, 2021. 24: 662.
https://pubmed.ncbi.nlm.nih.gov/33654249
500.Dieffenbacher, S., et al. Standardized Magnetic Resonance Imaging Reporting Using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Criteria and Magnetic Resonance Imaging/Transrectal Ultrasound Fusion with Transperineal Saturation Biopsy to Select Men on Active Surveillance. Eur Urol Focus, 2021. 7: 102.
https://pubmed.ncbi.nlm.nih.gov/30878348
501.Dominique, G., et al. The utility of prostate MRI within active surveillance: description of the evidence. World J Urol, 2022. 40: 71.
https://pubmed.ncbi.nlm.nih.gov/34860274
502.Klotz, L., et al. Randomized Study of Systematic Biopsy Versus Magnetic Resonance Imaging and Targeted and Systematic Biopsy in Men on Active Surveillance (ASIST): 2-year Postbiopsy Follow-up. Eur Urol, 2020. 77: 311.
https://pubmed.ncbi.nlm.nih.gov/31708295
503.Schiavina, R., et al. The role of multiparametric MRI in active surveillance for low-risk prostate cancer: The ROMAS randomized controlled trial. Urol Oncol, 2021. 39: 433 e1.
https://pubmed.ncbi.nlm.nih.gov/33191117
504.Schoots, I.G., et al. Is magnetic resonance imaging-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int, 2018. 122: 946.
https://pubmed.ncbi.nlm.nih.gov/29679430
505.Amin, A., et al. The Magnetic Resonance Imaging in Active Surveillance (MRIAS) Trial: Use of Baseline Multiparametric Magnetic Resonance Imaging and Saturation Biopsy to Reduce the Frequency of Surveillance Prostate Biopsies. J Urol, 2020. 203: 910.
https://pubmed.ncbi.nlm.nih.gov/31825297
506.Heetman, J.G., et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Active Surveillance for Prostate Cancer Trial (PASPoRT). Eur Urol Oncol, 2023.
https://pubmed.ncbi.nlm.nih.gov/37296065
507.Moore, C.M., et al. Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations-A Report of a European School of Oncology Task Force. Eur Urol, 2017. 71: 648.
https://pubmed.ncbi.nlm.nih.gov/27349615
508.Chu, C.E., et al. Diagnostic Accuracy and Prognostic Value of Serial Prostate Multiparametric Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. Eur Urol Oncol, 2022. 5: 537.
https://pubmed.ncbi.nlm.nih.gov/33483265
509.Schoots, I.G., et al. Role of MRI in low-risk prostate cancer: finding the wolf in sheep’s clothing or the sheep in wolf’s clothing? Curr Opin Urol, 2017. 27: 238.
https://pubmed.ncbi.nlm.nih.gov/28306604
510.Hettiarachchi, D., et al. Can the Use of Serial Multiparametric Magnetic Resonance Imaging During Active Surveillance of Prostate Cancer Avoid the Need for Prostate Biopsies?-A Systematic Diagnostic Test Accuracy Review. Eur Urol Oncol, 2021. 4: 426.
https://pubmed.ncbi.nlm.nih.gov/32972894
511.Rajwa, P., et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur Urol, 2021. 80: 549.
https://pubmed.ncbi.nlm.nih.gov/34020828
512.Caglic, I., et al. MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur Radiol, 2021. 31: 2696.
https://pubmed.ncbi.nlm.nih.gov/33196886
513.Chu, C.E., et al. Multiparametric Magnetic Resonance Imaging Alone is Insufficient to Detect Grade Reclassification in Active Surveillance for Prostate Cancer. Eur Urol, 2020. 78: 515.
https://pubmed.ncbi.nlm.nih.gov/32631744
514.Deniffel, D., et al. Does the Visibility of Grade Group 1 Prostate Cancer on Baseline Multiparametric Magnetic Resonance Imaging Impact Clinical Outcomes? J Urol, 2020. 204: 1187.
https://pubmed.ncbi.nlm.nih.gov/32496160
515.Fujihara, A., et al. Multiparametric magnetic resonance imaging facilitates reclassification during active surveillance for prostate cancer. BJU Int, 2021. 127: 712.
https://pubmed.ncbi.nlm.nih.gov/33043575
516.Mamawala, M.K., et al. Utility of multiparametric magnetic resonance imaging in the risk stratification of men with Grade Group 1 prostate cancer on active surveillance. BJU Int, 2020. 125: 861.
https://pubmed.ncbi.nlm.nih.gov/32039537
517.Olivier, J., et al. Prostate Cancer Patients Under Active Surveillance with a Suspicious Magnetic Resonance Imaging Finding Are at Increased Risk of Needing Treatment: Results of the Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance (GAP3) Consortium. Eur Urol Open Sci, 2022. 35: 59.
https://pubmed.ncbi.nlm.nih.gov/35024633
518.Stavrinides, V., et al. Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models. Prostate Cancer Prostatic Dis, 2021. 24: 1028.
https://pubmed.ncbi.nlm.nih.gov/33958731
519.Gallagher, K.M., et al. Four-year outcomes from a multiparametric magnetic resonance imaging (MRI)-based active surveillance programme: PSA dynamics and serial MRI scans allow omission of protocol biopsies. BJU Int, 2019. 123: 429.
https://pubmed.ncbi.nlm.nih.gov/30113755
520.Olivier, J., et al. Low-risk prostate cancer selected for active surveillance with negative MRI at entry: can repeat biopsies at 1 year be avoided? A pilot study. World J Urol, 2019. 37: 253.
https://pubmed.ncbi.nlm.nih.gov/30039385
521.Chu, C.E., et al. The Clinical Significance of Multiple Negative Surveillance Prostate Biopsies for Men on Active Surveillance-Does Cancer Vanish or Simply Hide? J Urol, 2021. 205: 109.
https://pubmed.ncbi.nlm.nih.gov/33198555
522.O’Connor, L.P., et al. Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. Eur Urol Oncol, 2021. 4: 227.
https://pubmed.ncbi.nlm.nih.gov/33867045
523.Rajwa, P., et al. Association of Negative Followup Biopsy and Reclassification during Active Surveillance of Prostate Cancer: A Systematic Review and Meta-Analysis. J Urol, 2021. 205: 1559.
https://pubmed.ncbi.nlm.nih.gov/33683937
524.Klotz, L., et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol, 2010. 28: 126.
https://pubmed.ncbi.nlm.nih.gov/19917860
525.Cunningham, M., et al. Patient reported factors influencing the decision-making process of men with localised prostate cancer when considering Active Surveillance-A systematic review and thematic synthesis. Psychooncology, 2022. 31: 388.
https://pubmed.ncbi.nlm.nih.gov/34605104
526.Ahlberg, M.S., et al. Variations in the Uptake of Active Surveillance for Prostate Cancer and Its Impact on Outcomes. Eur Urol Open Sci, 2023. 52: 166.
https://pubmed.ncbi.nlm.nih.gov/37284040
527.Ross, A.E., et al. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol, 2010. 28: 2810.
https://pubmed.ncbi.nlm.nih.gov/20439642
528.Thomsen, F.B., et al. Association between PSA kinetics and cancer-specific mortality in patients with localised prostate cancer: analysis of the placebo arm of the SPCG-6 study. Ann Oncol, 2016. 27: 460.
https://pubmed.ncbi.nlm.nih.gov/26681677
529.Liu, J.L., et al. Advances in the selection of patients with prostate cancer for active surveillance. Nat Rev Urol, 2021. 18: 197.
https://pubmed.ncbi.nlm.nih.gov/33623103
530.Paudel, R., et al. The Use and Short-term Outcomes of Active Surveillance in Men With National Comprehensive Cancer Network Favorable Intermediate-risk Prostate Cancer: The Initial Michigan Urological Surgery Improvement Collaborative Experience. J Urol, 2023. 209: 170.
https://pubmed.ncbi.nlm.nih.gov/36265120
531.Adolfsson, J. Watchful waiting and active surveillance: the current position. BJU Int, 2008. 102: 10.
https://pubmed.ncbi.nlm.nih.gov/18422774
532.Hatzinger, M., et al. [The history of prostate cancer from the beginning to DaVinci]. Aktuelle Urol, 2012. 43: 228.
https://pubmed.ncbi.nlm.nih.gov/23035261
533.Kretschmer, A., et al. Perioperative patient education improves long-term satisfaction rates of low-risk prostate cancer patients after radical prostatectomy. World J Urol, 2017. 35: 1205.
https://pubmed.ncbi.nlm.nih.gov/28093628
534.Gyomber, D., et al. Improving informed consent for patients undergoing radical prostatectomy using multimedia techniques: a prospective randomized crossover study. BJU Int, 2010. 106: 1152.
https://pubmed.ncbi.nlm.nih.gov/20346048
535.Huber, J., et al. Multimedia support for improving preoperative patient education: a randomized controlled trial using the example of radical prostatectomy. Ann Surg Oncol, 2013. 20: 15.
https://pubmed.ncbi.nlm.nih.gov/22851045
536.Wake, N., et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med, 2019. 5: 4.
https://pubmed.ncbi.nlm.nih.gov/30783869
537.Lestingi, J.F.P., et al. Extended Versus Limited Pelvic Lymph Node Dissection During Radical Prostatectomy for Intermediate- and High-risk Prostate Cancer: Early Oncological Outcomes from a Randomized Phase 3 Trial. Eur Urol, 2021. 79: 595.
https://pubmed.ncbi.nlm.nih.gov/33293077
538.Touijer, K.A., et al. Limited versus Extended Pelvic Lymph Node Dissection for Prostate Cancer: A Randomized Clinical Trial. Eur Urol Oncol, 2021. 4: 532.
https://pubmed.ncbi.nlm.nih.gov/33865797
539.Mattei, A., et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur Urol, 2008. 53: 118.
https://pubmed.ncbi.nlm.nih.gov/17709171
540.Fossati, N., et al. The Benefits and Harms of Different Extents of Lymph Node Dissection During Radical Prostatectomy for Prostate Cancer: A Systematic Review. Eur Urol, 2017. 72: 84.
https://pubmed.ncbi.nlm.nih.gov/28126351
541.Engel, J., et al. Survival benefit of radical prostatectomy in lymph node-positive patients with prostate cancer. Eur Urol, 2010. 57: 754.
https://pubmed.ncbi.nlm.nih.gov/20106588
542.van der Poel, H.G., et al. Sentinel node biopsy for prostate cancer: report from a consensus panel meeting. BJU Int, 2017. 120: 204.
https://pubmed.ncbi.nlm.nih.gov/28188689
543.Harke, N.N., et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol, 2018. 36: 1817.
https://pubmed.ncbi.nlm.nih.gov/29767326
544.Wit, E.M.K., et al. Sentinel Node Procedure in Prostate Cancer: A Systematic Review to Assess Diagnostic Accuracy. Eur Urol, 2017. 71: 596.
https://pubmed.ncbi.nlm.nih.gov/27639533
545.Lannes, F., et al. Radioisotope-guided Lymphadenectomy for Pelvic Lymph Node Staging in Patients With Intermediate- and High-risk Prostate Cancer (The Prospective SENTINELLE Study). J Urol, 2023. 209: 364.
https://pubmed.ncbi.nlm.nih.gov/36331157
546.Weng, W.C., et al. Impact of prostatic anterior fat pads with lymph node staging in prostate cancer. J Cancer, 2018. 9: 3361.
https://pubmed.ncbi.nlm.nih.gov/30271497
547.Hosny, M., et al. Can Anterior Prostatic Fat Harbor Prostate Cancer Metastasis? A Prospective Cohort Study. Curr Urol, 2017. 10: 182.
https://pubmed.ncbi.nlm.nih.gov/29234260
548.Ball, M.W., et al. Pathological analysis of the prostatic anterior fat pad at radical prostatectomy: insights from a prospective series. BJU Int, 2017. 119: 444.
https://pubmed.ncbi.nlm.nih.gov/27611825
549.Kwon, Y.S., et al. Oncologic outcomes in men with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institution international study. BMC Urol, 2015. 15: 79.
https://pubmed.ncbi.nlm.nih.gov/26231860
550.Ozkan, B., et al. Role of anterior prostatic fat pad dissection for extended lymphadenectomy in prostate cancer: a non-randomized study of 100 patients. Int Urol Nephrol, 2015. 47: 959.
https://pubmed.ncbi.nlm.nih.gov/25899767
551.Kim, I.Y., et al. Detailed analysis of patients with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institutional study. J Urol, 2013. 190: 527.
https://pubmed.ncbi.nlm.nih.gov/23485503
552.Hansen, J., et al. Assessment of rates of lymph nodes and lymph node metastases in periprostatic fat pads in a consecutive cohort treated with retropubic radical prostatectomy. Urology, 2012. 80: 877.
https://pubmed.ncbi.nlm.nih.gov/22950996
553.Walsh, P.C., et al. Impotence following radical prostatectomy: insight into etiology and prevention. J Urol, 1982. 128: 492.
https://pubmed.ncbi.nlm.nih.gov/7120554
554.Rainwater, L.M., et al. Technical consideration in radical retropubic prostatectomy: blood loss after ligation of dorsal venous complex. J Urol, 1990. 143: 1163.
https://pubmed.ncbi.nlm.nih.gov/2342176
555.Woldu, S.L., et al. Outcomes with delayed dorsal vein complex ligation during robotic assisted laparoscopic prostatectomy. Can J Urol, 2013. 20: 7079.
https://pubmed.ncbi.nlm.nih.gov/24331354
556.Lei, Y., et al. Athermal division and selective suture ligation of the dorsal vein complex during robot-assisted laparoscopic radical prostatectomy: description of technique and outcomes. Eur Urol, 2011. 59: 235.
https://pubmed.ncbi.nlm.nih.gov/20863611
557.Wu, S.D., et al. Suture versus staple ligation of the dorsal venous complex during robot-assisted laparoscopic radical prostatectomy. BJU Int, 2010. 106: 385.
https://pubmed.ncbi.nlm.nih.gov/20067457
558.Walsh, P.C., et al. Radical prostatectomy and cystoprostatectomy with preservation of potency. Results using a new nerve-sparing technique. Br J Urol, 1984. 56: 694.
https://pubmed.ncbi.nlm.nih.gov/6534493
559.Walz, J., et al. A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy: An Update. Eur Urol, 2016. 70: 301.
https://pubmed.ncbi.nlm.nih.gov/26850969
560.Stolzenburg, J.U., et al. A comparison of outcomes for interfascial and intrafascial nerve-sparing radical prostatectomy. Urology, 2010. 76: 743.
https://pubmed.ncbi.nlm.nih.gov/20573384
561.Steineck, G., et al. Degree of preservation of the neurovascular bundles during radical prostatectomy and urinary continence 1 year after surgery. Eur Urol, 2015. 67: 559.
https://pubmed.ncbi.nlm.nih.gov/25457018
562.Shikanov, S., et al. Extrafascial versus interfascial nerve-sparing technique for robotic-assisted laparoscopic prostatectomy: comparison of functional outcomes and positive surgical margins characteristics. Urology, 2009. 74: 611.
https://pubmed.ncbi.nlm.nih.gov/19616830
563.Tewari, A.K., et al. Anatomical grades of nerve sparing: a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int, 2011. 108: 984.
https://pubmed.ncbi.nlm.nih.gov/21917101
564.Nielsen, M.E., et al. High anterior release of the levator fascia improves sexual function following open radical retropubic prostatectomy. J Urol, 2008. 180: 2557.
https://pubmed.ncbi.nlm.nih.gov/18930504
565.Ko, Y.H., et al. Retrograde versus antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol, 2013. 63: 169.
https://pubmed.ncbi.nlm.nih.gov/23092543
566.Tewari, A.K., et al. Functional outcomes following robotic prostatectomy using athermal, traction free risk-stratified grades of nerve sparing. World J Urol, 2013. 31: 471.
https://pubmed.ncbi.nlm.nih.gov/23354288
567.Basourakos, S.P., et al. Clipless Robotic-assisted Radical Prostatectomy and Impact on Outcomes. Eur Urol Focus, 2022. 8: 1176.
https://pubmed.ncbi.nlm.nih.gov/34246618
568.Preisser, F., et al. Association of neurovascular bundle preservation with oncological outcomes in patients with high-risk prostate cancer. Prostate Cancer Prostatic Dis, 2021. 24: 193.
https://pubmed.ncbi.nlm.nih.gov/32814844
569.Vis, A.N., et al. Selection of patients for nerve sparing surgery in robot-assisted radical prostatectomy. BJUI Compass, 2022. 3: 6.
https://pubmed.ncbi.nlm.nih.gov/35475150
570.Moris, L., et al. Evaluation of Oncological Outcomes and Data Quality in Studies Assessing Nerve-sparing Versus Non-Nerve-sparing Radical Prostatectomy in Nonmetastatic Prostate Cancer: A Systematic Review. Eur Urol Focus, 2022. 8: 690.
https://pubmed.ncbi.nlm.nih.gov/34147405
571.Kozikowski, M., et al. Clinical utility of MRI in the decision-making process before radical prostatectomy: Systematic review and meta-analysis. PLoS One, 2019. 14: e0210194.
https://pubmed.ncbi.nlm.nih.gov/30615661
572.Michl, U., et al. Nerve-sparing Surgery Technique, Not the Preservation of the Neurovascular Bundles, Leads to Improved Long-term Continence Rates After Radical Prostatectomy. Eur Urol, 2016. 69: 584.
https://pubmed.ncbi.nlm.nih.gov/26277303
573.Avulova, S., et al. The Effect of Nerve Sparing Status on Sexual and Urinary Function: 3-Year Results from the CEASAR Study. J Urol, 2018. 199: 1202.
https://pubmed.ncbi.nlm.nih.gov/29253578
574.Beulens, A.J.W., et al. Linking surgical skills to postoperative outcomes: a Delphi study on the robot-assisted radical prostatectomy. J Robot Surg, 2019. 13: 675.
https://pubmed.ncbi.nlm.nih.gov/30610535
575.Gilbert, S.M., et al. Functional Outcomes Following Nerve Sparing Prostatectomy Augmented with Seminal Vesicle Sparing Compared to Standard Nerve Sparing Prostatectomy: Results from a Randomized Controlled Trial. J Urol, 2017. 198: 600.
https://pubmed.ncbi.nlm.nih.gov/28392393
577.Li, H., et al. The Use of Unidirectional Barbed Suture for Urethrovesical Anastomosis during Robot-Assisted Radical Prostatectomy: A Systematic Review and Meta-Analysis of Efficacy and Safety. PLoS One, 2015. 10: e0131167.
https://pubmed.ncbi.nlm.nih.gov/26135310
578.Kowalewski, K.F., et al. Interrupted versus Continuous Suturing for Vesicourethral Anastomosis During Radical Prostatectomy: A Systematic Review and Meta-analysis. Eur Urol Focus, 2019. 5: 980.
https://pubmed.ncbi.nlm.nih.gov/29907547
579.Matsuyama, H., et al. Running suture versus interrupted suture for vesicourethral anastomosis in retropubic radical prostatectomy: a randomized study. Int J Urol, 2015. 22: 271.
https://pubmed.ncbi.nlm.nih.gov/25400263
580.Wiatr, T., et al. Single Running Suture versus Single-Knot Running Suture for Vesicourethral Anastomosis in Laparoscopic Radical Prostatectomy: A Prospective Randomised Comparative Study. Urol Int, 2015. 95: 445.
https://pubmed.ncbi.nlm.nih.gov/26655169
581.Van Velthoven, R.F., et al. Technique for laparoscopic running urethrovesical anastomosis:the single knot method. Urology, 2003. 61: 699.
https://pubmed.ncbi.nlm.nih.gov/12670546
582.Schoeppler, G.M., et al. The impact of bladder neck mucosal eversion during open radical prostatectomy on bladder neck stricture and urinary extravasation. Int Urol Nephrol, 2012. 44: 1403.
https://pubmed.ncbi.nlm.nih.gov/22585294
583.Borboroglu, P.G., et al. Risk factors for vesicourethral anastomotic stricture after radical prostatectomy. Urology, 2000. 56: 96.
https://pubmed.ncbi.nlm.nih.gov/10869633
584.Roemeling, S., et al. Active surveillance for prostate cancers detected in three subsequent rounds of a screening trial: characteristics, PSA doubling times, and outcome. Eur Urol, 2007. 51: 1244.
https://pubmed.ncbi.nlm.nih.gov/17161520
585.Bellangino, M., et al. Systematic Review of Studies Reporting Positive Surgical Margins After Bladder Neck Sparing Radical Prostatectomy. Curr Urol Rep, 2017. 18: 99.
https://pubmed.ncbi.nlm.nih.gov/29116405
586.Nyarangi-Dix, J.N., et al. Complete bladder neck preservation promotes long-term post-prostatectomy continence without compromising midterm oncological outcome: analysis of a randomised controlled cohort. World J Urol, 2018. 36: 349.
https://pubmed.ncbi.nlm.nih.gov/29214353
587.Ma, X., et al. Bladder neck preservation improves time to continence after radical prostatectomy: a systematic review and meta-analysis. Oncotarget, 2016. 7: 67463.
https://pubmed.ncbi.nlm.nih.gov/27634899
588.Veerman, H., et al. The detection rate of apical tumour involvement on preoperative MRI and its impact on clinical outcomes in patients with localized prostate cancer. J Robot Surg, 2022. 16: 1047.
https://pubmed.ncbi.nlm.nih.gov/34783953
589.Lardas, M., et al. Patient- and Tumour-related Prognostic Factors for Urinary Incontinence After Radical Prostatectomy for Nonmetastatic Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2022. 8: 674.
https://pubmed.ncbi.nlm.nih.gov/33967010
590.Mungovan, S.F., et al. Preoperative Membranous Urethral Length Measurement and Continence Recovery Following Radical Prostatectomy: A Systematic Review and Meta-analysis. Eur Urol, 2017. 71: 368.
https://pubmed.ncbi.nlm.nih.gov/27394644
591.van Dijk-de Haan, M.C., et al. Value of Different Magnetic Resonance Imaging-based Measurements of Anatomical Structures on Preoperative Prostate Imaging in Predicting Urinary Continence After Radical Prostatectomy in Men with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2022. 8: 1211.
https://pubmed.ncbi.nlm.nih.gov/35181284
592.Veerman, H., et al. A standardized method to measure the membranous urethral length (MUL) on MRI of the prostate with high inter- and intra-observer agreement. Eur Radiol, 2023. 33: 3295.
https://pubmed.ncbi.nlm.nih.gov/36512044
593.Guru, K.A., et al. Is a cystogram necessary after robot-assisted radical prostatectomy? Urol Oncol, 2007. 25: 465.
https://pubmed.ncbi.nlm.nih.gov/18047953
594.Tillier, C., et al. Vesico-urethral anastomosis (VUA) evaluation of short- and long-term outcome after robot-assisted laparoscopic radical prostatectomy (RARP): selective cystogram to improve outcome. J Robot Surg, 2017. 11: 441.
https://pubmed.ncbi.nlm.nih.gov/28078524
595.Yadav, R., et al. Selective indication for check cystogram before catheter removal following robot assisted radical prostatectomy. Indian J Urol, 2016. 32: 120.
https://pubmed.ncbi.nlm.nih.gov/27127354
596.Schoeppler, G.M., et al. Detection of urinary leakage after radical retropubic prostatectomy by contrast enhanced ultrasound - do we still need conventional retrograde cystography? BJU Int, 2010. 106: 1632.
https://pubmed.ncbi.nlm.nih.gov/20590540
597.Gratzke, C., et al. Early Catheter Removal after Robot-assisted Radical Prostatectomy: Surgical Technique and Outcomes for the Aalst Technique (ECaRemA Study). Eur Urol, 2016. 69: 917.
https://pubmed.ncbi.nlm.nih.gov/26578444
598.James, P., et al. Safe removal of the urethral catheter 2 days following laparoscopic radical prostatectomy. ISRN Oncol, 2012. 2012: 912642.
https://pubmed.ncbi.nlm.nih.gov/22957273
599.Lista, G., et al. Early Catheter Removal After Robot-assisted Radical Prostatectomy: Results from a Prospective Single-institutional Randomized Trial (Ripreca Study). Eur Urol Focus, 2020. 6: 259.
https://pubmed.ncbi.nlm.nih.gov/30413390
600.Brassetti, A., et al. Removing the urinary catheter on post-operative day 2 after robot-assisted laparoscopic radical prostatectomy: a feasibility study from a single high-volume referral centre. J Robot Surg, 2018. 12: 467.
https://pubmed.ncbi.nlm.nih.gov/29177945
601.Tilki, D., et al. The impact of time to catheter removal on short-, intermediate- and long-term urinary continence after radical prostatectomy. World J Urol, 2018. 36: 1247.
https://pubmed.ncbi.nlm.nih.gov/29582100
602.Berrondo, C., et al. Antibiotic prophylaxis at the time of catheter removal after radical prostatectomy: A prospective randomized clinical trial. Urol Oncol, 2019. 37: 181 e7.
https://pubmed.ncbi.nlm.nih.gov/30558984
603.Martinschek, A., et al. Transurethral versus suprapubic catheter at robot-assisted radical prostatectomy: a prospective randomized trial with 1-year follow-up. World J Urol, 2016. 34: 407.
https://pubmed.ncbi.nlm.nih.gov/26337521
604.Harke, N., et al. Postoperative patient comfort in suprapubic drainage versus transurethral catheterization following robot-assisted radical prostatectomy: a prospective randomized clinical trial. World J Urol, 2017. 35: 389.
https://pubmed.ncbi.nlm.nih.gov/27334135
605.Krane, L.S., et al. Impact of percutaneous suprapubic tube drainage on patient discomfort after radical prostatectomy. Eur Urol, 2009. 56: 325.
https://pubmed.ncbi.nlm.nih.gov/19394131
606.Morgan, M.S., et al. An Assessment of Patient Comfort and Morbidity After Robot-Assisted Radical Prostatectomy with Suprapubic Tube Versus Urethral Catheter Drainage. J Endourol, 2016. 30: 300.
https://pubmed.ncbi.nlm.nih.gov/26472083
607.Galfano, A., et al. Pain and discomfort after Retzius-sparing robot-assisted radical prostatectomy: a comparative study between suprapubic cystostomy and urethral catheter as urinary drainage. Minerva Urol Nefrol, 2019. 71: 381.
https://pubmed.ncbi.nlm.nih.gov/31144484
608.Prasad, S.M., et al. Early removal of urethral catheter with suprapubic tube drainage versus urethral catheter drainage alone after robot-assisted laparoscopic radical prostatectomy. J Urol, 2014. 192: 89.
https://pubmed.ncbi.nlm.nih.gov/24440236
609.Afzal, M.Z., et al. Modification of Technique for Suprapubic Catheter Placement After Robot-assisted Radical Prostatectomy Reduces Catheter-associated Complications. Urology, 2015. 86: 401.
https://pubmed.ncbi.nlm.nih.gov/26189333
610.Porcaro, A.B., et al. Is a Drain Needed After Robotic Radical Prostatectomy With or Without Pelvic Lymph Node Dissection? Results of a Single-Center Randomized Clinical Trial. J Endourol, 2021. 35: 922.
https://pubmed.ncbi.nlm.nih.gov/30398382
611.Chenam, A., et al. Prospective randomised non-inferiority trial of pelvic drain placement vs no pelvic drain placement after robot-assisted radical prostatectomy. BJU Int, 2018. 121: 357.
https://pubmed.ncbi.nlm.nih.gov/28872774
612.Ramsay, C., et al. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol Assess, 2012. 16: 1.
https://pubmed.ncbi.nlm.nih.gov/23127367
613.Novara, G., et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 382.
https://pubmed.ncbi.nlm.nih.gov/22749851
614.Novara, G., et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 431.
https://pubmed.ncbi.nlm.nih.gov/22749853
615.Ficarra, V., et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 418.
https://pubmed.ncbi.nlm.nih.gov/22749850
616.Ficarra, V., et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 405.
https://pubmed.ncbi.nlm.nih.gov/22749852
617.Maffezzini, M., et al. Evaluation of complications and results in a contemporary series of 300 consecutive radical retropubic prostatectomies with the anatomic approach at a single institution. Urology, 2003. 61: 982.
https://pubmed.ncbi.nlm.nih.gov/12736020
618.Haglind, E., et al. Urinary Incontinence and Erectile Dysfunction After Robotic Versus Open Radical Prostatectomy: A Prospective, Controlled, Nonrandomised Trial. Eur Urol, 2015. 68: 216.
https://pubmed.ncbi.nlm.nih.gov/25770484
619.Mukkala, A.N., et al. A systematic review and meta-analysis of unplanned hospital visits and re-admissions following radical prostatectomy for prostate cancer. Can Urol Assoc J, 2021. 15: E531.
https://pubmed.ncbi.nlm.nih.gov/33750517
620.Yaxley, J.W., et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet, 2016. 388: 1057.
https://pubmed.ncbi.nlm.nih.gov/27474375
621.Dindo, D., et al. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg, 2004. 240: 205.
https://pubmed.ncbi.nlm.nih.gov/15273542
622.Joshi, N., et al. Impact of posterior musculofascial reconstruction on early continence after robot-assisted laparoscopic radical prostatectomy: results of a prospective parallel group trial. Eur Urol, 2010. 58: 84.
https://pubmed.ncbi.nlm.nih.gov/20362386
623.Sutherland, D.E., et al. Posterior rhabdosphincter reconstruction during robotic assisted radical prostatectomy: results from a phase II randomized clinical trial. J Urol, 2011. 185: 1262.
https://pubmed.ncbi.nlm.nih.gov/21334025
624.Jeong, C.W., et al. Effects of new 1-step posterior reconstruction method on recovery of continence after robot-assisted laparoscopic prostatectomy: results of a prospective, single-blind, parallel group, randomized, controlled trial. J Urol, 2015. 193: 935.
https://pubmed.ncbi.nlm.nih.gov/25315960
625.Menon, M., et al. Assessment of early continence after reconstruction of the periprostatic tissues in patients undergoing computer assisted (robotic) prostatectomy: results of a 2 group parallel randomized controlled trial. J Urol, 2008. 180: 1018.
https://pubmed.ncbi.nlm.nih.gov/18639300
626.Stolzenburg, J.U., et al. Influence of bladder neck suspension stitches on early continence after radical prostatectomy: a prospective randomized study of 180 patients. Asian J Androl, 2011. 13: 806.
https://pubmed.ncbi.nlm.nih.gov/21909121
627.Hurtes, X., et al. Anterior suspension combined with posterior reconstruction during robot-assisted laparoscopic prostatectomy improves early return of urinary continence: a prospective randomized multicentre trial. BJU Int, 2012. 110: 875.
https://pubmed.ncbi.nlm.nih.gov/22260307
628.Student, V., Jr., et al. Advanced Reconstruction of Vesicourethral Support (ARVUS) during Robot-assisted Radical Prostatectomy: One-year Functional Outcomes in a Two-group Randomised Controlled Trial. Eur Urol, 2017. 71: 822.
https://pubmed.ncbi.nlm.nih.gov/27283216
629.Noguchi, M., et al. A randomized clinical trial of suspension technique for improving early recovery of urinary continence after radical retropubic prostatectomy. BJU Int, 2008. 102: 958.
https://pubmed.ncbi.nlm.nih.gov/18485031
630.Tikkinen, K.A.O., Cartwright, R., Gould,M.K., Naspro, R., Novara, G., Sandset, P.M., Violette, P.D., Guyatt, G.H. , EAU Guidelines on Thromboprophylaxis in Urological Surgery, in 32nd EAU Annual Congress, E.G. Office, Editor. 2017, EAU: London.
https://uroweb.org/guidelines/thromboprophylaxis
631.Burkhard, F.C., et al. The role of lymphadenectomy in prostate cancer. Nat Clin Pract Urol, 2005. 2: 336.
https://pubmed.ncbi.nlm.nih.gov/16474786
632.Briganti, A., et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol, 2006. 50: 1006.
https://pubmed.ncbi.nlm.nih.gov/16959399
633.Tyritzis, S.I., et al. Thromboembolic complications in 3,544 patients undergoing radical prostatectomy with or without lymph node dissection. J Urol, 2015. 193: 117.
https://pubmed.ncbi.nlm.nih.gov/25158271
634.Viani, G.A., et al. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: A randomized clinical trial. Cancer, 2016. 122: 2004.
https://pubmed.ncbi.nlm.nih.gov/27028170
635.Yu, T., et al. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures. PLoS One, 2016. 11: e0154499.
https://pubmed.ncbi.nlm.nih.gov/27171271
636.Zapatero, A., et al. Reduced late urinary toxicity with high-dose intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer. Clin Transl Oncol, 2017. 19: 1161.
https://pubmed.ncbi.nlm.nih.gov/28374321
637.de Crevoisier, R., et al. Daily Versus Weekly Prostate Cancer Image Guided Radiation Therapy: Phase 3 Multicenter Randomized Trial. Int J Radiat Oncol Biol Phys, 2018. 102: 1420.
https://pubmed.ncbi.nlm.nih.gov/30071296
638.Murray, J., et al. A randomised assessment of image guided radiotherapy within a phase 3 trial of conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer. Radiother Oncol, 2020. 142: 62.
https://pubmed.ncbi.nlm.nih.gov/31767473
639.Tocco, B.R., et al. MR-Guided Radiotherapy for Prostate Cancer. Front Oncol, 2020. 10: 616291.
https://pubmed.ncbi.nlm.nih.gov/33363041
640.Christiansen, R.L., et al. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother Oncol, 2022. 167: 165.
https://pubmed.ncbi.nlm.nih.gov/34923034
641.Tetar, S.U., et al. Magnetic Resonance-guided Stereotactic Radiotherapy for Localized Prostate Cancer: Final Results on Patient-reported Outcomes of a Prospective Phase 2 Study. Eur Urol Oncol, 2021. 4: 628.
https://pubmed.ncbi.nlm.nih.gov/32536573
642.Kishan, A.U., et al. Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial. JAMA Oncol, 2023. 9: 365.
https://pubmed.ncbi.nlm.nih.gov/36633877
643.Kishan, A.U., et al. Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. Eur Urol, 2020. 77: 201.
https://pubmed.ncbi.nlm.nih.gov/31718822
644.Michalski, J.M., et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol, 2018. 4: e180039.
https://pubmed.ncbi.nlm.nih.gov/29543933
645.Zietman, A.L., et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol, 2010. 28: 1106.
https://pubmed.ncbi.nlm.nih.gov/20124169
646.Viani, G.A., et al. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys, 2009. 74: 1405.
https://pubmed.ncbi.nlm.nih.gov/19616743
647.Peeters, S.T., et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol, 2006. 24: 1990.
https://pubmed.ncbi.nlm.nih.gov/16648499
648.Beckendorf, V., et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys, 2011. 80: 1056.
https://pubmed.ncbi.nlm.nih.gov/21147514
649.Heemsbergen, W.D., et al. Long-term results of the Dutch randomized prostate cancer trial: impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother Oncol, 2014. 110: 104.
https://pubmed.ncbi.nlm.nih.gov/24246414
650.Dearnaley, D.P., et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol, 2014. 15: 464.
https://pubmed.ncbi.nlm.nih.gov/24581940
651.Pasalic, D., et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int J Radiat Oncol Biol Phys, 2019. 104: 790.
https://pubmed.ncbi.nlm.nih.gov/30836166
652.Kalbasi, A., et al. Dose-Escalated Irradiation and Overall Survival in Men With Nonmetastatic Prostate Cancer. JAMA Oncol, 2015. 1: 897.
https://pubmed.ncbi.nlm.nih.gov/26181727
653.Kerkmeijer, L.G.W., et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J Clin Oncol, 2021. 39: 787.
https://pubmed.ncbi.nlm.nih.gov/33471548
654.Groen, V.H., et al. Patterns of Failure Following External Beam Radiotherapy With or Without an Additional Focal Boost in the Randomized Controlled FLAME Trial for Localized Prostate Cancer. Eur Urol, 2022. 82: 252.
https://pubmed.ncbi.nlm.nih.gov/34953603
655.Poon, D.M.C., et al. Magnetic Resonance Imaging–guided Focal Boost to Intraprostatic Lesions Using External Beam Radiotherapy for Localized Prostate Cancer: A Systematic Review and Meta-analysis. European Urology Oncology, 2023. 6: 116.
https://www.sciencedirect.com/science/article/pii/S2588931122001687?via%3Dihub
656.Fowler, J.F. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol, 2005. 44: 265.
https://pubmed.ncbi.nlm.nih.gov/16076699
657.Dasu, A., et al. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol, 2012. 51: 963.
https://pubmed.ncbi.nlm.nih.gov/22966812
658.Kuban, D.A., et al. Preliminary Report of a Randomized Dose Escalation Trial for Prostate Cancer using Hypofractionation. International Journal of Radiation Oncology*Biology*Physics, 2010. 78: S58.
http://www.redjournal.org/article/S0360-3016(10)01144-2/abstract
659.Pollack, A., et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol, 2013. 31: 3860.
https://pubmed.ncbi.nlm.nih.gov/24101042
660.Lee, W.R., et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J Clin Oncol, 2016. 34: 2325.
https://pubmed.ncbi.nlm.nih.gov/27044935
661.Dearnaley, D., et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol, 2016. 17: 1047.
https://pubmed.ncbi.nlm.nih.gov/27339115
662.Incrocci, L., et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol, 2016. 17: 1061.
https://pubmed.ncbi.nlm.nih.gov/27339116
663.Catton, C.N., et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol, 2017. 35: 1884.
https://pubmed.ncbi.nlm.nih.gov/28296582
664.Koontz, B.F., et al. A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol, 2015. 68: 683.
https://pubmed.ncbi.nlm.nih.gov/25171903
665.Hocht, S., et al. Hypofractionated radiotherapy for localized prostate cancer. Strahlenther Onkol, 2017. 193: 1.
https://pubmed.ncbi.nlm.nih.gov/27628966
666.Hickey, B.E., et al. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst Rev, 2019. 9: CD011462.
https://pubmed.ncbi.nlm.nih.gov/31476800
667.de Vries, K.C., et al. Hyprofractionated Versus Conventionally Fractionated Radiation Therapy for Patients with Intermediate- or High-Risk, Localized, Prostate Cancer: 7-Year Outcomes From the Randomized, Multicenter, Open-Label, Phase 3 HYPRO Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 108.
https://pubmed.ncbi.nlm.nih.gov/31593756
668.Widmark, A., et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet, 2019. 394: 385.
https://pubmed.ncbi.nlm.nih.gov/31227373
669.Jackson, W.C., et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int J Radiat Oncol Biol Phys, 2019. 104: 778.
https://pubmed.ncbi.nlm.nih.gov/30959121
670.Cushman, T.R., et al. Stereotactic body radiation therapy for prostate cancer: systematic review and meta-analysis of prospective trials. Oncotarget, 2019. 10: 5660.
https://pubmed.ncbi.nlm.nih.gov/31608141
671.Brand, D.H., et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol, 2019. 20: 1531.
https://pubmed.ncbi.nlm.nih.gov/31540791
672.Tree, A.C., et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol, 2022. 23: 1308.
https://pubmed.ncbi.nlm.nih.gov/36113498
673.Rasmusson, E., et al. Erectile Dysfunction and Absorbed Dose to Penile Base Structures in a Randomized Trial Comparing Ultrahypofractionated and Conventionally Fractionated Radiation Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys, 2020. 107: 143.
https://pubmed.ncbi.nlm.nih.gov/32004582
674.Greco, C., et al. Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients With Intermediate-Risk Prostate Cancer: Results From the PROSINT Phase 2 Randomized Clinical Trial. JAMA Oncol, 2021. 7: 700.
https://pubmed.ncbi.nlm.nih.gov/33704378
675.Bolla, M., et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol, 2010. 11: 1066.
https://pubmed.ncbi.nlm.nih.gov/20933466
676.Pilepich, M.V., et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma--long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys, 2005. 61: 1285.
https://pubmed.ncbi.nlm.nih.gov/15817329
677.Roach, M., 3rd, et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol, 2008. 26: 585.
https://pubmed.ncbi.nlm.nih.gov/18172188
678.D’Amico, A.V., et al. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA, 2008. 299: 289.
https://pubmed.ncbi.nlm.nih.gov/18212313
679.Denham, J.W., et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol, 2011. 12: 451.
https://pubmed.ncbi.nlm.nih.gov/21440505
680.Lawton, C.A., et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys, 2007. 69: 646.
https://pubmed.ncbi.nlm.nih.gov/17531401
681.Horwitz, E.M., et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol, 2008. 26: 2497.
https://pubmed.ncbi.nlm.nih.gov/18413638
682.Bolla, M., et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med, 2009. 360: 2516.
https://pubmed.ncbi.nlm.nih.gov/19516032
683.Pisansky, T.M., et al. Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol, 2015. 33: 332.
https://pubmed.ncbi.nlm.nih.gov/25534388
684.Nabid, A., et al. Androgen deprivation therapy and radiotherapy in intermediate-risk prostate cancer: A randomised phase III trial. Eur J Cancer, 2021. 143: 64.
https://pubmed.ncbi.nlm.nih.gov/33279855
685.Krauss, D.J., et al. Dose-Escalated Radiotherapy Alone or in Combination With Short-Term Androgen Deprivation for Intermediate-Risk Prostate Cancer: Results of a Phase III Multi-Institutional Trial. J Clin Oncol, 2023. 41: 3203.
https://pubmed.ncbi.nlm.nih.gov/37104748
686.Fossa, S.D., et al. Ten- and 15-yr Prostate Cancer-specific Mortality in Patients with Nonmetastatic Locally Advanced or Aggressive Intermediate Prostate Cancer, Randomized to Lifelong Endocrine Treatment Alone or Combined with Radiotherapy: Final Results of The Scandinavian Prostate Cancer Group-7. Eur Urol, 2016. 70: 684.
https://pubmed.ncbi.nlm.nih.gov/27025586
687.Mason, M.D., et al. Final Report of the Intergroup Randomized Study of Combined Androgen-Deprivation Therapy Plus Radiotherapy Versus Androgen-Deprivation Therapy Alone in Locally Advanced Prostate Cancer. J Clin Oncol, 2015. 33: 2143.
https://pubmed.ncbi.nlm.nih.gov/25691677
688.Sargos, P., et al. Long-term androgen deprivation, with or without radiotherapy, in locally advanced prostate cancer: updated results from a phase III randomised trial. BJU Int, 2020. 125: 810.
https://pubmed.ncbi.nlm.nih.gov/30946523
689.Kishan, A.U., et al. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. Lancet Oncol, 2022. 23: 304.
https://pubmed.ncbi.nlm.nih.gov/35051385
690.Zapatero, A., et al. Risk-adapted androgen deprivation and escalated three-dimensional conformal radiotherapy for prostate cancer: Does radiation dose influence outcome of patients treated with adjuvant androgen deprivation? A GICOR study. J Clin Oncol, 2005. 23: 6561.
https://pubmed.ncbi.nlm.nih.gov/16170164
691.Zapatero, A., et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol, 2015. 16: 320.
https://pubmed.ncbi.nlm.nih.gov/25702876
692.Bolla, M., et al. Short Androgen Suppression and Radiation Dose Escalation for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991. J Clin Oncol, 2016. 34: 1748.
https://pubmed.ncbi.nlm.nih.gov/26976418
693.Spratt, D.E., et al. Prostate Radiotherapy With Adjuvant Androgen Deprivation Therapy (ADT) Improves Metastasis-Free Survival Compared to Neoadjuvant ADT: An Individual Patient Meta-Analysis. J Clin Oncol, 2021. 39: 136.
https://pubmed.ncbi.nlm.nih.gov/33275486
694.Malone, S., et al. Sequencing of Androgen-Deprivation Therapy With External-Beam Radiotherapy in Localized Prostate Cancer: A Phase III Randomized Controlled Trial. J Clin Oncol, 2020. 38: 593.
https://pubmed.ncbi.nlm.nih.gov/31829912
695.Gray, P.J., et al. Patient-reported outcomes after 3-dimensional conformal, intensity-modulated, or proton beam radiotherapy for localized prostate cancer. Cancer, 2013. 119: 1729.
https://pubmed.ncbi.nlm.nih.gov/23436283
696.Sheets, N.C., et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA, 2012. 307: 1611.
https://pubmed.ncbi.nlm.nih.gov/22511689
697.Excellence, N.I.f.H.a.C. Biodegradable spacer insertion to reduce rectal toxicity during radiotherapy for prostate cancer. Interventional procedures guidance [IPG590]. 2017. 2022.
https://www.nice.org.uk/guidance/ipg590
698.Miller, L.E., et al. Association of the Placement of a Perirectal Hydrogel Spacer With the Clinical Outcomes of Men Receiving Radiotherapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open, 2020. 3: e208221.
https://pubmed.ncbi.nlm.nih.gov/32585020
699.Hamstra, D.A., et al. Continued Benefit to Rectal Separation for Prostate Radiation Therapy: Final Results of a Phase III Trial. Int J Radiat Oncol Biol Phys, 2017. 97: 976.
https://pubmed.ncbi.nlm.nih.gov/28209443
700.Aminsharifi, A., et al. Major Complications and Adverse Events Related to the Injection of the SpaceOAR Hydrogel System Before Radiotherapy for Prostate Cancer: Review of the Manufacturer and User Facility Device Experience Database. J Endourol, 2019. 33: 868.
https://pubmed.ncbi.nlm.nih.gov/31452385
701.Pinkawa, M., et al. Learning curve in the application of a hydrogel spacer to protect the rectal wall during radiotherapy of localized prostate cancer. Urology, 2013. 82: 963.
https://pubmed.ncbi.nlm.nih.gov/24074991
702.Henry, A., et al. GEC-ESTRO ACROP prostate brachytherapy guidelines. Radiother Oncol, 2022. 167: 244.
https://pubmed.ncbi.nlm.nih.gov/34999134
703.Martens, C., et al. Relationship of the International Prostate Symptom score with urinary flow studies, and catheterization rates following 125I prostate brachytherapy. Brachytherapy, 2006. 5: 9.
https://pubmed.ncbi.nlm.nih.gov/16563992
704.Michalski, J.M., et al. Effect of Brachytherapy With External Beam Radiation Therapy Versus Brachytherapy Alone for Intermediate-Risk Prostate Cancer: NRG Oncology RTOG 0232 Randomized Clinical Trial. J Clin Oncol, 2023. 41: 4035.
https://pubmed.ncbi.nlm.nih.gov/37315297
705.Le, H., et al. The influence of prostate volume on outcome after high-dose-rate brachytherapy alone for localized prostate cancer. Int J Radiat Oncol Biol Phys, 2013. 87: 270.
https://pubmed.ncbi.nlm.nih.gov/23849693
706.Salembier, C., et al. A history of transurethral resection of the prostate should not be a contra-indication for low-dose-rate (125)I prostate brachytherapy: results of a prospective Uro-GEC phase-II trial. J Contemp Brachytherapy, 2020. 12: 1.
https://pubmed.ncbi.nlm.nih.gov/32190063
707.Salembier, C., et al. Prospective multi-center dosimetry study of low-dose Iodine-125 prostate brachytherapy performed after transurethral resection. J Contemp Brachytherapy, 2013. 5: 63.
https://pubmed.ncbi.nlm.nih.gov/23878549
708.Stone, N.N., et al. Prostate brachytherapy in men with gland volume of 100cc or greater: Technique, cancer control, and morbidity. Brachytherapy, 2013. 12: 217.
https://pubmed.ncbi.nlm.nih.gov/23384439
709.Crook, J.M., et al. Comparison of health-related quality of life 5 years after SPIRIT: Surgical Prostatectomy Versus Interstitial Radiation Intervention Trial. J Clin Oncol, 2011. 29: 362.
https://pubmed.ncbi.nlm.nih.gov/21149658
710.Sylvester, J.E., et al. Fifteen-year biochemical relapse-free survival, cause-specific survival, and overall survival following I(125) prostate brachytherapy in clinically localized prostate cancer: Seattle experience. Int J Radiat Oncol Biol Phys, 2011. 81: 376.
https://pubmed.ncbi.nlm.nih.gov/20864269
711.Potters, L., et al. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol, 2005. 173: 1562.
https://pubmed.ncbi.nlm.nih.gov/15821486
712.Stone, N.N., et al. Intermediate term biochemical-free progression and local control following 125iodine brachytherapy for prostate cancer. J Urol, 2005. 173: 803.
https://pubmed.ncbi.nlm.nih.gov/15711273
713.Zelefsky, M.J., et al. Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys, 2007. 67: 327.
https://pubmed.ncbi.nlm.nih.gov/17084558
714.Lawton, C.A., et al. Results of a phase II trial of transrectal ultrasound-guided permanent radioactive implantation of the prostate for definitive management of localized adenocarcinoma of the prostate (radiation therapy oncology group 98-05). Int J Radiat Oncol Biol Phys, 2007. 67: 39.
https://pubmed.ncbi.nlm.nih.gov/17084551
715.Stock, R.G., et al. Importance of post-implant dosimetry in permanent prostate brachytherapy. Eur Urol, 2002. 41: 434.
https://pubmed.ncbi.nlm.nih.gov/12074816
716.Keyes, M., et al. American Brachytherapy Society Task Group Report: Use of androgen deprivation therapy with prostate brachytherapy-A systematic literature review. Brachytherapy, 2017. 16: 245.
https://pubmed.ncbi.nlm.nih.gov/28110898
717.Morris, W.J., et al. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int J Radiat Oncol Biol Phys, 2017. 98: 275.
https://pubmed.ncbi.nlm.nih.gov/28262473
718.Oh, J., et al. An Updated Analysis of the Survival Endpoints of ASCENDE-RT. Int J Radiat Oncol Biol Phys, 2023. 115: 1061.
https://pubmed.ncbi.nlm.nih.gov/36528488
719.Rodda, S., et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int J Radiat Oncol Biol Phys, 2017. 98: 286.
https://pubmed.ncbi.nlm.nih.gov/28433432
720.Hoskin, P.J., et al. GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update. Radiother Oncol, 2013. 107: 325.
https://pubmed.ncbi.nlm.nih.gov/23773409
721.Galalae, R.M., et al. Long-term outcome after elective irradiation of the pelvic lymphatics and local dose escalation using high-dose-rate brachytherapy for locally advanced prostate cancer. Int J Radiat Oncol Biol Phys, 2002. 52: 81.
https://pubmed.ncbi.nlm.nih.gov/11777625
722.Miszczyk, M., et al. Brachytherapy boost improves survival and decreases risk of developing distant metastases compared to external beam radiotherapy alone in intermediate and high risk group prostate cancer patients. Radiother Oncol, 2023. 183: 109632.
https://pubmed.ncbi.nlm.nih.gov/36963442
723.Pieters, B.R., et al. Comparison of three radiotherapy modalities on biochemical control and overall survival for the treatment of prostate cancer: a systematic review. Radiother Oncol, 2009. 93: 168.
https://pubmed.ncbi.nlm.nih.gov/19748692
724.Parry, M.G., et al. Impact of High-Dose-Rate and Low-Dose-Rate Brachytherapy Boost on Toxicity, Functional and Cancer Outcomes in Patients Receiving External Beam Radiation Therapy for Prostate Cancer: A National Population-Based Study. Int J Radiat Oncol Biol Phys, 2021. 109: 1219.
https://pubmed.ncbi.nlm.nih.gov/33279595
725.Hoskin, P.J., et al. Randomised trial of external-beam radiotherapy alone or with high-dose-rate brachytherapy for prostate cancer: Mature 12-year results. Radiother Oncol, 2021. 154: 214.
https://pubmed.ncbi.nlm.nih.gov/33011207
726.Joseph, D., et al. Radiation Dose Escalation or Longer Androgen Suppression to Prevent Distant Progression in Men With Locally Advanced Prostate Cancer: 10-Year Data From the TROG 03.04 RADAR Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 693.
https://pubmed.ncbi.nlm.nih.gov/32092343
727.Jackson, W.C., et al. Addition of Androgen-Deprivation Therapy or Brachytherapy Boost to External Beam Radiotherapy for Localized Prostate Cancer: A Network Meta-Analysis of Randomized Trials. J Clin Oncol, 2020. 38: 3024.
https://pubmed.ncbi.nlm.nih.gov/32396488
728.Viani, G.A., et al. HDR brachytherapy as monotherapy for prostate cancer: A systematic review with meta-analysis. Brachytherapy, 2021. 20: 307.
https://pubmed.ncbi.nlm.nih.gov/33461894
729.Morton, G., et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Early toxicity and quality-of life results from a randomized phase II clinical trial of one fraction of 19Gy or two fractions of 13.5Gy. Radiother Oncol, 2017. 122: 87.
https://pubmed.ncbi.nlm.nih.gov/27823821
730.Matzinger, O., et al. Acute toxicity of curative radiotherapy for intermediate- and high-risk localised prostate cancer in the EORTC trial 22991. Eur J Cancer, 2009. 45: 2825.
https://pubmed.ncbi.nlm.nih.gov/19682889
731.Hoskin, P., et al. High-dose-rate brachytherapy alone given as two or one fraction to patients for locally advanced prostate cancer: acute toxicity. Radiother Oncol, 2014. 110: 268.
https://pubmed.ncbi.nlm.nih.gov/24231242
732.King, C.R., et al. Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials. Int J Radiat Oncol Biol Phys, 2013. 87: 939.
https://pubmed.ncbi.nlm.nih.gov/24119836
733.Fahmy, W.E., et al. Cryosurgery for prostate cancer. Arch Androl, 2003. 49: 397.
https://pubmed.ncbi.nlm.nih.gov/12893518
734.Rees, J., et al. Cryosurgery for prostate cancer. BJU Int, 2004. 93: 710.
https://pubmed.ncbi.nlm.nih.gov/15049977
735.Han, K.R., et al. Third-generation cryosurgery for primary and recurrent prostate cancer. BJU Int, 2004. 93: 14.
https://pubmed.ncbi.nlm.nih.gov/14678360
736.van der Poel, H.G., et al. Focal Therapy in Primary Localised Prostate Cancer: The European Association of Urology Position in 2018. Eur Urol, 2018. 74: 84.
https://pubmed.ncbi.nlm.nih.gov/29373215
737.Valerio, M., et al. New and Established Technology in Focal Ablation of the Prostate: A Systematic Review. Eur Urol, 2017. 71: 17.
https://pubmed.ncbi.nlm.nih.gov/27595377
738.Ramsay, C.R., et al. Ablative therapy for people with localised prostate cancer: a systematic review and economic evaluation. Health Technol Assess, 2015. 19: 1.
https://pubmed.ncbi.nlm.nih.gov/26140518
739.Madersbacher, S., et al. High-energy shockwaves and extracorporeal high-intensity focused ultrasound. J Endourol, 2003. 17: 667.
https://pubmed.ncbi.nlm.nih.gov/14622487
740.Pan, Y., et al. Whole-gland high-intensity focused ultrasound ablation and transurethral resection of the prostate in the patients with prostate cancer: A systematic review and meta-analysis. Front Oncol, 2022. 12: 988490.
https://pubmed.ncbi.nlm.nih.gov/36313706
741.Brundl, J., et al. Oncological Long-term Outcome After Whole-gland High-intensity Focused Ultrasound for Prostate Cancer-21-yr Follow-up. Eur Urol Focus, 2022. 8: 134.
https://pubmed.ncbi.nlm.nih.gov/33483288
742.Dickinson, L., et al. Medium-term Outcomes after Whole-gland High-intensity Focused Ultrasound for the Treatment of Nonmetastatic Prostate Cancer from a Multicentre Registry Cohort. Eur Urol, 2016. 70: 668.
https://pubmed.ncbi.nlm.nih.gov/26951947
743.Mouraviev, V., et al. Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol, 2009. 6: 205.
https://pubmed.ncbi.nlm.nih.gov/19352395
744.Cooperberg, M.R., et al. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol, 2007. 178: S14.
https://pubmed.ncbi.nlm.nih.gov/17644125
745.Polascik, T.J., et al. Pathologic stage T2a and T2b prostate cancer in the recent prostate-specific antigen era: implications for unilateral ablative therapy. Prostate, 2008. 68: 1380.
https://pubmed.ncbi.nlm.nih.gov/18543281
746.Ahmed, H.U., et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat Clin Pract Oncol, 2007. 4: 632.
https://pubmed.ncbi.nlm.nih.gov/17965641
747.Eggener, S.E., et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol, 2007. 178: 2260.
https://pubmed.ncbi.nlm.nih.gov/17936815
748.Crawford, E.D., et al. Targeted focal therapy: a minimally invasive ablation technique for early prostate cancer. Oncology (Williston Park), 2007. 21: 27.
https://pubmed.ncbi.nlm.nih.gov/17313155
749.Hopstaken, J.S., et al. An Updated Systematic Review on Focal Therapy in Localized Prostate Cancer: What Has Changed over the Past 5 Years? Eur Urol, 2022. 81: 5.
https://pubmed.ncbi.nlm.nih.gov/34489140
750.Guillaumier, S., et al. A Multicentre Study of 5-year Outcomes Following Focal Therapy in Treating Clinically Significant Nonmetastatic Prostate Cancer. Eur Urol, 2018. 74: 422.
https://pubmed.ncbi.nlm.nih.gov/29960750
751.Hamdy, F.C., et al. Partial ablation versus radical prostatectomy in intermediate-risk prostate cancer: the PART feasibility RCT. Health Technol Assess, 2018. 22: 1.
https://pubmed.ncbi.nlm.nih.gov/30264692
752.Baco, E., Vlakovic, L., Rud, E. , MP21-79011397058899Focal ablation versus radical prostatectomy for intermediate-risk prostate cancer: interim analysis of a randomized controlled Trial, in AUA-2021. 2021, AUA: Las Vegas, USA.
https://www.auajournals.org/doi/abs/10.1097/JU.0000000000002067.06
753.Reddy, D., et al. Comparative healthcare research outcomes of novel Surgery in prostate cancer (IP4-CHRONOS): Pilot RCT assessing feasibility of randomization for focal therapy in localized prostate cancer. Journal of Clinical Oncology, 2022. 40: 5086.
https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.5086
754.Shah, T.T., et al. Focal therapy compared to radical prostatectomy for non-metastatic prostate cancer: a propensity score-matched study. Prostate Cancer Prostatic Dis, 2021. 24: 567.
https://pubmed.ncbi.nlm.nih.gov/33504940
755.van Son, M.J., et al. Conventional radical versus focal treatment for localised prostate cancer: a propensity score weighted comparison of 6-year tumour control. Prostate Cancer Prostatic Dis, 2021. 24: 1120.
https://pubmed.ncbi.nlm.nih.gov/33934114
756.Lovegrove, C.E., et al. Evaluation of functional outcomes after a second focal high-intensity focused ultrasonography (HIFU) procedure in men with primary localized, non-metastatic prostate cancer: results from the HIFU Evaluation and Assessment of Treatment (HEAT) registry. BJU Int, 2020. 125: 853.
https://pubmed.ncbi.nlm.nih.gov/31971335
757.Marconi, L., et al. Robot-assisted Radical Prostatectomy After Focal Therapy: Oncological, Functional Outcomes and Predictors of Recurrence. Eur Urol, 2019. 76: 27.
https://pubmed.ncbi.nlm.nih.gov/30904357
758.Spitznagel, T., et al. Salvage Robotic-assisted Laparoscopic Radical Prostatectomy Following Focal High-Intensity Focused Ultrasound for ISUP 2/3 Cancer. Urology, 2021. 156: 147.
https://pubmed.ncbi.nlm.nih.gov/34186136
759.Gill, I.S., et al. Randomized Trial of Partial Gland Ablation with Vascular Targeted Phototherapy versus Active Surveillance for Low Risk Prostate Cancer: Extended Followup and Analyses of Effectiveness. J Urol, 2018. 200: 786.
https://pubmed.ncbi.nlm.nih.gov/29864437
760.Marra, G., et al. Long-term Outcomes of Focal Cryotherapy for Low- to Intermediate-risk Prostate Cancer: Results and Matched Pair Analysis with Active Surveillance. Eur Urol Focus, 2022. 8: 701.
https://pubmed.ncbi.nlm.nih.gov/33926838
761.MacLennan, S., et al. A core outcome set for localised prostate cancer effectiveness trials. BJU Int, 2017. 120: E64.
https://pubmed.ncbi.nlm.nih.gov/28346770
762.Bratt, O., et al. The Swedish national guidelines on prostate cancer, part 1: early detection, diagnostics, staging, patient support and primary management of non-metastatic disease. Scand J Urol, 2022. 56: 265.
https://pubmed.ncbi.nlm.nih.gov/35811480
763.Yerram, N.K., et al. Magnetic Resonance Imaging-Targeted and Systematic Biopsy for Detection of Grade Progression in Patients on Active Surveillance for Prostate Cancer. J Urol, 2021. 205: 1352.
https://pubmed.ncbi.nlm.nih.gov/33356479
764.McLeod, D.G., et al. Bicalutamide 150 mg plus standard care vs standard care alone for early prostate cancer. BJU Int, 2006. 97: 247.
https://pubmed.ncbi.nlm.nih.gov/16430622
765.Shore, N.D., et al. Enzalutamide Monotherapy vs Active Surveillance in Patients With Low-risk or Intermediate-risk Localized Prostate Cancer: The ENACT Randomized Clinical Trial. JAMA Oncol, 2022. 8: 1128.
https://pubmed.ncbi.nlm.nih.gov/35708696
766.Baboudjian, M., et al. Active Surveillance for Intermediate-risk Prostate Cancer: A Systematic Review, Meta-analysis, and Metaregression. Eur Urol Oncol, 2022. 5: 617.
https://pubmed.ncbi.nlm.nih.gov/35934625
767.Mukherjee, S., et al. Comparison of Outcomes of Active Surveillance in Intermediate-Risk Versus Low-Risk Localised Prostate Cancer Patients: A Systematic Review and Meta-Analysis. J Clin Med, 2023. 12.
https://pubmed.ncbi.nlm.nih.gov/37048815
768.Enikeev, D., et al. Active Surveillance for Intermediate-Risk Prostate Cancer: Systematic Review and Meta-analysis of Current Protocols and Outcomes. Clin Genitourin Cancer, 2020. 18: e739.
https://pubmed.ncbi.nlm.nih.gov/32768356
769.Morash, C., et al. Active surveillance for the management of localized prostate cancer: Guideline recommendations. Can Urol Assoc J, 2015. 9: 171.
https://pubmed.ncbi.nlm.nih.gov/26225165
770.Musunuru, H.B., et al. Active Surveillance for Intermediate Risk Prostate Cancer: Survival Outcomes in the Sunnybrook Experience. J Urol, 2016. 196: 1651.
https://pubmed.ncbi.nlm.nih.gov/27569437
771.Raldow, A.C., et al. Risk Group and Death From Prostate Cancer: Implications for Active Surveillance in Men With Favorable Intermediate-Risk Prostate Cancer. JAMA Oncol, 2015. 1: 334.
https://pubmed.ncbi.nlm.nih.gov/26181182
772.Luo, X., et al. Prostatectomy Versus Observation for Localized Prostate Cancer: A Meta-Analysis. Scand J Surg, 2021. 110: 78.
https://pubmed.ncbi.nlm.nih.gov/31662032
773.Studer, U.E., et al. Using PSA to guide timing of androgen deprivation in patients with T0-4 N0-2 M0 prostate cancer not suitable for local curative treatment (EORTC 30891). Eur Urol, 2008. 53: 941.
https://pubmed.ncbi.nlm.nih.gov/18191322
774.Kuperus, J.M., et al. Pelvic Lymph Node Dissection at Radical Prostatectomy for Intermediate Risk Prostate Cancer: Assessing Utility and Nodal Metastases Within a Statewide Quality Improvement Consortium. Urology, 2022. 165: 227.
https://pubmed.ncbi.nlm.nih.gov/35263639
775.James, N.D., et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet, 2016. 387: 1163.
https://pubmed.ncbi.nlm.nih.gov/26719232
776.Krauss, D., et al. Lack of benefit for the addition of androgen deprivation therapy to dose-escalated radiotherapy in the treatment of intermediate- and high-risk prostate cancer. Int J Radiat Oncol Biol Phys, 2011. 80: 1064.
https://pubmed.ncbi.nlm.nih.gov/20584576
777.Kupelian, P.A., et al. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys, 2008. 71: 16.
https://pubmed.ncbi.nlm.nih.gov/17996382
778.Nabid, A., et al. Optimizing Treatment in Intermediate-Risk Prostate Cancer: Secondary Analysis of a Randomized Phase 3 Trial. Int J Radiat Oncol Biol Phys, 2021. 111: 732.
https://pubmed.ncbi.nlm.nih.gov/33901566
779.King, M.T., et al. Low dose rate brachytherapy for primary treatment of localized prostate cancer: A systemic review and executive summary of an evidence-based consensus statement. Brachytherapy, 2021. 20: 1114.
https://pubmed.ncbi.nlm.nih.gov/34509378
780.Joniau, S., et al. Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study. Eur Urol, 2015. 67: 157.
https://pubmed.ncbi.nlm.nih.gov/24486307
781.Donohue, J.F., et al. Poorly differentiated prostate cancer treated with radical prostatectomy: long-term outcome and incidence of pathological downgrading. J Urol, 2006. 176: 991.
https://pubmed.ncbi.nlm.nih.gov/16890678
782.Laukhtina, E., et al. Oncologic impact of delaying radical prostatectomy in men with intermediate- and high-risk prostate cancer: a systematic review. World J Urol, 2021. 39: 4085.
https://pubmed.ncbi.nlm.nih.gov/34047825
783.Nguyen, D.D., et al. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer: Are Delays Associated with Worse Outcomes? J Urol, 2021. 205: 1263.
https://pubmed.ncbi.nlm.nih.gov/33443458
784.Yaxley, J.W., et al. Risk of metastatic disease on (68) gallium-prostate-specific membrane antigen positron emission tomography/computed tomography scan for primary staging of 1253 men at the diagnosis of prostate cancer. BJU Int, 2019. 124: 401.
https://pubmed.ncbi.nlm.nih.gov/31141284
785.Efstathiou, E., et al. Clinical and Biological Characterisation of Localised High-risk Prostate Cancer: Results of a Randomised Preoperative Study of a Luteinising Hormone-releasing Hormone Agonist with or Without Abiraterone Acetate plus Prednisone. Eur Urol, 2019. 76: 418.
https://pubmed.ncbi.nlm.nih.gov/31176622
786.Kumar, S., et al. Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Syst Rev, 2006. 2006: CD006019.
https://pubmed.ncbi.nlm.nih.gov/17054269
787.Johnstone, P.A., et al. Radical prostatectomy for clinical T4 prostate cancer. Cancer, 2006. 106: 2603.
https://pubmed.ncbi.nlm.nih.gov/16700037
788.Joniau, S., et al. Pretreatment tables predicting pathologic stage of locally advanced prostate cancer. Eur Urol, 2015. 67: 319.
https://pubmed.ncbi.nlm.nih.gov/24684960
789.Marra, G., et al. Management of Patients with Node-positive Prostate Cancer at Radical Prostatectomy and Pelvic Lymph Node Dissection: A Systematic Review. Eur Urol Oncol, 2020. 3: 565.
https://pubmed.ncbi.nlm.nih.gov/32933887
790.Roach, M., et al. Sequence of hormonal therapy and radiotherapy field size in unfavourable, localised prostate cancer (NRG/RTOG 9413): long-term results of a randomised, phase 3 trial. Lancet Oncol, 2018. 19: 1504.
https://pubmed.ncbi.nlm.nih.gov/30316827
791.Murthy, V., et al. Prostate-Only Versus Whole-Pelvic Radiation Therapy in High-Risk and Very High-Risk Prostate Cancer (POP-RT): Outcomes From Phase III Randomized Controlled Trial. J Clin Oncol, 2021. 39: 1234.
https://pubmed.ncbi.nlm.nih.gov/33497252
792.Murthy, V., et al. Late toxicity and quality of life with prostate only or whole pelvic radiation therapy in high risk prostate cancer (POP-RT): A randomised trial. Radiother Oncol, 2020. 145: 71.
https://pubmed.ncbi.nlm.nih.gov/31923712
793.Studer, U.E., et al. Immediate or deferred androgen deprivation for patients with prostate cancer not suitable for local treatment with curative intent: European Organisation for Research and Treatment of Cancer (EORTC) Trial 30891. J Clin Oncol, 2006. 24: 1868.
https://pubmed.ncbi.nlm.nih.gov/16622261
794.Moris, L., et al. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. Eur Urol, 2020. 77: 614.
https://pubmed.ncbi.nlm.nih.gov/32146018
795.Gongora, M., et al. Characteristics of Patients in SPCG-15-A Randomized Trial Comparing Radical Prostatectomy with Primary Radiotherapy plus Androgen Deprivation Therapy in Men with Locally Advanced Prostate Cancer. Eur Urol Open Sci, 2022. 41: 63.
https://pubmed.ncbi.nlm.nih.gov/35813256
796.Bastian, P.J., et al. Clinical and pathologic outcome after radical prostatectomy for prostate cancer patients with a preoperative Gleason sum of 8 to 10. Cancer, 2006. 107: 1265.
https://pubmed.ncbi.nlm.nih.gov/16900523
797.Yossepowitch, O., et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J Urol, 2007. 178: 493.
https://pubmed.ncbi.nlm.nih.gov/17561152
798.Trails.gov, C. Surgery Versus Radiotherapy for Locally Advanced Prostate Cancer (SPCG-15). 2014. 2022.
https://clinicaltrials.gov/ct2/show/NCT02102477
799.Chang, K., et al. Comparison of two adjuvant hormone therapy regimens in patients with high-risk localized prostate cancer after radical prostatectomy: primary results of study CU1005. Asian J Androl, 2016. 18: 452.
https://pubmed.ncbi.nlm.nih.gov/26323560
800.Walz, J., et al. Pathological results and rates of treatment failure in high-risk prostate cancer patients after radical prostatectomy. BJU Int, 2011. 107: 765.
https://pubmed.ncbi.nlm.nih.gov/20875089
801.Spahn, M., et al. Outcome predictors of radical prostatectomy in patients with prostate-specific antigen greater than 20 ng/ml: a European multi-institutional study of 712 patients. Eur Urol, 2010. 58: 1.
https://pubmed.ncbi.nlm.nih.gov/20299147
802.Zwergel, U., et al. Outcome of prostate cancer patients with initial PSA> or =20 ng/ml undergoing radical prostatectomy. Eur Urol, 2007. 52: 1058.
https://pubmed.ncbi.nlm.nih.gov/17418938
803.Magheli, A., et al. Importance of tumor location in patients with high preoperative prostate specific antigen levels (greater than 20 ng/ml) treated with radical prostatectomy. J Urol, 2007. 178: 1311.
https://pubmed.ncbi.nlm.nih.gov/17698095
804.Ward, J.F., et al. Radical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-year outcome. BJU Int, 2005. 95: 751.
https://pubmed.ncbi.nlm.nih.gov/15794776
805.Ventimiglia, E., et al. A Systematic Review of the Role of Definitive Local Treatment in Patients with Clinically Lymph Node-positive Prostate Cancer. Eur Urol Oncol, 2019. 2: 294.
https://pubmed.ncbi.nlm.nih.gov/31200844
806.Tward, J.D., et al. Radiation therapy for clinically node-positive prostate adenocarcinoma is correlated with improved overall and prostate cancer-specific survival. Pract Radiat Oncol, 2013. 3: 234.
https://pubmed.ncbi.nlm.nih.gov/24674370
807.Lin, C.C., et al. Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J Natl Cancer Inst, 2015. 107.
https://pubmed.ncbi.nlm.nih.gov/25957435
808.Seisen, T., et al. Efficacy of Local Treatment in Prostate Cancer Patients with Clinically Pelvic Lymph Node-positive Disease at Initial Diagnosis. Eur Urol, 2018. 73: 452.
https://pubmed.ncbi.nlm.nih.gov/28890245
809.James, N.D., et al. Failure-Free Survival and Radiotherapy in Patients With Newly Diagnosed Nonmetastatic Prostate Cancer: Data From Patients in the Control Arm of the STAMPEDE Trial. JAMA Oncol, 2016. 2: 348.
https://pubmed.ncbi.nlm.nih.gov/26606329
810.Rusthoven, C.G., et al. The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int J Radiat Oncol Biol Phys, 2014. 88: 1064.
https://pubmed.ncbi.nlm.nih.gov/24661660
811.Elumalai, T., et al. Impact of prostate radiotherapy on survival outcomes in clinically node-positive prostate cancer: A multicentre retrospective analysis. Radiother Oncol, 2023. 186: 109746.
https://pubmed.ncbi.nlm.nih.gov/37330057
812.Moschini, M., et al. Outcomes for Patients with Clinical Lymphadenopathy Treated with Radical Prostatectomy. Eur Urol, 2016. 69: 193.
https://pubmed.ncbi.nlm.nih.gov/26264160
813.Fischer-Valuck, B.W., et al. Overall survival comparison between androgen deprivation therapy (ADT) plus external beam radiation therapy (EBRT) vs ADT plus EBRT with brachytherapy boost in clinically node-positive prostate cancer. Brachytherapy, 2020. 19: 557.
https://pubmed.ncbi.nlm.nih.gov/32624405
814.James, N.D., et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N Engl J Med, 2017. 377: 338.
https://pubmed.ncbi.nlm.nih.gov/28578639
815.Fizazi, K., et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol, 2015. 16: 787.
https://pubmed.ncbi.nlm.nih.gov/26028518
816.Vale, C.L., et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol, 2016. 17: 243.
https://pubmed.ncbi.nlm.nih.gov/26718929
817.Attard, G., et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet, 2022. 399: 447.
https://pubmed.ncbi.nlm.nih.gov/34953525
818.Bryant, A.K., et al. Definitive Radiation Therapy and Survival in Clinically Node-Positive Prostate Cancer. Int J Radiat Oncol Biol Phys, 2018. 101: 1188.
https://pubmed.ncbi.nlm.nih.gov/29891203
819.Sarkar, R.R., et al. Association between Radical Prostatectomy and Survival in Men with Clinically Node-positive Prostate Cancer. Eur Urol Oncol, 2019. 2: 584.
https://pubmed.ncbi.nlm.nih.gov/31411995
820.Wurnschimmel, C., et al. Radical prostatectomy for localized prostate cancer: 20-year oncological outcomes from a German high-volume center. Urol Oncol, 2021. 39: 830 e17.
https://pubmed.ncbi.nlm.nih.gov/34092484
821.Bader, P., et al. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J Urol, 2002. 168: 514.
https://pubmed.ncbi.nlm.nih.gov/12131300
822.Briganti, A., et al. Two positive nodes represent a significant cut-off value for cancer specific survival in patients with node positive prostate cancer. A new proposal based on a two-institution experience on 703 consecutive N+ patients treated with radical prostatectomy, extended pelvic lymph node dissection and adjuvant therapy. Eur Urol, 2009. 55: 261.
https://pubmed.ncbi.nlm.nih.gov/18838212
823.Schumacher, M.C., et al. Good outcome for patients with few lymph node metastases after radical retropubic prostatectomy. Eur Urol, 2008. 54: 344.
https://pubmed.ncbi.nlm.nih.gov/18511183
824.Abdollah, F., et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol, 2015. 67: 212.
https://pubmed.ncbi.nlm.nih.gov/24882672
825.Pound, C.R., et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA, 1999. 281: 1591.
https://pubmed.ncbi.nlm.nih.gov/10235151
826.Aus, G., et al. Prognostic factors and survival in node-positive (N1) prostate cancer-a prospective study based on data from a Swedish population-based cohort. Eur Urol, 2003. 43: 627.
https://pubmed.ncbi.nlm.nih.gov/12767363
827.Cheng, L., et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer, 2001. 91: 66.
https://pubmed.ncbi.nlm.nih.gov/11148561
828.Seiler, R., et al. Removal of limited nodal disease in patients undergoing radical prostatectomy: long-term results confirm a chance for cure. J Urol, 2014. 191: 1280.
https://pubmed.ncbi.nlm.nih.gov/24262495
829.Passoni, N.M., et al. Prognosis of patients with pelvic lymph node (LN) metastasis after radical prostatectomy: value of extranodal extension and size of the largest LN metastasis. BJU Int, 2014. 114: 503.
https://pubmed.ncbi.nlm.nih.gov/24053552
830.Daneshmand, S., et al. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J Urol, 2004. 172: 2252.
https://pubmed.ncbi.nlm.nih.gov/15538242
831.Touijer, K.A., et al. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur Urol, 2014. 65: 20.
https://pubmed.ncbi.nlm.nih.gov/23619390
832.Spratt, D.E., et al. Individual Patient-Level Meta-Analysis of the Performance of the Decipher Genomic Classifier in High-Risk Men After Prostatectomy to Predict Development of Metastatic Disease. J Clin Oncol, 2017. 35: 1991.
https://pubmed.ncbi.nlm.nih.gov/28358655
833.Jairath, N.K., et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer. Eur Urol, 2021. 79: 374.
https://pubmed.ncbi.nlm.nih.gov/33293078
834.Wiegel, T., et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur Urol, 2014. 66: 243.
https://pubmed.ncbi.nlm.nih.gov/24680359
835.Thompson, I.M., et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol, 2009. 181: 956.
https://pubmed.ncbi.nlm.nih.gov/19167731
836.Bolla, M., et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet, 2012. 380: 2018.
https://pubmed.ncbi.nlm.nih.gov/23084481
837.Hackman, G., et al. Randomised Trial of Adjuvant Radiotherapy Following Radical Prostatectomy Versus Radical Prostatectomy Alone in Prostate Cancer Patients with Positive Margins or Extracapsular Extension. Eur Urol, 2019. 76: 586.
https://pubmed.ncbi.nlm.nih.gov/31375279
838.Fossati, N., et al. Long-term Impact of Adjuvant Versus Early Salvage Radiation Therapy in pT3N0 Prostate Cancer Patients Treated with Radical Prostatectomy: Results from a Multi-institutional Series. Eur Urol, 2017. 71: 886.
https://pubmed.ncbi.nlm.nih.gov/27484843
839.Buscariollo, D.L., et al. Long-term results of adjuvant versus early salvage postprostatectomy radiation: A large single-institutional experience. Pract Radiat Oncol, 2017. 7: e125.
https://pubmed.ncbi.nlm.nih.gov/28274403
840.Hwang, W.L., et al. Comparison Between Adjuvant and Early-Salvage Postprostatectomy Radiotherapy for Prostate Cancer With Adverse Pathological Features. JAMA Oncol, 2018. 4: e175230.
https://pubmed.ncbi.nlm.nih.gov/29372236
841.Parker, C.C., et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. Lancet, 2020. 396: 1413.
https://pubmed.ncbi.nlm.nih.gov/33002429
842.Kneebone, A., et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol, 2020. 21: 1331.
https://pubmed.ncbi.nlm.nih.gov/33002437
843.Sargos, P., et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol, 2020. 21: 1341.
https://pubmed.ncbi.nlm.nih.gov/33002438
844.Vale, C.L., et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet, 2020. 396: 1422.
https://pubmed.ncbi.nlm.nih.gov/33002431
845.Tilki, D., et al. Timing of radiotherapy after radical prostatectomy. Lancet, 2020. 396: 1374.
https://pubmed.ncbi.nlm.nih.gov/33002430
846.Ghadjar, P., et al. Postoperative radiotherapy in prostate cancer. Lancet, 2021. 397: 1623.
https://pubmed.ncbi.nlm.nih.gov/33933203
847.Tilki, D., et al. Adjuvant Versus Early Salvage Radiation Therapy for Men at High Risk for Recurrence Following Radical Prostatectomy for Prostate Cancer and the Risk of Death. J Clin Oncol, 2021. 39: 2284.
https://pubmed.ncbi.nlm.nih.gov/34086480
848.Iversen, P., et al. Antiandrogen monotherapy in patients with localized or locally advanced prostate cancer: final results from the bicalutamide Early Prostate Cancer programme at a median follow-up of 9.7 years. BJU Int, 2010. 105: 1074.
https://pubmed.ncbi.nlm.nih.gov/22129214
849.Ahlgren, G.M., et al. Docetaxel Versus Surveillance After Radical Prostatectomy for High-risk Prostate Cancer: Results from the Prospective Randomised, Open-label Phase 3 Scandinavian Prostate Cancer Group 12 Trial. Eur Urol, 2018. 73: 870.
https://pubmed.ncbi.nlm.nih.gov/29395502
850.Schweizer, M.T., et al. Adjuvant leuprolide with or without docetaxel in patients with high-risk prostate cancer after radical prostatectomy (TAX-3501): important lessons for future trials. Cancer, 2013. 119: 3610.
https://pubmed.ncbi.nlm.nih.gov/23943299
851.Ghavamian, R., et al. Radical retropubic prostatectomy plus orchiectomy versus orchiectomy alone for pTxN+ prostate cancer: a matched comparison. J Urol, 1999. 161: 1223.
https://pubmed.ncbi.nlm.nih.gov/10081874
852.Messing, E.M., et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol, 2006. 7: 472.
https://pubmed.ncbi.nlm.nih.gov/16750497
853.Abdollah, F., et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J Clin Oncol, 2014. 32: 3939.
https://pubmed.ncbi.nlm.nih.gov/25245445
854.Tilki, D., et al. Adjuvant Versus Early Salvage Radiation Therapy After Radical Prostatectomy for pN1 Prostate Cancer and the Risk of Death. J Clin Oncol, 2022. 40: 2186.
https://pubmed.ncbi.nlm.nih.gov/35290082
855.Abdollah, F., et al. Impact of Adjuvant Radiotherapy in Node-positive Prostate Cancer Patients: The Importance of Patient Selection. Eur Urol, 2018. 74: 253.
https://pubmed.ncbi.nlm.nih.gov/29720348
856.Gupta, M., et al. Adjuvant radiation with androgen-deprivation therapy for men with lymph node metastases after radical prostatectomy: identifying men who benefit. BJU Int, 2019. 123: 252.
https://pubmed.ncbi.nlm.nih.gov/29626845
857.Tilki, D., et al. Adjuvant radiation therapy is associated with better oncological outcome compared with salvage radiation therapy in patients with pN1 prostate cancer treated with radical prostatectomy. BJU Int, 2017. 119: 717.
https://pubmed.ncbi.nlm.nih.gov/27743493
858.Mandel, P., et al. Long-term oncological outcomes in patients with limited nodal disease undergoing radical prostatectomy and pelvic lymph node dissection without adjuvant treatment. World J Urol, 2017. 35: 1833.
https://pubmed.ncbi.nlm.nih.gov/28828530
859.Kimura, S., et al. Prognostic Significance of Prostate-Specific Antigen Persistence after Radical Prostatectomy: A Systematic Review and Meta-Analysis. Cancers (Basel), 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/33668270
860.Ploussard, G., et al. Management of Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy: A Systematic Review of the Literature. Eur Urol Oncol, 2021. 4: 150.
https://pubmed.ncbi.nlm.nih.gov/33574012
861.Moreira, D.M., et al. Natural history of persistently elevated prostate specific antigen after radical prostatectomy: results from the SEARCH database. J Urol, 2009. 182: 2250.
https://pubmed.ncbi.nlm.nih.gov/19758614
862.Moreira, D.M., et al. Definition and preoperative predictors of persistently elevated prostate-specific antigen after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int, 2010. 105: 1541.
https://pubmed.ncbi.nlm.nih.gov/19912191
863.Spratt, D.E., et al. Performance of a Prostate Cancer Genomic Classifier in Predicting Metastasis in Men with Prostate-specific Antigen Persistence Postprostatectomy. Eur Urol, 2018. 74: 107.
https://pubmed.ncbi.nlm.nih.gov/29233664
864.Preisser, F., et al. Persistent Prostate-Specific Antigen After Radical Prostatectomy and Its Impact on Oncologic Outcomes. Eur Urol, 2019. 76: 106.
https://pubmed.ncbi.nlm.nih.gov/30772034
865.Xiang, C., et al. Prediction of Biochemical Recurrence Following Radiotherapy among Patients with Persistent PSA after Radical Prostatectomy: A Single-Center Experience. Urol Int, 2018. 101: 47.
https://pubmed.ncbi.nlm.nih.gov/29627830
866.Rogers, C.G., et al. Natural history of disease progression in patients who fail to achieve an undetectable prostate-specific antigen level after undergoing radical prostatectomy. Cancer, 2004. 101: 2549.
https://pubmed.ncbi.nlm.nih.gov/15470681
867.Perera, M., et al. Sensitivity, Specificity, and Predictors of Positive (68)Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2016. 70: 926.
https://pubmed.ncbi.nlm.nih.gov/27363387
868.Farolfi, A., et al. (68)Ga-PSMA-11 PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy and PSA <0.5 ng/ml. Efficacy and impact on treatment strategy. Eur J Nucl Med Mol Imaging, 2019. 46: 11.
https://pubmed.ncbi.nlm.nih.gov/29905907
869.Ceci, F., et al. (68)Ga-PSMA-11 PET/CT in recurrent prostate cancer: efficacy in different clinical stages of PSA failure after radical therapy. Eur J Nucl Med Mol Imaging, 2019. 46: 31.
https://pubmed.ncbi.nlm.nih.gov/30350010
870.Rauscher, I., et al. Efficacy, Predictive Factors, and Prediction Nomograms for (68)Ga-labeled Prostate-specific Membrane Antigen-ligand Positron-emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer After Radical Prostatectomy. Eur Urol, 2018. 73: 656.
https://pubmed.ncbi.nlm.nih.gov/29358059
871.Wondergem, M., et al. Early lesion detection with (18)F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2019. 46: 1911.
https://pubmed.ncbi.nlm.nih.gov/31230088
872.Mena, E., et al. Clinical impact of PSMA-based (18)F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. Eur J Nucl Med Mol Imaging, 2018. 45: 4.
https://pubmed.ncbi.nlm.nih.gov/28894899
873.Habl, G., et al. (68) Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. Prostate, 2017. 77: 920.
https://pubmed.ncbi.nlm.nih.gov/28317152
874.Schmidt-Hegemann, N.S., et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat Oncol, 2018. 13: 37.
https://pubmed.ncbi.nlm.nih.gov/29499730
875.Farolfi, A., et al. (68)Ga-PSMA-11 Positron Emission Tomography Detects Residual Prostate Cancer after Prostatectomy in a Multicenter Retrospective Study. J Urol, 2019. 202: 1174.
https://pubmed.ncbi.nlm.nih.gov/31233369
876.Meijer, D., et al. Biochemical Persistence of Prostate-Specific Antigen After Robot-Assisted Laparoscopic Radical Prostatectomy: Tumor Localizations Using PSMA PET/CT Imaging. J Nucl Med, 2021. 62: 961.
https://pubmed.ncbi.nlm.nih.gov/33158904
877.Bartkowiak, D., et al. The impact of prostate-specific antigen persistence after radical prostatectomy on the efficacy of salvage radiotherapy in patients with primary N0 prostate cancer. BJU Int, 2019. 124: 785.
https://pubmed.ncbi.nlm.nih.gov/31220400
878.Wiegel, T., et al. Prostate-specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial. Int J Radiat Oncol Biol Phys, 2015. 91: 288.
https://pubmed.ncbi.nlm.nih.gov/25445556
879.Choo, R., et al. Prospective study evaluating postoperative radiotherapy plus 2-year androgen suppression for post-radical prostatectomy patients with pathologic T3 disease and/or positive surgical margins. Int J Radiat Oncol Biol Phys, 2009. 75: 407.
https://pubmed.ncbi.nlm.nih.gov/19211197
880.Gandaglia, G., et al. Impact of Postoperative Radiotherapy in Men with Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy for Prostate Cancer: A Long-term Survival Analysis. Eur Urol, 2017. 72: 910.
https://pubmed.ncbi.nlm.nih.gov/28622831
881.Garcia-Barreras, S., et al. Predictive factors and the important role of detectable prostate-specific antigen for detection of clinical recurrence and cancer-specific mortality following robot-assisted radical prostatectomy. Clin Transl Oncol, 2018. 20: 1004.
https://pubmed.ncbi.nlm.nih.gov/29243074
882.Lohm, G., et al. Salvage radiotherapy in patients with persistently detectable PSA or PSA rising from an undetectable range after radical prostatectomy gives comparable results. World J Urol, 2013. 31: 423.
https://pubmed.ncbi.nlm.nih.gov/22460203
883.Ploussard, G., et al. Clinical outcomes after salvage radiotherapy without androgen deprivation therapy in patients with persistently detectable PSA after radical prostatectomy: results from a national multicentre study. World J Urol, 2014. 32: 1331.
https://pubmed.ncbi.nlm.nih.gov/24270970
884.Fossati, N., et al. Impact of Early Salvage Radiation Therapy in Patients with Persistently Elevated or Rising Prostate-specific Antigen After Radical Prostatectomy. Eur Urol, 2018. 73: 436.
https://pubmed.ncbi.nlm.nih.gov/28779974
885.Guerif, S.G., et al. The acute toxicity results of the GETUG-AFU 22 study: A multicenter randomized phase II trial comparing the efficacy of a short hormone therapy in combination with radiotherapy to radiotherapy alone as a salvage treatment for patients with detectable PSA after radical prostatectomy. Journal of Clinical Oncology, 2017. 35: 16.
https://ascopubs.org/doi/abs/10.1200/JCO.2017.35.6_suppl.16
886.Arlen, P.M., et al. Prostate Specific Antigen Working Group guidelines on prostate specific antigen doubling time. J Urol, 2008. 179: 2181.
https://pubmed.ncbi.nlm.nih.gov/18423743
887.Vickers, A.J., et al. PSA Velocity and Doubling Time in Diagnosis and Prognosis of Prostate Cancer. Br J Med Surg Urol, 2012. 5: 162.
https://pubmed.ncbi.nlm.nih.gov/22712027
888.O’Brien, M.F., et al. Pretreatment prostate-specific antigen (PSA) velocity and doubling time are associated with outcome but neither improves prediction of outcome beyond pretreatment PSA alone in patients treated with radical prostatectomy. J Clin Oncol, 2009. 27: 3591.
https://pubmed.ncbi.nlm.nih.gov/19506163
889.Ramirez, M.L., et al. Current applications for prostate-specific antigen doubling time. Eur Urol, 2008. 54: 291.
https://pubmed.ncbi.nlm.nih.gov/18439749
890.Vickers, A.J., et al. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol, 2009. 27: 398.
https://pubmed.ncbi.nlm.nih.gov/19064972
891.Lee, A.K., et al. Utility of prostate-specific antigen kinetics in addition to clinical factors in the selection of patients for salvage local therapy. J Clin Oncol, 2005. 23: 8192.
https://pubmed.ncbi.nlm.nih.gov/16278472
892.Campbell, S.R., et al. Integrating Prostate-specific Antigen Kinetics into Contemporary Predictive Nomograms of Salvage Radiotherapy After Radical Prostatectomy. Eur Urol Oncol, 2022. 5: 304.
https://pubmed.ncbi.nlm.nih.gov/34016556
893.Smith, M.R., et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol, 2005. 23: 2918.
https://pubmed.ncbi.nlm.nih.gov/15860850
894.Amling, C.L., et al. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J Urol, 2001. 165: 1146.
https://pubmed.ncbi.nlm.nih.gov/11257657
895.Toussi, A., et al. Standardizing the Definition of Biochemical Recurrence after Radical Prostatectomy-What Prostate Specific Antigen Cut Point Best Predicts a Durable Increase and Subsequent Systemic Progression? J Urol, 2016. 195: 1754.
https://pubmed.ncbi.nlm.nih.gov/26721226
896.Stephenson, A.J., et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol, 2006. 24: 3973.
https://pubmed.ncbi.nlm.nih.gov/16921049
897.Roach, M., 3rd, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys, 2006. 65: 965.
https://pubmed.ncbi.nlm.nih.gov/16798415
898.Van den Broeck, T., et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol, 2019. 75: 967.
https://pubmed.ncbi.nlm.nih.gov/30342843
899.Jackson, W.C., et al. Intermediate Endpoints After Postprostatectomy Radiotherapy: 5-Year Distant Metastasis to Predict Overall Survival. Eur Urol, 2018. 74: 413.
https://pubmed.ncbi.nlm.nih.gov/29306514
900.Choueiri, T.K., et al. Impact of postoperative prostate-specific antigen disease recurrence and the use of salvage therapy on the risk of death. Cancer, 2010. 116: 1887.
https://pubmed.ncbi.nlm.nih.gov/20162710
901.Freiberger, C., et al. Long-term prognostic significance of rising PSA levels following radiotherapy for localized prostate cancer - focus on overall survival. Radiat Oncol, 2017. 12: 98.
https://pubmed.ncbi.nlm.nih.gov/28615058
902.Royce, T.J., et al. Surrogate End Points for All-Cause Mortality in Men With Localized Unfavorable-Risk Prostate Cancer Treated With Radiation Therapy vs Radiation Therapy Plus Androgen Deprivation Therapy: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2017. 3: 652.
https://pubmed.ncbi.nlm.nih.gov/28097317
903.Tilki, D., et al. External Validation of the European Association of Urology Biochemical Recurrence Risk Groups to Predict Metastasis and Mortality After Radical Prostatectomy in a European Cohort. Eur Urol, 2019. 75: 896.
https://pubmed.ncbi.nlm.nih.gov/30955970
904.Zagars, G.K., et al. Kinetics of serum prostate-specific antigen after external beam radiation for clinically localized prostate cancer. Radiother Oncol, 1997. 44: 213.
https://pubmed.ncbi.nlm.nih.gov/9380819
905.Rouviere, O., et al. Imaging of prostate cancer local recurrences: why and how? Eur Radiol, 2010. 20: 1254.
https://pubmed.ncbi.nlm.nih.gov/19921202
906.Beresford, M.J., et al. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin Oncol (R Coll Radiol), 2010. 22: 46.
https://pubmed.ncbi.nlm.nih.gov/19948393
907.Gomez, P., et al. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int, 2004. 94: 299.
https://pubmed.ncbi.nlm.nih.gov/15291855
908.Kane, C.J., et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology, 2003. 61: 607.
https://pubmed.ncbi.nlm.nih.gov/12639656
909.Evangelista, L., et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med, 2013. 38: 305.
https://pubmed.ncbi.nlm.nih.gov/23486334
910.Fanti, S., et al. PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging, 2016. 43: 55.
https://pubmed.ncbi.nlm.nih.gov/26450693
911.Fuccio, C., et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med, 2010. 24: 485.
https://pubmed.ncbi.nlm.nih.gov/20544323
912.Fuccio, C., et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol, 2012. 81: e893.
https://pubmed.ncbi.nlm.nih.gov/22621862
913.Castellucci, P., et al. Early biochemical relapse after radical prostatectomy: which prostate cancer patients may benefit from a restaging 11C-Choline PET/CT scan before salvage radiation therapy? J Nucl Med, 2014. 55: 1424.
https://pubmed.ncbi.nlm.nih.gov/24935990
914.Treglia, G., et al. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med, 2014. 52: 725.
https://pubmed.ncbi.nlm.nih.gov/24310773
915.Mitchell, C.R., et al. Operational characteristics of (11)c-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol, 2013. 189: 1308.
https://pubmed.ncbi.nlm.nih.gov/23123372
916.Soyka, J.D., et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2012. 39: 936.
https://pubmed.ncbi.nlm.nih.gov/22415598
917.Ceci, F., et al. Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial. Eur J Nucl Med Mol Imaging, 2014. 41: 2222.
https://pubmed.ncbi.nlm.nih.gov/25182750
918.Beer, A.J., et al. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol, 2011. 12: 181.
https://pubmed.ncbi.nlm.nih.gov/20599424
919.Beheshti, M., et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging, 2008. 35: 1766.
https://pubmed.ncbi.nlm.nih.gov/18465129
920.Songmen, S., et al. Axumin Positron Emission Tomography: Novel Agent for Prostate Cancer Biochemical Recurrence. J Clin Imaging Sci, 2019. 9: 49.
https://pubmed.ncbi.nlm.nih.gov/31819826
921.United States Food and Drug Administration. FDA approves new diagnostic imaging agent to detect recurrent prostate cancer - axumin. 2016.
922.European Medicines Agency. axumin 2017. 2021.
https://www.ema.europa.eu/en/medicines/human/EPAR/axumin
923.Nanni, C., et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging, 2016. 43: 1601.
https://pubmed.ncbi.nlm.nih.gov/26960562
924.Bach-Gansmo, T., et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine ((18)F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol, 2017. 197: 676.
https://pubmed.ncbi.nlm.nih.gov/27746282
925.Abiodun-Ojo, O.A., et al. Salvage Radiotherapy Management Decisions in Postprostatectomy Patients with Recurrent Prostate Cancer Based on (18)F-Fluciclovine PET/CT Guidance. J Nucl Med, 2021. 62: 1089.
https://pubmed.ncbi.nlm.nih.gov/33517323
926.Morigi, J.J., et al. Prospective Comparison of 18F-Fluoromethylcholine Versus 68Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy. J Nucl Med, 2015. 56: 1185.
https://pubmed.ncbi.nlm.nih.gov/26112024
927.Afshar-Oromieh, A., et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2014. 41: 11.
https://pubmed.ncbi.nlm.nih.gov/24072344
928.Caroli, P., et al. (68)Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients. Eur J Nucl Med Mol Imaging, 2018. 45: 2035.
https://pubmed.ncbi.nlm.nih.gov/29922948
929.Fendler, W.P., et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol, 2019. 5: 856.
https://pubmed.ncbi.nlm.nih.gov/30920593
930.Morris, M.J., et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin Cancer Res, 2021. 27: 3674.
https://pubmed.ncbi.nlm.nih.gov/33622706
931.Giesel, F.L., et al. Intraindividual Comparison of (18)F-PSMA-1007 and (18)F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J Nucl Med, 2018. 59: 1076.
https://pubmed.ncbi.nlm.nih.gov/29269569
932.Oprea-Lager, D.E., et al. [(18)F]DCFPyL PET/CT versus [(18)F]fluoromethylcholine PET/CT in Biochemical Recurrence of Prostate Cancer (PYTHON): a prospective, open label, cross-over, comparative study. Eur J Nucl Med Mol Imaging, 2023. 50: 3439.
https://pubmed.ncbi.nlm.nih.gov/37341747
933.Olivier, P., et al. Phase III Study of (18)F-PSMA-1007 Versus (18)F-Fluorocholine PET/CT for Localization of Prostate Cancer Biochemical Recurrence: A Prospective, Randomized, Crossover Multicenter Study. J Nucl Med, 2023. 64: 579.
https://pubmed.ncbi.nlm.nih.gov/36418170
934.Eiber, M., et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging, 2011. 33: 1160.
https://pubmed.ncbi.nlm.nih.gov/21509875
935.Zacho, H.D., et al. Prospective comparison of (68)Ga-PSMA PET/CT, (18)F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2018. 45: 1884.
https://pubmed.ncbi.nlm.nih.gov/29876619
936.Renard-Penna, R., et al. Targeting Local Recurrence After Surgery With MRI Imaging for Prostate Cancer in the Setting of Salvage Radiation Therapy. Front Oncol, 2022. 12: 775387.
https://pubmed.ncbi.nlm.nih.gov/35242702
937.Song, W., et al. Prognostic factors after salvage radiotherapy alone in patients with biochemical recurrence after radical prostatectomy. Int J Urol, 2016. 23: 56.
https://pubmed.ncbi.nlm.nih.gov/26502086
938.Sharma, V., et al. Multiparametric Magnetic Resonance Imaging Is an Independent Predictor of Salvage Radiotherapy Outcomes After Radical Prostatectomy. Eur Urol, 2018. 73: 879.
https://pubmed.ncbi.nlm.nih.gov/29195777
939.Farneti, A., et al. The Prognostic Value of DCE-MRI Findings before Salvage Radiotherapy after Radical Prostatectomy. Cancers (Basel), 2023. 15.
https://pubmed.ncbi.nlm.nih.gov/36831588
940.Panebianco, V., et al. Prostate Magnetic Resonance Imaging for Local Recurrence Reporting (PI-RR): International Consensus -based Guidelines on Multiparametric Magnetic Resonance Imaging for Prostate Cancer Recurrence after Radiation Therapy and Radical Prostatectomy. Eur Urol Oncol, 2021. 4: 868.
https://pubmed.ncbi.nlm.nih.gov/33582104
941.Abreu-Gomez, J., et al. PI-RR: The Prostate Imaging for Recurrence Reporting System for MRI Assessment of Local Prostate Cancer Recurrence After Radiation Therapy or Radical Prostatectomy-A Review. AJR Am J Roentgenol, 2023. 220: 852.
https://pubmed.ncbi.nlm.nih.gov/36722763
942.Achard, V., et al. Recurrent prostate cancer after radical prostatectomy: restaging performance of 18F-choline hybrid PET/MRI. Med Oncol, 2019. 36: 67.
https://pubmed.ncbi.nlm.nih.gov/31190232
943.Luiting, H.B., et al. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int, 2020. 125: 206.
https://pubmed.ncbi.nlm.nih.gov/31680398
944.Boreta, L., et al. Location of Recurrence by Gallium-68 PSMA-11 PET Scan in Prostate Cancer Patients Eligible for Salvage Radiotherapy. Urology, 2019. 129: 165.
https://pubmed.ncbi.nlm.nih.gov/30928607
945.Guberina, N., et al. Whole-Body Integrated [(68)Ga]PSMA-11-PET/MR Imaging in Patients with Recurrent Prostate Cancer: Comparison with Whole-Body PET/CT as the Standard of Reference. Mol Imaging Biol, 2020. 22: 788.
https://pubmed.ncbi.nlm.nih.gov/31482413
946.Metser, U., et al. The Contribution of Multiparametric Pelvic and Whole-Body MRI to Interpretation of (18)F-Fluoromethylcholine or (68)Ga-HBED-CC PSMA-11 PET/CT in Patients with Biochemical Failure After Radical Prostatectomy. J Nucl Med, 2019. 60: 1253.
https://pubmed.ncbi.nlm.nih.gov/30902875
947.Freitag, M.T., et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in (68)Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging, 2017. 44: 776.
https://pubmed.ncbi.nlm.nih.gov/27988802
948.Jani, A.B., et al. (18)F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. Lancet, 2021. 397: 1895.
https://pubmed.ncbi.nlm.nih.gov/33971152
949.Dinis Fernandes, C., et al. Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Reson Imaging, 2019. 50: 269.
https://pubmed.ncbi.nlm.nih.gov/30585368
950.Donati, O.F., et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology, 2013. 268: 440.
https://pubmed.ncbi.nlm.nih.gov/23481164
951.Dinis Fernandes, C., et al. Quantitative 3-T multi-parametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy. Eur Radiol, 2019. 29: 4160.
https://pubmed.ncbi.nlm.nih.gov/30421016
952.Rasing, M., et al. Value of Targeted Biopsies and Combined PSMA PET/CT and mp-MRI Imaging in Locally Recurrent Prostate Cancer after Primary Radiotherapy. Cancers (Basel), 2022. 14.
https://pubmed.ncbi.nlm.nih.gov/35159048
953.Boorjian, S.A., et al. Radiation therapy after radical prostatectomy: impact on metastasis and survival. J Urol, 2009. 182: 2708.
https://pubmed.ncbi.nlm.nih.gov/19836762
954.Kneebone, A., et al. A Phase III Multi-Centre Randomised Trial comparing adjuvant versus early salvage Radiotherapy following a Radical Prostatectomy: Results of the TROG 08.03 and ANZUP “RAVES” Trial. International Journal of Radiation Oncology*Biology*Physics, 2019. 105: S37.
http://www.redjournal.org/article/S0360-3016(10)01144-2/abstract
955.Tilki, D., et al. Salvage Radiotherapy versus Observation for Biochemical Recurrence following Radical Prostatectomy for Prostate Cancer: A Matched Pair Analysis. Cancers (Basel), 2022. 14.
https://pubmed.ncbi.nlm.nih.gov/35159007
956.Stish, B.J., et al. Improved Metastasis-Free and Survival Outcomes With Early Salvage Radiotherapy in Men With Detectable Prostate-Specific Antigen After Prostatectomy for Prostate Cancer. J Clin Oncol, 2016. 34: 3864.
https://pubmed.ncbi.nlm.nih.gov/27480153
957.Pfister, D., et al. Early salvage radiotherapy following radical prostatectomy. Eur Urol, 2014. 65: 1034.
https://pubmed.ncbi.nlm.nih.gov/23972524
958.Ohri, N., et al. Can early implementation of salvage radiotherapy for prostate cancer improve the therapeutic ratio? A systematic review and regression meta-analysis with radiobiological modelling. Eur J Cancer, 2012. 48: 837.
https://pubmed.ncbi.nlm.nih.gov/21945099
959.Wiegel, T., et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome--results of a retrospective study. Int J Radiat Oncol Biol Phys, 2009. 73: 1009.
https://pubmed.ncbi.nlm.nih.gov/18963539
960.Trock, B.J., et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA, 2008. 299: 2760.
https://pubmed.ncbi.nlm.nih.gov/18560003
961.Tilki, D., et al. Prostate-Specific Antigen Level at the Time of Salvage Therapy After Radical Prostatectomy for Prostate Cancer and the Risk of Death. J Clin Oncol, 2023. 41: 2428.
https://pubmed.ncbi.nlm.nih.gov/36857638
962.Group, I.C.W., et al. The Development of Intermediate Clinical Endpoints in Cancer of the Prostate (ICECaP). J Natl Cancer Inst, 2015. 107: djv261.
https://pubmed.ncbi.nlm.nih.gov/26409187
963.Xie, W., et al. Metastasis-Free Survival Is a Strong Surrogate of Overall Survival in Localized Prostate Cancer. J Clin Oncol, 2017. 35: 3097.
https://pubmed.ncbi.nlm.nih.gov/28796587
964.Bartkowiak, D., et al. Prostate-specific antigen after salvage radiotherapy for postprostatectomy biochemical recurrence predicts long-term outcome including overall survival. Acta Oncol, 2018. 57: 362.
https://pubmed.ncbi.nlm.nih.gov/28816074
965.Tendulkar, R.D., et al. Contemporary Update of a Multi-Institutional Predictive Nomogram for Salvage Radiotherapy After Radical Prostatectomy. J Clin Oncol, 2016. 34: 3648.
https://pubmed.ncbi.nlm.nih.gov/27528718
966.Jackson, W.C., et al. Combining prostate-specific antigen nadir and time to nadir allows for early identification of patients at highest risk for development of metastasis and death following salvage radiation therapy. Pract Radiat Oncol, 2014. 4: 99.
https://pubmed.ncbi.nlm.nih.gov/24890350
967.Shipley, W., et al. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N Eng J Med, 2017. 376: 417.
https://www.nejm.org/doi/full/10.1056/nejmoa1607529
968.Carrie, C., et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol, 2019. 20: 1740.
https://pubmed.ncbi.nlm.nih.gov/31629656
969.Pollack, A., et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial. Lancet, 2022. 399: 1886.
https://pubmed.ncbi.nlm.nih.gov/35569466
970.Ramey, S.J., et al. Multi-institutional Evaluation of Elective Nodal Irradiation and/or Androgen Deprivation Therapy with Postprostatectomy Salvage Radiotherapy for Prostate Cancer. Eur Urol, 2018. 74: 99.
https://pubmed.ncbi.nlm.nih.gov/29128208
971.Dess, R.T., et al. Association of Presalvage Radiotherapy PSA Levels After Prostatectomy With Outcomes of Long-term Antiandrogen Therapy in Men With Prostate Cancer. JAMA Oncol, 2020. 6: 735.
https://pubmed.ncbi.nlm.nih.gov/32215583
972.Spratt, D.E., et al. A Systematic Review and Framework for the Use of Hormone Therapy with Salvage Radiation Therapy for Recurrent Prostate Cancer. Eur Urol, 2018. 73: 156.
https://pubmed.ncbi.nlm.nih.gov/28716370
973.Malone, S., et al. Postoperative radiotherapy for prostate cancer: a comparison of four consensus guidelines and dosimetric evaluation of 3D-CRT versus tomotherapy IMRT. Int J Radiat Oncol Biol Phys, 2012. 84: 725.
https://pubmed.ncbi.nlm.nih.gov/22444999
974.Dal Pra, A., et al. ESTRO ACROP guideline on prostate bed delineation for postoperative radiotherapy in prostate cancer. Clin Transl Radiat Oncol, 2023. 41: 100638.
https://pubmed.ncbi.nlm.nih.gov/37251620
975.Pisansky, T.M., et al. Salvage Radiation Therapy Dose Response for Biochemical Failure of Prostate Cancer After Prostatectomy-A Multi-Institutional Observational Study. Int J Radiat Oncol Biol Phys, 2016. 96: 1046.
https://pubmed.ncbi.nlm.nih.gov/27745980
976.King, C.R. The dose-response of salvage radiotherapy following radical prostatectomy: A systematic review and meta-analysis. Radiother Oncol, 2016. 121: 199.
https://pubmed.ncbi.nlm.nih.gov/27863963
977.Fossati, N., et al. Assessing the Optimal Timing for Early Salvage Radiation Therapy in Patients with Prostate-specific Antigen Rise After Radical Prostatectomy. Eur Urol, 2016. 69: 728.
https://pubmed.ncbi.nlm.nih.gov/26497924
978.Abugharib, A., et al. Very Early Salvage Radiotherapy Improves Distant Metastasis-Free Survival. J Urol, 2017. 197: 662.
https://pubmed.ncbi.nlm.nih.gov/27614333
979.Fiorino, C., et al. Predicting the 5-Year Risk of Biochemical Relapse After Postprostatectomy Radiation Therapy in >/=PT2, pN0 Patients With a Comprehensive Tumor Control Probability Model. Int J Radiat Oncol Biol Phys, 2016. 96: 333.
https://pubmed.ncbi.nlm.nih.gov/27497691
980.Ghadjar, P., et al. Dose-intensified Versus Conventional-dose Salvage Radiotherapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: The SAKK 09/10 Randomized Phase 3 Trial. Eur Urol, 2021. 80: 306.
https://pubmed.ncbi.nlm.nih.gov/34140144
981.Qi, X., et al. Toxicity and Biochemical Outcomes of Dose-Intensified Postoperative Radiation Therapy for Prostate Cancer: Results of a Randomized Phase III Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 282.
https://pubmed.ncbi.nlm.nih.gov/31669564
982.Ghadjar, P., et al. Acute Toxicity and Quality of Life After Dose-Intensified Salvage Radiation Therapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: First Results of the Randomized Trial SAKK 09/10. J Clin Oncol, 2015. 33: 4158.
https://pubmed.ncbi.nlm.nih.gov/26527774
983.Ghadjar, P., et al. Impact of dose intensified salvage radiation therapy on urinary continence recovery after radical prostatectomy: Results of the randomized trial SAKK 09/10. Radiother Oncol, 2018. 126: 257.
https://pubmed.ncbi.nlm.nih.gov/29103826
984.Goenka, A., et al. Improved toxicity profile following high-dose postprostatectomy salvage radiation therapy with intensity-modulated radiation therapy. Eur Urol, 2011. 60: 1142.
https://pubmed.ncbi.nlm.nih.gov/21855208
985.Ost, P., et al. High-dose salvage intensity-modulated radiotherapy with or without androgen deprivation after radical prostatectomy for rising or persisting prostate-specific antigen: 5-year results. Eur Urol, 2011. 60: 842.
https://pubmed.ncbi.nlm.nih.gov/21514039
986.Roach, P.J., et al. The Impact of (68)Ga-PSMA PET/CT on Management Intent in Prostate Cancer: Results of an Australian Prospective Multicenter Study. J Nucl Med, 2018. 59: 82.
https://pubmed.ncbi.nlm.nih.gov/28646014
987.Emmett, L., et al. Treatment Outcomes from (68)Ga-PSMA PET/CT-Informed Salvage Radiation Treatment in Men with Rising PSA After Radical Prostatectomy: Prognostic Value of a Negative PSMA PET. J Nucl Med, 2017. 58: 1972.
https://pubmed.ncbi.nlm.nih.gov/28747524
988.Meijer, D., et al. Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Is Associated with Improved Oncological Outcome in Men Treated with Salvage Radiation Therapy for Biochemically Recurrent Prostate Cancer. Eur Urol Oncol, 2022. 5: 146.
https://pubmed.ncbi.nlm.nih.gov/35074282
989.Steuber, T., et al. Standard of Care Versus Metastases-directed Therapy for PET-detected Nodal Oligorecurrent Prostate Cancer Following Multimodality Treatment: A Multi-institutional Case-control Study. Eur Urol Focus, 2019. 5: 1007.
https://pubmed.ncbi.nlm.nih.gov/29530632
990.De Bleser, E., et al. Metastasis-directed Therapy in Treating Nodal Oligorecurrent Prostate Cancer: A Multi-institutional Analysis Comparing the Outcome and Toxicity of Stereotactic Body Radiotherapy and Elective Nodal Radiotherapy. Eur Urol, 2019. 76: 732.
https://pubmed.ncbi.nlm.nih.gov/31331782
991.Suardi, N., et al. Long-term outcomes of salvage lymph node dissection for clinically recurrent prostate cancer: results of a single-institution series with a minimum follow-up of 5 years. Eur Urol, 2015. 67: 299.
https://pubmed.ncbi.nlm.nih.gov/24571959
992.Tilki, D., et al. Salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy. J Urol, 2015. 193: 484.
https://pubmed.ncbi.nlm.nih.gov/25180792
993.Fossati, N., et al. Identifying the Optimal Candidate for Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer: Results from a Large, Multi-institutional Analysis. Eur Urol, 2019. 75: 176.
https://pubmed.ncbi.nlm.nih.gov/30301694
994.Ploussard, G., et al. Salvage Lymph Node Dissection for Nodal Recurrent Prostate Cancer: A Systematic Review. Eur Urol, 2019. 76: 493.
https://pubmed.ncbi.nlm.nih.gov/30391078
995.Ost, P., et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol, 2015. 67: 852.
https://pubmed.ncbi.nlm.nih.gov/25240974
996.Rischke, H.C., et al. Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only. Strahlenther Onkol, 2015. 191: 310.
https://pubmed.ncbi.nlm.nih.gov/25326142
997.Bravi, C.A., et al. Long-term Outcomes of Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer After Radical Prostatectomy: Not as Good as Previously Thought. Eur Urol, 2020. 78: 661.
https://pubmed.ncbi.nlm.nih.gov/32624288
998.Knipper, S., et al. Cohort Study of Oligorecurrent Prostate Cancer Patients: Oncological Outcomes of Patients Treated with Salvage Lymph Node Dissection via Prostate-specific Membrane Antigen-radioguided Surgery. Eur Urol, 2023. 83: 62.
https://pubmed.ncbi.nlm.nih.gov/35718637
999.Valle, L.F., et al. A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). Eur Urol, 2021. 80: 280.
https://pubmed.ncbi.nlm.nih.gov/33309278
1000.Gontero, P., et al. Salvage Radical Prostatectomy for Recurrent Prostate Cancer: Morbidity and Functional Outcomes from a Large Multicenter Series of Open versus Robotic Approaches. J Urol, 2019. 202: 725.
https://pubmed.ncbi.nlm.nih.gov/31075058
1001.Chade, D.C., et al. Cancer control and functional outcomes of salvage radical prostatectomy for radiation-recurrent prostate cancer: a systematic review of the literature. Eur Urol, 2012. 61: 961.
https://pubmed.ncbi.nlm.nih.gov/22280856
1002.Marra, G., et al. Oncological outcomes of salvage radical prostatectomy for recurrent prostate cancer in the contemporary era: A multicenter retrospective study. Urol Oncol, 2021. 39: 296 e21.
https://pubmed.ncbi.nlm.nih.gov/33436329
1003.Chade, D.C., et al. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur Urol, 2011. 60: 205.
https://pubmed.ncbi.nlm.nih.gov/21420229
1004.Mandel, P., et al. Salvage radical prostatectomy for recurrent prostate cancer: verification of European Association of Urology guideline criteria. BJU Int, 2016. 117: 55.
https://pubmed.ncbi.nlm.nih.gov/25711672
1005.Ogaya-Pinies, G., et al. Salvage robotic-assisted radical prostatectomy: oncologic and functional outcomes from two high-volume institutions. World J Urol, 2019. 37: 1499.
https://pubmed.ncbi.nlm.nih.gov/30006908
1006.Gotto, G.T., et al. Impact of prior prostate radiation on complications after radical prostatectomy. J Urol, 2010. 184: 136.
https://pubmed.ncbi.nlm.nih.gov/20478594
1007.Ginsburg, K.B., et al. Avoidance of androgen deprivation therapy in radiorecurrent prostate cancer as a clinically meaningful endpoint for salvage cryoablation. Prostate, 2017. 77: 1446.
https://pubmed.ncbi.nlm.nih.gov/28856702
1008.Spiess, P.E., et al. A pretreatment nomogram predicting biochemical failure after salvage cryotherapy for locally recurrent prostate cancer. BJU Int, 2010. 106: 194.
https://pubmed.ncbi.nlm.nih.gov/19922545
1009.Li, R., et al. The Effect of Androgen Deprivation Therapy Before Salvage Whole-gland Cryoablation After Primary Radiation Failure in Prostate Cancer Treatment. Urology, 2015. 85: 1137.
https://pubmed.ncbi.nlm.nih.gov/25799176
1010.Kovac, E., et al. Five-Year Biochemical Progression-Free Survival Following Salvage Whole-Gland Prostate Cryoablation: Defining Success with Nadir Prostate-Specific Antigen. J Endourol, 2016. 30: 624.
https://pubmed.ncbi.nlm.nih.gov/26915721
1011.Ahmad, I., et al. Prostate gland lengths and iceball dimensions predict micturition functional outcome following salvage prostate cryotherapy in men with radiation recurrent prostate cancer. PLoS One, 2013. 8: e69243.
https://pubmed.ncbi.nlm.nih.gov/23950886
1012.Pisters, L.L., et al. Salvage prostate cryoablation: initial results from the cryo on-line data registry. J Urol, 2008. 180: 559.
https://pubmed.ncbi.nlm.nih.gov/18554664
1013.Henriquez Lopez, I., et al. Salvage brachytherapy for locally-recurrent prostate cancer after radiation therapy: A comparison of efficacy and toxicity outcomes with high-dose rate and low-dose rate brachytherapy. Radiother Oncol, 2019. 141: 156.
https://pubmed.ncbi.nlm.nih.gov/31570236
1014.Crook, J.M., et al. A Prospective Phase 2 Trial of Transperineal Ultrasound-Guided Brachytherapy for Locally Recurrent Prostate Cancer After External Beam Radiation Therapy (NRG Oncology/RTOG-0526). Int J Radiat Oncol Biol Phys, 2019. 103: 335.
https://pubmed.ncbi.nlm.nih.gov/30312717
1015.Smith, W.H., et al. Salvage low dose rate brachytherapy for prostate cancer recurrence following definitive external beam radiation therapy. Radiother Oncol, 2021. 155: 42.
https://pubmed.ncbi.nlm.nih.gov/33075391
1016.Lyczek, J., et al. HDR brachytherapy as a solution in recurrences of locally advanced prostate cancer. J Contemp Brachytherapy, 2009. 1: 105.
https://pubmed.ncbi.nlm.nih.gov/27795720
1017.Pasquier, D., et al. Salvage Stereotactic Body Radiation Therapy for Local Prostate Cancer Recurrence After Radiation Therapy: A Retrospective Multicenter Study of the GETUG. Int J Radiat Oncol Biol Phys, 2019. 105: 727.
https://pubmed.ncbi.nlm.nih.gov/31344433
1018.Fuller, D., et al. Retreatment for Local Recurrence of Prostatic Carcinoma After Prior Therapeutic Irradiation: Efficacy and Toxicity of HDR-Like SBRT. Int J Radiat Oncol Biol Phys, 2020. 106: 291.
https://pubmed.ncbi.nlm.nih.gov/31629838
1019.Bergamin, S., et al. Interim Results of a Prospective Prostate-Specific Membrane Antigen-Directed Focal Stereotactic Reirradiation Trial for Locally Recurrent Prostate Cancer. Int J Radiat Oncol Biol Phys, 2020. 108: 1172.
https://pubmed.ncbi.nlm.nih.gov/32659332
1020.Crouzet, S., et al. Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: Multi-institutional analysis of 418 patients. BJU Int, 2017. 119: 896.
https://pubmed.ncbi.nlm.nih.gov/28063191
1021.Murat, F.J., et al. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol, 2009. 55: 640.
https://pubmed.ncbi.nlm.nih.gov/18508188
1022.Kanthabalan, A., et al. Focal salvage high-intensity focused ultrasound in radiorecurrent prostate cancer. BJU Int, 2017. 120: 246.
https://pubmed.ncbi.nlm.nih.gov/28258616
1023.Jones, T.A., et al. High Intensity Focused Ultrasound for Radiorecurrent Prostate Cancer: A North American Clinical Trial. J Urol, 2018. 199: 133.
https://pubmed.ncbi.nlm.nih.gov/28652121
1024.van den Bergh, R.C., et al. Role of Hormonal Treatment in Prostate Cancer Patients with Nonmetastatic Disease Recurrence After Local Curative Treatment: A Systematic Review. Eur Urol, 2016. 69: 802.
https://pubmed.ncbi.nlm.nih.gov/26691493
1025.Duchesne, G.M., et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol, 2016. 17: 727.
https://pubmed.ncbi.nlm.nih.gov/27155740
1026.Siddiqui, S.A., et al. Timing of androgen deprivation therapy and its impact on survival after radical prostatectomy: a matched cohort study. J Urol, 2008. 179: 1830.
https://pubmed.ncbi.nlm.nih.gov/18353378
1027.Boorjian, S.A., et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol, 2011. 59: 893.
https://pubmed.ncbi.nlm.nih.gov/21388736
1028.Crook, J.M., et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N Engl J Med, 2012. 367: 895.
https://pubmed.ncbi.nlm.nih.gov/22931259
1029.Levine, G.N., et al. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation, 2010. 121: 833.
https://pubmed.ncbi.nlm.nih.gov/20124128
1030.O’Farrell, S., et al. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol, 2015. 33: 1243.
https://pubmed.ncbi.nlm.nih.gov/25732167
1031.Freedland, S.J., et al. Improved Outcomes with Enzalutamide in Biochemically Recurrent Prostate Cancer. New England Journal of Medicine, 2023. 389: 1453.
https://pubmed.ncbi.nlm.nih.gov/37851874
1032.FDA approves enzalutamide for non-metastatic castration-sensitive prostate cancer with biochemical recurrence. 2023
www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-enzalutamide-non-metastatic-castration-sensitive-prostate-cancer-biochemical-recurrence
1033.Aparicio, A. Biochemical Recurrence in Prostate Cancer — Tilting the Scale. New England Journal of Medicine, 2023. 389: 1522.
https://pubmed.ncbi.nlm.nih.gov/37851879
1034.Pagliarulo, V., et al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur Urol, 2012. 61: 11.
https://pubmed.ncbi.nlm.nih.gov/21871711
1035.Oefelein, M.G., et al. Reassessment of the definition of castrate levels of testosterone: implications for clinical decision making. Urology, 2000. 56: 1021.
https://pubmed.ncbi.nlm.nih.gov/11113751
1036.Morote, J., et al. Individual variations of serum testosterone in patients with prostate cancer receiving androgen deprivation therapy. BJU Int, 2009. 103: 332.
https://pubmed.ncbi.nlm.nih.gov/19007366
1037.Pickles, T., et al. Incomplete testosterone suppression with luteinizing hormone-releasing hormone agonists: does it happen and does it matter? BJU Int, 2012. 110: E500.
https://pubmed.ncbi.nlm.nih.gov/22564197
1038.Klotz, L., et al. Mp74-01 Nadir Testosterone on Adt Predicts for Time to Castrate Resistant Progression: A Secondary Analysis of the Pr-7 Intermittent Vs Continuous Adt Trial. Journal of Urology, 2014. 191: e855.
http://www.jurology.com/article/S0022-5347(14)02593-2/abstract
1039.Desmond, A.D., et al. Subcapsular orchiectomy under local anaesthesia. Technique, results and implications. Br J Urol, 1988. 61: 143.
https://pubmed.ncbi.nlm.nih.gov/3349279
1040.Scherr, D.S., et al. The nonsteroidal effects of diethylstilbestrol: the rationale for androgen deprivation therapy without estrogen deprivation in the treatment of prostate cancer. J Urol, 2003. 170: 1703.
https://pubmed.ncbi.nlm.nih.gov/14532759
1041.Farrugia, D., et al. Stilboestrol plus adrenal suppression as salvage treatment for patients failing treatment with luteinizing hormone-releasing hormone analogues and orchidectomy. BJU Int, 2000. 85: 1069.
https://pubmed.ncbi.nlm.nih.gov/10848697
1042.Hedlund, P.O., et al. Parenteral estrogen versus combined androgen deprivation in the treatment of metastatic prostatic cancer: part 2. Final evaluation of the Scandinavian Prostatic Cancer Group (SPCG) Study No. 5. Scand J Urol Nephrol, 2008. 42: 220.
https://pubmed.ncbi.nlm.nih.gov/18432528
1043.Gilbert, D.C., et al. Transdermal oestradiol as a method of androgen suppression for prostate cancer within the STAMPEDE trial platform. BJU Int, 2018. 121: 680.
https://pubmed.ncbi.nlm.nih.gov/29388336
1044.Bubley, G.J. Is the flare phenomenon clinically significant? Urology, 2001. 58: 5.
https://pubmed.ncbi.nlm.nih.gov/11502435
1045.Krakowsky, Y., et al. Risk of Testosterone Flare in the Era of the Saturation Model: One More Historical Myth. Eur Urol Focus, 2019. 5: 81.
https://pubmed.ncbi.nlm.nih.gov/28753828
1046.Klotz, L., et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int, 2008. 102: 1531.
https://pubmed.ncbi.nlm.nih.gov/19035858
1047.Seidenfeld, J., et al. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med, 2000. 132: 566.
https://pubmed.ncbi.nlm.nih.gov/10744594
1048.Ostergren, P.B., et al. Luteinizing Hormone-Releasing Hormone Agonists are Superior to Subcapsular Orchiectomy in Lowering Testosterone Levels of Men with Prostate Cancer: Results from a Randomized Clinical Trial. J Urol, 2017. 197: 1441.
https://pubmed.ncbi.nlm.nih.gov/27939836
1049.Shore, N.D. Experience with degarelix in the treatment of prostate cancer. Ther Adv Urol, 2013. 5: 11.
https://pubmed.ncbi.nlm.nih.gov/23372607
1050.Sciarra, A., et al. A meta-analysis and systematic review of randomized controlled trials with degarelix versus gonadotropin-releasing hormone agonists for advanced prostate cancer. Medicine (Baltimore), 2016. 95: e3845.
https://pubmed.ncbi.nlm.nih.gov/27399062
1051.Cirne, F., et al. The cardiovascular effects of gonadotropin-releasing hormone antagonists in men with prostate cancer. Eur Heart J Cardiovasc Pharmacother, 2022. 8: 253.
https://pubmed.ncbi.nlm.nih.gov/33470403
1052.Abufaraj, M., et al. Differential Impact of Gonadotropin-releasing Hormone Antagonist Versus Agonist on Clinical Safety and Oncologic Outcomes on Patients with Metastatic Prostate Cancer: A Meta-analysis of Randomized Controlled Trials. Eur Urol, 2021. 79: 44.
https://pubmed.ncbi.nlm.nih.gov/32605859
1053.Shore, N.D., et al. Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. N Engl J Med, 2020. 382: 2187.
https://pubmed.ncbi.nlm.nih.gov/32469183
1054.United States Food and Drug Administration. FDA approves relugolix for advanced prostate cancer. 2020.
1055.European Medicines Agency. Orgovyx approved for advanced prostate cancer.
https://www.ema.europa.eu/en/medicines/human/EPAR/orgovyx
1056.Moffat, L.E. Comparison of Zoladex, diethylstilbestrol and cyproterone acetate treatment in advanced prostate cancer. Eur Urol, 1990. 18 Suppl 3: 26.
https://pubmed.ncbi.nlm.nih.gov/2151272
1057.Schroder, F.H., et al. Metastatic prostate cancer treated by flutamide versus cyproterone acetate. Final analysis of the “European Organization for Research and Treatment of Cancer” (EORTC) Protocol 30892. Eur Urol, 2004. 45: 457.
https://pubmed.ncbi.nlm.nih.gov/15041109
1058.Smith, M.R., et al. Bicalutamide monotherapy versus leuprolide monotherapy for prostate cancer: effects on bone mineral density and body composition. J Clin Oncol, 2004. 22: 2546.
https://pubmed.ncbi.nlm.nih.gov/15226323
1059.Iversen, P. Antiandrogen monotherapy: indications and results. Urology, 2002. 60: 64.
https://pubmed.ncbi.nlm.nih.gov/12231053
1060.Wadhwa, V.K., et al. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU Int, 2009. 104: 800.
https://pubmed.ncbi.nlm.nih.gov/19338564
1061.Montgomery, R.B., et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res, 2008. 68: 4447.
https://pubmed.ncbi.nlm.nih.gov/18519708
1062.United States Food and Drug Administration. FDA approves abiraterone acetate in combination with prednisone for high-risk metastatic castration-sensitive prostate cancer. 2018.
1063.United States Food and Drug Administration. FDA approves apalutamide for metastatic castration-sensitive prostate cancer. 2019.
1064.European Medicines Agency. Zytiga.
https://www.ema.europa.eu/en/medicines/human/EPAR/zytiga
1065.European Medicines Agency. Erleada (apalutamide).
https://www.ema.europa.eu/en/medicines/human/EPAR/erleada
1066.European Medicines Agency. Nubeqa (darolutamide).
https://www.ema.europa.eu/en/medicines/human/EPAR/nubeqa
1067.European Medicines Agency. Xtandi (enzalutamide).
https://www.ema.europa.eu/en/medicines/human/EPAR/xtandi
1068.Chi, K.N., et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med, 2019. 381: 13.
https://pubmed.ncbi.nlm.nih.gov/31150574
1069.Armstrong, A.J., et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol, 2019. 37: 2974.
https://pubmed.ncbi.nlm.nih.gov/31329516
1070.Fizazi, K., et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med, 2017. 377: 352.
https://pubmed.ncbi.nlm.nih.gov/28578607
1071.Moilanen, A.M., et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep, 2015. 5: 12007.
https://pubmed.ncbi.nlm.nih.gov/26137992
1072.Zurth, C., et al. Blood-brain barrier penetration of [14C]darolutamide compared with [14C]enzalutamide in rats using whole body autoradiography. Journal of Clinical Oncology, 2018. 36: 345.
https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.345
1073.Sousa-Pimenta, M., et al. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front Pharmacol, 2023. 14: 1157306.
https://pubmed.ncbi.nlm.nih.gov/37229270
1074.Xue, B., et al. Synthesis of Taxol and Docetaxel by Using 10-Deacetyl-7-xylosyltaxanes. Chem Biodivers, 2020. 17: e1900631.
https://pubmed.ncbi.nlm.nih.gov/31967396
1075.Geng, C.X., et al. Docetaxel inhibits SMMC-7721 human hepatocellular carcinoma cells growth and induces apoptosis. World J Gastroenterol, 2003. 9: 696.
https://pubmed.ncbi.nlm.nih.gov/12679913
1076.Lord, C.J., et al. PARP inhibitors: Synthetic lethality in the clinic. Science, 2017. 355: 1152.
https://pubmed.ncbi.nlm.nih.gov/28302823
1077.de Bono, J.S., et al. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res, 2019. 25: 928.
https://pubmed.ncbi.nlm.nih.gov/30037818
1078.Sarker, D., et al. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 2009. 15: 4799.
https://pubmed.ncbi.nlm.nih.gov/19638457
1079.Hargadon, K.M., et al. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol, 2018. 62: 29.
https://pubmed.ncbi.nlm.nih.gov/29990692
1080.Le, D.T., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med, 2015. 372: 2509.
https://pubmed.ncbi.nlm.nih.gov/26028255
1081.Sgouros, G., et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov, 2020. 19: 589.
https://pubmed.ncbi.nlm.nih.gov/32728208
1082.United States Food and Drug Administration. FDA approval of Pluvicto (lutetium Lu 177 vipivotide tetraxetan) for the treatment of adult patients with prostate-specific membrane antigen-positive metastatic castration-resistant prostate cancer who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy. 2022.
1083.European Medicines Agency. Summary of product characteristics - Pluvicto.
https://www.ema.europa.eu/en/documents/product-information/pluvicto-epar-product-information_en.pdf
1084.Napoli, G., et al. A Systematic Review and a Meta-analysis of Randomized Controlled Trials’ Control Groups in Metastatic Hormone-Sensitive Prostate Cancer (mHSPC). Curr Oncol Rep, 2022. 24: 1633.
https://pubmed.ncbi.nlm.nih.gov/35953601
1085.Glass, T.R., et al. Metastatic carcinoma of the prostate: identifying prognostic groups using recursive partitioning. J Urol, 2003. 169: 164.
https://pubmed.ncbi.nlm.nih.gov/12478127
1086.Gravis, G., et al. Prognostic Factors for Survival in Noncastrate Metastatic Prostate Cancer: Validation of the Glass Model and Development of a Novel Simplified Prognostic Model. Eur Urol, 2015. 68: 196.
https://pubmed.ncbi.nlm.nih.gov/25277272
1087.Gravis, G., et al. Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. Eur Urol, 2016. 70: 256.
https://pubmed.ncbi.nlm.nih.gov/26610858
1088.Sweeney, C.J., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med, 2015. 373: 737.
https://pubmed.ncbi.nlm.nih.gov/26244877
1089.Kyriakopoulos, C.E., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol, 2018. 36: 1080.
https://pubmed.ncbi.nlm.nih.gov/29384722
1090.Gravis, G., et al. Burden of Metastatic Castrate Naive Prostate Cancer Patients, to Identify Men More Likely to Benefit from Early Docetaxel: Further Analyses of CHAARTED and GETUG-AFU15 Studies. Eur Urol, 2018. 73: 847.
https://pubmed.ncbi.nlm.nih.gov/29475737
1091.Parker, C.C., et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet, 2018. 392: 2353.
https://pubmed.ncbi.nlm.nih.gov/30355464
1092.Francini, E., et al. Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate, 2018. 78: 889.
https://pubmed.ncbi.nlm.nih.gov/29707790
1093.Hussain, M., et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J Clin Oncol, 2006. 24: 3984.
https://pubmed.ncbi.nlm.nih.gov/16921051
1094.Harshman, L.C., et al. Seven-Month Prostate-Specific Antigen Is Prognostic in Metastatic Hormone-Sensitive Prostate Cancer Treated With Androgen Deprivation With or Without Docetaxel. J Clin Oncol, 2018. 36: 376.
https://pubmed.ncbi.nlm.nih.gov/29261442
1095.Matsubara, N., et al. Correlation of Prostate-specific Antigen Kinetics with Overall Survival and Radiological Progression-free Survival in Metastatic Castration-sensitive Prostate Cancer Treated with Abiraterone Acetate plus Prednisone or Placebos Added to Androgen Deprivation Therapy: Post Hoc Analysis of Phase 3 LATITUDE Study. Eur Urol, 2020. 77: 494.
https://pubmed.ncbi.nlm.nih.gov/31843335
1096.Chowdhury, S., et al. Deep, rapid, and durable prostate-specific antigen decline with apalutamide plus androgen deprivation therapy is associated with longer survival and improved clinical outcomes in TITAN patients with metastatic castration-sensitive prostate cancer. Ann Oncol, 2023. 34: 477.
https://pubmed.ncbi.nlm.nih.gov/36858151
1097.Davey, P., et al. Cardiovascular risk profiles of GnRH agonists and antagonists: real-world analysis from UK general practice. World J Urol, 2021. 39: 307.
https://pubmed.ncbi.nlm.nih.gov/32979057
1098.Boland, J., et al. Cardiovascular Toxicity of Androgen Deprivation Therapy. Curr Cardiol Rep, 2021. 23: 109.
https://pubmed.ncbi.nlm.nih.gov/34216282
1099.Gu, L., et al. Adverse cardiovascular effect following gonadotropin-releasing hormone antagonist versus GnRH agonist for prostate cancer treatment: A systematic review and meta-analysis. Front Endocrinol (Lausanne), 2023. 14: 1157857.
https://pubmed.ncbi.nlm.nih.gov/37065739
1100.Kunath, F., et al. Non-steroidal antiandrogen monotherapy compared with luteinising hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst Rev, 2014. 6: CD009266.
https://pubmed.ncbi.nlm.nih.gov/24979481
1101.Niraula, S., et al. Treatment of prostate cancer with intermittent versus continuous androgen deprivation: a systematic review of randomized trials. J Clin Oncol, 2013. 31: 2029.
https://pubmed.ncbi.nlm.nih.gov/23630216
1102.Botrel, T.E., et al. Intermittent versus continuous androgen deprivation for locally advanced, recurrent or metastatic prostate cancer: a systematic review and meta-analysis. BMC Urol, 2014. 14: 9.
https://pubmed.ncbi.nlm.nih.gov/24460605
1103.Tsai, H.T., et al. Efficacy of intermittent androgen deprivation therapy vs conventional continuous androgen deprivation therapy for advanced prostate cancer: a meta-analysis. Urology, 2013. 82: 327.
https://pubmed.ncbi.nlm.nih.gov/23896094
1104.Brungs, D., et al. Intermittent androgen deprivation is a rational standard-of-care treatment for all stages of progressive prostate cancer: results from a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2014. 17: 105.
https://pubmed.ncbi.nlm.nih.gov/24686773
1105.Magnan, S., et al. Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Oncol, 2015. 1: 1261.
https://pubmed.ncbi.nlm.nih.gov/26378418
1106.Hussain, M., et al. Intermittent versus continuous androgen deprivation in prostate cancer. N Engl J Med, 2013. 368: 1314.
https://pubmed.ncbi.nlm.nih.gov/23550669
1107.Kunath, F., et al. Early versus deferred standard androgen suppression therapy for advanced hormone-sensitive prostate cancer. Cochrane Database Syst Rev, 2019. 6: CD003506.
https://pubmed.ncbi.nlm.nih.gov/31194882
1108.Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council Trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. Br J Urol, 1997. 79: 235.
https://pubmed.ncbi.nlm.nih.gov/9052476
1109.Walsh, P.C. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. J Urol, 1997. 158: 1623.
https://pubmed.ncbi.nlm.nih.gov/9302187
1110.Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet, 2000. 355: 1491.
https://pubmed.ncbi.nlm.nih.gov/10801170
1111.Schmitt, B., et al. Maximal androgen blockade for advanced prostate cancer. Cochrane Database Syst Rev, 2000: CD001526.
https://pubmed.ncbi.nlm.nih.gov/10796804
1112.Davis, I.D., et al. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N Engl J Med, 2019. 381: 121.
https://pubmed.ncbi.nlm.nih.gov/31157964
1113.Gu, W., et al. Rezvilutamide versus bicalutamide in combination with androgen-deprivation therapy in patients with high-volume, metastatic, hormone-sensitive prostate cancer (CHART): a randomised, open-label, phase 3 trial. Lancet Oncol, 2022. 23: 1249.
https://pubmed.ncbi.nlm.nih.gov/36075260
1114.Gravis, G., et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol, 2013. 14: 149.
https://pubmed.ncbi.nlm.nih.gov/23306100
1115.Clarke, N.W., et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol, 2019. 30: 1992.
https://pubmed.ncbi.nlm.nih.gov/31560068
1116.Smith, T.J., et al. Recommendations for the Use of WBC Growth Factors: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol, 2015. 33: 3199.
https://pubmed.ncbi.nlm.nih.gov/26169616
1117.Sathianathen, N.J., et al. Taxane-based chemohormonal therapy for metastatic hormone-sensitive prostate cancer. Cochrane Database Syst Rev, 2018. 10: CD012816.
https://pubmed.ncbi.nlm.nih.gov/30320443
1118.Vale, C.L., et al. Which patients with metastatic hormone-sensitive prostate cancer benefit from docetaxel: a systematic review and meta-analysis of individual participant data from randomised trials. Lancet Oncol, 2023. 24: 783.
https://pubmed.ncbi.nlm.nih.gov/37414011
1119.Rydzewska, L.H.M., et al. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: A systematic review and meta-analysis. Eur J Cancer, 2017. 84: 88.
https://pubmed.ncbi.nlm.nih.gov/28800492
1120.Hoyle, A.P., et al. Abiraterone in “High-” and “Low-risk” Metastatic Hormone-sensitive Prostate Cancer. Eur Urol, 2019. 76: 719.
https://pubmed.ncbi.nlm.nih.gov/31447077
1121.Armstrong, A.J., et al. Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol, 2022. 40: 1616.
https://pubmed.ncbi.nlm.nih.gov/35420921
1122.Sweeney, C.J., et al. Testosterone suppression plus enzalutamide versus testosterone suppression plus standard antiandrogen therapy for metastatic hormone-sensitive prostate cancer (ENZAMET): an international, open-label, randomised, phase 3 trial. Lancet Oncol, 2023. 24: 323.
https://pubmed.ncbi.nlm.nih.gov/36990608
1123.Chi, K.N., et al. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J Clin Oncol, 2021. 39: 2294.
https://pubmed.ncbi.nlm.nih.gov/33914595
1124.Sweeney, C.J., et al. Overall Survival of Men with Metachronous Metastatic Hormone-sensitive Prostate Cancer Treated with Enzalutamide and Androgen Deprivation Therapy. Eur Urol, 2021. 80: 275.
https://pubmed.ncbi.nlm.nih.gov/34030924
1125.Merseburger, A.S., et al. Apalutamide plus androgen deprivation therapy in clinical subgroups of patients with metastatic castration-sensitive prostate cancer: A subgroup analysis of the randomised clinical TITAN study. Eur J Cancer, 2023. 193: 113290.
https://pubmed.ncbi.nlm.nih.gov/37708629
1126.Fizazi, K., et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 x 2 factorial design. Lancet, 2022. 399: 1695.
https://pubmed.ncbi.nlm.nih.gov/35405085
1127.Fizazi, K., et al. A phase 3 trial with a 2x2 factorial design of abiraterone acetate plus prednisone and/or local radiotherapy in men with de novo metastatic castration-sensitive prostate cancer (mCSPC): First results of PEACE-1. Journal of Clinical Oncology, 2021. 39: 5000.
https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.5000
1128.Smith, M.R., et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N Engl J Med, 2022. 386: 1132.
https://pubmed.ncbi.nlm.nih.gov/35179323
1129.Hussain, M., et al. Darolutamide Plus Androgen-Deprivation Therapy and Docetaxel in Metastatic Hormone-Sensitive Prostate Cancer by Disease Volume and Risk Subgroups in the Phase III ARASENS Trial. J Clin Oncol, 2023. 41: 3595.
https://pubmed.ncbi.nlm.nih.gov/36795843
1130.Jian, T., et al. Systemic triplet therapy for metastatic hormone-sensitive prostate cancer: A systematic review and network meta-analysis. Front Pharmacol, 2022. 13: 955925.
https://pubmed.ncbi.nlm.nih.gov/36278154
1131.Fiorica, F., et al. Addition of New Androgen Receptor Pathway Inhibitors to Docetaxel and Androgen Deprivation Therapy in Metastatic Hormone-Sensitive Prostate Cancer: A Systematic Review and Metanalysis. Curr Oncol, 2022. 29: 9511.
https://pubmed.ncbi.nlm.nih.gov/36547161
1132.Marchioni, M., et al. New Antiandrogen Compounds Compared to Docetaxel for Metastatic Hormone Sensitive Prostate Cancer: Results from a Network Meta-Analysis. J Urol, 2020. 203: 751.
https://pubmed.ncbi.nlm.nih.gov/31689158
1133.Sathianathen, N.J., et al. Indirect Comparisons of Efficacy between Combination Approaches in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Network Meta-analysis. Eur Urol, 2020. 77: 365.
https://pubmed.ncbi.nlm.nih.gov/31679970
1134.Chen, X., et al. Comparative efficacy of second-generation androgen receptor inhibitors for treating prostate cancer: A systematic review and network meta-analysis. Front Endocrinol (Lausanne), 2023. 14: 1134719.
https://pubmed.ncbi.nlm.nih.gov/36967752
1135.Fallara, G., et al. Chemotherapy and advanced androgen blockage, alone or combined, for metastatic hormone-sensitive prostate cancer a systematic review and meta-analysis. Cancer Treat Rev, 2022. 110: 102441.
https://pubmed.ncbi.nlm.nih.gov/35939976
1136.Hoeh, B., et al. Triplet or Doublet Therapy in Metastatic Hormone-sensitive Prostate Cancer: Updated Network Meta-analysis Stratified by Disease Volume. Eur Urol Focus, 2023. 9: 838.
https://pubmed.ncbi.nlm.nih.gov/37055323
1137.Ramos-Esquivel, A., et al. A systematic review and meta-analysis on overall survival, failure-free survival and safety outcomes in patients with metastatic hormone-sensitive prostate cancer treated with new anti-androgens. Anticancer Drugs, 2023. 34: 405.
https://pubmed.ncbi.nlm.nih.gov/36730553
1138.Rajwa, P., et al. Association between age and efficacy of combination systemic therapies in patients with metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2023. 26: 170.
https://pubmed.ncbi.nlm.nih.gov/36284192
1139.Riaz, I.B., et al. First-line Systemic Treatment Options for Metastatic Castration-Sensitive Prostate Cancer: A Living Systematic Review and Network Meta-analysis. JAMA Oncol, 2023. 9: 635.
https://pubmed.ncbi.nlm.nih.gov/36862387
1140.Roy, S., et al. Addition of Docetaxel to Androgen Receptor Axis-targeted Therapy and Androgen Deprivation Therapy in Metastatic Hormone-sensitive Prostate Cancer: A Network Meta-analysis. Eur Urol Oncol, 2022. 5: 494.
https://pubmed.ncbi.nlm.nih.gov/35811293
1141.Wang, L., et al. Comparison of doublet and triplet therapies for metastatic hormone-sensitive prostate cancer: A systematic review and network meta-analysis. Front Oncol, 2023. 13: 1104242.
https://pubmed.ncbi.nlm.nih.gov/36959793
1142.Yanagisawa, T., et al. Androgen Receptor Signaling Inhibitors in Addition to Docetaxel with Androgen Deprivation Therapy for Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2022. 82: 584.
https://pubmed.ncbi.nlm.nih.gov/35995644
1143.Boeve, L.M.S., et al. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur Urol, 2019. 75: 410.
https://pubmed.ncbi.nlm.nih.gov/30266309
1144.Parker, C.C., et al. Radiotherapy to the prostate for men with metastatic prostate cancer in the UK and Switzerland: Long-term results from the STAMPEDE randomised controlled trial. PLoS Med, 2022. 19: e1003998.
https://pubmed.ncbi.nlm.nih.gov/35671327
1145.Ali, A., et al. Association of Bone Metastatic Burden With Survival Benefit From Prostate Radiotherapy in Patients With Newly Diagnosed Metastatic Prostate Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2021. 7: 555.
https://pubmed.ncbi.nlm.nih.gov/33599706
1146.Burdett, S., et al. Prostate Radiotherapy for Metastatic Hormone-sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-analysis. Eur Urol, 2019. 76: 115.
https://pubmed.ncbi.nlm.nih.gov/30826218
1147.Milenkovic, U., et al. Predictors of Recurrence After Metastasis-directed Therapy in Oligorecurrent Prostate Cancer Following Radical Prostatectomy. Eur Urol Oncol, 2023. 6: 582.
https://pubmed.ncbi.nlm.nih.gov/36878753
1148.Ost, P., et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J Clin Oncol, 2018. 36: 446.
https://pubmed.ncbi.nlm.nih.gov/29240541
1149.Phillips, R., et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol, 2020. 6: 650.
https://pubmed.ncbi.nlm.nih.gov/32215577
1150.Deek, M.P., et al. Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials. J Clin Oncol, 2022. 40: 3377.
https://pubmed.ncbi.nlm.nih.gov/36001857
1151.Glicksman, R.M., et al. Curative-intent Metastasis-directed Therapies for Molecularly-defined Oligorecurrent Prostate Cancer: A Prospective Phase II Trial Testing the Oligometastasis Hypothesis. Eur Urol, 2021. 80: 374.
https://pubmed.ncbi.nlm.nih.gov/33685838
1152.Battaglia, A., et al. Novel Insights into the Management of Oligometastatic Prostate Cancer: A Comprehensive Review. Eur Urol Oncol, 2019. 2: 174.
https://pubmed.ncbi.nlm.nih.gov/31017094
1153.Connor, M.J., et al. Targeting Oligometastasis with Stereotactic Ablative Radiation Therapy or Surgery in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review of Prospective Clinical Trials. Eur Urol Oncol, 2020. 3: 582.
https://pubmed.ncbi.nlm.nih.gov/32891600
1154.Marvaso, G., et al. Oligorecurrent Prostate Cancer and Stereotactic Body Radiotherapy: Where Are We Now? A Systematic Review and Meta-analysis of Prospective Studies. Eur Urol Open Sci, 2021. 27: 19.
https://pubmed.ncbi.nlm.nih.gov/34337513
1155.Devos, G., et al. Oncological Outcomes of Metastasis-Directed Therapy in Oligorecurrent Prostate Cancer Patients Following Radical Prostatectomy. Cancers (Basel), 2020. 12.
https://pubmed.ncbi.nlm.nih.gov/32823690
1156.Eisenhauer, E.A., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45: 228.
https://pubmed.ncbi.nlm.nih.gov/19097774
1157.FDA approves liquid biopsy NGS companion diagnostic test for multiple cancers and biomarkers. 2020.
1158.Lotan, T.L., et al. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol, 2020. 44: e15.
https://pubmed.ncbi.nlm.nih.gov/32044806
1159.Dienstmann, R., et al. Standardized decision support in next generation sequencing reports of somatic cancer variants. Mol Oncol, 2014. 8: 859.
https://pubmed.ncbi.nlm.nih.gov/24768039
1160.Beer, T.M., et al. Enzalutamide in Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer: Extended Analysis of the Phase 3 PREVAIL Study. Eur Urol, 2017. 71: 151.
https://pubmed.ncbi.nlm.nih.gov/27477525
1161.Hussain, M., et al. PROfound: Phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations. Annals of Oncology, 2019. 30: v881.
https://www.sciencedirect.com/science/article/pii/S0923753419603996
1162.Hussain, M., et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 383: 2345.
https://pubmed.ncbi.nlm.nih.gov/32955174
1163.pembrolizumab (KEYTRUDA). 2017.
1164.de Wit, R., et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med, 2019. 381: 2506.
https://pubmed.ncbi.nlm.nih.gov/31566937
1165.Loriot, Y., et al. Prior long response to androgen deprivation predicts response to next-generation androgen receptor axis targeted drugs in castration resistant prostate cancer. Eur J Cancer, 2015. 51: 1946.
https://pubmed.ncbi.nlm.nih.gov/26208462
1166.Smith, M.R., et al. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. Cancer, 2011. 117: 2077.
https://pubmed.ncbi.nlm.nih.gov/21523719
1167.Crawford, E.D., et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology, 2014. 83: 664.
https://pubmed.ncbi.nlm.nih.gov/24411213
1168.Fendler, W.P., et al. Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clin Cancer Res, 2019. 25: 7448.
https://pubmed.ncbi.nlm.nih.gov/31511295
1169.Hussain, M., et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2018. 378: 2465.
https://pubmed.ncbi.nlm.nih.gov/29949494
1170.Smith, M.R., et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N Engl J Med, 2018. 378: 1408.
https://pubmed.ncbi.nlm.nih.gov/29420164
1171.Fizazi, K., et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2019. 380: 1235.
https://pubmed.ncbi.nlm.nih.gov/30763142
1172.Fizazi, K., et al. Nonmetastatic, Castration-Resistant Prostate Cancer and Survival with Darolutamide. N Engl J Med, 2020. 383: 1040.
https://pubmed.ncbi.nlm.nih.gov/32905676
1173.Sternberg, C.N., et al. Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 382: 2197.
https://pubmed.ncbi.nlm.nih.gov/32469184
1174.Smith, M.R., et al. Apalutamide and Overall Survival in Prostate Cancer. Eur Urol, 2021. 79: 150.
https://pubmed.ncbi.nlm.nih.gov/32907777
1175.Hussain, M., et al. Effects of continued androgen-deprivation therapy and other prognostic factors on response and survival in phase II chemotherapy trials for hormone-refractory prostate cancer: a Southwest Oncology Group report. J Clin Oncol, 1994. 12: 1868.
https://pubmed.ncbi.nlm.nih.gov/8083710
1176.Taylor, C.D., et al. Importance of continued testicular suppression in hormone-refractory prostate cancer. J Clin Oncol, 1993. 11: 2167.
https://pubmed.ncbi.nlm.nih.gov/8229130
1177.Ryan, C.J., et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med, 2013. 368: 138.
https://pubmed.ncbi.nlm.nih.gov/23228172
1178.Ryan, C.J., et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol, 2015. 16: 152.
https://pubmed.ncbi.nlm.nih.gov/25601341
1179.Roviello, G., et al. Targeting the androgenic pathway in elderly patients with castration-resistant prostate cancer: A meta-analysis of randomized trials. Medicine (Baltimore), 2016. 95: e4636.
https://pubmed.ncbi.nlm.nih.gov/27787354
1180.Beer, T.M., et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med, 2014. 371: 424.
https://pubmed.ncbi.nlm.nih.gov/24881730
1181.Graff, J.N., et al. Efficacy and safety of enzalutamide in patients 75 years or older with chemotherapy-naive metastatic castration-resistant prostate cancer: results from PREVAIL. Ann Oncol, 2016. 27: 286.
https://pubmed.ncbi.nlm.nih.gov/26578735
1182.Evans, C.P., et al. The PREVAIL Study: Primary Outcomes by Site and Extent of Baseline Disease for Enzalutamide-treated Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer. Eur Urol, 2016. 70: 675.
https://pubmed.ncbi.nlm.nih.gov/27006332
1183.Shore, N.D., et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol, 2016. 17: 153.
https://pubmed.ncbi.nlm.nih.gov/26774508
1184.de Bono, J.S., et al. Subsequent Chemotherapy and Treatment Patterns After Abiraterone Acetate in Patients with Metastatic Castration-resistant Prostate Cancer: Post Hoc Analysis of COU-AA-302. Eur Urol, 2017. 71: 656.
https://pubmed.ncbi.nlm.nih.gov/27402060
1185.Tannock, I.F., et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 2004. 351: 1502.
https://pubmed.ncbi.nlm.nih.gov/15470213
1186.Berthold, D.R., et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol, 2008. 26: 242.
https://pubmed.ncbi.nlm.nih.gov/18182665
1187.Armstrong, A.J., et al. Prediction of survival following first-line chemotherapy in men with castration-resistant metastatic prostate cancer. Clin Cancer Res, 2010. 16: 203.
https://pubmed.ncbi.nlm.nih.gov/20008841
1188.Italiano, A., et al. Docetaxel-based chemotherapy in elderly patients (age 75 and older) with castration-resistant prostate cancer. Eur Urol, 2009. 55: 1368.
https://pubmed.ncbi.nlm.nih.gov/18706755
1189.Horgan, A.M., et al. Tolerability and efficacy of docetaxel in older men with metastatic castrate-resistant prostate cancer (mCRPC) in the TAX 327 trial. J Geriatr Oncol, 2014. 5: 119.
https://pubmed.ncbi.nlm.nih.gov/24495703
1190.Kellokumpu-Lehtinen, P.L., et al. 2-Weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: a randomised, phase 3 trial. Lancet Oncol, 2013. 14: 117.
https://pubmed.ncbi.nlm.nih.gov/23294853
1191.Kantoff, P.W., et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363: 411.
https://pubmed.ncbi.nlm.nih.gov/20818862
1192.Sweeney, C., et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet, 2021. 398: 131.
https://pubmed.ncbi.nlm.nih.gov/34246347
1193.Clarke, N.W., et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evidence, 2022. 1: EVIDoa2200043.
https://evidence.nejm.org/doi/abs/10.1056/EVIDoa2200043
1194.Saad, F., et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol, 2023. 24: 1094.
https://pubmed.ncbi.nlm.nih.gov/37714168
1195.FDA approves olaparib with abiraterone and prednisone (or prednisolone) for BRCA-mutated metastatic castration-resistant prostate cancer. 2023.
https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza
1197.FDA D.I.S.C.O. Burst Edition: FDA approval of Lynparza (olaparib), with abiraterone and prednisone, for BRCA-mutated metastatic castration-resistant prostate cancer. 2023.
1198.Chi, K.N., et al. Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. Journal of Clinical Oncology, 2022. 40: 12.
https://doi.org/10.1200/JCO.2022.40.6_suppl.012
1199.Chi, K.N., et al. Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: second interim analysis of the randomized phase III MAGNITUDE trial. Ann Oncol, 2023. 34: 772.
https://pubmed.ncbi.nlm.nih.gov/37399894
1200.European Medicines Agency. Akeega.
https://www.ema.europa.eu/en/medicines/human/EPAR/akeega
1201.FDA approves talazoparib with enzalutamide for HRR gene-mutated metastatic castration-resistant prostate cancer. 2023.
1202.Agarwal, N., et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet, 2023. 402: 291.
https://pubmed.ncbi.nlm.nih.gov/37285865
1203.Fizazi, K., et al. First-line talazoparib with enzalutamide in HRR-deficient metastatic castration-resistant prostate cancer: the phase 3 TALAPRO-2 trial. Nature Medicine, 2023.
https://doi.org/10.1038/s41591-023-02704-x
1204.Petrylak, D.P., et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351: 1513.
https://pubmed.ncbi.nlm.nih.gov/15470214
1205.Rathkopf, D.E., et al. Updated interim efficacy analysis and long-term safety of abiraterone acetate in metastatic castration-resistant prostate cancer patients without prior chemotherapy (COU-AA-302). Eur Urol, 2014. 66: 815.
https://pubmed.ncbi.nlm.nih.gov/24647231
1206.Small, E.J., et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol, 2006. 24: 3089.
https://pubmed.ncbi.nlm.nih.gov/16809734
1207.Chi, K.N., et al. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, 2023. 41: 3339.
https://pubmed.ncbi.nlm.nih.gov/36952634
1208.de Bono, J.S., et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 2010. 376: 1147.
https://pubmed.ncbi.nlm.nih.gov/20888992
1209.Sartor, A., et al. Cabazitaxel vs docetaxel in chemotherapy-naive (CN) patients with metastatic castration-resistant prostate cancer (mCRPC): A three-arm phase III study (FIRSTANA). J Clin Oncol 2016. 34: Abstract 5006.
https://ascopubs.org/doi/10.1200/JCO.2016.34.15_suppl.5006
1210.Eisenberger, M., et al. Phase III Study Comparing a Reduced Dose of Cabazitaxel (20 mg/m(2)) and the Currently Approved Dose (25 mg/m(2)) in Postdocetaxel Patients With Metastatic Castration-Resistant Prostate Cancer-PROSELICA. J Clin Oncol, 2017. 35: 3198.
https://pubmed.ncbi.nlm.nih.gov/28809610
1211.Di Lorenzo, G., et al. Peg-filgrastim and cabazitaxel in prostate cancer patients. Anticancer Drugs, 2013. 24: 84.
https://pubmed.ncbi.nlm.nih.gov/23044721
1212.de Bono, J.S., et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med, 2011. 364: 1995.
https://pubmed.ncbi.nlm.nih.gov/21612468
1213.Fizazi, K., et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol, 2012. 13: 983.
https://pubmed.ncbi.nlm.nih.gov/22995653
1214.Scher, H.I., et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med, 2012. 367: 1187.
https://pubmed.ncbi.nlm.nih.gov/22894553
1215.Parker, C., et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med, 2013. 369: 213.
https://pubmed.ncbi.nlm.nih.gov/23863050
1216.Hoskin, P., et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol, 2014. 15: 1397.
https://pubmed.ncbi.nlm.nih.gov/25439694
1217.European Medicines Agency. EMA restricts use of prostate cancer medicine Xofigo.
https://www.ema.europa.eu/en/news/ema-restricts-use-prostate-cancer-medicine-xofigo
1218.Smith, M., et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2019. 20: 408.
https://pubmed.ncbi.nlm.nih.gov/30738780
1219.Fizazi, K., et al. Rucaparib or Physician’s Choice in Metastatic Prostate Cancer. N Engl J Med, 2023. 388: 719.
https://pubmed.ncbi.nlm.nih.gov/36795891
1220.Bryce, A.H., et al. Rucaparib for metastatic castration-resistant prostate cancer (mCRPC): TRITON3 interim overall survival and efficacy of rucaparib vs docetaxel or second-generation androgen pathway inhibitor therapy. Journal of Clinical Oncology, 2023. 41: 18.
https://meetings.asco.org/abstracts-presentations/216883
1221.Rubin, K.H., et al. Comparison of different screening tools (FRAX(R), OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone, 2013. 56: 16.
https://pubmed.ncbi.nlm.nih.gov/23669650
1222.Conde, F.A., et al. Risk factors for male osteoporosis. Urol Oncol, 2003. 21: 380.
https://pubmed.ncbi.nlm.nih.gov/14670549
1223.Mateo, J., et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med, 2015. 373: 1697.
https://pubmed.ncbi.nlm.nih.gov/26510020
1224.de Bono, J.S., Mateo, J., Fizazi, K., et al. Final overall survival (OS) analysis of PROfound: Olaparib vs physician’s choice of enzalutamide or abiraterone in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) gene alterations. Ann Oncol 2020. 31: S507.
https://www.nejm.org/doi/full/10.1056/NEJMoa1911440
1225.Badrising, S., et al. Clinical activity and tolerability of enzalutamide (MDV3100) in patients with metastatic, castration-resistant prostate cancer who progress after docetaxel and abiraterone treatment. Cancer, 2014. 120: 968.
https://pubmed.ncbi.nlm.nih.gov/24382803
1226.Zhang, T., et al. Enzalutamide versus abiraterone acetate for the treatment of men with metastatic castration-resistant prostate cancer. Expert Opin Pharmacother, 2015. 16: 473.
https://pubmed.ncbi.nlm.nih.gov/25534660
1227.Antonarakis, E.S., et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med, 2014. 371: 1028.
https://pubmed.ncbi.nlm.nih.gov/25184630
1228.Attard, G., et al. Abiraterone Alone or in Combination With Enzalutamide in Metastatic Castration-Resistant Prostate Cancer With Rising Prostate-Specific Antigen During Enzalutamide Treatment. J Clin Oncol, 2018. 36: 2639.
https://pubmed.ncbi.nlm.nih.gov/30028657
1229.Serafini, A.N. Current status of systemic intravenous radiopharmaceuticals for the treatment of painful metastatic bone disease. Int J Radiat Oncol Biol Phys, 1994. 30: 1187.
https://pubmed.ncbi.nlm.nih.gov/7525518
1230.Ballinger, J.R. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol, 2018. 91: 20170969.
https://pubmed.ncbi.nlm.nih.gov/29474096
1231.Emmett, L., et al. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci, 2017. 64: 52.
https://pubmed.ncbi.nlm.nih.gov/28303694
1232.Calopedos, R.J.S., et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2017. 20: 352.
https://pubmed.ncbi.nlm.nih.gov/28440324
1233.Hofman, M.S., et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol, 2018. 19: 825.
https://pubmed.ncbi.nlm.nih.gov/29752180
1234.Emmett, L., et al. Results of a Prospective Phase 2 Pilot Trial of (177)Lu-PSMA-617 Therapy for Metastatic Castration-Resistant Prostate Cancer Including Imaging Predictors of Treatment Response and Patterns of Progression. Clin Genitourin Cancer, 2019. 17: 15.
https://pubmed.ncbi.nlm.nih.gov/30425003
1235.Hofman, M.S., et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet, 2021. 397: 797.
https://pubmed.ncbi.nlm.nih.gov/33581798
1236.Hofman, M.S., et al. TheraP: 177Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic castration-resistant prostate cancer (mCRPC) progressing after docetaxel—Overall survival after median follow-up of 3 years (ANZUP 1603). Journal of Clinical Oncology, 2022. 40: 5000.
https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.5000
1237.Sartor, O., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2021. 385: 1091.
https://pubmed.ncbi.nlm.nih.gov/34161051
1238.Sadaghiani, M.S., et al. (177) Lu-PSMA radioligand therapy effectiveness in metastatic castration-resistant prostate cancer: An updated systematic review and meta-analysis. Prostate, 2022. 82: 826.
https://pubmed.ncbi.nlm.nih.gov/35286735
1239.Lee, D.Y., et al. Effects of (225)Ac-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis. J Nucl Med, 2022. 63: 840.
https://pubmed.ncbi.nlm.nih.gov/34503960
1240.European Medicines Agency. Lynparza (olaparib).
https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza
1241.Abida, W., et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol, 2020. 38: 3763.
https://pubmed.ncbi.nlm.nih.gov/32795228
1242.FDA grants accelerated approval to rucaparib for BRCA-mutated metastatic castration-resistant prostate cancer. 2020.
1243.Wilt, T.J., et al. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med, 2017. 377: 132.
https://pubmed.ncbi.nlm.nih.gov/28700844
1244.Beesley, L.J., et al. Individual and Population Comparisons of Surgery and Radiotherapy Outcomes in Prostate Cancer Using Bayesian Multistate Models. JAMA Netw Open, 2019. 2: e187765.
https://pubmed.ncbi.nlm.nih.gov/30707231
1245.Khalaf, D.J., et al. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol, 2019. 20: 1730.
https://pubmed.ncbi.nlm.nih.gov/31727538
1246.Miyake, H., et al. Comparative Assessment of Efficacies Between 2 Alternative Therapeutic Sequences With Novel Androgen Receptor-Axis-Targeted Agents in Patients With Chemotherapy-Naive Metastatic Castration-Resistant Prostate Cancer. Clin Genitourin Cancer, 2017. 15: e591.
https://pubmed.ncbi.nlm.nih.gov/28063845
1247.Terada, N., et al. Exploring the optimal sequence of abiraterone and enzalutamide in patients with chemotherapy-naive castration-resistant prostate cancer: The Kyoto-Baltimore collaboration. Int J Urol, 2017. 24: 441.
https://pubmed.ncbi.nlm.nih.gov/28455853
1248.Azad, A.A., et al. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol, 2015. 67: 23.
https://pubmed.ncbi.nlm.nih.gov/25018038
1249.Kobayashi, T., et al. Sequential Use of Androgen Receptor Axis-targeted Agents in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Retrospective Analysis With 3-Year Follow-up. Clin Genitourin Cancer, 2020. 18: e46.
https://pubmed.ncbi.nlm.nih.gov/31759831
1250.Komura, K., et al. Comparison of Radiographic Progression-Free Survival and PSA Response on Sequential Treatment Using Abiraterone and Enzalutamide for Newly Diagnosed Castration-Resistant Prostate Cancer: A Propensity Score Matched Analysis from Multicenter Cohort. J Clin Med, 2019. 8.
https://pubmed.ncbi.nlm.nih.gov/31430900
1251.Matsubara, N., et al. Abiraterone Followed by Enzalutamide Versus Enzalutamide Followed by Abiraterone in Chemotherapy-naive Patients With Metastatic Castration-resistant Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 142.
https://pubmed.ncbi.nlm.nih.gov/29042308
1252.Maughan, B.L., et al. Comparing Sequencing of Abiraterone and Enzalutamide in Men With Metastatic Castration-Resistant Prostate Cancer: A Retrospective Study. Prostate, 2017. 77: 33.
https://pubmed.ncbi.nlm.nih.gov/27527643
1253.de Bono, J.S., et al. Antitumour Activity and Safety of Enzalutamide in Patients with Metastatic Castration-resistant Prostate Cancer Previously Treated with Abiraterone Acetate Plus Prednisone for >/=24 weeks in Europe. Eur Urol, 2018. 74: 37.
https://pubmed.ncbi.nlm.nih.gov/28844372
1254.Mori, K., et al. Sequential therapy of abiraterone and enzalutamide in castration-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2020. 23: 539.
https://pubmed.ncbi.nlm.nih.gov/32152435
1255.Lavaud, P., et al. Anticancer Activity and Tolerance of Treatments Received Beyond Progression in Men Treated Upfront with Androgen Deprivation Therapy With or Without Docetaxel for Metastatic Castration-naive Prostate Cancer in the GETUG-AFU 15 Phase 3 Trial. Eur Urol, 2018. 73: 696.
https://pubmed.ncbi.nlm.nih.gov/29074061
1256.Bahl, A., et al. Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol, 2013. 24: 2402.
https://pubmed.ncbi.nlm.nih.gov/23723295
1257.Hager, S., et al. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann Oncol, 2016. 27: 975.
https://pubmed.ncbi.nlm.nih.gov/27052650
1258.Corn, P.G., et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial. Lancet Oncol, 2019. 20: 1432.
https://pubmed.ncbi.nlm.nih.gov/31515154
1259.Aparicio, A.M., et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res, 2013. 19: 3621.
https://pubmed.ncbi.nlm.nih.gov/23649003
1260.Mota, J.M., et al. Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precis Oncol, 2020. 4: 355.
https://pubmed.ncbi.nlm.nih.gov/32856010
1261.Gillessen, S., et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol, 2015. 26: 1589.
https://pubmed.ncbi.nlm.nih.gov/26041764
1262.Saad, F., et al. Prostate-specific Antigen Progression in Enzalutamide-treated Men with Nonmetastatic Castration-resistant Prostate Cancer: Any Rise in Prostate-specific Antigen May Require Closer Monitoring. Eur Urol, 2020. 78: 847.
https://pubmed.ncbi.nlm.nih.gov/33010985
1263.Aggarwal, R., et al. Heterogeneous Flare in Prostate-specific Membrane Antigen Positron Emission Tomography Tracer Uptake with Initiation of Androgen Pathway Blockade in Metastatic Prostate Cancer. Eur Urol Oncol, 2018. 1: 78.
https://pubmed.ncbi.nlm.nih.gov/31100231
1264.Payne, H., et al. Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol, 2011. 29: 593.
https://pubmed.ncbi.nlm.nih.gov/20060331
1265.Pezaro, C., et al. Visceral disease in castration-resistant prostate cancer. Eur Urol, 2014. 65: 270.
https://pubmed.ncbi.nlm.nih.gov/24295792
1266.Scher, H.I., et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol, 2016. 34: 1402.
https://pubmed.ncbi.nlm.nih.gov/26903579
1267.Ohlmann C, O.E., Wille S, et al. . Second-line chemotherapy with docetaxel for prostate-specific antigen relapse in men with hormone refractory prostate cancer previously treated with docetaxel
https://pubmed.ncbi.nlm.nih.gov/27946848
1268.Gillessen, S., et al. Management of Patients with Advanced Prostate Cancer: Report of the Advanced Prostate Cancer Consensus Conference 2019. Eur Urol, 2020. 77: 508.
https://pubmed.ncbi.nlm.nih.gov/32001144
1269.Gillessen, S., et al. Management of patients with advanced prostate cancer-metastatic and/or castration-resistant prostate cancer: Report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022. Eur J Cancer, 2023. 185: 178.
https://pubmed.ncbi.nlm.nih.gov/37003085
1270.Rao, K., et al. Uro-oncology multidisciplinary meetings at an Australian tertiary referral centre--impact on clinical decision-making and implications for patient inclusion. BJU Int, 2014. 114 Suppl 1: 50.
https://pubmed.ncbi.nlm.nih.gov/25070295
1271.Cereceda, L.E., et al. Management of vertebral metastases in prostate cancer: a retrospective analysis in 119 patients. Clin Prostate Cancer, 2003. 2: 34.
https://pubmed.ncbi.nlm.nih.gov/15046682
1272.Chaichana, K.L., et al. Outcome following decompressive surgery for different histological types of metastatic tumors causing epidural spinal cord compression. Clinical article. J Neurosurg Spine, 2009. 11: 56.
https://pubmed.ncbi.nlm.nih.gov/19569942
1273.Hoskin, P., et al. A Multicenter Randomized Trial of Ibandronate Compared With Single-Dose Radiotherapy for Localized Metastatic Bone Pain in Prostate Cancer. J Natl Cancer Inst, 2015. 107.
https://pubmed.ncbi.nlm.nih.gov/26242893
1274.Frankel, B.M., et al. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty. Spine J, 2007. 7: 575.
https://pubmed.ncbi.nlm.nih.gov/17905320
1275.Dutka, J., et al. Time of survival and quality of life of the patients operatively treated due to pathological fractures due to bone metastases. Ortop Traumatol Rehabil, 2003. 5: 276.
https://pubmed.ncbi.nlm.nih.gov/18034018
1276.Frankel, B.M., et al. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery, 2007. 61: 531.
https://pubmed.ncbi.nlm.nih.gov/17881965
1277.Lawton, A.J., et al. Assessment and Management of Patients With Metastatic Spinal Cord Compression: A Multidisciplinary Review. J Clin Oncol, 2019. 37: 61.
https://pubmed.ncbi.nlm.nih.gov/30395488
1278.Saad, F., et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst, 2002. 94: 1458.
https://pubmed.ncbi.nlm.nih.gov/12359855
1279.Fizazi, K., et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet, 2011. 377: 813.
https://pubmed.ncbi.nlm.nih.gov/21353695
1280.Smith, M.R., et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 2012. 379: 39.
https://pubmed.ncbi.nlm.nih.gov/22093187
1281.Marco, R.A., et al. Functional and oncological outcome of acetabular reconstruction for the treatment of metastatic disease. J Bone Joint Surg Am, 2000. 82: 642.
https://pubmed.ncbi.nlm.nih.gov/10819275
1282.Stopeck, A.T., et al. Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Support Care Cancer, 2016. 24: 447.
https://pubmed.ncbi.nlm.nih.gov/26335402
1283.Aapro, M., et al. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Ann Oncol, 2008. 19: 420.
https://pubmed.ncbi.nlm.nih.gov/17906299
1284.Otto, S., Medication-Related Osteonecrosis of the Jaws, ed. S. Otto. 2015, Berlin Heidelberg.
https://link.springer.com/book/10.1007/978-3-662-43733-9
1285.European Medicines Agency. Xgeva.
https://www.ema.europa.eu/en/medicines/human/EPAR/xgeva
1286.Stopeck, A.T., et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol, 2010. 28: 5132.
https://pubmed.ncbi.nlm.nih.gov/21060033
1287.Body, J.J., et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer, 2015. 51: 1812.
https://pubmed.ncbi.nlm.nih.gov/26093811
1288.Rice, S.M., et al. Depression and Prostate Cancer: Examining Comorbidity and Male-Specific Symptoms. Am J Mens Health, 2018. 12: 1864.
https://pubmed.ncbi.nlm.nih.gov/29957106
1289.van Stam, M.A., et al. Prevalence and correlates of mental health problems in prostate cancer survivors: A case-control study comparing survivors with general population peers. Urol Oncol, 2017. 35: 531 e1.
https://pubmed.ncbi.nlm.nih.gov/28457651
1290.Horwitz, E.M., et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis. J Urol, 2005. 173: 797.
https://pubmed.ncbi.nlm.nih.gov/15711272
1291.Stamey, T.A., et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J Urol, 1989. 141: 1076.
https://pubmed.ncbi.nlm.nih.gov/2468795
1292.Jackson, W.C., et al. Impact of Biochemical Failure After Salvage Radiation Therapy on Prostate Cancer-specific Mortality: Competition Between Age and Time to Biochemical Failure. Eur Urol Oncol, 2018. 1: 276.
https://pubmed.ncbi.nlm.nih.gov/31100248
1293.Grivas, N., et al. Ultrasensitive prostate-specific antigen level as a predictor of biochemical progression after robot-assisted radical prostatectomy: Towards risk adapted follow-up. J Clin Lab Anal, 2019. 33: e22693.
https://pubmed.ncbi.nlm.nih.gov/30365194
1294.Shen, S., et al. Ultrasensitive serum prostate specific antigen nadir accurately predicts the risk of early relapse after radical prostatectomy. J Urol, 2005. 173: 777.
https://pubmed.ncbi.nlm.nih.gov/15711268
1295.Zakaria, A.S., et al. Detectable Prostate-specific antigen value between 0.01 and 0.1 ng/ml following robotic-assisted radical prostatectomy (RARP): does it correlate with future biochemical recurrence? World J Urol, 2021. 39: 1853.
https://pubmed.ncbi.nlm.nih.gov/32696130
1296.Ray, M.E., et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys, 2006. 64: 1140.
https://pubmed.ncbi.nlm.nih.gov/16198506
1297.Oefelein, M.G., et al. The incidence of prostate cancer progression with undetectable serum prostate specific antigen in a series of 394 radical prostatectomies. J Urol, 1995. 154: 2128.
https://pubmed.ncbi.nlm.nih.gov/7500474
1298.Doneux, A., et al. The utility of digital rectal examination after radical radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol), 2005. 17: 172.
https://pubmed.ncbi.nlm.nih.gov/15901001
1299.Chaplin, B.J., et al. Digital rectal examination is no longer necessary in the routine follow-up of men with undetectable prostate specific antigen after radical prostatectomy: the implications for follow-up. Eur Urol, 2005. 48: 906.
https://pubmed.ncbi.nlm.nih.gov/16126322
1300.Warren, K.S., et al. Is routine digital rectal examination required for the followup of prostate cancer? J Urol, 2007. 178: 115.
https://pubmed.ncbi.nlm.nih.gov/17499293
1301.Marshall, C.H., et al. Timing of Androgen Deprivation Treatment for Men with Biochemical Recurrent Prostate Cancer in the Context of Novel Therapies. J Urol, 2021. 206: 623.
https://pubmed.ncbi.nlm.nih.gov/34003011
1302.Loblaw, A., et al. Follow-up Care for Survivors of Prostate Cancer - Clinical Management: a Program in Evidence-Based Care Systematic Review and Clinical Practice Guideline. Clin Oncol (R Coll Radiol), 2017. 29: 711.
https://pubmed.ncbi.nlm.nih.gov/28928084
1303.Thorstenson, A., et al. Incidence of fractures causing hospitalisation in prostate cancer patients: results from the population-based PCBaSe Sweden. Eur J Cancer, 2012. 48: 1672.
https://pubmed.ncbi.nlm.nih.gov/22386317
1304.Franck Lissbrant, I., et al. Set-up and preliminary results from the Patient-overview Prostate Cancer. Longitudinal registration of treatment of advanced prostate cancer in the National Prostate Cancer Register of Sweden. Scand J Urol, 2020. 54: 227.
https://pubmed.ncbi.nlm.nih.gov/32363988
1305.Saad, F., et al. Testosterone Breakthrough Rates during Androgen Deprivation Therapy for Castration Sensitive Prostate Cancer. J Urol, 2020. 204: 416.
https://pubmed.ncbi.nlm.nih.gov/32096678
1306.Rouleau, M., et al. Discordance between testosterone measurement methods in castrated prostate cancer patients. Endocr Connect, 2019. 8: 132.
https://pubmed.ncbi.nlm.nih.gov/30673630
1307.Morote, J., et al. Serum Testosterone Levels in Prostate Cancer Patients Undergoing Luteinizing Hormone-Releasing Hormone Agonist Therapy. Clin Genitourin Cancer, 2018. 16: e491.
https://pubmed.ncbi.nlm.nih.gov/29198640
1308.Long, M.E., et al. Decreased testosterone recovery after androgen deprivation therapy for prostate cancer. Can J Urol, 2021. 28: 10738.
https://pubmed.ncbi.nlm.nih.gov/34378507
1309.Nascimento, B., et al. Testosterone Recovery Profiles After Cessation of Androgen Deprivation Therapy for Prostate Cancer. J Sex Med, 2019. 16: 872.
https://pubmed.ncbi.nlm.nih.gov/31080102
1310.Beer, T.M., et al. Hepatic effects assessed by review of safety data in enzalutamide castration-resistant prostate cancer (CRPC) trials. Journal of Clinical Oncology, 2018. 36: 199.
https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.199
1311.Yanagisawa, T., et al. Abiraterone acetate versus nonsteroidal antiandrogen with androgen deprivation therapy for high-risk metastatic hormone-sensitive prostate cancer. Prostate, 2022. 82: 3.
https://pubmed.ncbi.nlm.nih.gov/34559410
1312.Daniell, H.W. Osteoporosis due to androgen deprivation therapy in men with prostate cancer. Urology, 2001. 58: 101.
https://pubmed.ncbi.nlm.nih.gov/11502461
1313.Beer, T.M., et al. The prognostic value of hemoglobin change after initiating androgen-deprivation therapy for newly diagnosed metastatic prostate cancer: A multivariate analysis of Southwest Oncology Group Study 8894. Cancer, 2006. 107: 489.
https://pubmed.ncbi.nlm.nih.gov/16804926
1314.Ebbinge, M., et al. Clinical and prognostic significance of changes in haemoglobin concentration during 1 year of androgen-deprivation therapy for hormone-naive bone-metastatic prostate cancer. BJU Int, 2018. 122: 583.
https://pubmed.ncbi.nlm.nih.gov/29611275
1315.Sini, C., et al. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother Oncol, 2016. 118: 79.
https://pubmed.ncbi.nlm.nih.gov/26702990
1316.Turner, P.G., et al. Toxicity and Efficacy of Concurrent Androgen Deprivation Therapy, Pelvic Radiotherapy, and Radium-223 in Patients with De Novo Metastatic Hormone-Sensitive Prostate Cancer. Clin Cancer Res, 2021. 27: 4549.
https://pubmed.ncbi.nlm.nih.gov/34187853
1317.Iacovelli, R., et al. The Cardiovascular Toxicity of Abiraterone and Enzalutamide in Prostate Cancer. Clin Genitourin Cancer, 2018. 16: e645.
https://pubmed.ncbi.nlm.nih.gov/29339044
1318.Rizzo, A., et al. Risk of cardiovascular toxicities and hypertension in nonmetastatic castration-resistant prostate cancer patients treated with novel hormonal agents: a systematic review and meta-analysis. Expert Opin Drug Metab Toxicol, 2021. 17: 1237.
https://pubmed.ncbi.nlm.nih.gov/34407702
1319.Gong, J., et al. Reduced Cardiorespiratory Fitness and Increased Cardiovascular Mortality After Prolonged Androgen Deprivation Therapy for Prostate Cancer. JACC CardioOncol, 2020. 2: 553.
https://pubmed.ncbi.nlm.nih.gov/34396266
1320.Lopes, R.D., et al. Cardiovascular Safety of Degarelix Versus Leuprolide in Patients With Prostate Cancer: The Primary Results of the PRONOUNCE Randomized Trial. Circulation, 2021. 144: 1295.
https://pubmed.ncbi.nlm.nih.gov/34459214
1321.Attard, G., et al. Assessment of the Safety of Glucocorticoid Regimens in Combination With Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer: A Randomized, Open-label Phase 2 Study. JAMA Oncol, 2019. 5: 1159.
https://pubmed.ncbi.nlm.nih.gov/31246234
1322.James, N., et al. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer. Health Technol Assess, 2016. 20: 1.
https://pubmed.ncbi.nlm.nih.gov/27434595
1323.Ng, H.S., et al. Development of comorbidities in men with prostate cancer treated with androgen deprivation therapy: an Australian population-based cohort study. Prostate Cancer Prostatic Dis, 2018. 21: 403.
https://pubmed.ncbi.nlm.nih.gov/29720722
1324.Kanis, J.A., et al. Case finding for the management of osteoporosis with FRAX--assessment and intervention thresholds for the UK. Osteoporos Int, 2008. 19: 1395.
https://pubmed.ncbi.nlm.nih.gov/18751937
1325.Cianferotti, L., et al. The prevention of fragility fractures in patients with non-metastatic prostate cancer: a position statement by the international osteoporosis foundation. Oncotarget, 2017. 8: 75646.
https://pubmed.ncbi.nlm.nih.gov/29088899
1326.Hamdy, R.C., et al. Algorithm for the management of osteoporosis. South Med J, 2010. 103: 1009.
https://pubmed.ncbi.nlm.nih.gov/20818296
1327.Higano, C.S. Bone loss and the evolving role of bisphosphonate therapy in prostate cancer. Urol Oncol, 2003. 21: 392.
https://pubmed.ncbi.nlm.nih.gov/14670551
1328.Sharma, A., et al. A prospective longitudinal study to evaluate bone health, implication of FRAX tool and impact on quality of life (FACT-P) in advanced prostate cancer patients. Am J Clin Exp Urol, 2021. 9: 211.
https://pubmed.ncbi.nlm.nih.gov/34327260
1329.Edmunds, K., et al. Incidence of the adverse effects of androgen deprivation therapy for prostate cancer: a systematic literature review. Support Care Cancer, 2020. 28: 2079.
https://pubmed.ncbi.nlm.nih.gov/31912360
1330.Edmunds, K., et al. The role of exercise in the management of adverse effects of androgen deprivation therapy for prostate cancer: a rapid review. Support Care Cancer, 2020. 28: 5661.
https://pubmed.ncbi.nlm.nih.gov/32699997
1331.Thomas, H.R., et al. Association Between Androgen Deprivation Therapy and Patient-reported Depression in Men With Recurrent Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 313.
https://pubmed.ncbi.nlm.nih.gov/29866496
1332.Hoogland, A.I., et al. Systemic inflammation and symptomatology in patients with prostate cancer treated with androgen deprivation therapy: Preliminary findings. Cancer, 2021. 127: 1476.
https://pubmed.ncbi.nlm.nih.gov/33378113
1333.Gonzalez, B.D., et al. Course and Predictors of Cognitive Function in Patients With Prostate Cancer Receiving Androgen-Deprivation Therapy: A Controlled Comparison. J Clin Oncol, 2015. 33: 2021.
https://pubmed.ncbi.nlm.nih.gov/25964245
1334.Duthie, C.J., et al. Maintenance of sexual activity following androgen deprivation in males. Crit Rev Oncol Hematol, 2020. 153: 103064.
https://pubmed.ncbi.nlm.nih.gov/32712517
1336.Bryce, A.H., et al. Patterns of Cancer Progression of Metastatic Hormone-sensitive Prostate Cancer in the ECOG3805 CHAARTED Trial. Eur Urol Oncol, 2020. 3: 717.
https://pubmed.ncbi.nlm.nih.gov/32807727
1337.Padhani, A.R., et al. Rationale for Modernising Imaging in Advanced Prostate Cancer. Eur Urol Focus, 2017. 3: 223.
https://pubmed.ncbi.nlm.nih.gov/28753774
1338.Lecouvet, F.E., et al. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer, 2014. 50: 2519.
https://pubmed.ncbi.nlm.nih.gov/25139492
1339.Ulmert, D., et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol, 2012. 62: 78.
https://pubmed.ncbi.nlm.nih.gov/22306323
1340.Padhani, A.R., et al. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur Urol, 2017. 71: 81.
https://pubmed.ncbi.nlm.nih.gov/27317091
1341.Trabulsi, E.J., et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline. J Clin Oncol, 2020. 38: 1963.
https://pubmed.ncbi.nlm.nih.gov/31940221
1342.Bourke, L., et al. Survivorship and improving quality of life in men with prostate cancer. Eur Urol, 2015. 68: 374.
https://pubmed.ncbi.nlm.nih.gov/25941049
1343.Prashar, J., et al. Supportive care needs of men with prostate cancer: A systematic review update. Eur J Cancer Care (Engl), 2022. 31: e13541.
https://pubmed.ncbi.nlm.nih.gov/35038783
1344.Resnick, M.J., et al. Prostate cancer survivorship care guideline: American Society of Clinical Oncology Clinical Practice Guideline endorsement. J Clin Oncol, 2015. 33: 1078.
https://pubmed.ncbi.nlm.nih.gov/25667275
1345.Yiannopoulou, K.G., et al. Cognitive and Psychological Impacts of Different Treatment Options for Prostate Cancer: A Critical Analysis. Curr Urol, 2020. 14: 169.
https://pubmed.ncbi.nlm.nih.gov/33488334
1346.Venderbos, L.D.F., et al. Europa Uomo Patient Reported Outcome Study (EUPROMS): Descriptive Statistics of a Prostate Cancer Survey from Patients for Patients. Eur Urol Focus, 2021. 7: 987.
https://pubmed.ncbi.nlm.nih.gov/33281109
1347.Downing, A., et al. Quality of life in men living with advanced and localised prostate cancer in the UK: a population-based study. Lancet Oncol, 2019. 20: 436.
https://pubmed.ncbi.nlm.nih.gov/30713036
1348.Luckenbaugh, A.N., et al. Association between Treatment for Localized Prostate Cancer and Mental Health Outcomes. J Urol, 2022. 207: 1029.
https://pubmed.ncbi.nlm.nih.gov/34978488
1349.Thompson, D., et al. Long-term Health-related Quality of Life in Patients on Active Surveillance for Prostate Cancer: A Systematic Review. Eur Urol Oncol, 2023. 6: 4.
https://pubmed.ncbi.nlm.nih.gov/36156268
1350.Marzouk, K., et al. Long-Term Cancer Specific Anxiety in Men Undergoing Active Surveillance of Prostate Cancer: Findings from a Large Prospective Cohort. J Urol, 2018. 200: 1250.
https://pubmed.ncbi.nlm.nih.gov/29886089
1351.Carlsson, S., et al. Surgery-related complications in 1253 robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University Hospital, Sweden. Urology, 2010. 75: 1092.
https://pubmed.ncbi.nlm.nih.gov/20022085
1352.Ficarra, V., et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol, 2009. 55: 1037.
https://pubmed.ncbi.nlm.nih.gov/19185977
1353.Rabbani, F., et al. Comprehensive standardized report of complications of retropubic and laparoscopic radical prostatectomy. Eur Urol, 2010. 57: 371.
https://pubmed.ncbi.nlm.nih.gov/19945779
1354.Resnick, M.J., et al. Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med, 2013. 368: 436.
https://pubmed.ncbi.nlm.nih.gov/23363497
1355.Parekh, A., et al. Reduced penile size and treatment regret in men with recurrent prostate cancer after surgery, radiotherapy plus androgen deprivation, or radiotherapy alone. Urology, 2013. 81: 130.
https://pubmed.ncbi.nlm.nih.gov/23273077
1356.Msezane, L.P., et al. Bladder neck contracture after robot-assisted laparoscopic radical prostatectomy: evaluation of incidence and risk factors and impact on urinary function. J Endourol, 2008. 22: 377.
https://pubmed.ncbi.nlm.nih.gov/18095861
1357.Haglind, E., et al. Corrigendum re: “Urinary Incontinence and Erectile Dysfunction After Robotic Versus Open Radical Prostatectomy: A Prospective, Controlled, Nonrandomised Trial” [Eur Urol 2015;68:216-25]. Eur Urol, 2017. 72: e81.
https://pubmed.ncbi.nlm.nih.gov/28552613
1358.Park, M.Y., et al. Comparison of biopsy strategies for prostate biopsy according to lesion size and PSA density in MRI-directed biopsy pathway. Abdom Radiol (NY), 2020. 45: 4166.
https://pubmed.ncbi.nlm.nih.gov/32737545
1359.Coughlin, G.D., et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol, 2018. 19: 1051.
https://pubmed.ncbi.nlm.nih.gov/30017351
1360.Alder, R., et al. Incidence of Inguinal Hernia after Radical Prostatectomy: A Systematic Review and Meta-Analysis. J Urol, 2020. 203: 265.
https://pubmed.ncbi.nlm.nih.gov/31039101
1361.Fernando, H., et al. Incidence, Predictive Factors and Preventive Measures for Inguinal Hernia following Robotic and Laparoscopic Radical Prostatectomy: A Systematic Review. J Urol, 2019. 201: 1072.
https://pubmed.ncbi.nlm.nih.gov/30730406
1362.Chiong, E., et al. Port-site hernias occurring after the use of bladeless radially expanding trocars. Urology, 2010. 75: 574.
https://pubmed.ncbi.nlm.nih.gov/19854489
1363.Clinckaert, A., et al. The Prevalence of Lower Limb and Genital Lymphedema after Prostate Cancer Treatment: A Systematic Review. Cancers (Basel), 2022. 14.
https://pubmed.ncbi.nlm.nih.gov/36428759
1364.Donovan, J.L., et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med, 2016. 375: 1425.
https://pubmed.ncbi.nlm.nih.gov/27626365
1365.Barocas, D.A., et al. Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA, 2017. 317: 1126.
https://pubmed.ncbi.nlm.nih.gov/28324093
1366.Wallis, C.J., et al. Second malignancies after radiotherapy for prostate cancer: systematic review and meta-analysis. BMJ, 2016. 352: i851.
https://pubmed.ncbi.nlm.nih.gov/26936410
1367.Movsas, B., et al. Dose-Escalated Radiation Alone or in Combination With Short-Term Total Androgen Suppression for Intermediate-Risk Prostate Cancer: Patient-Reported Outcomes From NRG/Radiation Therapy Oncology Group 0815 Randomized Trial. J Clin Oncol, 2023. 41: 3217.
https://pubmed.ncbi.nlm.nih.gov/37104723
1368.Budaus, L., et al. Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol, 2012. 61: 112.
https://pubmed.ncbi.nlm.nih.gov/22001105
1369.Donovan, K.A., et al. Psychological effects of androgen-deprivation therapy on men with prostate cancer and their partners. Cancer, 2015. 121: 4286.
https://pubmed.ncbi.nlm.nih.gov/26372364
1370.Nguyen, P.L., et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol, 2015. 67: 825.
https://pubmed.ncbi.nlm.nih.gov/25097095
1371.Cherrier, M.M., et al. Cognitive and mood changes in men undergoing intermittent combined androgen blockade for non-metastatic prostate cancer. Psychooncology, 2009. 18: 237.
https://pubmed.ncbi.nlm.nih.gov/18636420
1372.Alibhai, S.M., et al. Effects of long-term androgen deprivation therapy on cognitive function over 36 months in men with prostate cancer. Cancer, 2017. 123: 237.
https://pubmed.ncbi.nlm.nih.gov/27583806
1373.Herr, H.W., et al. Quality of life of asymptomatic men with nonmetastatic prostate cancer on androgen deprivation therapy. J Urol, 2000. 163: 1743.
https://pubmed.ncbi.nlm.nih.gov/10799173
1374.Potosky, A.L., et al. Quality-of-life outcomes after primary androgen deprivation therapy: results from the Prostate Cancer Outcomes Study. J Clin Oncol, 2001. 19: 3750.
https://pubmed.ncbi.nlm.nih.gov/11533098
1375.Walker, L.M., et al. Luteinizing hormone--releasing hormone agonists: a quick reference for prevalence rates of potential adverse effects. Clin Genitourin Cancer, 2013. 11: 375.
https://pubmed.ncbi.nlm.nih.gov/23891497
1376.Elliott, S., et al. Androgen deprivation therapy for prostate cancer: recommendations to improve patient and partner quality of life. J Sex Med, 2010. 7: 2996.
https://pubmed.ncbi.nlm.nih.gov/20626600
1377.Iversen, P., et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol, 2000. 164: 1579.
https://pubmed.ncbi.nlm.nih.gov/11025708
1378.Iversen, P., et al. Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function. BJU Int, 2001. 87: 47.
https://pubmed.ncbi.nlm.nih.gov/11121992
1379.Boccardo, F., et al. Bicalutamide monotherapy versus flutamide plus goserelin in prostate cancer patients: results of an Italian Prostate Cancer Project study. J Clin Oncol, 1999. 17: 2027.
https://pubmed.ncbi.nlm.nih.gov/10561254
1380.Irani, J., et al. Efficacy of venlafaxine, medroxyprogesterone acetate, and cyproterone acetate for the treatment of vasomotor hot flushes in men taking gonadotropin-releasing hormone analogues for prostate cancer: a double-blind, randomised trial. Lancet Oncol, 2010. 11: 147.
https://pubmed.ncbi.nlm.nih.gov/19963436
1381.Russell, N., et al. Effects of oestradiol treatment on hot flushes in men undergoing androgen deprivation therapy for prostate cancer: a randomised placebo-controlled trial. Eur J Endocrinol, 2022. 187: 617.
https://pubmed.ncbi.nlm.nih.gov/36806623
1382.Sloan, J.A., et al. Methodologic lessons learned from hot flash studies. J Clin Oncol, 2001. 19: 4280.
https://pubmed.ncbi.nlm.nih.gov/11731510
1383.Moraska, A.R., et al. Gabapentin for the management of hot flashes in prostate cancer survivors: a longitudinal continuation Study-NCCTG Trial N00CB. J Support Oncol, 2010. 8: 128.
https://pubmed.ncbi.nlm.nih.gov/20552926
1384.Frisk, J., et al. Two modes of acupuncture as a treatment for hot flushes in men with prostate cancer--a prospective multicenter study with long-term follow-up. Eur Urol, 2009. 55: 156.
https://pubmed.ncbi.nlm.nih.gov/18294761
1385.Smith, M.R., et al. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol, 2006. 175: 136.
https://pubmed.ncbi.nlm.nih.gov/16406890
1386.Cree, M., et al. Mortality and institutionalization following hip fracture. J Am Geriatr Soc, 2000. 48: 283.
https://pubmed.ncbi.nlm.nih.gov/10733054
1387.Compston, J.E., et al. Osteoporosis. Lancet, 2019. 393: 364.
https://pubmed.ncbi.nlm.nih.gov/30696576
1388.Saylor, P.J., et al. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol, 2009. 181: 1998.
https://pubmed.ncbi.nlm.nih.gov/19286225
1389.Gonnelli, S., et al. Obesity and fracture risk. Clin Cases Miner Bone Metab, 2014. 11: 9.
https://pubmed.ncbi.nlm.nih.gov/25002873
1390.Myint, Z.W., et al. Evaluation of Fall and Fracture Risk Among Men With Prostate Cancer Treated With Androgen Receptor Inhibitors: A Systematic Review and Meta-analysis. JAMA Netw Open, 2020. 3: e2025826.
https://pubmed.ncbi.nlm.nih.gov/33201234
1391.Sieber, P.R., et al. Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. J Urol, 2004. 171: 2272.
https://pubmed.ncbi.nlm.nih.gov/15126801
1392.Wadhwa, V.K., et al. Bicalutamide monotherapy preserves bone mineral density, muscle strength and has significant health-related quality of life benefits for osteoporotic men with prostate cancer. BJU Int, 2011. 107: 1923.
https://pubmed.ncbi.nlm.nih.gov/20950306
1393.Higano, C., et al. Bone mineral density in patients with prostate cancer without bone metastases treated with intermittent androgen suppression. Urology, 2004. 64: 1182.
https://pubmed.ncbi.nlm.nih.gov/15596194
1394.Nobes, J.P., et al. A prospective, randomized pilot study evaluating the effects of metformin and lifestyle intervention on patients with prostate cancer receiving androgen deprivation therapy. BJU Int, 2012. 109: 1495.
https://pubmed.ncbi.nlm.nih.gov/21933330
1395.Grundy, S.M., et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 2005. 112: 2735.
https://pubmed.ncbi.nlm.nih.gov/16157765
1396.Braga-Basaria, M., et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol, 2006. 24: 3979.
https://pubmed.ncbi.nlm.nih.gov/16921050
1397.Cheung, A.S., et al. Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer, 2014. 21: R371.
https://pubmed.ncbi.nlm.nih.gov/25056176
1398.Smith, M.R., et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol, 2012. 30: 3271.
https://pubmed.ncbi.nlm.nih.gov/22649143
1399.Lu-Yao, G., et al. Changing patterns in competing causes of death in men with prostate cancer: a population based study. J Urol, 2004. 171: 2285.
https://pubmed.ncbi.nlm.nih.gov/15126804
1400.Saigal, C.S., et al. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer, 2007. 110: 1493.
https://pubmed.ncbi.nlm.nih.gov/17657815
1401.Keating, N.L., et al. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst, 2010. 102: 39.
https://pubmed.ncbi.nlm.nih.gov/19996060
1402.Efstathiou, J.A., et al. Cardiovascular mortality and duration of androgen deprivation for locally advanced prostate cancer: analysis of RTOG 92-02. Eur Urol, 2008. 54: 816.
https://pubmed.ncbi.nlm.nih.gov/18243498
1403.Jones, C.U., et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med, 2011. 365: 107.
https://pubmed.ncbi.nlm.nih.gov/21751904
1404.Butler, S.S., et al. Risk of cardiovascular mortality with androgen deprivation therapy in prostate cancer: A secondary analysis of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Randomized Controlled Trial. Cancer, 2021. 127: 2213.
https://pubmed.ncbi.nlm.nih.gov/33905530
1405.Nguyen, P.L., et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA, 2011. 306: 2359.
https://pubmed.ncbi.nlm.nih.gov/22147380
1406.Bourke, L., et al. Endocrine therapy in prostate cancer: time for reappraisal of risks, benefits and cost-effectiveness? Br J Cancer, 2013. 108: 9.
https://pubmed.ncbi.nlm.nih.gov/23321508
1407.Blankfield, R.P. Androgen deprivation therapy for prostate cancer and cardiovascular death. JAMA, 2012. 307: 1252; author reply 1252.
https://pubmed.ncbi.nlm.nih.gov/22453560
1408.Bosco, C., et al. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol, 2015. 68: 386.
https://pubmed.ncbi.nlm.nih.gov/25484142
1409.Swaby, J., et al. Association of Androgen Deprivation Therapy with Metabolic Disease in Prostate Cancer Patients: An Updated Meta-Analysis. Clin Genitourin Cancer, 2023. 21: e182.
https://pubmed.ncbi.nlm.nih.gov/36621463
1410.Nguyen, P.L., et al. Influence of androgen deprivation therapy on all-cause mortality in men with high-risk prostate cancer and a history of congestive heart failure or myocardial infarction. Int J Radiat Oncol Biol Phys, 2012. 82: 1411.
https://pubmed.ncbi.nlm.nih.gov/21708431
1411.Tsai, H.K., et al. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J Natl Cancer Inst, 2007. 99: 1516.
https://pubmed.ncbi.nlm.nih.gov/17925537
1412.Tisseverasinghe, S., et al. Should Prostate Cancer Patients With History of Cardiovascular Events Be Preferentially Treated With Luteinizing Hormone-Releasing Hormone Antagonists? J Clin Oncol, 2022. 40: 4173.
https://pubmed.ncbi.nlm.nih.gov/35862876
1413.Gilbert, S.E., et al. Effects of a lifestyle intervention on endothelial function in men on long-term androgen deprivation therapy for prostate cancer. Br J Cancer, 2016. 114: 401.
https://pubmed.ncbi.nlm.nih.gov/26766737
1414.Cao, B., et al. Adverse Events and Androgen Receptor Signaling Inhibitors in the Treatment of Prostate Cancer: A Systematic Review and Multivariate Network Meta-analysis. Eur Urol Oncol, 2023. 6: 237.
https://pubmed.ncbi.nlm.nih.gov/36682938
1415.Wilding, S., et al. Cancer-related symptoms, mental well-being, and psychological distress in men diagnosed with prostate cancer treated with androgen deprivation therapy. Qual Life Res, 2019. 28: 2741.
https://pubmed.ncbi.nlm.nih.gov/31115843
1416.Bourke, L., et al. Exercise for Men with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2016. 69: 693.
https://pubmed.ncbi.nlm.nih.gov/26632144
1417.Meng, F., et al. Stroke related to androgen deprivation therapy for prostate cancer: a meta-analysis and systematic review. BMC Cancer, 2016. 16: 180.
https://pubmed.ncbi.nlm.nih.gov/26940836
1418.Nead, K.T., et al. Androgen Deprivation Therapy and Future Alzheimer’s Disease Risk. J Clin Oncol, 2016. 34: 566.
https://pubmed.ncbi.nlm.nih.gov/26644522
1419.Delmas, P.D. Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic bone diseases. J Clin Densitom, 2008. 11: 325.
https://pubmed.ncbi.nlm.nih.gov/18375161
1420.Cummings, S.R., et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med, 2009. 361: 756.
https://pubmed.ncbi.nlm.nih.gov/19671655
1421.Smith, M.R., et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med, 2009. 361: 745.
https://pubmed.ncbi.nlm.nih.gov/19671656
1422.Gupta, M., et al., Bisphosphonate Related Jaw Osteonecrosis, in StatPearls. 2023, StatPearls Publishing
https://pubmed.ncbi.nlm.nih.gov/30521192
1423.Boquete-Castro, A., et al. Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. Clin Oral Implants Res, 2016. 27: 367.
https://pubmed.ncbi.nlm.nih.gov/25639776
1424.Bennett, D., et al. Factors influencing job loss and early retirement in working men with prostate cancer-findings from the population-based Life After Prostate Cancer Diagnosis (LAPCD) study. J Cancer Surviv, 2018. 12: 669.
https://pubmed.ncbi.nlm.nih.gov/30058009
1425.Roberts, C., et al. The Experiences and Unmet Supportive Care Needs of Partners of Men Diagnosed With Prostate Cancer: A Meta-aggregation Systematic Review. Clin Neuropharmacol, 2022.
https://pubmed.ncbi.nlm.nih.gov/36480350
1426.James, C., et al. Fear of cancer recurrence and PSA anxiety in patients with prostate cancer: a systematic review. Support Care Cancer, 2022. 30: 5577.
https://pubmed.ncbi.nlm.nih.gov/35106656
1427.Mundle, R., et al. The effectiveness of psychological intervention for depression, anxiety, and distress in prostate cancer: a systematic review of literature. Prostate Cancer Prostatic Dis, 2021. 24: 674.
https://pubmed.ncbi.nlm.nih.gov/33750905
1428.Borji, M., et al. Positive Effects of Cognitive Behavioral Therapy on Depression, Anxiety and Stress of Family Caregivers of Patients with Prostate Cancer: A Randomized Clinical Trial. Asian Pac J Cancer Prev, 2017. 18: 3207.
https://pubmed.ncbi.nlm.nih.gov/29281868
1429.Bourke, L., et al. A qualitative study evaluating experiences of a lifestyle intervention in men with prostate cancer undergoing androgen suppression therapy. Trials, 2012. 13: 208.
https://pubmed.ncbi.nlm.nih.gov/23151126
1430.Berruti, A., et al. Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. J Urol, 2000. 164: 1248.
https://pubmed.ncbi.nlm.nih.gov/10992374
1431.Carlin, B.I., et al. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer, 2000. 88: 2989.
https://pubmed.ncbi.nlm.nih.gov/10898342
1432.Smith, D.P., et al. Quality of life three years after diagnosis of localised prostate cancer: population based cohort study. BMJ, 2009. 339: b4817.
https://pubmed.ncbi.nlm.nih.gov/19945997
1433.Taylor, K.L., et al. Long-term disease-specific functioning among prostate cancer survivors and noncancer controls in the prostate, lung, colorectal, and ovarian cancer screening trial. J Clin Oncol, 2012. 30: 2768.
https://pubmed.ncbi.nlm.nih.gov/22734029
1434.Bhanvadia, S.K., et al. Financial Toxicity Among Patients with Prostate, Bladder, and Kidney Cancer: A Systematic Review and Call to Action. Eur Urol Oncol, 2021. 4: 396.
https://pubmed.ncbi.nlm.nih.gov/33820747
1435.Ratti, M.M., et al. Standardising the Assessment of Patient-reported Outcome Measures in Localised Prostate Cancer. A Systematic Review. Eur Urol Oncol, 2022. 5: 153.
https://pubmed.ncbi.nlm.nih.gov/34785188
1436.Groenvold, M., et al. Validation of the EORTC QLQ-C30 quality of life questionnaire through combined qualitative and quantitative assessment of patient-observer agreement. J Clin Epidemiol, 1997. 50: 441.
https://pubmed.ncbi.nlm.nih.gov/9179103
1437.van Andel, G., et al. An international field study of the EORTC QLQ-PR25: a questionnaire for assessing the health-related quality of life of patients with prostate cancer. Eur J Cancer, 2008. 44: 2418.
https://pubmed.ncbi.nlm.nih.gov/18774706
1438.Cella, D.F., et al. The Functional Assessment of Cancer Therapy scale: development and validation of the general measure. J Clin Oncol, 1993. 11: 570.
https://pubmed.ncbi.nlm.nih.gov/8445433
1439.Esper, P., et al. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology, 1997. 50: 920.
https://pubmed.ncbi.nlm.nih.gov/9426724
1440.Wei, J.T., et al. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology, 2000. 56: 899.
https://pubmed.ncbi.nlm.nih.gov/11113727
1441.Szymanski, K.M., et al. Development and validation of an abbreviated version of the expanded prostate cancer index composite instrument for measuring health-related quality of life among prostate cancer survivors. Urology, 2010. 76: 1245.
https://pubmed.ncbi.nlm.nih.gov/20350762
1442.Litwin, M.S., et al. The UCLA Prostate Cancer Index: development, reliability, and validity of a health-related quality of life measure. Med Care, 1998. 36: 1002.
https://pubmed.ncbi.nlm.nih.gov/9674618
1443.Giesler, R.B., et al. Assessing quality of life in men with clinically localized prostate cancer: development of a new instrument for use in multiple settings. Qual Life Res, 2000. 9: 645.
https://pubmed.ncbi.nlm.nih.gov/11236855
1444.Lane, J.A., et al. Functional and quality of life outcomes of localised prostate cancer treatments (Prostate Testing for Cancer and Treatment [ProtecT] study). BJU Int, 2022. 130: 370.
https://pubmed.ncbi.nlm.nih.gov/35373443
1445.Aksnessaether, B.Y., et al. Second Cancers in Patients With Locally Advanced Prostate Cancer Randomized to Lifelong Endocrine Treatment With or Without Radical Radiation Therapy: Long-Term Follow-up of the Scandinavian Prostate Cancer Group-7 Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 706.
https://pubmed.ncbi.nlm.nih.gov/31786279
1446.Fransson, P., et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncol, 2021. 22: 235.
https://pubmed.ncbi.nlm.nih.gov/33444529
1447.Hoffman, K.E., et al. Patient-Reported Outcomes Through 5 Years for Active Surveillance, Surgery, Brachytherapy, or External Beam Radiation With or Without Androgen Deprivation Therapy for Localized Prostate Cancer. JAMA, 2020. 323: 149.
https://pubmed.ncbi.nlm.nih.gov/31935027
1448.Lantz, A., et al. Functional and Oncological Outcomes After Open Versus Robot-assisted Laparoscopic Radical Prostatectomy for Localised Prostate Cancer: 8-Year Follow-up. Eur Urol, 2021. 80: 650.
https://pubmed.ncbi.nlm.nih.gov/34538508
1449.Hunt, A.A., et al. Risk of erectile dysfunction after modern radiotherapy for intact prostate cancer. Prostate Cancer Prostatic Dis, 2021. 24: 128.
https://pubmed.ncbi.nlm.nih.gov/32647352
1450.Giesler, R.B., et al. Improving the quality of life of patients with prostate carcinoma: a randomized trial testing the efficacy of a nurse-driven intervention. Cancer, 2005. 104: 752.
https://pubmed.ncbi.nlm.nih.gov/15986401
1451.Schumacher, O., et al. Effects of Exercise During Radiation Therapy on Physical Function and Treatment-Related Side Effects in Men With Prostate Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys, 2021. 111: 716.
https://pubmed.ncbi.nlm.nih.gov/34246737
1452.Kang, D.W., et al. Effects of Exercise on Cardiorespiratory Fitness and Biochemical Progression in Men With Localized Prostate Cancer Under Active Surveillance: The ERASE Randomized Clinical Trial. JAMA Oncol, 2021. 7: 1487.
https://pubmed.ncbi.nlm.nih.gov/34410322
1453.Anderson, C.A., et al. Conservative management for postprostatectomy urinary incontinence. Cochrane Database Syst Rev, 2015. 1: CD001843.
https://pubmed.ncbi.nlm.nih.gov/25602133
1454.Chen, Y.C., et al. Surgical treatment for urinary incontinence after prostatectomy: A meta-analysis and systematic review. PLoS One, 2017. 12: e0130867.
https://pubmed.ncbi.nlm.nih.gov/28467435
1455.Crivellaro, S., et al. Systematic review of surgical treatment of post radical prostatectomy stress urinary incontinence. Neurourol Urodyn, 2016. 35: 875.
https://pubmed.ncbi.nlm.nih.gov/26397171
1456.Cornu, J.-N., et al. , EAU Guidelines on Non-neurogenic Male LUTS, E.G. Office, Editor. 2023, EAU Guidelines Office: EAU Guidelines published at the 38th EAU Annual Congress, Milan.
https://uroweb.org/guidelines/management-of-non-neurogenic-male-luts
1457.Skolarus, T.A., et al. Androgen-deprivation-associated bone disease. Curr Opin Urol, 2014. 24: 601.
https://pubmed.ncbi.nlm.nih.gov/25144145
1458.Patel, H.R., et al. Effects of tadalafil treatment after bilateral nerve-sparing radical prostatectomy: quality of life, psychosocial outcomes, and treatment satisfaction results from a randomized, placebo-controlled phase IV study. BMC Urol, 2015. 15: 31.
https://pubmed.ncbi.nlm.nih.gov/25879460
1459.Philippou, Y.A., et al. Penile rehabilitation for postprostatectomy erectile dysfunction. Cochrane Database Syst Rev, 2018. 10: CD012414.
https://pubmed.ncbi.nlm.nih.gov/30352488
1460.Salonia, A., et al., EAU Guidelines on Sexual and Reproductive Health. Edn. presented at the 38th Annual Congress, Milan T.N. EAU Guidelines Office, Editor. 2023: Arnhem, The Netherlands.
https://uroweb.org/guidelines/sexual-and-reproductive-health
1461.Schubach, K., et al. Experiences of sexual well-being interventions in males affected by genitourinary cancers and their partners: an integrative systematic review. Support Care Cancer, 2023. 31: 265.
https://pubmed.ncbi.nlm.nih.gov/37058163
1462.Dieperink, K.B., et al. The effects of multidisciplinary rehabilitation: RePCa-a randomised study among primary prostate cancer patients. Br J Cancer, 2013. 109: 3005.
https://pubmed.ncbi.nlm.nih.gov/24169342
1463.Dieperink, K.B., et al. Long-term follow-up 3 years after a randomized rehabilitation study among radiated prostate cancer survivors. J Cancer Surviv, 2021. 15: 668.
https://pubmed.ncbi.nlm.nih.gov/33079329
1464.Galvao, D.A., et al. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol, 2010. 28: 340.
https://pubmed.ncbi.nlm.nih.gov/19949016
1465.Bourke, L., et al. Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: a randomised controlled trial. Eur Urol, 2014. 65: 865.
https://pubmed.ncbi.nlm.nih.gov/24119318
1466.Cella, D., et al. Estimating clinically meaningful changes for the Functional Assessment of Cancer Therapy--Prostate: results from a clinical trial of patients with metastatic hormone-refractory prostate cancer. Value Health, 2009. 12: 124.
https://pubmed.ncbi.nlm.nih.gov/18647260
1467.Galvao, D.A., et al. Psychological distress in men with prostate cancer undertaking androgen deprivation therapy: modifying effects of exercise from a year-long randomized controlled trial. Prostate Cancer Prostatic Dis, 2021. 24: 758.
https://pubmed.ncbi.nlm.nih.gov/33558661
1468.Lopez, P., et al. Resistance Exercise Dosage in Men with Prostate Cancer: Systematic Review, Meta-analysis, and Meta-regression. Med Sci Sports Exerc, 2021. 53: 459.
https://pubmed.ncbi.nlm.nih.gov/32890199
1469.Shao, W., et al. The effects of exercise on body composition of prostate cancer patients receiving androgen deprivation therapy: An update systematic review and meta-analysis. PLoS One, 2022. 17: e0263918.
https://pubmed.ncbi.nlm.nih.gov/35167609
1470.Ussing, A., et al. Supervised exercise therapy compared with no exercise therapy to reverse debilitating effects of androgen deprivation therapy in patients with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2022. 25: 491.
https://pubmed.ncbi.nlm.nih.gov/34489536
1471.Toohey, K., et al. Exercise Adherence in Men with Prostate Cancer Undergoing Androgen Deprivation Therapy: A Systematic Review and Meta-Analysis. Cancers (Basel), 2022. 14.
https://pubmed.ncbi.nlm.nih.gov/35626058
1472.Nair-Shalliker, V., et al. Post-treatment levels of plasma 25- and 1,25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Sci Rep, 2020. 10: 7736.
https://pubmed.ncbi.nlm.nih.gov/32385370
1473.Grant, W.B. Review of Recent Advances in Understanding the Role of Vitamin D in Reducing Cancer Risk: Breast, Colorectal, Prostate, and Overall Cancer. Anticancer Res, 2020. 40: 491.
https://pubmed.ncbi.nlm.nih.gov/31892604
1474.Coleman, R., et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann Oncol, 2020. 31: 1650.
https://pubmed.ncbi.nlm.nih.gov/32801018
1475.Shapiro, C.L., et al. Management of Osteoporosis in Survivors of Adult Cancers With Nonmetastatic Disease: ASCO Clinical Practice Guideline. J Clin Oncol, 2019. 37: 2916.
https://pubmed.ncbi.nlm.nih.gov/31532726
1476.Briot, K., et al. French recommendations for osteoporosis prevention and treatment in patients with prostate cancer treated by androgen deprivation. Joint Bone Spine, 2019. 86: 21.
https://pubmed.ncbi.nlm.nih.gov/30287350
1477.Saylor, P.J., et al. Bone Health and Bone-Targeted Therapies for Prostate Cancer: ASCO Endorsement of a Cancer Care Ontario Guideline. J Clin Oncol, 2020. 38: 1736.
https://pubmed.ncbi.nlm.nih.gov/31990618
1478.Brown, J.E., et al. Guidance for the assessment and management of prostate cancer treatment-induced bone loss. A consensus position statement from an expert group. J Bone Oncol, 2020. 25: 100311.
https://pubmed.ncbi.nlm.nih.gov/32995252
1479.Smith, M.R., et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol, 2003. 169: 2008.
https://pubmed.ncbi.nlm.nih.gov/12771706
1480.Michaelson, M.D., et al. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol, 2007. 25: 1038.
https://pubmed.ncbi.nlm.nih.gov/17369566
1481.Migliorati, C.A., et al. Bisphosphonate-associated osteonecrosis: a long-term complication of bisphosphonate treatment. Lancet Oncol, 2006. 7: 508.
https://pubmed.ncbi.nlm.nih.gov/16750501
1482.Wadhwa, V.K., et al. Frequency of zoledronic acid to prevent further bone loss in osteoporotic patients undergoing androgen deprivation therapy for prostate cancer. BJU Int, 2010. 105: 1082.
https://pubmed.ncbi.nlm.nih.gov/19912210
1483.Clemons, M., et al. A randomised trial of 4- versus 12-weekly administration of bone-targeted agents in patients with bone metastases from breast or castration-resistant prostate cancer. Eur J Cancer, 2021. 142: 132.
https://pubmed.ncbi.nlm.nih.gov/33023785
1484.Chen, R.C., et al. Association Between Choice of Radical Prostatectomy, External Beam Radiotherapy, Brachytherapy, or Active Surveillance and Patient-Reported Quality of Life Among Men With Localized Prostate Cancer. JAMA, 2017. 317: 1141.
https://pubmed.ncbi.nlm.nih.gov/28324092
1485.Sanda, M.G., et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J Urol, 2018. 199: 683.
https://pubmed.ncbi.nlm.nih.gov/29203269
1486.Makarov, D.V., et al. AUA White Paper on Implementation of Shared Decision Making into Urological Practice. Urol Pract, 2016. 3: 355.
https://pubmed.ncbi.nlm.nih.gov/37592546
1487.Stiggelbout, A.M., et al. Shared decision making: Concepts, evidence, and practice. Patient Educ Couns, 2015. 98: 1172.
https://pubmed.ncbi.nlm.nih.gov/26215573
1488.Violette, P.D., et al. Decision aids for localized prostate cancer treatment choice: Systematic review and meta-analysis. CA Cancer J Clin, 2015. 65: 239.
https://pubmed.ncbi.nlm.nih.gov/25772796
1489.Ramsey, S.D., et al. Unanticipated and underappreciated outcomes during management of local stage prostate cancer: a prospective survey. J Urol, 2010. 184: 120.
https://pubmed.ncbi.nlm.nih.gov/20478590
1490.Connolly, T., et al. Regret in Decision Making. Current Directions in Psychological Science, 2016. 11: 212.
https://journals.sagepub.com/doi/10.1111/1467-8721.00203
1491.Maguire, R., et al. Expecting the worst? The relationship between retrospective and prospective appraisals of illness on quality of life in prostate cancer survivors. Psychooncology, 2018. 27: 1237.
https://pubmed.ncbi.nlm.nih.gov/29430755
1492.Schroeck, F.R., et al. Satisfaction and regret after open retropubic or robot-assisted laparoscopic radical prostatectomy. Eur Urol, 2008. 54: 785.
https://pubmed.ncbi.nlm.nih.gov/18585849
1493.Steentjes, L., et al. Factors associated with current and severe physical side-effects after prostate cancer treatment: What men report. Eur J Cancer Care (Engl), 2018. 27.
https://pubmed.ncbi.nlm.nih.gov/27726215
1494.Orom, H., et al. What Is a “Good” Treatment Decision? Decisional Control, Knowledge, Treatment Decision Making, and Quality of Life in Men with Clinically Localized Prostate Cancer. Med Decis Making, 2016. 36: 714.
https://pubmed.ncbi.nlm.nih.gov/26957566
1495.Davison, B.J., et al. Quality of life, sexual function and decisional regret at 1 year after surgical treatment for localized prostate cancer. BJU Int, 2007. 100: 780.
https://pubmed.ncbi.nlm.nih.gov/17578466
1496.Wilding, S., et al. Decision regret in men living with and beyond nonmetastatic prostate cancer in the United Kingdom: A population-based patient-reported outcome study. Psychooncology, 2020. 29: 886.
https://pubmed.ncbi.nlm.nih.gov/32065691
1497.Martinez-Gonzalez, N.A., et al. Shared decision making for men facing prostate cancer treatment: a systematic review of randomized controlled trials. Patient Prefer Adherence, 2019. 13: 1153.
https://pubmed.ncbi.nlm.nih.gov/31413545
1498.Menichetti, J., et al. Quality of life in active surveillance and the associations with decision-making-a literature review. Transl Androl Urol, 2018. 7: 160.
https://pubmed.ncbi.nlm.nih.gov/29594030
1499.Ivlev, I., et al. Prostate Cancer Screening Patient Decision Aids: A Systematic Review and Meta-analysis. Am J Prev Med, 2018. 55: 896.
https://pubmed.ncbi.nlm.nih.gov/30337235
1500.Kinsella, N., et al. A Single Educational Seminar Increases Confidence and Decreases Dropout from Active Surveillance by 5 Years After Diagnosis of Prostate Cancer. Eur Urol Oncol, 2019. 2: 464.
https://pubmed.ncbi.nlm.nih.gov/31277784
1501.Hoffman, R.M., et al. Selecting Active Surveillance: Decision Making Factors for Men with a Low-Risk Prostate Cancer. Med Decis Making, 2019. 39: 962.
https://pubmed.ncbi.nlm.nih.gov/31631745
1502.Berry, D.L., et al. Decision Support with the Personal Patient Profile-Prostate: A Multicenter Randomized Trial. J Urol, 2018. 199: 89.
https://pubmed.ncbi.nlm.nih.gov/28754540
1503.Campagna, J.P., et al. Prostate Cancer Survival Estimates by the General Public Using Unrestricted Internet Searches and Online Nomograms. Eur Urol Focus, 2020. 6: 959.
https://pubmed.ncbi.nlm.nih.gov/30723050
1504.de Freitas, H.M., et al. Patient Preferences for Metastatic Hormone-Sensitive Prostate Cancer Treatments: A Discrete Choice Experiment Among Men in Three European Countries. Adv Ther, 2019. 36: 318.
https://pubmed.ncbi.nlm.nih.gov/30617763
1505.Lorent, M., et al. Meta-analysis of predictive models to assess the clinical validity and utility for patient-centered medical decision making: application to the CAncer of the Prostate Risk Assessment (CAPRA). BMC Med Inform Decis Mak, 2019. 19: 2.
https://pubmed.ncbi.nlm.nih.gov/30616621
1506.Riikonen, J.M., et al. Decision Aids for Prostate Cancer Screening Choice: A Systematic Review and Meta-analysis. JAMA Intern Med, 2019. 179: 1072.
https://pubmed.ncbi.nlm.nih.gov/31233091
1507.Vromans, R.D., et al. Communicative aspects of decision aids for localized prostate cancer treatment - A systematic review. Urol Oncol, 2019. 37: 409.