Guidelines

Prostate Cancer

9. REFERENCES

1.Mottet, N., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol, 2021. 79: 243.

https://pubmed.ncbi.nlm.nih.gov/33172724/

2.Cornford, P., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur Urol, 2021. 79: 263.

https://pubmed.ncbi.nlm.nih.gov/33039206/

3.Guyatt, G.H., et al. What is “quality of evidence” and why is it important to clinicians? BMJ, 2008. 336: 995.

https://pubmed.ncbi.nlm.nih.gov/18456631/

4.Guyatt, G.H., et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008. 336: 924.

https://pubmed.ncbi.nlm.nih.gov/18436948/

5.Phillips, B., et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. Access date December 2022.

https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/

6.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.

https://pubmed.ncbi.nlm.nih.gov/18467413/

7.Culp, M.B., et al. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur Urol, 2020. 77: 38.

https://pubmed.ncbi.nlm.nih.gov/31493960/

8.IARC. WHO. Data visualization tools for exploring the global cancer burden in 2020. Access date December 2022.

https://gco.iarc.fr/today/home

9.Bell, K.J., et al. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer, 2015. 137: 1749.

https://pubmed.ncbi.nlm.nih.gov/25821151/

10.Haas, G.P., et al. The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol, 2008. 15: 3866.

https://pubmed.ncbi.nlm.nih.gov/18304396/

11.Fleshner, K., et al. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat Rev Urol, 2017. 14: 26.

https://pubmed.ncbi.nlm.nih.gov/27995937/

12.Kimura, T., et al. Global Trends of Latent Prostate Cancer in Autopsy Studies. Cancers (Basel), 2021. 13; 359.

https://pubmed.ncbi.nlm.nih.gov/33478075/

13.IARC France All Cancers (excluding non-melanoma skin cancer) Estimated Incidence, Mortality and Prevalence Worldwide in 2012. Access date December 2022.

https://gco.iarc.fr/today/data/pdf/fact-sheets/cancers/cancer-fact-sheets-29.pdf

14.Hemminki, K. Familial risk and familial survival in prostate cancer. World J Urol, 2012. 30: 143.

https://pubmed.ncbi.nlm.nih.gov/22116601/

15.Jansson, K.F., et al. Concordance of tumor differentiation among brothers with prostate cancer. Eur Urol, 2012. 62: 656.

https://pubmed.ncbi.nlm.nih.gov/22386193/

16.Nyame, Y.A., et al. Deconstructing, Addressing, and Eliminating Racial and Ethnic Inequities in Prostate Cancer Care. Eur Urol, 2022. 82: 341.

https://pubmed.ncbi.nlm.nih.gov/35367082/

17.Karami, S., et al. Earlier age at diagnosis: another dimension in cancer disparity? Cancer Detect Prev, 2007. 31: 29.

https://pubmed.ncbi.nlm.nih.gov/17303347/

18.Sanchez-Ortiz, R.F., et al. African-American men with nonpalpable prostate cancer exhibit greater tumor volume than matched white men. Cancer, 2006. 107: 75.

https://pubmed.ncbi.nlm.nih.gov/16736511/

19.Mahal, B.A., et al. Prostate Cancer Racial Disparities: A Systematic Review by the Prostate Cancer Foundation Panel. Eur Urol Oncol, 2022. 5: 18.

https://pubmed.ncbi.nlm.nih.gov/34446369/

20.Randazzo, M., et al. A positive family history as a risk factor for prostate cancer in a population-based study with organised prostate-specific antigen screening: results of the Swiss European Randomised Study of Screening for Prostate Cancer (ERSPC, Aarau). BJU Int, 2016. 117: 576.

https://pubmed.ncbi.nlm.nih.gov/26332304/

21.Beebe-Dimmer, J.L., et al. Risk of Prostate Cancer Associated With Familial and Hereditary Cancer Syndromes. J Clin Oncol, 2020. 38: 1807.

https://pubmed.ncbi.nlm.nih.gov/32208047/

22.Bratt, O., et al. Family History and Probability of Prostate Cancer, Differentiated by Risk Category: A Nationwide Population-Based Study. J Natl Cancer Inst, 2016. 108.

https://pubmed.ncbi.nlm.nih.gov/27400876/

23.Amin Al Olama, A., et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Hum Mol Genet, 2015. 24: 5589.

https://pubmed.ncbi.nlm.nih.gov/26025378/

24.Eeles, R.A., et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet, 2013. 45: 385.

https://pubmed.ncbi.nlm.nih.gov/23535732/

25.Schumacher, F.R., et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet, 2018. 50: 928.

https://pubmed.ncbi.nlm.nih.gov/29892016/

26.Bancroft, E.K., et al. Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study. Eur Urol, 2014. 66: 489.

https://pubmed.ncbi.nlm.nih.gov/24484606/

27.Gulati, R., et al. Screening Men at Increased Risk for Prostate Cancer Diagnosis: Model Estimates of Benefits and Harms. Cancer Epidemiol Biomarkers Prev, 2017. 26: 222.

https://pubmed.ncbi.nlm.nih.gov/27742670/

28.Giri, V.N., et al. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate, 2019. 79: 333.

https://pubmed.ncbi.nlm.nih.gov/30450585/

29.Nicolosi, P., et al. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol, 2019. 5: 523.

https://pubmed.ncbi.nlm.nih.gov/30730552/

30.Castro, E., et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, 2019. 37: 490.

https://pubmed.ncbi.nlm.nih.gov/30625039/

31.Pritchard, C.C., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med, 2016. 375: 443.

https://pubmed.ncbi.nlm.nih.gov/27433846/

32.Ewing, C.M., et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med, 2012. 366: 141.

https://pubmed.ncbi.nlm.nih.gov/22236224/

33.Lynch, H.T., et al. Screening for familial and hereditary prostate cancer. Int J Cancer, 2016. 138: 2579.

https://pubmed.ncbi.nlm.nih.gov/26638190/

34.Nyberg, T., et al. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. Eur Urol, 2020. 77: 24.

https://pubmed.ncbi.nlm.nih.gov/31495749/

35.Castro, E., et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol, 2013. 31: 1748.

https://pubmed.ncbi.nlm.nih.gov/23569316/

36.Castro, E., et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol, 2015. 68: 186.

https://pubmed.ncbi.nlm.nih.gov/25454609/

37.Na, R., et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur Urol, 2017. 71: 740.

https://pubmed.ncbi.nlm.nih.gov/27989354/

38.Mano, R., et al. Malignant Abnormalities in Male BRCA Mutation Carriers: Results From a Prospectively Screened Cohort. JAMA Oncol, 2018. 4: 872.

https://pubmed.ncbi.nlm.nih.gov/29710070/

39.Edwards, S.M., et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet, 2003. 72: 1.

https://pubmed.ncbi.nlm.nih.gov/12474142/

40.van Asperen, C.J., et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet, 2005. 42: 711.

https://pubmed.ncbi.nlm.nih.gov/16141007/

41.Agalliu, I., et al. Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer, 2007. 97: 826.

https://pubmed.ncbi.nlm.nih.gov/17700570/

42.Leongamornlert, D., et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer, 2014. 110: 1663.

https://pubmed.ncbi.nlm.nih.gov/24556621/

43.Wang, Y., et al. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med, 2015. 8: 15708.

https://pubmed.ncbi.nlm.nih.gov/26629066/

44.Zhen, J.T., et al. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer, 2018. 124: 3105.

https://pubmed.ncbi.nlm.nih.gov/29669169/

45.Leongamornlert, D., et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer, 2012. 106: 1697.

https://pubmed.ncbi.nlm.nih.gov/22516946/

46.Thompson, D., et al. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst, 2002. 94: 1358.

https://pubmed.ncbi.nlm.nih.gov/12237281/

47.Karlsson, R., et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol, 2014. 65: 169.

https://pubmed.ncbi.nlm.nih.gov/22841674/

48.Storebjerg, T.M., et al. Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int, 2016. 118: 646.

https://pubmed.ncbi.nlm.nih.gov/26779768/

49.Ryan, S., et al. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev, 2014. 23: 437.

https://pubmed.ncbi.nlm.nih.gov/24425144/

50.Carlsson, S., et al. Influence of blood prostate specific antigen levels at age 60 on benefits and harms of prostate cancer screening: population based cohort study. Bmj, 2014. 348: g2296.

https://pubmed.ncbi.nlm.nih.gov/24682399/

51.Rosty, C., et al. High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer, 2014.
13: 573.

https://pubmed.ncbi.nlm.nih.gov/25117503/

52.Leitzmann, M.F., et al. Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates. Clin Epidemiol, 2012. 4: 1.

https://pubmed.ncbi.nlm.nih.gov/22291478/

53.Cook, L.S., et al. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J Urol, 1999. 161: 152.

https://pubmed.ncbi.nlm.nih.gov/10037388/

54.Esposito, K., et al. Effect of metabolic syndrome and its components on prostate cancer risk: meta-analysis. J Endocrinol Invest, 2013. 36: 132.

https://pubmed.ncbi.nlm.nih.gov/23481613/

55.Blanc-Lapierre, A., et al. Metabolic syndrome and prostate cancer risk in a population-based case-control study in Montreal, Canada. BMC Public Health, 2015. 15: 913.

https://pubmed.ncbi.nlm.nih.gov/26385727/

56.Preston, M.A., et al. Metformin use and prostate cancer risk. Eur Urol, 2014. 66: 1012.

https://pubmed.ncbi.nlm.nih.gov/24857538/

57.Freedland, S.J., et al. Statin use and risk of prostate cancer and high-grade prostate cancer: results from the REDUCE study. Prostate Cancer Prostatic Dis, 2013. 16: 254.

https://pubmed.ncbi.nlm.nih.gov/23567655/

58.Li, Y., et al. Effect of Statins on the Risk of Different Stages of Prostate Cancer: A Meta-Analysis. Urol Int, 2022. 106: 869.

https://pubmed.ncbi.nlm.nih.gov/34518476/

59.Vidal, A.C., et al. Obesity increases the risk for high-grade prostate cancer: results from the REDUCE study. Cancer Epidemiol Biomarkers Prev, 2014. 23: 2936.

https://pubmed.ncbi.nlm.nih.gov/25261967/

60.Davies, N.M., et al. The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes Control, 2015. 26: 1603.

https://pubmed.ncbi.nlm.nih.gov/26387087/

61.Rivera-Izquierdo, M., et al. Obesity as a Risk Factor for Prostate Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of 280,199 Patients. Cancers (Basel), 2021. 13; 4269.

https://pubmed.ncbi.nlm.nih.gov/34439328/

62.Dickerman, B.A., et al. Alcohol intake, drinking patterns, and prostate cancer risk and mortality: a 30-year prospective cohort study of Finnish twins. Cancer Causes Control, 2016. 27: 1049.

https://pubmed.ncbi.nlm.nih.gov/27351919/

63.Zhao, J., et al. Is alcohol consumption a risk factor for prostate cancer? A systematic review and meta-analysis. BMC Cancer, 2016. 16: 845.

https://pubmed.ncbi.nlm.nih.gov/27842506/

64.Chen, X., et al. Coffee consumption and risk of prostate cancer: a systematic review and meta-analysis. BMJ Open, 2021. 11: e038902.

https://pubmed.ncbi.nlm.nih.gov/33431520/

65.Key, T.J. Nutrition, hormones and prostate cancer risk: results from the European prospective investigation into cancer and nutrition. Recent Results Cancer Res, 2014. 202: 39.

https://pubmed.ncbi.nlm.nih.gov/24531775/

66.Alexander, D.D., et al. Meta-Analysis of Long-Chain Omega-3 Polyunsaturated Fatty Acids (LComega-3PUFA) and Prostate Cancer. Nutr Cancer, 2015. 67: 543.

https://pubmed.ncbi.nlm.nih.gov/25826711/

67.Lippi, G., et al. Fried food and prostate cancer risk: systematic review and meta-analysis. Int J Food Sci Nutr, 2015. 66: 587.

https://pubmed.ncbi.nlm.nih.gov/26114920/

68.Chen, P., et al. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore), 2015. 94: e1260.

https://pubmed.ncbi.nlm.nih.gov/26287411/

69.Rowles, J.L., 3rd, et al. Processed and raw tomato consumption and risk of prostate cancer: a systematic review and dose-response meta-analysis. Prostate Cancer Prostatic Dis, 2018. 21: 319.

https://pubmed.ncbi.nlm.nih.gov/29317772/

70.Ilic, D., et al. Lycopene for the prevention and treatment of benign prostatic hyperplasia and prostate cancer: a systematic review. Maturitas, 2012. 72: 269.

https://pubmed.ncbi.nlm.nih.gov/22633187/

71.Bylsma, L.C., et al. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr J, 2015. 14: 125.

https://pubmed.ncbi.nlm.nih.gov/26689289/

72.Nouri-Majd, S., et al. Association Between Red and Processed Meat Consumption and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Front Nutr, 2022. 9: 801722.

https://pubmed.ncbi.nlm.nih.gov/35198587/

73.Zhang, M., et al. Is phytoestrogen intake associated with decreased risk of prostate cancer? A systematic review of epidemiological studies based on 17,546 cases. Andrology, 2016. 4: 745.

https://pubmed.ncbi.nlm.nih.gov/27260185/

74.Applegate, C.C., et al. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients, 2018. 10.

https://pubmed.ncbi.nlm.nih.gov/29300347/

75.Kristal, A.R., et al. Plasma vitamin D and prostate cancer risk: results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev, 2014. 23: 1494.

https://pubmed.ncbi.nlm.nih.gov/24732629/

76.Nyame, Y.A., et al. Associations Between Serum Vitamin D and Adverse Pathology in Men Undergoing Radical Prostatectomy. J Clin Oncol, 2016. 34: 1345.

https://pubmed.ncbi.nlm.nih.gov/26903577/

77.Cui, Z., et al. Serum selenium levels and prostate cancer risk: A MOOSE-compliant meta-analysis. Medicine (Baltimore), 2017. 96: e5944.

https://pubmed.ncbi.nlm.nih.gov/28151881/

78.Allen, N.E., et al. Selenium and Prostate Cancer: Analysis of Individual Participant Data From Fifteen Prospective Studies. J Natl Cancer Inst, 2016. 108: djw153.

https://pubmed.ncbi.nlm.nih.gov/27385803/

79.Lippman, S.M., et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009. 301: 39.

https://pubmed.ncbi.nlm.nih.gov/19066370/

80.Knijnik, P.G., et al. The impact of 5-alpha-reductase inhibitors on mortality in a prostate cancer chemoprevention setting: a meta-analysis. World J Urol, 2021. 39: 365.

https://pubmed.ncbi.nlm.nih.gov/32314009/

81.Hu, X., et al. Association of 5-alpha-reductase inhibitor and prostate cancer incidence and mortality: a meta-analysis. Transl Androl Urol, 2020. 9: 2519.

https://pubmed.ncbi.nlm.nih.gov/33457226/

82.Kramer, B.S., et al. Use of 5-alpha-reductase inhibitors for prostate cancer chemoprevention: American Society of Clinical Oncology/American Urological Association 2008 Clinical Practice Guideline. J Clin Oncol, 2009. 27: 1502.

https://pubmed.ncbi.nlm.nih.gov/19252137/

83.Andriole, G.L., et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med, 2010. 362: 1192.

https://pubmed.ncbi.nlm.nih.gov/20357281/

84.Thompson, I.M., et al. The influence of finasteride on the development of prostate cancer. N Engl
J Med, 2003. 349: 215.

https://pubmed.ncbi.nlm.nih.gov/12824459/

85.Haider, A., et al. Incidence of prostate cancer in hypogonadal men receiving testosterone therapy: observations from 5-year median followup of 3 registries. J Urol, 2015. 193: 80.

https://pubmed.ncbi.nlm.nih.gov/24980615/

86.Watts, E.L., et al. Low Free Testosterone and Prostate Cancer Risk: A Collaborative Analysis of
20 Prospective Studies. Eur Urol, 2018. 74: 585.

https://pubmed.ncbi.nlm.nih.gov/30077399/

87.Burns, J.A., et al. Inflammatory Bowel Disease and the Risk of Prostate Cancer. Eur Urol, 2019.
75: 846.

https://pubmed.ncbi.nlm.nih.gov/30528221/

88.Zhou, C.K., et al. Male Pattern Baldness in Relation to Prostate Cancer-Specific Mortality: A Prospective Analysis in the NHANES I Epidemiologic Follow-up Study. Am J Epidemiol, 2016. 183: 210.

https://pubmed.ncbi.nlm.nih.gov/26764224/

89.Lian, W.Q., et al. Gonorrhea and Prostate Cancer Incidence: An Updated Meta-Analysis of 21 Epidemiologic Studies. Med Sci Monit, 2015. 21: 1902.

https://pubmed.ncbi.nlm.nih.gov/26126881/

90.Rao, D., et al. Does night-shift work increase the risk of prostate cancer? a systematic review and meta-analysis. Onco Targets Ther, 2015. 8: 2817.

https://pubmed.ncbi.nlm.nih.gov/26491356/

91.Islami, F., et al. A systematic review and meta-analysis of tobacco use and prostate cancer mortality and incidence in prospective cohort studies. Eur Urol, 2014. 66: 1054.

https://pubmed.ncbi.nlm.nih.gov/25242554/

92.Brookman-May, S.D., et al. Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of Oncological Urology (ESOU). Eur Urol Focus, 2019. 5: 756.

https://pubmed.ncbi.nlm.nih.gov/29576530/

93.Ju-Kun, S., et al. Association Between Cd Exposure and Risk of Prostate Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore), 2016. 95: e2708.

https://pubmed.ncbi.nlm.nih.gov/26871808/

94.Russo, G.I., et al. Human papillomavirus and risk of prostate cancer: a systematic review and meta-analysis. Aging Male, 2020: 23: 132.

https://pubmed.ncbi.nlm.nih.gov/29571270/

95.Multigner, L., et al. Chlordecone exposure and risk of prostate cancer. J Clin Oncol, 2010. 28: 3457.

https://pubmed.ncbi.nlm.nih.gov/20566993/

96.Bhindi, B., et al. The Association Between Vasectomy and Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Intern Med, 2017. 177: 1273.

https://pubmed.ncbi.nlm.nih.gov/28715534/

97.Cremers, R.G., et al. Self-reported acne is not associated with prostate cancer. Urol Oncol, 2014. 32: 941.

https://pubmed.ncbi.nlm.nih.gov/25011577/

98.Huang, T.B., et al. Aspirin use and the risk of prostate cancer: a meta-analysis of 24 epidemiologic studies. Int Urol Nephrol, 2014. 46: 1715.

https://pubmed.ncbi.nlm.nih.gov/24687637/

99.Bhindi, B., et al. The impact of the use of aspirin and other nonsteroidal anti-inflammatory drugs on the risk of prostate cancer detection on biopsy. Urology, 2014. 84: 1073.

https://pubmed.ncbi.nlm.nih.gov/25443907/

100.Lin, S.W., et al. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int J Cancer, 2012. 131: E1015.

https://pubmed.ncbi.nlm.nih.gov/22539073/

101.Pabalan, N., et al. Association of male circumcision with risk of prostate cancer: a meta-analysis. Prostate Cancer Prostatic Dis, 2015. 18: 352.

https://pubmed.ncbi.nlm.nih.gov/26215783/

102.Rider, J.R., et al. Ejaculation Frequency and Risk of Prostate Cancer: Updated Results with an Additional Decade of Follow-up. Eur Urol, 2016. 70: 974.

https://pubmed.ncbi.nlm.nih.gov/27033442/

103.Brierley, J.D., et al., TNM classification of malignant tumors. UICC International Union Against Cancer. 8th edn. 2017.

https://www.uicc.org/resources/tnm-classification-malignant-tumours-8th-edition

104.Cooperberg, M.R., et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol, 2005. 173: 1938.

https://pubmed.ncbi.nlm.nih.gov/15879786/

105.Ploussard, G., et al. Decreased accuracy of the prostate cancer EAU risk group classification in the era of imaging-guided diagnostic pathway: proposal for a new classification based on MRI-targeted biopsies and early oncologic outcomes after surgery. World J Urol, 2020. 38: 2493.

https://pubmed.ncbi.nlm.nih.gov/31838560/

106.Ceci, F., et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging, 2021. 48: 1626.

https://pubmed.ncbi.nlm.nih.gov/33604691/

107.van den Bergh, R.C.N., et al. Re: Andrew Vickers, Sigrid V. Carlsson, Matthew Cooperberg. Routine Use of Magnetic Resonance Imaging for Early Detection of Prostate Cancer Is Not Justified by the Clinical Trial Evidence. Eur Urol 2020;78:304-6: Prebiopsy MRI: Through the Looking Glass. Eur Urol, 2020. 78: 310.

https://pubmed.ncbi.nlm.nih.gov/32660749/

108.Epstein, J.I., et al. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol, 2005. 29: 1228.

https://pubmed.ncbi.nlm.nih.gov/16096414/

109.Epstein, J.I., et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol, 2016. 40: 244.

https://pubmed.ncbi.nlm.nih.gov/26492179/

110.van Leenders, G., et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol, 2020. 44: e87.

https://pubmed.ncbi.nlm.nih.gov/32459716/

111.Epstein, J.I., et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur Urol, 2016. 69: 428.

https://pubmed.ncbi.nlm.nih.gov/26166626/

112.Moyer, V.A. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med, 2012. 157: 120.

https://pubmed.ncbi.nlm.nih.gov/22801674/

113.Sauter, G., et al. Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol, 2018. 73: 674.

https://pubmed.ncbi.nlm.nih.gov/28117112/

114.Anderson, B.B., et al. Extraprostatic Extension Is Extremely Rare for Contemporary Gleason Score 6 Prostate Cancer. Eur Urol, 2017. 72: 455.

https://pubmed.ncbi.nlm.nih.gov/27986368/

115.Ross, H.M., et al. Do adenocarcinomas of the prostate with Gleason score (GS) < 6 have the potential to metastasize to lymph nodes? Am J Surg Pathol, 2012. 36: 1346.

https://pubmed.ncbi.nlm.nih.gov/22531173/

116.Alberts, A.R., et al. Biopsy undergrading in men with Gleason score 6 and fatal prostate cancer in the European Randomized study of Screening for Prostate Cancer Rotterdam. Int J Urol, 2017. 24: 281.

https://pubmed.ncbi.nlm.nih.gov/28173626/

117.Zareba, P., et al. The impact of the 2005 International Society of Urological Pathology (ISUP) consensus on Gleason grading in contemporary practice. Histopathology, 2009. 55: 384.

https://pubmed.ncbi.nlm.nih.gov/19817888/

118.Goel, S., et al. Concordance Between Biopsy and Radical Prostatectomy Pathology in the Era of Targeted Biopsy: A Systematic Review and Meta-analysis. Eur Urol Oncol, 2020. 3: 10.

https://pubmed.ncbi.nlm.nih.gov/31492650/

119.Inoue, L.Y., et al. Modeling grade progression in an active surveillance study. Stat Med, 2014. 33: 930.

https://pubmed.ncbi.nlm.nih.gov/24123208/

120.Van der Kwast, T.H., et al. Defining the threshold for significant versus insignificant prostate cancer. Nat Rev Urol, 2013. 10: 473.

https://pubmed.ncbi.nlm.nih.gov/23712205/

121.Preisser, F., et al. Intermediate-risk Prostate Cancer: Stratification and Management. Eur Urol Oncol, 2020. 3: 270.

https://pubmed.ncbi.nlm.nih.gov/32303478/

122.Overland, M.R., et al. Active surveillance for intermediate-risk prostate cancer: yes, but for whom? Curr Opin Urol, 2019. 29: 605.

https://pubmed.ncbi.nlm.nih.gov/31436567/

123.Kasivisvanathan, V., et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl
J Med, 2018. 378: 1767.

https://pubmed.ncbi.nlm.nih.gov/29552975/

124.Rouviere, O., et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol, 2019. 20: 100.

https://pubmed.ncbi.nlm.nih.gov/30470502/

125.van der Leest, M., et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naive Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol, 2019. 75: 570.

https://pubmed.ncbi.nlm.nih.gov/30477981/

126.Emmett, L., et al. The Additive Diagnostic Value of Prostate-specific Membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the Diagnosis of Prostate Cancer (PRIMARY): A Prospective Multicentre Study. Eur Urol, 2021. 80: 682.

https://pubmed.ncbi.nlm.nih.gov/34465492/

127.Ahmed, H.U., et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet, 2017. 389: 815.

https://pubmed.ncbi.nlm.nih.gov/28110982/

128.Thompson, J.E., et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol, 2014. 192: 67.

https://pubmed.ncbi.nlm.nih.gov/24518762/

129.Kane, C.J., et al. Variability in Outcomes for Patients with Intermediate-risk Prostate Cancer (Gleason Score 7, International Society of Urological Pathology Gleason Group 2-3) and Implications for Risk Stratification: A Systematic Review. Eur Urol Focus, 2017. 3: 487.

https://pubmed.ncbi.nlm.nih.gov/28753804/

130.Zumsteg, Z.S., et al. Unification of favourable intermediate-, unfavourable intermediate-, and very high-risk stratification criteria for prostate cancer. BJU Int, 2017. 120: E87.

https://pubmed.ncbi.nlm.nih.gov/28464446/

131.Etzioni, R., et al. Limitations of basing screening policies on screening trials: The US Preventive Services Task Force and Prostate Cancer Screening. Med Care, 2013. 51: 295.

https://pubmed.ncbi.nlm.nih.gov/23269114/

132.Ilic, D., et al. Screening for prostate cancer. Cochrane Database Syst Rev, 2013: CD004720.

https://pubmed.ncbi.nlm.nih.gov/23440794/

133.Hayes, J.H., et al. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA, 2014. 311: 1143.

https://pubmed.ncbi.nlm.nih.gov/24643604/

134.Ilic, D., et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. Bmj, 2018. 362: k3519.

https://pubmed.ncbi.nlm.nih.gov/30185521/

135.Hugosson, J., et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur Urol, 2019. 76: 43.

https://pubmed.ncbi.nlm.nih.gov/30824296/

136.The benefits and harms of breast cancer screening: an independent review. Lancet, 2012. 380: 1778.

https://pubmed.ncbi.nlm.nih.gov/23117178/

137.Hugosson, J., et al. Eighteen-year follow-up of the Göteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol, 2018. 52: 27.

https://pubmed.ncbi.nlm.nih.gov/29254399/

138.Arnsrud Godtman, R., et al. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg randomized population-based prostate cancer screening trial. Eur Urol, 2015. 68: 354.

https://pubmed.ncbi.nlm.nih.gov/25556937/

139.Heijnsdijk, E.A., et al. Quality-of-life effects of prostate-specific antigen screening. N Engl J Med, 2012. 367: 595.

https://pubmed.ncbi.nlm.nih.gov/22894572/

140.Booth, N., et al. Health-related quality of life in the Finnish trial of screening for prostate cancer. Eur Urol, 2014. 65: 39.

https://pubmed.ncbi.nlm.nih.gov/23265387/

141.Vasarainen, H., et al. Effects of prostate cancer screening on health-related quality of life: results of the Finnish arm of the European randomized screening trial (ERSPC). Acta Oncol, 2013. 52: 1615.

https://pubmed.ncbi.nlm.nih.gov/23786174/

142.Carter, H.B., et al. Early detection of prostate cancer: AUA Guideline. J Urol, 2013. 190: 419.

https://pubmed.ncbi.nlm.nih.gov/23659877/

143.Drazer, M.W., et al. National Prostate Cancer Screening Rates After the 2012 US Preventive Services Task Force Recommendation Discouraging Prostate-Specific Antigen-Based Screening. J Clin Oncol, 2015. 33: 2416.

https://pubmed.ncbi.nlm.nih.gov/26056181/

144.Hu, J.C., et al. Increase in Prostate Cancer Distant Metastases at Diagnosis in the United States. JAMA Oncol, 2017. 3: 705.

https://pubmed.ncbi.nlm.nih.gov/28033446/

145.Jemal, A., et al. Prostate Cancer Incidence and PSA Testing Patterns in Relation to USPSTF Screening Recommendations. JAMA, 2015. 314: 2054.

https://pubmed.ncbi.nlm.nih.gov/26575061/

146.Gaylis, F.D., et al. Change in prostate cancer presentation coinciding with USPSTF screening recommendations at a community-based Urology Practice. Urol Oncol, 2017. 35: 663.e1.

https://pubmed.ncbi.nlm.nih.gov/28736250/

147.Shah, N., et al. Prostate Biopsy Characteristics: A Comparison Between the Pre- and Post-2012 United States Preventive Services Task Force (USPSTF) Prostate Cancer Screening Guidelines. Rev Urol, 2018. 20: 77.

https://pubmed.ncbi.nlm.nih.gov/30288144/

148.Loeb, S. Guideline of guidelines: prostate cancer screening. BJU Int, 2014. 114: 323.

https://pubmed.ncbi.nlm.nih.gov/24981126/

149.Siegel, R.L., et al. Cancer statistics, 2019. CA Cancer J Clin, 2019. 69: 7.

https://pubmed.ncbi.nlm.nih.gov/30620402/

150.Fenton, J.J., et al. Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA, 2018. 319: 1914.

https://pubmed.ncbi.nlm.nih.gov/29801018/

151.Grossman, D.C., et al. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. JAMA, 2018. 319: 1901.

https://pubmed.ncbi.nlm.nih.gov/29801017/

152.Bibbins-Domingo, K., et al. The US Preventive Services Task Force 2017 Draft Recommendation Statement on Screening for Prostate Cancer: An Invitation to Review and Comment. JAMA, 2017. 317: 1949.

https://pubmed.ncbi.nlm.nih.gov/28397958/

153.U.S. Preventive Services Task Force. Prostate Cancer Screening Draft Recommendations. 2018. Access date December 2022.

https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/prostate-cancer-screening

154.Eklund, M., et al. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med, 2021. 385: 908.

https://pubmed.ncbi.nlm.nih.gov/34237810/

155.Eldred-Evans, D., et al. Population-Based Prostate Cancer Screening With Magnetic Resonance Imaging or Ultrasonography: The IP1-PROSTAGRAM Study. JAMA Oncol, 2021. 7: 395.

https://pubmed.ncbi.nlm.nih.gov/33570542/

156.Van Poppel, H., et al. Early Detection of Prostate Cancer in 2020 and Beyond: Facts and Recommendations for the European Union and the European Commission. Eur Urol, 2021. 79: 327.

https://pubmed.ncbi.nlm.nih.gov/33384200/

157.Page, E.C., et al. Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. Eur Urol, 2019. 76: 831.

https://pubmed.ncbi.nlm.nih.gov/31537406/

158.Bancroft, E.K., et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol, 2021. 22: 1618.

https://pubmed.ncbi.nlm.nih.gov/34678156/

159.Boyle, H.J., et al. Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. Eur J Cancer, 2019. 116: 116.

https://pubmed.ncbi.nlm.nih.gov/31195356/

160.Loeb, S., et al. Pathological characteristics of prostate cancer detected through prostate specific antigen based screening. J Urol, 2006. 175: 902.

https://pubmed.ncbi.nlm.nih.gov/16469576/

161.Naji, L., et al. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann Fam Med, 2018. 16: 149.

https://pubmed.ncbi.nlm.nih.gov/29531107/

162.Martin, R.M., et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP Randomized Clinical Trial. JAMA, 2018. 319: 883.

https://pubmed.ncbi.nlm.nih.gov/29509864/

163.Vickers, A.J., et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study. BMJ, 2013.
346: f2023.

https://pubmed.ncbi.nlm.nih.gov/23596126/

164.Gelfond, J., et al. Intermediate-Term Risk of Prostate Cancer is Directly Related to Baseline Prostate Specific Antigen: Implications for Reducing the Burden of Prostate Specific Antigen Screening.
J Urol, 2015. 194: 46.

https://pubmed.ncbi.nlm.nih.gov/25686543/

165.Roobol, M.J., et al. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology, 2005. 65: 343.

https://pubmed.ncbi.nlm.nih.gov/15708050/

166.Palsdottir, T. External Validation of the Rotterdam Prostate Cancer Risk Calculator and Comparison with Stockholm3 for Prostate Cancer Diagnosis in a Swedish Population-based Screening Cohort. Eur Urol Focus, 2022. 13: S2405.

https://pubmed.ncbi.nlm.nih.gov/36522257/

167.Roobol, M.J., et al. Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculator for Initial Prostate Biopsy by Incorporating the 2014 International Society of Urological Pathology Gleason Grading and Cribriform growth. Eur Urol, 2017. 72: 45.

https://pubmed.ncbi.nlm.nih.gov/28162815/

168.Drost, F.H., et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev, 2019. 4: CD012663.

https://pubmed.ncbi.nlm.nih.gov/31022301/

169.Wagensveld, I.M., et al. A Prospective Multicenter Comparison Study of Risk-adapted Ultrasound-directed and Magnetic Resonance Imaging-directed Diagnostic Pathways for Suspected Prostate Cancer in Biopsy-naïve Men. Eur Urol, 2022. 82: 318.

https://pubmed.ncbi.nlm.nih.gov/35341658/

170.Schoots, I.G., et al. Risk-adapted biopsy decision based on prostate magnetic resonance imaging and prostate-specific antigen density for enhanced biopsy avoidance in first prostate cancer diagnostic evaluation. BJU Int, 2021. 127: 175.

https://pubmed.ncbi.nlm.nih.gov/33089586/

171.Deniffel, D., et al. Avoiding Unnecessary Biopsy: MRI-based Risk Models versus a PI-RADS and PSA Density Strategy for Clinically Significant Prostate Cancer. Radiology, 2021: 204112.

https://pubmed.ncbi.nlm.nih.gov/34032510/

172.Boesen, L., et al. Prebiopsy Biparametric Magnetic Resonance Imaging Combined with Prostate-specific Antigen Density in Detecting and Ruling out Gleason 7-10 Prostate Cancer in Biopsy-naive Men. Eur Urol Oncol, 2019. 2: 311.

https://pubmed.ncbi.nlm.nih.gov/31200846/

173.Falagario, U.G., et al. Avoiding Unnecessary Magnetic Resonance Imaging (MRI) and Biopsies: Negative and Positive Predictive Value of MRI According to Prostate-specific Antigen Density, 4Kscore and Risk Calculators. Eur Urol Oncol, 2020. 3: 700.

https://pubmed.ncbi.nlm.nih.gov/31548130/

174.Knaapila, J., et al. Prebiopsy IMPROD Biparametric Magnetic Resonance Imaging Combined with Prostate-Specific Antigen Density in the Diagnosis of Prostate Cancer: An External Validation Study. Eur Urol Oncol, 2019. 6: 30134.

https://euoncology.europeanurology.com/article/S2588-9311(19)30134-8/fulltext

175.Hansen, N.L., et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int, 2017. 120: 631.

https://pubmed.ncbi.nlm.nih.gov/27862869/

176.Kretschmer, A., et al. Biomarkers in prostate cancer - Current clinical utility and future perspectives. Crit Rev Oncol Hematol, 2017. 120: 180.

https://pubmed.ncbi.nlm.nih.gov/29198331/

177.Mark, J.R., et al. Genetic Testing Guidelines and Education of Health Care Providers Involved in Prostate Cancer Care. Urol Clin North Am, 2021. 48: 311.

https://pubmed.ncbi.nlm.nih.gov/34210487/

178.Giri, V.N., et al. Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J Clin Oncol, 2020. 38: 2798.

https://pubmed.ncbi.nlm.nih.gov/32516092/

179.John, E.M., et al. Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA, 2007. 298: 2869.

https://pubmed.ncbi.nlm.nih.gov/18159056/

180.Carvalhal, G.F., et al. Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng./ml. or less. J Urol, 1999. 161: 835.

https://pubmed.ncbi.nlm.nih.gov/10022696/

181.Gosselaar, C., et al. The role of the digital rectal examination in subsequent screening visits in the European randomized study of screening for prostate cancer (ERSPC), Rotterdam. Eur Urol, 2008. 54: 581.

https://pubmed.ncbi.nlm.nih.gov/18423977/

182.Herrera-Caceres, J.O., et al. Utility of digital rectal examination in a population with prostate cancer treated with active surveillance. Can Urol Assoc J, 2020. 14: E453.

https://pubmed.ncbi.nlm.nih.gov/32223879/

183.Okotie, O.T., et al. Characteristics of prostate cancer detected by digital rectal examination only. Urology, 2007. 70: 1117.

https://pubmed.ncbi.nlm.nih.gov/18158030/

184.Prebay, Z.J., et al. The prognostic value of digital rectal exam for the existence of advanced pathologic features after prostatectomy. Prostate, 2021. 81: 1064.

https://pubmed.ncbi.nlm.nih.gov/34297858/

185.Stamey, T.A., et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med, 1987. 317: 909.

https://pubmed.ncbi.nlm.nih.gov/2442609/

186.Merriel, S.W.D., et al. Systematic review and meta-analysis of the diagnostic accuracy of prostate-specific antigen (PSA) for the detection of prostate cancer in symptomatic patients. BMC Med, 2022. 20: 54.

https://pubmed.ncbi.nlm.nih.gov/35125113/

187.Habib, F.K., et al. Differential effect of finasteride on the tissue androgen concentrations in benign prostatic hyperplasia. Clin Endocrinol (Oxf), 1997. 46: 137.

https://pubmed.ncbi.nlm.nih.gov/9135694/

188.Semjonow, A., et al. Discordance of assay methods creates pitfalls for the interpretation of prostate-specific antigen values. Prostate Suppl, 1996. 7: 3.

https://pubmed.ncbi.nlm.nih.gov/8950358/

189.Thompson, I.M., et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med, 2004. 350: 2239.

https://pubmed.ncbi.nlm.nih.gov/15163773/

190.Wagaskar, V.G., et al. A 4K score/MRI-based nomogram for predicting prostate cancer, clinically significant prostate cancer, and unfavorable prostate cancer. Cancer Rep (Hoboken), 2021. 4: e1357.

https://pubmed.ncbi.nlm.nih.gov/33661541/

191.Hendriks, R.J., et al. Clinical use of the SelectMDx urinary-biomarker test with or without mpMRI in prostate cancer diagnosis: a prospective, multicenter study in biopsy-naïve men. Prostate Cancer Prostatic Dis, 2021. 24: 1110.

https://pubmed.ncbi.nlm.nih.gov/33941866/

192.Nordström, T., et al. Repeat Prostate-Specific Antigen Tests Before Prostate Biopsy Decisions.
J Natl Cancer Inst, 2016. 108: djw165.

https://pubmed.ncbi.nlm.nih.gov/27418620/

193.Rosario, D.J., et al. Contribution of a single repeat PSA test to prostate cancer risk assessment: experience from the ProtecT study. Eur Urol, 2008. 53: 777.

https://pubmed.ncbi.nlm.nih.gov/18079051/

194.De Nunzio, C., et al. Repeat prostate-specific antigen (PSA) test before prostate biopsy: a 20% decrease in PSA values is associated with a reduced risk of cancer and particularly of high-grade cancer. BJU Int, 2018. 122: 83.

https://pubmed.ncbi.nlm.nih.gov/29533522/

195.Omri, N., et al. Association between PSA density and pathologically significant prostate cancer: The impact of prostate volume. Prostate, 2020. 80: 1444.

https://pubmed.ncbi.nlm.nih.gov/32970856/

196.Maggi, M., et al. Prostate Imaging Reporting and Data System 3 Category Cases at Multiparametric Magnetic Resonance for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2020. 6: 463.

https://pubmed.ncbi.nlm.nih.gov/31279677/

197.Nordström, T., et al. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis, 2018. 21: 57.

https://pubmed.ncbi.nlm.nih.gov/29259293/

198.Yusim, I., et al. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci Rep, 2020. 10: 20015.

https://pubmed.ncbi.nlm.nih.gov/33203873/

199.Cuocolo, R., et al. PSA-density does not improve bi-parametric prostate MR detection of prostate cancer in a biopsy naïve patient population. Eur J Radiol, 2018. 104: 64.

https://pubmed.ncbi.nlm.nih.gov/29857868/

200.Stephan, C., et al. The influence of prostate volume on the ratio of free to total prostate specific antigen in serum of patients with prostate carcinoma and benign prostate hyperplasia. Cancer, 1997. 79: 104.

https://pubmed.ncbi.nlm.nih.gov/8988733/

201.Huang, Y., et al. Value of free/total prostate-specific antigen (f/t PSA) ratios for prostate cancer detection in patients with total serum prostate-specific antigen between 4 and 10 ng/mL: A meta-analysis. Medicine (Baltimore), 2018. 97: e0249.

https://pubmed.ncbi.nlm.nih.gov/29595681/

202.Bryant, R.J., et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study. J Natl Cancer Inst, 2015. 107: djv095.

https://pubmed.ncbi.nlm.nih.gov/25863334/

203.Loeb, S., et al. The Prostate Health Index: a new test for the detection of prostate cancer. Ther Adv Urol, 2014. 6: 74.

https://pubmed.ncbi.nlm.nih.gov/24688603/

204.de la Calle, C., et al. Multicenter Evaluation of the Prostate Health Index to Detect Aggressive Prostate Cancer in Biopsy Naive Men. J Urol, 2015. 194: 65.

https://pubmed.ncbi.nlm.nih.gov/25636659/

205.Catalona, W.J., et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol, 2011. 185: 1650.

https://pubmed.ncbi.nlm.nih.gov/21419439/

206.Nordstrom, T., et al. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur Urol, 2015. 68: 139.

https://pubmed.ncbi.nlm.nih.gov/25151013/

207.Klein, E.A., et al. The Single-parameter, Structure-based IsoPSA Assay Demonstrates Improved Diagnostic Accuracy for Detection of Any Prostate Cancer and High-grade Prostate Cancer Compared to a Concentration-based Assay of Total Prostate-specific Antigen: A Preliminary Report. Eur Urol, 2017. 72: 942.

https://pubmed.ncbi.nlm.nih.gov/28396176/

208.Stovsky, M., et al. Clinical Validation of IsoPSATM, a Single Parameter, Structure Based Assay for Improved Detection of High Grade Prostate Cancer. J Urol, 2019. 201: 1115.

https://pubmed.ncbi.nlm.nih.gov/30810464/

209.Wagaskar, V.G., et al. Clinical Utility of Negative Multiparametric Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer and Clinically Significant Prostate Cancer. Eur Urol Open Sci, 2021. 28: 9.

https://pubmed.ncbi.nlm.nih.gov/34337520/

210.Morote, J., et al. Improving the Early Detection of Clinically Significant Prostate Cancer in Men in the Challenging Prostate Imaging-Reporting and Data System 3 Category. Eur Urol Open Sci, 2022. 37: 38.

https://pubmed.ncbi.nlm.nih.gov/35243388/

211.Ploussard, G., et al. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther, 2018. 18: 1013.

https://pubmed.ncbi.nlm.nih.gov/30016891/

212.Van Neste, L., et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker-Based Risk Score. Eur Urol, 2016. 70: 740.

https://pubmed.ncbi.nlm.nih.gov/27108162/

213.Maggi, M., et al. SelectMDx and Multiparametric Magnetic Resonance Imaging of the Prostate for Men Undergoing Primary Prostate Biopsy: A Prospective Assessment in a Multi-Institutional Study. Cancers (Basel), 2021. 13: 2047.

https://pubmed.ncbi.nlm.nih.gov/33922626/

214.Lendínez-Cano, G., et al. Prospective study of diagnostic accuracy in the detection of high-grade prostate cancer in biopsy-naïve patients with clinical suspicion of prostate cancer who underwent the Select MDx test. Prostate, 2021. 81: 857.

https://pubmed.ncbi.nlm.nih.gov/34184761/

215.Roumiguié, M., et al. Independent Evaluation of the Respective Predictive Values for High-Grade Prostate Cancer of Clinical Information and RNA Biomarkers after Upfront MRI and Image-Guided Biopsies. Cancers (Basel), 2020. 12: 285.

https://pubmed.ncbi.nlm.nih.gov/31991591/

216.Tomlins, S.A., et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005. 310: 644.

https://pubmed.ncbi.nlm.nih.gov/16254181/

217.Tomlins, S.A., et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol, 2016. 70: 45.

https://pubmed.ncbi.nlm.nih.gov/25985884/

218.Donovan, M.J., et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis, 2015. 18: 370.

https://pubmed.ncbi.nlm.nih.gov/26345389/

219.McKiernan, J., et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol, 2016. 2: 882.

https://pubmed.ncbi.nlm.nih.gov/27032035/

220.Vedder, M.M., et al. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men. Eur Urol, 2014. 66: 1109.

https://pubmed.ncbi.nlm.nih.gov/25168616/

221.Lamy, P.J., et al. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review. Eur Urol Focus, 2018. 4: 790.

https://pubmed.ncbi.nlm.nih.gov/28753865/

222.Nicholson, A., et al. The clinical effectiveness and cost-effectiveness of the PROGENSA(R) prostate cancer antigen 3 assay and the Prostate Health Index in the diagnosis of prostate cancer: a systematic review and economic evaluation. Health Technol Assess, 2015. 19: 1.

https://pubmed.ncbi.nlm.nih.gov/26507078/

223.Partin, A.W., et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol, 2014. 192: 1081.

https://pubmed.ncbi.nlm.nih.gov/24747657/

224.Smeenge, M., et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a Consensus Panel. BJU Int, 2012. 110: 942.

https://pubmed.ncbi.nlm.nih.gov/22462566/

225.Correas, J.M., et al. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol, 2021. 39: 661.

https://pubmed.ncbi.nlm.nih.gov/32306060/

226.Mannaerts, C.K., et al. Detection of clinically significant prostate cancer in biopsy-naïve men: direct comparison of systematic biopsy, multiparametric MRI- and contrast-ultrasound-dispersion imaging-targeted biopsy. BJU Int, 2020. 126: 481.

https://pubmed.ncbi.nlm.nih.gov/32315112/

227.Grey, A.D.R., et al. Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study. Lancet Oncol, 2022. 23: 428.

https://pubmed.ncbi.nlm.nih.gov/35240084/

228.Sountoulides, P., et al. Micro-Ultrasound-Guided vs Multiparametric Magnetic Resonance Imaging-Targeted Biopsy in the Detection of Prostate Cancer: A Systematic Review and Meta-Analysis.
J Urol, 2021. 205: 1254.

https://pubmed.ncbi.nlm.nih.gov/33577367/

229.Hofbauer, S.L., et al. A non-inferiority comparative analysis of micro-ultrasonography and MRI-targeted biopsy in men at risk of prostate cancer. BJU Int, 2022. 129: 648.

https://pubmed.ncbi.nlm.nih.gov/34773679/

230.Ghai, S., et al. Comparison of Micro-US and Multiparametric MRI for Prostate Cancer Detection in Biopsy-Naive Men. Radiology, 2022. 305: 390.

https://pubmed.ncbi.nlm.nih.gov/35852425/

231.Bratan, F., et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol, 2013. 23: 2019.

https://pubmed.ncbi.nlm.nih.gov/23494494/

232.Borofsky, S., et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology, 2018. 286: 186.

https://pubmed.ncbi.nlm.nih.gov/29053402/

233.Johnson, D.C., et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. Eur Urol, 2019. 75: 712.

https://pubmed.ncbi.nlm.nih.gov/30509763/

234.Oerther, B., et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level. Prostate Cancer Prostatic Dis, 2022. 25: 256.

https://pubmed.ncbi.nlm.nih.gov/34230616/

235.Goldberg, H., et al. Comparison of Magnetic Resonance Imaging and Transrectal Ultrasound Informed Prostate Biopsy for Prostate Cancer Diagnosis in Biopsy Naïve Men: A Systematic Review and Meta-Analysis. J Urol, 2020. 203: 1085.

https://pubmed.ncbi.nlm.nih.gov/31609177/

236.Wegelin, O., et al. The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. Eur Urol, 2019. 75: 582.

https://pubmed.ncbi.nlm.nih.gov/30522912/

237.Exterkate, L., et al. Is There Still a Need for Repeated Systematic Biopsies in Patients with Previous Negative Biopsies in the Era of Magnetic Resonance Imaging-targeted Biopsies of the Prostate? Eur Urol Oncol, 2020. 3: 216.

https://pubmed.ncbi.nlm.nih.gov/31239236/

238.Hugosson, J., et al. Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. N Engl J Med, 2022. 387: 2126.

https://pubmed.ncbi.nlm.nih.gov/36477032/

239.Weinreb, J.C., et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol, 2016. 69: 16.

https://pubmed.ncbi.nlm.nih.gov/26427566/

240.Stabile, A., et al. Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review. Eur Urol Oncol, 2020. 3: 145.

https://pubmed.ncbi.nlm.nih.gov/32192942/

241.Farrell, C., et al. Prostate Multiparametric Magnetic Resonance Imaging Program Implementation and Impact: Initial Clinical Experience in a Community Based Health System. Urol Pract, 2018. 5: 165.

https://www.auajournals.org/doi/abs/10.1016/j.urpr.2017.03.009

242.Meng, X., et al. The Institutional Learning Curve of Magnetic Resonance Imaging-Ultrasound Fusion Targeted Prostate Biopsy: Temporal Improvements in Cancer Detection in 4 Years. J Urol, 2018. 200: 1022.

https://pubmed.ncbi.nlm.nih.gov/29886090/

243.Raeside, M., et al. Prostate MRI evolution in clinical practice: Audit of tumour detection and staging versus prostatectomy with staged introduction of multiparametric MRI and Prostate Imaging Reporting and Data System v2 reporting. J Med Imaging Radiat Oncol, 2019. 63: 487.

https://pubmed.ncbi.nlm.nih.gov/30951248/

244.Shaish, H., et al. Impact of a Structured Reporting Template on Adherence to Prostate Imaging Reporting and Data System Version 2 and on the Diagnostic Performance of Prostate MRI for Clinically Significant Prostate Cancer. J Am Coll Radiol, 2018. 15: 749.

https://pubmed.ncbi.nlm.nih.gov/29506919/

245.Turkbey, B., et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol, 2019. 76: 340.

https://pubmed.ncbi.nlm.nih.gov/30898406/

246.Penzkofer, T., et al. ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging. Eur Radiol, 2021. 31: 9567.

https://pubmed.ncbi.nlm.nih.gov/33991226/

247.de Rooij, M., et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training. Eur Radiol, 2020. 30: 5404.

https://pubmed.ncbi.nlm.nih.gov/32424596/

248.Barrett, T., et al. Certification in reporting multiparametric magnetic resonance imaging of the prostate: recommendations of a UK consensus meeting. BJU Int, 2021. 127: 304.

https://pubmed.ncbi.nlm.nih.gov/33113258/

249.Giganti, F., et al. Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. Eur Urol Oncol, 2020. 3: 615.

https://pubmed.ncbi.nlm.nih.gov/32646850/

250.Bryk, D.J., et al. The Role of Ipsilateral and Contralateral Transrectal Ultrasound-guided Systematic Prostate Biopsy in Men With Unilateral Magnetic Resonance Imaging Lesion Undergoing Magnetic Resonance Imaging-ultrasound Fusion-targeted Prostate Biopsy. Urology, 2017. 102: 178.

https://pubmed.ncbi.nlm.nih.gov/27871829/

251.Freifeld, Y., et al. Optimal sampling scheme in men with abnormal multiparametric MRI undergoing MRI-TRUS fusion prostate biopsy. Urol Oncol, 2019. 37: 57.

https://pubmed.ncbi.nlm.nih.gov/30446460/

252.Kenigsberg, A.P., et al. Optimizing the Number of Cores Targeted During Prostate Magnetic Resonance Imaging Fusion Target Biopsy. Eur Urol Oncol, 2018. 1: 418.

https://pubmed.ncbi.nlm.nih.gov/31158081/

253.Zhang, M., et al. Value of Increasing Biopsy Cores per Target with Cognitive MRI-targeted Transrectal US Prostate Biopsy. Radiology, 2019. 291: 83.

https://pubmed.ncbi.nlm.nih.gov/30694165/

254.Lu, A.J., et al. Role of Core Number and Location in Targeted Magnetic Resonance Imaging-Ultrasound Fusion Prostate Biopsy. Eur Urol, 2019. 76: 14.

https://pubmed.ncbi.nlm.nih.gov/31047733/

255.Hagens, M.J., et al. Diagnostic Performance of a Magnetic Resonance Imaging-directed Targeted plus Regional Biopsy Approach in Prostate Cancer Diagnosis: A Systematic Review and Meta-analysis. Eur Urol Open Sci, 2022. 40: 95.

https://pubmed.ncbi.nlm.nih.gov/35540708/

256.Distler, F.A., et al. The Value of PSA Density in Combination with PI-RADS for the Accuracy of Prostate Cancer Prediction. J Urol, 2017. 198: 575.

https://pubmed.ncbi.nlm.nih.gov/28373135/

257.Washino, S., et al. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naive patients. BJU Int, 2017. 119: 225.

https://pubmed.ncbi.nlm.nih.gov/26935594/

258.Pagniez, M.A., et al. Predictive Factors of Missed Clinically Significant Prostate Cancers in Men with Negative Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. J Urol, 2020.
204: 24.

https://pubmed.ncbi.nlm.nih.gov/31967522/

259.Hansen, N.L., et al. The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7-10 prostate cancer in a repeat biopsy setting. BJU Int, 2017. 119: 724.

https://pubmed.ncbi.nlm.nih.gov/27488931/

260.Hansen, N.L., et al. Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsy-naive men with suspicion of prostate cancer. BJU Int, 2018. 122: 40.

https://pubmed.ncbi.nlm.nih.gov/29024425/

261.Oishi, M., et al. Which Patients with Negative Magnetic Resonance Imaging Can Safely Avoid Biopsy for Prostate Cancer? J Urol, 2019. 201: 268.

https://pubmed.ncbi.nlm.nih.gov/30189186/

262.Stevens, E., et al. Clinical utility of PSAD combined with PI-RADS category for the detection of clinically significant prostate cancer. Urol Oncol, 2020. 38: 846.e9.

https://pubmed.ncbi.nlm.nih.gov/32576527/

263.Schoots, I.G., et al. Multivariate risk prediction tools including MRI for individualized biopsy decision in prostate cancer diagnosis: current status and future directions. World J Urol, 2020. 38: 517.

https://pubmed.ncbi.nlm.nih.gov/30868240/

264.Saba, K., et al. External Validation and Comparison of Prostate Cancer Risk Calculators Incorporating Multiparametric Magnetic Resonance Imaging for Prediction of Clinically Significant Prostate Cancer. J Urol, 2020. 203: 719.

https://pubmed.ncbi.nlm.nih.gov/31651228/

265.Radtke, J.P., et al. Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. PLoS One, 2019. 14: e0221350.

https://pubmed.ncbi.nlm.nih.gov/31450235/

266.Mannaerts, C.K., et al. Prostate Cancer Risk Assessment in Biopsy-naïve Patients: The Rotterdam Prostate Cancer Risk Calculator in Multiparametric Magnetic Resonance Imaging-Transrectal Ultrasound (TRUS) Fusion Biopsy and Systematic TRUS Biopsy. Eur Urol Oncol, 2018. 1: 109.

https://pubmed.ncbi.nlm.nih.gov/31100233/

267.Kim, L., et al. Clinical utility and cost modelling of the phi test to triage referrals into image-based diagnostic services for suspected prostate cancer: the PRIM (Phi to RefIne Mri) study. BMC Med, 2020. 18: 95.

https://pubmed.ncbi.nlm.nih.gov/32299423/

268.Gronberg, H., et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur Urol, 2018. 74: 722.

https://pubmed.ncbi.nlm.nih.gov/30001824/

269.Dell’Oglio, P., et al. Impact of multiparametric MRI and MRI-targeted biopsy on pre-therapeutic risk assessment in prostate cancer patients candidate for radical prostatectomy. World J Urol, 2019.
37: 221.

https://pubmed.ncbi.nlm.nih.gov/29948044/

270.Woo, S., et al. Prognostic Value of Pretreatment MRI in Patients With Prostate Cancer Treated With Radiation Therapy: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol, 2020. 214: 597.

https://pubmed.ncbi.nlm.nih.gov/31799874/

271.Faiena, I., et al. PI-RADS Version 2 Category on 3 Tesla Multiparametric Prostate Magnetic Resonance Imaging Predicts Oncologic Outcomes in Gleason 3 + 4 Prostate Cancer on Biopsy.
J Urol, 2019. 201: 91.

https://pubmed.ncbi.nlm.nih.gov/30142318/

272.Houlahan, K.E., et al. Molecular Hallmarks of Multiparametric Magnetic Resonance Imaging Visibility in Prostate Cancer. Eur Urol, 2019. 76: 18.

https://pubmed.ncbi.nlm.nih.gov/30685078/

273.Lam, T.B.L., et al. EAU-EANM-ESTRO-ESUR-SIOG Prostate Cancer Guideline Panel Consensus Statements for Deferred Treatment with Curative Intent for Localised Prostate Cancer from an International Collaborative Study (DETECTIVE Study). Eur Urol, 2019. 76: 790.

https://pubmed.ncbi.nlm.nih.gov/31587989/

274.Roobol, M.J., et al. A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur Urol, 2010. 57: 79.

https://pubmed.ncbi.nlm.nih.gov/19733959/

275.Eastham, J.A., et al. Variation of serum prostate-specific antigen levels: an evaluation of year-to-year fluctuations. JAMA, 2003. 289: 2695.

https://pubmed.ncbi.nlm.nih.gov/12771116/

276.Stephan, C., et al. Interchangeability of measurements of total and free prostate-specific antigen in serum with 5 frequently used assay combinations: an update. Clin Chem, 2006. 52: 59.

https://pubmed.ncbi.nlm.nih.gov/16391327/

277.Eggener, S.E., et al. Empiric antibiotics for an elevated prostate-specific antigen (PSA) level: a randomised, prospective, controlled multi-institutional trial. BJU Int, 2013. 112: 925.

https://pubmed.ncbi.nlm.nih.gov/23890317/

278.Roberts, M.J., et al. Prostate Biopsy-related Infection: A Systematic Review of Risk Factors, Prevention Strategies, and Management Approaches. Urology, 2017. 104: 11.

https://pubmed.ncbi.nlm.nih.gov/28007492/

279.Pilatz, A., et al. Update on Strategies to Reduce Infectious Complications After Prostate Biopsy. Eur Urol Focus, 2019. 5: 20.

https://pubmed.ncbi.nlm.nih.gov/30503175/

280.Zigeuner, R., et al. Detection of prostate cancer by TURP or open surgery in patients with previously negative transrectal prostate biopsies. Urology, 2003. 62: 883.

https://pubmed.ncbi.nlm.nih.gov/14624913/

281.Ericson, K.J., et al. Prostate cancer detection following diagnosis of atypical small acinar proliferation. Can J Urol, 2017. 24: 8714.

https://pubmed.ncbi.nlm.nih.gov/28436357/

282.Wiener, S., et al. Incidence of Clinically Significant Prostate Cancer After a Diagnosis of Atypical Small Acinar Proliferation, High-grade Prostatic Intraepithelial Neoplasia, or Benign Tissue. Urology, 2017. 110: 161.

https://pubmed.ncbi.nlm.nih.gov/28888752/

283.Walz, J., et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol, 2006. 50: 498.

https://pubmed.ncbi.nlm.nih.gov/16631303/

284.Moran, B.J., et al. Re-biopsy of the prostate using a stereotactic transperineal technique. J Urol, 2006. 176: 1376.

https://pubmed.ncbi.nlm.nih.gov/16952636/

285.Nakai, Y., et al. Transperineal template-guided saturation biopsy aimed at sampling one core for each milliliter of prostate volume: 103 cases requiring repeat prostate biopsy. BMC Urol, 2017. 17: 28.

https://pubmed.ncbi.nlm.nih.gov/28381267/

286.Ekwueme, K., et al. Transperineal template-guided saturation biopsy using a modified technique: outcome of 270 cases requiring repeat prostate biopsy. BJU Int, 2013. 111: E365.

https://pubmed.ncbi.nlm.nih.gov/23714648/

287.Pepdjonovic, L., et al. Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J Urol, 2017. 35: 1199.

https://pubmed.ncbi.nlm.nih.gov/27987032/

288.Panebianco, V., et al. Negative Multiparametric Magnetic Resonance Imaging for Prostate Cancer: What’s Next? Eur Urol, 2018. 74: 48.

https://pubmed.ncbi.nlm.nih.gov/29566957/

289.Eichler, K., et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol, 2006. 175: 1605.

https://pubmed.ncbi.nlm.nih.gov/16600713/

290.Wegelin, O., et al. Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies: A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique? Eur Urol, 2017.
71: 517.

https://pubmed.ncbi.nlm.nih.gov/27568655/

291.Hamid, S., et al. The SmartTarget Biopsy Trial: A Prospective, Within-person Randomised, Blinded Trial Comparing the Accuracy of Visual-registration and Magnetic Resonance Imaging/Ultrasound Image-fusion Targeted Biopsies for Prostate Cancer Risk Stratification. Eur Urol, 2019. 75: 733.

https://pubmed.ncbi.nlm.nih.gov/30527787/

292.Simmons, L.A.M., et al. Accuracy of Transperineal Targeted Prostate Biopsies, Visual Estimation and Image Fusion in Men Needing Repeat Biopsy in the PICTURE Trial. J Urol, 2018. 200: 1227.

https://pubmed.ncbi.nlm.nih.gov/30017964/

293.Watts, K.L., et al. Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol, 2020. 38: 734.e19.

https://pubmed.ncbi.nlm.nih.gov/32321689/

294.Tu, X., et al. Transperineal Magnetic Resonance Imaging-Targeted Biopsy May Perform Better Than Transrectal Route in the Detection of Clinically Significant Prostate Cancer: Systematic Review and Meta-analysis. Clin Genitourin Cancer, 2019. 17: e860.

https://pubmed.ncbi.nlm.nih.gov/31281065/

295.Tschirdewahn, S., et al. Detection of Significant Prostate Cancer Using Target Saturation in Transperineal Magnetic Resonance Imaging/Transrectal Ultrasonography-fusion Biopsy. Eur Urol Focus, 2021. 7: 1300.

https://pubmed.ncbi.nlm.nih.gov/32660838/

296.Raman, A.G., et al. Optimizing Spatial Biopsy Sampling for the Detection of Prostate Cancer. J Urol, 2021. 206: 595.

https://pubmed.ncbi.nlm.nih.gov/33908801/

297.Park, M.Y., et al. Comparison of biopsy strategies for prostate biopsy according to lesion size and PSA density in MRI-directed biopsy pathway. Abdom Radiol (NY), 2020. 45: 4166.

https://pubmed.ncbi.nlm.nih.gov/32737545/

298.Hansen, N.L., et al. Optimising the number of cores for magnetic resonance imaging-guided targeted and systematic transperineal prostate biopsy. BJU Int, 2020. 125: 260.

https://pubmed.ncbi.nlm.nih.gov/31306539/

299.Presti, J.C., Jr. Prostate biopsy: how many cores are enough? Urol Oncol, 2003. 21: 135.

https://pubmed.ncbi.nlm.nih.gov/12856642/

300.Lam, W., et al. Prostate cancer detection, tolerability and safety of transperineal prostate biopsy under local-anaesthesia vs standard transrectal biopsy in biopsy-naive men: a pragmatic, parallel group, randomized controlled study. BJU Int, 2022. 129: 9.

https://bjui-journals.onlinelibrary.wiley.com/doi/10.1111/bju.15675?af=R

301.Pradere, B., et al. Nonantibiotic Strategies for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol, 2021. 205: 653.

https://pubmed.ncbi.nlm.nih.gov/33026903/

302.Bennett, H.Y., et al. The global burden of major infectious complications following prostate biopsy. Epidemiol Infect, 2016. 144: 1784.

https://pubmed.ncbi.nlm.nih.gov/26645476/

303.Berry, B., et al. Comparison of complications after transrectal and transperineal prostate biopsy: a national population-based study. BJU Int, 2020. 126: 97.

https://pubmed.ncbi.nlm.nih.gov/32124525/

304.Castellani, D., et al. Infection Rate after Transperineal Prostate Biopsy with and without Prophylactic Antibiotics: Results from a Systematic Review and Meta-Analysis of Comparative Studies. J Urol, 2022. 207: 25.

https://pubmed.ncbi.nlm.nih.gov/34555932/

305.Basourakos, S.P., et al. Role of Prophylactic Antibiotics in Transperineal Prostate Biopsy: A Systematic Review and Meta-analysis. Eur Urol Open Sci, 2022. 37: 53.

https://pubmed.ncbi.nlm.nih.gov/35243391/

306.Chernysheva, D.Y., et al. The first experience of transperineal prostate biopsy without antibiotic prophylaxis. Cancer Urol, 2021. 17: 46.

https://oncourology.abvpress.ru/oncur/article/view/1392?locale=en_US

307.Jacewicz, M., et al. Antibiotic prophylaxis versus no antibiotic prophylaxis in transperineal prostate biopsies (NORAPP): a randomised, open-label, non-inferiority trial. Lancet Infect Dis, 2022. 22: 1465.

https://pubmed.ncbi.nlm.nih.gov/35839791/

308.Abdulbaki, M.S., et al. Does The Use Of Povidone Iodine Suppository Decrease The Infective Complications Of TRUS Guided Prostate Biopsies? A Randomized Prospective Study. QJM: An In
J Med, 2020. 113: Suppl. 1.

https://academic.oup.com/qjmed/article/113/Supplement_1/hcaa070.024/5829649308

309.Ergani, B., et al. Effect of rectal mucosa cleansing on acute prostatitis during prostate biopsy: A randomized prospective study. Turk J Urol, 2020. 46: 159.

https://pubmed.ncbi.nlm.nih.gov/31922485/

310.Farooq, K., et al. Role of povidone-iodine-soaked gauze in preventing infectious complications following trans rectal digital guided prostate biopsy. J Postgrad Med Inst, 2021. 35: 225.

https://jpmi.org.pk/index.php/jpmi/article/view/2849

311.Taher, Y., et al. MP48-11 Prospective randomized controlled study to assess the effect of perineal region cleansing with povidone iodine before transrectal needle biopsy of the prostate on infectious complications. J Urol, 2015. 193: e598.

https://www.auajournals.org/doi/10.1016/j.juro.2015.02.1685

312.Yu, L., et al. [Impact of insertion timing of iodophor cotton ball on the control of infection complications after transrectal ultrasound guided prostate biopsy]. Zhonghua Yi Xue Za Zhi, 2014. 94: 609.

https://pubmed.ncbi.nlm.nih.gov/24762693/

313.Ezenwa, E., et al. Apical peri-prostatic nerve block versus intra-rectal xylocaine gel for trans- rectal ultrasound guided prostate biopsy among Nigerian patients: A prospective randomized study. Nigerian J Clin Pract, 2020. 23: 1183.

https://pubmed.ncbi.nlm.nih.gov/32913154/

314.Pilatz, A., et al. Antibiotic Prophylaxis for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 224.

https://pubmed.ncbi.nlm.nih.gov/32105195/

315.European Medicine Agency. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. 2019. Access date December 2022.

https://www.ema.europa.eu/en/news/disabling-potentially-permanent-side-effects-lead-suspension-restrictions-quinolone-fluoroquinolone

316.Carignan, A., et al. Effectiveness of fosfomycin tromethamine prophylaxis in preventing infection following transrectal ultrasound-guided prostate needle biopsy: Results from a large Canadian cohort. J Glob Antimicrob Resist, 2019. 17: 112.

https://pubmed.ncbi.nlm.nih.gov/30553114/

317.von Knobloch, R., et al. Bilateral fine-needle administered local anaesthetic nerve block for pain control during TRUS-guided multi-core prostate biopsy: a prospective randomised trial. Eur Urol, 2002. 41: 508.

https://pubmed.ncbi.nlm.nih.gov/12074792/

318.Adamakis, I., et al. Pain during transrectal ultrasonography guided prostate biopsy: a randomized prospective trial comparing periprostatic infiltration with lidocaine with the intrarectal instillation of lidocaine-prilocain cream. World J Urol, 2004. 22: 281.

https://pubmed.ncbi.nlm.nih.gov/14689224/

319.Bass, E.J., et al. Magnetic resonance imaging targeted transperineal prostate biopsy: a local anaesthetic approach. Prostate Cancer Prostatic Dis, 2017. 20: 311.

https://pubmed.ncbi.nlm.nih.gov/28485391/

320.Xiang, J., et al. Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis. World J Surg Oncol, 2019. 17: 31.

https://pubmed.ncbi.nlm.nih.gov/30760274/

321.Iremashvili, V.V., et al. Periprostatic local anesthesia with pudendal block for transperineal ultrasound-guided prostate biopsy: a randomized trial. Urology, 2010. 75: 1023.

https://pubmed.ncbi.nlm.nih.gov/20080288/

322.Meyer, A.R., et al. Initial Experience Performing In-office Ultrasound-guided Transperineal Prostate Biopsy Under Local Anesthesia Using the PrecisionPoint Transperineal Access System. Urology, 2018. 115: 8.

https://pubmed.ncbi.nlm.nih.gov/29409845/

323.Kum, F., et al. Initial outcomes of local anaesthetic freehand transperineal prostate biopsies in the outpatient setting. BJU Int, 2020. 125: 244.

https://pubmed.ncbi.nlm.nih.gov/30431694/

324.Wegelin, O., et al. Complications and Adverse Events of Three Magnetic Resonance Imaging-based Target Biopsy Techniques in the Diagnosis of Prostate Cancer Among Men with Prior Negative Biopsies: Results from the FUTURE Trial, a Multicentre Randomised Controlled Trial. Eur Urol Oncol, 2019. 2: 617.

https://pubmed.ncbi.nlm.nih.gov/31519516/

325.Borghesi, M., et al. Complications After Systematic, Random, and Image-guided Prostate Biopsy. Eur Urol, 2017. 71: 353.

https://pubmed.ncbi.nlm.nih.gov/27543165/

326.Giannarini, G., et al. Continuing or discontinuing low-dose aspirin before transrectal prostate biopsy: results of a prospective randomized trial. Urology, 2007. 70: 501.

https://pubmed.ncbi.nlm.nih.gov/17688919/

327.Garcia, C., et al. Does transperineal prostate biopsy reduce complications compared with transrectal biopsy? a systematic review and meta-analysis of randomised controlled trials. J Urol, 2016. 195: e328.

https://www.researchgate.net/publication/299479974

328.Xue, J., et al. Comparison between transrectal and transperineal prostate biopsy for detection of prostate cancer: a meta-analysis and trial sequential analysis. Oncotarget, 2017. 8: 23322.

https://pubmed.ncbi.nlm.nih.gov/28177897/

329.Linzer, D.G., et al. Seminal vesicle biopsy: accuracy and implications for staging of prostate cancer. Urology, 1996. 48: 757.

https://pubmed.ncbi.nlm.nih.gov/8911521/

330.Pelzer, A.E., et al. Are transition zone biopsies still necessary to improve prostate cancer detection? Results from the tyrol screening project. Eur Urol, 2005. 48: 916.

https://pubmed.ncbi.nlm.nih.gov/16126324/

331.Iczkowski, K.A., et al. Needle core length in sextant biopsy influences prostate cancer detection rate. Urology, 2002. 59: 698.

https://pubmed.ncbi.nlm.nih.gov/11992843/

332.Van der Kwast, T., et al. Guidelines on processing and reporting of prostate biopsies: the 2013 update of the pathology committee of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Virchows Arch, 2013. 463: 367.

https://pubmed.ncbi.nlm.nih.gov/23918245/

333.Bostwick, D.G., et al. Adequate histologic sectioning of prostate needle biopsies. Ann Diagn Pathol, 2013. 17: 357.

https://pubmed.ncbi.nlm.nih.gov/23764163/

334.Egevad, L., et al. Dataset for the reporting of prostate carcinoma in core needle biopsy and transurethral resection and enucleation specimens: recommendations from the International Collaboration on Cancer Reporting (ICCR). Pathology, 2019. 51: 11.

https://pubmed.ncbi.nlm.nih.gov/30477882/

335.Epstein, J.I., et al. Best practices recommendations in the application of immunohistochemistry in the prostate: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol, 2014. 38: e6.

https://pubmed.ncbi.nlm.nih.gov/25029122/

336.Deng, F.M., et al. Size-adjusted Quantitative Gleason Score as a Predictor of Biochemical Recurrence after Radical Prostatectomy. Eur Urol, 2016. 70: 248.

https://pubmed.ncbi.nlm.nih.gov/26525839/

337.Sauter, G., et al. Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens. Eur Urol, 2016. 69: 592.

https://pubmed.ncbi.nlm.nih.gov/26542947/

338.Chen, R.C., et al. Active Surveillance for the Management of Localized Prostate Cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J Clin Oncol, 2016. 34: 2182.

https://pubmed.ncbi.nlm.nih.gov/26884580/

339.Kweldam, C.F., et al. Disease-specific survival of patients with invasive cribriform and intraductal prostate cancer at diagnostic biopsy. Mod Pathol, 2016. 29: 630.

https://pubmed.ncbi.nlm.nih.gov/26939875/

340.Kweldam, C.F., et al. On cribriform prostate cancer. Transl Androl Urol, 2018. 7: 145.

https://pubmed.ncbi.nlm.nih.gov/29594028/

341.van der Kwast, T.H., et al. ISUP Consensus Definition of Cribriform Pattern Prostate Cancer. Am
J Surg Pathol, 2021. 45: 1118.

https://pubmed.ncbi.nlm.nih.gov/33999555/

342.Zhou, M. High-grade prostatic intraepithelial neoplasia, PIN-like carcinoma, ductal carcinoma, and intraductal carcinoma of the prostate. Mod Pathol, 2018. 31: S71.

https://pubmed.ncbi.nlm.nih.gov/29297491/

343.Saeter, T., et al. Intraductal Carcinoma of the Prostate on Diagnostic Needle Biopsy Predicts Prostate Cancer Mortality: A Population-Based Study. Prostate, 2017. 77: 859.

https://pubmed.ncbi.nlm.nih.gov/28240424/

344.Miura, N., et al. The Prognostic Impact of Intraductal Carcinoma of the Prostate: A Systematic Review and Meta-Analysis. J Urol, 2020. 204: 909.

https://pubmed.ncbi.nlm.nih.gov/32698712/

345.Epstein, J.I., et al. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med, 2021. 145: 461.

https://pubmed.ncbi.nlm.nih.gov/32589068/

346.WHO Classification of Tumours. Urinary and male genital tumours. 2022, 8th edn, IARC. Lyon (France).

https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Urinary-And-Male-Genital-Tumours-2022

347.Gordetsky, J.B., et al. Histologic findings associated with false-positive multiparametric magnetic resonance imaging performed for prostate cancer detection. Hum Pathol, 2019. 83: 159.

https://pubmed.ncbi.nlm.nih.gov/30179687/

348.Srigley, J.R., et al. Controversial issues in Gleason and International Society of Urological Pathology (ISUP) prostate cancer grading: proposed recommendations for international implementation. Pathology, 2019. 51: 463.

https://pubmed.ncbi.nlm.nih.gov/31279442/

349.Ström, P., et al. Prognostic value of perineural invasion in prostate needle biopsies: a population-based study of patients treated by radical prostatectomy. J Clin Pathol, 2020. 73: 630.

https://pubmed.ncbi.nlm.nih.gov/32034057/

350.Delahunt, B., et al. Perineural invasion by prostate adenocarcinoma in needle biopsies predicts bone metastasis: Ten year data from the TROG 03.04 RADAR Trial. Histopathology, 2020. 77: 284.

https://pubmed.ncbi.nlm.nih.gov/32285460/

351.Fleshner, K., et al. Clinical Findings and Treatment Outcomes in Patients with Extraprostatic Extension Identified on Prostate Biopsy. J Urol, 2016. 196: 703.

https://pubmed.ncbi.nlm.nih.gov/27049874/

352.Grossklaus, D.J., et al. Percent of cancer in the biopsy set predicts pathological findings after prostatectomy. J Urol, 2002. 167: 2032.

https://pubmed.ncbi.nlm.nih.gov/11956432/

353.Freedland, S.J., et al. Preoperative model for predicting prostate specific antigen recurrence after radical prostatectomy using percent of biopsy tissue with cancer, biopsy Gleason grade and serum prostate specific antigen. J Urol, 2004. 171: 2215.

https://pubmed.ncbi.nlm.nih.gov/15126788/

354.Brimo, F., et al. Prognostic value of various morphometric measurements of tumour extent in prostate needle core tissue. Histopathology, 2008. 53: 177.

https://pubmed.ncbi.nlm.nih.gov/18752501/

355.Bangma, C.H., et al. Active surveillance for low-risk prostate cancer. Crit Rev Oncol Hematol, 2013. 85: 295.

https://pubmed.ncbi.nlm.nih.gov/22878262/

356.Eggener, S.E., et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J Clin Oncol, 2019: JCO1902768.

https://pubmed.ncbi.nlm.nih.gov/31829902/

357.Taylor, A.S., et al. Correlation between cribriform/intraductal prostatic adenocarcinoma and percent Gleason pattern 4 to a 22-gene genomic classifier. Prostate, 2020. 80: 146.

https://pubmed.ncbi.nlm.nih.gov/31737920/

358.Ramotar, M., et al. Subpathologies and genomic classifier for treatment individualization of post-prostatectomy radiotherapy. Urol Oncol, 2022. 40: 5.e1.

https://pubmed.ncbi.nlm.nih.gov/34538726/

359.Lone, Z., et al. Transcriptomic Features of Cribriform and Intraductal Carcinoma of the Prostate. Eur Urol Focus, 2022. 8: 1575.

https://pubmed.ncbi.nlm.nih.gov/35662504/

360.Iremashvili, V., et al. Partial sampling of radical prostatectomy specimens: detection of positive margins and extraprostatic extension. Am J Surg Pathol, 2013. 37: 219.

https://pubmed.ncbi.nlm.nih.gov/23095506/

361.Kench, J.G., et al. Dataset for the reporting of prostate carcinoma in radical prostatectomy specimens: updated recommendations from the International Collaboration on Cancer Reporting. Virchows Arch, 2019. 475: 263.

https://pubmed.ncbi.nlm.nih.gov/31098802/

362.Partin, A.W., et al. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology, 2001. 58: 843.

https://pubmed.ncbi.nlm.nih.gov/11744442/

363.Mazzone, E., et al. Risk Stratification of Patients Candidate to Radical Prostatectomy Based on Clinical and Multiparametric Magnetic Resonance Imaging Parameters: Development and External Validation of Novel Risk Groups. Eur Urol, 2022. 81: 193.

https://pubmed.ncbi.nlm.nih.gov/34399996/

364.Gandaglia, G., et al. A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies. Eur Urol, 2019. 75: 506.

https://pubmed.ncbi.nlm.nih.gov/30342844/

365.Magi-Galluzzi, C., et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol, 2011. 24: 26.

https://pubmed.ncbi.nlm.nih.gov/20802467/

366.van Veggel, B.A., et al. Quantification of extraprostatic extension in prostate cancer: different parameters correlated to biochemical recurrence after radical prostatectomy. Histopathology, 2011. 59: 692.

https://pubmed.ncbi.nlm.nih.gov/22014050/

367.Aydin, H., et al. Positive proximal (bladder neck) margin at radical prostatectomy confers greater risk of biochemical progression. Urology, 2004. 64: 551.

https://pubmed.ncbi.nlm.nih.gov/15351591/

368.Ploussard, G., et al. The prognostic significance of bladder neck invasion in prostate cancer: is microscopic involvement truly a T4 disease? BJU Int, 2010. 105: 776.

https://pubmed.ncbi.nlm.nih.gov/19863529/

369.Stamey, T.A., et al. Prostate cancer is highly predictable: a prognostic equation based on all morphological variables in radical prostatectomy specimens. J Urol, 2000. 163: 1155.

https://pubmed.ncbi.nlm.nih.gov/10737486/

370.Epstein, J.I., et al. Prognostic factors and reporting of prostate carcinoma in radical prostatectomy and pelvic lymphadenectomy specimens. Scand J Urol Nephrol Suppl, 2005: 34.

https://pubmed.ncbi.nlm.nih.gov/16019758/

371.Kikuchi, E., et al. Is tumor volume an independent prognostic factor in clinically localized prostate cancer? J Urol, 2004. 172: 508.

https://pubmed.ncbi.nlm.nih.gov/15247716/

372.van Oort, I.M., et al. Maximum tumor diameter is not an independent prognostic factor in high-risk localized prostate cancer. World J Urol, 2008. 26: 237.

https://pubmed.ncbi.nlm.nih.gov/18265988/

373.van der Kwast, T.H., et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 2: T2 substaging and prostate cancer volume. Mod Pathol, 2011. 24: 16.

https://pubmed.ncbi.nlm.nih.gov/20818340/

374.Evans, A.J., et al. Interobserver variability between expert urologic pathologists for extraprostatic extension and surgical margin status in radical prostatectomy specimens. Am J Surg Pathol, 2008. 32: 1503.

https://pubmed.ncbi.nlm.nih.gov/18708939/

375.Chuang, A.Y., et al. Positive surgical margins in areas of capsular incision in otherwise organ-confined disease at radical prostatectomy: histologic features and pitfalls. Am J Surg Pathol, 2008. 32: 1201.

https://pubmed.ncbi.nlm.nih.gov/18580493/

376.Hollemans, E., et al. Prostate Carcinoma Grade and Length But Not Cribriform Architecture at Positive Surgical Margins Are Predictive for Biochemical Recurrence After Radical Prostatectomy. Am J Surg Pathol, 2020. 44: 191.

https://pubmed.ncbi.nlm.nih.gov/31592799/

377.Cao, D., et al. Ability of linear length of positive margin in radical prostatectomy specimens to predict biochemical recurrence. Urology, 2011. 77: 1409.

https://pubmed.ncbi.nlm.nih.gov/21256540/

378.Sammon, J.D., et al. Risk factors for biochemical recurrence following radical perineal prostatectomy in a large contemporary series: a detailed assessment of margin extent and location. Urol Oncol, 2013. 31: 1470.

https://pubmed.ncbi.nlm.nih.gov/22534086/

379.Chapin, B.F., et al. Positive margin length and highest Gleason grade of tumor at the margin predict for biochemical recurrence after radical prostatectomy in patients with organ-confined prostate cancer. Prostate Cancer Prostatic Dis, 2018. 21: 221.

https://pubmed.ncbi.nlm.nih.gov/29230008/

380.Paner, G.P., et al. Updates in the Eighth Edition of the Tumor-Node-Metastasis Staging Classification for Urologic Cancers. Eur Urol, 2018. 73: 560.

https://pubmed.ncbi.nlm.nih.gov/29325693/

381.Coakley, F.V., et al. ACR Appropriateness Criteria(®) Prostate Cancer-Pretreatment Detection, Surveillance, and Staging. J Am Coll Radiol, 2017. 14: S245.

https://pubmed.ncbi.nlm.nih.gov/28473080/

382.de Rooij, M., et al. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur Urol, 2016. 70: 233.

https://pubmed.ncbi.nlm.nih.gov/26215604/

383.Christophe, C., et al. Prostate cancer local staging using biparametric MRI: assessment and comparison with multiparametric MRI. Eur J Radiol, 2020. 132: 109350.

https://pubmed.ncbi.nlm.nih.gov/33080549/

384.Soeterik, T.F.W., et al. Multiparametric Magnetic Resonance Imaging Should Be Preferred Over Digital Rectal Examination for Prostate Cancer Local Staging and Disease Risk Classification. Urology, 2021. 147: 205.

https://pubmed.ncbi.nlm.nih.gov/33129868/

385.Futterer, J.J., et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology, 2005. 237: 541.

https://pubmed.ncbi.nlm.nih.gov/16244263/

386.Kim, T.H., et al. The Diagnostic Performance of the Length of Tumor Capsular Contact on MRI for Detecting Prostate Cancer Extraprostatic Extension: A Systematic Review and Meta-Analysis. Korean J Radiol, 2020. 21: 684.

https://pubmed.ncbi.nlm.nih.gov/32410407/

387.Valentin, B., et al. Magnetic resonance imaging improves the prediction of tumor staging in localized prostate cancer. Abdom Radiol (NY), 2021. 46: 2751.

https://pubmed.ncbi.nlm.nih.gov/33452898/

388.Park, K.J., et al. Extraprostatic Tumor Extension: Comparison of Preoperative Multiparametric MRI Criteria and Histopathologic Correlation after Radical Prostatectomy. Radiology, 2020. 296: 87.

https://pubmed.ncbi.nlm.nih.gov/32368959/

389.Morlacco, A., et al. Nomograms in Urologic Oncology: Lights and Shadows. J Clin Med, 2021. 10: 980.

https://pubmed.ncbi.nlm.nih.gov/33801184/

390.Leyh-Bannurah, S.R., et al. Combined systematic versus stand-alone multiparametric MRI-guided targeted fusion biopsy: nomogram prediction of non-organ-confined prostate cancer. World J Urol, 2021. 39: 81.

https://pubmed.ncbi.nlm.nih.gov/32248363/

391.Diamand, R., et al. External Validation of a Multiparametric Magnetic Resonance Imaging-based Nomogram for the Prediction of Extracapsular Extension and Seminal Vesicle Invasion in Prostate Cancer Patients Undergoing Radical Prostatectomy. Eur Urol, 2021. 79: 180.

https://pubmed.ncbi.nlm.nih.gov/33023770/

392.Alves, J.R., et al. Independent external validation of nomogram to predict extracapsular extension in patients with prostate cancer. Eur Radiol, 2020. 30: 5004.

https://pubmed.ncbi.nlm.nih.gov/32307562/

393.Abuzallouf, S., et al. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol, 2004. 171: 2122.

https://pubmed.ncbi.nlm.nih.gov/15126770/

394.Kiss, B., et al. Current Status of Lymph Node Imaging in Bladder and Prostate Cancer. Urology, 2016. 96: 1.

https://pubmed.ncbi.nlm.nih.gov/26966038/

395.Harisinghani, M.G., et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med, 2003. 348: 2491.

https://pubmed.ncbi.nlm.nih.gov/12815134/

396.Hovels, A.M., et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol, 2008. 63: 387.

https://pubmed.ncbi.nlm.nih.gov/18325358/

397.Valentin, B., et al. Comparison of 3 T mpMRI and pelvic CT examinations for detection of lymph node metastases in patients with prostate cancer. Eur J Radiol, 2022. 147: 110110.

https://pubmed.ncbi.nlm.nih.gov/34952329/

398.Lebastchi, A.H., et al. Comparison of cross-sectional imaging techniques for the detection of prostate cancer lymph node metastasis: a critical review. Transl Androl Urol, 2020. 9: 1415.

https://pubmed.ncbi.nlm.nih.gov/32676426/

399.M.S.K.C.C. Dynamic Prostate Cancer Nomogram: Coefficients. Access date December 2022.

https://www.mskcc.org/nomograms/prostate/post_op/coefficients

400.Briganti, A., et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol, 2012. 61: 480.

https://pubmed.ncbi.nlm.nih.gov/22078338/

401.Gandaglia, G., et al. Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer. Eur Urol, 2017. 72: 632.

https://pubmed.ncbi.nlm.nih.gov/28412062/

402.Draulans, C., et al. Development and External Validation of a Multiparametric Magnetic Resonance Imaging and International Society of Urological Pathology Based Add-On Prediction Tool to Identify Prostate Cancer Candidates for Pelvic Lymph Node Dissection. J Urol, 2020. 203: 713.

https://pubmed.ncbi.nlm.nih.gov/31718396/

403.Gandaglia, G., et al. External Validation of the 2019 Briganti Nomogram for the Identification of Prostate Cancer Patients Who Should Be Considered for an Extended Pelvic Lymph Node Dissection. Eur Urol, 2020. 78: 138.

https://pubmed.ncbi.nlm.nih.gov/32268944/

404.von Eyben, F.E., et al. Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun, 2014. 35: 221.

https://pubmed.ncbi.nlm.nih.gov/24240194/

405.Van den Bergh, L., et al. Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol, 2015. 33: 109 e23.

https://pubmed.ncbi.nlm.nih.gov/25655681/

406.Schiavina, R., et al. Preoperative Staging With (11)C-Choline PET/CT Is Adequately Accurate in Patients With Very High-Risk Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 305.

https://pubmed.ncbi.nlm.nih.gov/29859737/

407.Maurer, T., et al. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol, 2016.
13: 226.

https://pubmed.ncbi.nlm.nih.gov/26902337/

408.Dias, A.H., et al. Prostate-Specific Membrane Antigen PET/CT: Uptake in Lymph Nodes With Active Sarcoidosis. Clin Nucl Med, 2017. 42: e175.

https://pubmed.ncbi.nlm.nih.gov/28045734/

409.Froehner, M., et al. PSMA-PET/CT-Positive Paget Disease in a Patient with Newly Diagnosed Prostate Cancer: Imaging and Bone Biopsy Findings. Case Rep Urol, 2017. 2017: 1654231.

https://pubmed.ncbi.nlm.nih.gov/28396816/

410.Jochumsen, M.R., et al. Benign Traumatic Rib Fracture: A Potential Pitfall on 68Ga-Prostate-Specific Membrane Antigen PET/CT for Prostate Cancer. Clin Nucl Med, 2018. 43: 38.

https://pubmed.ncbi.nlm.nih.gov/29076907/

411.Werner, R.A., et al. (18)F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics, 2020. 10: 1.

https://pubmed.ncbi.nlm.nih.gov/31903102/

412.Hope, T.A., et al. Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol, 2021. 7: 1635.

https://pubmed.ncbi.nlm.nih.gov/34529005/

413.van Kalmthout, L.W.M., et al. Prospective Validation of Gallium-68 Prostate Specific Membrane Antigen-Positron Emission Tomography/Computerized Tomography in Primary Staging of Patients with Prostate Cancer. J Urol, 2020. 203: 537.

https://pubmed.ncbi.nlm.nih.gov/31487220/

414.Jansen, B.H.E., et al. Pelvic lymph-node staging with (18)F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer - the SALT trial. Eur J Nucl Med Mol Imaging, 2021. 48: 509.

https://pubmed.ncbi.nlm.nih.gov/32789599/

415.Pienta, K.J., et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY).
J Urol, 2021. 206: 52.

https://pubmed.ncbi.nlm.nih.gov/33634707/

416.Perera, M., et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur Urol, 2020. 77: 403.

https://pubmed.ncbi.nlm.nih.gov/30773328/

417.Wu, H., et al. Diagnostic Performance of (6)(8)Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-analysis. World J Mens Health, 2020. 38: 208.

https://pubmed.ncbi.nlm.nih.gov/31081294/

418.Van Damme, J., et al. Comparison of (68)Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography Computed Tomography (PET-CT) and Whole-Body Magnetic Resonance Imaging (WB-MRI) with Diffusion Sequences (DWI) in the Staging of Advanced Prostate Cancer. Cancers (Basel), 2021. 13: 5286.

https://pubmed.ncbi.nlm.nih.gov/34771449/

419.Meijer, D., et al. External Validation and Addition of Prostate-specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-node Metastases: an International Multicenter Study. Eur Urol, 2021. 80: 234.

https://pubmed.ncbi.nlm.nih.gov/34024652/

420.Shen, G., et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol, 2014. 43: 1503.

https://pubmed.ncbi.nlm.nih.gov/24841276/

421.Briganti, A., et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol, 2010. 57: 551.

https://pubmed.ncbi.nlm.nih.gov/20034730/

422.Lin, Y., et al. When to perform bone scintigraphy in patients with newly diagnosed prostate cancer? a retrospective study. BMC Urol, 2017. 17: 41.

https://pubmed.ncbi.nlm.nih.gov/28606069/

423.O’Sullivan, J.M., et al. Broadening the criteria for avoiding staging bone scans in prostate cancer: a retrospective study of patients at the Royal Marsden Hospital. BJU Int, 2003. 92: 685.

https://pubmed.ncbi.nlm.nih.gov/14616446/

424.Ayyathurai, R., et al. A study on staging bone scans in newly diagnosed prostate cancer. Urol Int, 2006. 76: 209.

https://pubmed.ncbi.nlm.nih.gov/16601380/

425.Tateishi, U., et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med, 2010. 24: 523.

https://pubmed.ncbi.nlm.nih.gov/20559896/

426.Evangelista, L., et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging, 2016. 43: 1546.

https://pubmed.ncbi.nlm.nih.gov/26956538/

427.Zacho, H.D., et al. Observer Agreement and Accuracy of (18)F-Sodium Fluoride PET/CT in the Diagnosis of Bone Metastases in Prostate Cancer. J Nucl Med, 2020. 61: 344.

https://pubmed.ncbi.nlm.nih.gov/31481577/

428.Uprimny, C., et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging, 2017. 44: 941.

https://pubmed.ncbi.nlm.nih.gov/28138747/

429.Brogsitter, C., et al. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging, 2013. 40 Suppl 1: S18.

https://pubmed.ncbi.nlm.nih.gov/23579863/

430.Picchio, M., et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur
J Nucl Med Mol Imaging, 2012. 39: 13.

https://pubmed.ncbi.nlm.nih.gov/21932120/

431.Van Nieuwenhove, S., et al. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J Magn Reson Imaging, 2022. 55: 653.

https://pubmed.ncbi.nlm.nih.gov/33382151/

432.Corfield, J., et al. (68)Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol, 2018.
36: 519.

https://pubmed.ncbi.nlm.nih.gov/29344682/

433.Hofman, M.S., et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet, 2020. 395: 1208.

https://pubmed.ncbi.nlm.nih.gov/32209449/

434.Anttinen, M., et al. A Prospective Comparison of (18)F-prostate-specific Membrane Antigen-1007 Positron Emission Tomography Computed Tomography, Whole-body 1.5 T Magnetic Resonance Imaging with Diffusion-weighted Imaging, and Single-photon Emission Computed Tomography/Computed Tomography with Traditional Imaging in Primary Distant Metastasis Staging of Prostate Cancer (PROSTAGE). Eur Urol Oncol, 2021. 4: 635.

https://pubmed.ncbi.nlm.nih.gov/32675047/

435.Cornford, P., et al. Prostate-specific Membrane Antigen Positron Emission Tomography Scans Before Curative Treatment: Ready for Prime Time? Eur Urol, 2020. 78: e125.

https://pubmed.ncbi.nlm.nih.gov/32624287/

436.Hicks, R.J., et al. Seduction by Sensitivity: Reality, Illusion, or Delusion? The Challenge of Assessing Outcomes after PSMA Imaging Selection of Patients for Treatment. J Nucl Med, 2017. 58: 1969.

https://pubmed.ncbi.nlm.nih.gov/28935839/

437.Hofman, M.S., et al. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol. BJU Int, 2018. 122: 783.

https://pubmed.ncbi.nlm.nih.gov/29726071/

438.Smith, B.D., et al. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol, 2009. 27: 2758.

https://pubmed.ncbi.nlm.nih.gov/19403886/

439.Arnold, M., et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer, 2015. 51: 1164.

https://pubmed.ncbi.nlm.nih.gov/24120180/

440.Liu, D., et al. Active surveillance versus surgery for low risk prostate cancer: a clinical decision analysis. J Urol, 2012. 187: 1241.

https://pubmed.ncbi.nlm.nih.gov/22335873/

441.Bill-Axelson, A., et al. Radical prostatectomy or watchful waiting in early prostate cancer. N Engl
J Med, 2014. 370: 932.

https://pubmed.ncbi.nlm.nih.gov/24597866/

442.Kupelian, P.A., et al. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. J Clin Oncol, 2002. 20: 3376.

https://pubmed.ncbi.nlm.nih.gov/12177097/

443.Bubolz, T., et al. Treatments for prostate cancer in older men: 1984-1997. Urology, 2001. 58: 977.

https://pubmed.ncbi.nlm.nih.gov/11744472/

444.Houterman, S., et al. Impact of comorbidity on treatment and prognosis of prostate cancer patients: a population-based study. Crit Rev Oncol Hematol, 2006. 58: 60.

https://pubmed.ncbi.nlm.nih.gov/16213153/

445.Ries, L.A.G., et al. eds. SEER cancer Statistics Review, 1975-2011. 2022.

https://seer.cancer.gov/archive/csr/1975_2011/

446.Scosyrev, E., et al. Prostate cancer in the elderly: frequency of advanced disease at presentation and disease-specific mortality. Cancer, 2012. 118: 3062.

https://pubmed.ncbi.nlm.nih.gov/22006014/

447.Richstone, L., et al. Radical prostatectomy in men aged >or=70 years: effect of age on upgrading, upstaging, and the accuracy of a preoperative nomogram. BJU Int, 2008. 101: 541.

https://pubmed.ncbi.nlm.nih.gov/18257855/

448.Sun, L., et al. Men older than 70 years have higher risk prostate cancer and poorer survival in the early and late prostate specific antigen eras. J Urol, 2009. 182: 2242.

https://pubmed.ncbi.nlm.nih.gov/19758616/

449.Hamilton, A.S., et al. Trends in the treatment of localized prostate cancer using supplemented cancer registry data. BJU Int, 2011. 107: 576.

https://pubmed.ncbi.nlm.nih.gov/20735387/

450.Studenski, S., et al. Gait speed and survival in older adults. JAMA, 2011. 305: 50.

https://pubmed.ncbi.nlm.nih.gov/21205966/

451.Ethun, C.G., et al. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J Clin, 2017. 67: 362.

https://pubmed.ncbi.nlm.nih.gov/28731537/

452.Bellera, C.A., et al. Screening older cancer patients: first evaluation of the G-8 geriatric screening tool. Ann Oncol, 2012. 23: 2166.

https://pubmed.ncbi.nlm.nih.gov/22250183/

453.Hamaker, M.E., et al. The effect of a geriatric evaluation on treatment decisions and outcome for older cancer patients - A systematic review. J Geriatr Oncol, 2018. 9: 430.

https://pubmed.ncbi.nlm.nih.gov/29631898/

454.Rockwood, K., et al. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can Geriatr J, 2020. 23: 210.

https://pubmed.ncbi.nlm.nih.gov/32904824/

455.McIsaac, D.I., et al. Frailty as a Predictor of Death or New Disability After Surgery: A Prospective Cohort Study. Ann Surg, 2020. 271: 283.

https://pubmed.ncbi.nlm.nih.gov/30048320/

456.van Walree, I.C., et al. Clinical judgment versus geriatric assessment for frailty in older patients with cancer. J Geriatr Oncol, 2020. 11: 1138.

https://pubmed.ncbi.nlm.nih.gov/32576520/

457.Albertsen, P.C., et al. Impact of comorbidity on survival among men with localized prostate cancer.
J Clin Oncol, 2011. 29: 1335.

https://pubmed.ncbi.nlm.nih.gov/21357791/

458.Tewari, A., et al. Long-term survival probability in men with clinically localized prostate cancer: a case-control, propensity modeling study stratified by race, age, treatment and comorbidities. J Urol, 2004. 171: 1513.

https://pubmed.ncbi.nlm.nih.gov/15017210/

459.Parmelee, P.A., et al. Validation of the Cumulative Illness Rating Scale in a geriatric residential population. J Am Geriatr Soc, 1995. 43: 130.

https://pubmed.ncbi.nlm.nih.gov/7836636/

460.Groome, P.A., et al. Assessing the impact of comorbid illnesses on death within 10 years in prostate cancer treatment candidates. Cancer, 2011. 117: 3943.

https://pubmed.ncbi.nlm.nih.gov/21858801/

461.Charlson, M.E., et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis, 1987. 40: 373.

https://pubmed.ncbi.nlm.nih.gov/3558716/

462.Blanc-Bisson, C., et al. Undernutrition in elderly patients with cancer: target for diagnosis and intervention. Crit Rev Oncol Hematol, 2008. 67: 243.

https://pubmed.ncbi.nlm.nih.gov/18554922/

463.Sachs, G.A., et al. Cognitive impairment: an independent predictor of excess mortality: a cohort study. Ann Intern Med, 2011. 155: 300.

https://pubmed.ncbi.nlm.nih.gov/21893623/

464.Robinson, T.N., et al. Preoperative cognitive dysfunction is related to adverse postoperative outcomes in the elderly. J Am Coll Surg, 2012. 215: 12.

https://pubmed.ncbi.nlm.nih.gov/22626912/

465.Borson, S., et al. The Mini-Cog as a screen for dementia: validation in a population-based sample.
J Am Geriatr Soc, 2003. 51: 1451.

https://pubmed.ncbi.nlm.nih.gov/14511167/

466.Korc-Grodzicki, B., et al. Prevention of post-operative delirium in older patients with cancer undergoing surgery. J Geriatr Oncol, 2015. 6: 60.

https://pubmed.ncbi.nlm.nih.gov/25454768/

467.Oken, M.M., et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am
J Clin Oncol, 1982. 5: 649.

https://pubmed.ncbi.nlm.nih.gov/7165009/

468.Katz, S., et al. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychological function. JAMA, 1963. 185: 914.

https://pubmed.ncbi.nlm.nih.gov/14044222/

469.Lawton, M.P., et al. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 1969. 9: 179.

https://pubmed.ncbi.nlm.nih.gov/5349366/

470.Stineman, M.G., et al. All-cause 1-, 5-, and 10-year mortality in elderly people according to activities of daily living stage. J Am Geriatr Soc, 2012. 60: 485.

https://pubmed.ncbi.nlm.nih.gov/22352414/

471.Paladino, J., et al. Communication Strategies for Sharing Prognostic Information With Patients: Beyond Survival Statistics. JAMA, 2019. 322: 1345.

https://pubmed.ncbi.nlm.nih.gov/31415085/

472.Rostoft, S., et al. Shared decision-making in older patients with cancer - What does the patient want? J Geriatr Oncol, 2021. 12: 339.

https://pubmed.ncbi.nlm.nih.gov/32839118/

473.Soubeyran, P., et al. Screening for vulnerability in older cancer patients: the ONCODAGE Prospective Multicenter Cohort Study. PLoS One, 2014. 9: e115060.

https://pubmed.ncbi.nlm.nih.gov/25503576/

474.Klotz, L. Overdiagnosis in urologic cancer : For World Journal of Urology Symposium on active surveillance in prostate and renal cancer. World J Urol, 2022. 40: 1.

https://pubmed.ncbi.nlm.nih.gov/33492425/

475.Johansson, J.E., et al. Natural history of localised prostatic cancer. A population-based study in 223 untreated patients. Lancet, 1989. 1: 799.

https://pubmed.ncbi.nlm.nih.gov/2564901/

476.Bill-Axelson, A., et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med, 2005. 352: 1977.

https://pubmed.ncbi.nlm.nih.gov/15888698/

477.Adolfsson, J., et al. The 20-Yr outcome in patients with well- or moderately differentiated clinically localized prostate cancer diagnosed in the pre-PSA era: the prognostic value of tumour ploidy and comorbidity. Eur Urol, 2007. 52: 1028.

https://pubmed.ncbi.nlm.nih.gov/17467883/

478.Jonsson, E., et al. Adenocarcinoma of the prostate in Iceland: a population-based study of stage, Gleason grade, treatment and long-term survival in males diagnosed between 1983 and 1987. Scand J Urol Nephrol, 2006. 40: 265.

https://pubmed.ncbi.nlm.nih.gov/16916765/

479.Lu-Yao, G.L., et al. Outcomes of localized prostate cancer following conservative management. JAMA, 2009. 302: 1202.

https://pubmed.ncbi.nlm.nih.gov/19755699/

480.Hayes, J.H., et al. Observation versus initial treatment for men with localized, low-risk prostate cancer: a cost-effectiveness analysis. Ann Intern Med, 2013. 158: 853.

https://pubmed.ncbi.nlm.nih.gov/23778902/

481.Albertsen, P.C. Observational studies and the natural history of screen-detected prostate cancer. Curr Opin Urol, 2015. 25: 232.

https://pubmed.ncbi.nlm.nih.gov/25692723/

482.Bruinsma, S.M., et al. Expert consensus document: Semantics in active surveillance for men with localized prostate cancer - results of a modified Delphi consensus procedure. Nat Rev Urol, 2017. 14: 312.

https://pubmed.ncbi.nlm.nih.gov/28290462/

483.Thomsen, F.B., et al. Active surveillance for clinically localized prostate cancer--a systematic review. J Surg Oncol, 2014. 109: 830.

https://pubmed.ncbi.nlm.nih.gov/24610744/

484.Tosoian, J.J., et al. Intermediate and Longer-Term Outcomes From a Prospective Active-Surveillance Program for Favorable-Risk Prostate Cancer. J Clin Oncol, 2015. 33: 3379.

https://pubmed.ncbi.nlm.nih.gov/26324359/

485.Hamdy, F.C., et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med, 2016. 375: 1415.

https://pubmed.ncbi.nlm.nih.gov/27626136/

486.Bryant, R.J., et al. The ProtecT trial: analysis of the patient cohort, baseline risk stratification and disease progression. BJU Int, 2020. 125: 506.

https://pubmed.ncbi.nlm.nih.gov/31900963/

487.van As, N.J., et al. Predicting the probability of deferred radical treatment for localised prostate cancer managed by active surveillance. Eur Urol, 2008. 54: 1297.

https://pubmed.ncbi.nlm.nih.gov/18342430/

488.Carter, H.B., et al. Expectant management of prostate cancer with curative intent: an update of the Johns Hopkins experience. J Urol, 2007. 178: 2359.

https://pubmed.ncbi.nlm.nih.gov/17936806/

489.Adamy, A., et al. Role of prostate specific antigen and immediate confirmatory biopsy in predicting progression during active surveillance for low risk prostate cancer. J Urol, 2011. 185: 477.

https://pubmed.ncbi.nlm.nih.gov/21167529/

490.Soloway, M.S., et al. Careful selection and close monitoring of low-risk prostate cancer patients on active surveillance minimizes the need for treatment. Eur Urol, 2010. 58: 831.

https://pubmed.ncbi.nlm.nih.gov/20800964/

491.Roemeling, S., et al. Active surveillance for prostate cancers detected in three subsequent rounds of a screening trial: characteristics, PSA doubling times, and outcome. Eur Urol, 2007. 51: 1244.

https://pubmed.ncbi.nlm.nih.gov/17161520/

492.Godtman, R.A., et al. Outcome following active surveillance of men with screen-detected prostate cancer. Results from the Göteborg randomised population-based prostate cancer screening trial. Eur Urol, 2013. 63: 101.

https://pubmed.ncbi.nlm.nih.gov/22980443/

493.Klotz, L., et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol, 2015. 33: 272.

https://pubmed.ncbi.nlm.nih.gov/25512465/

494.Tosoian, J.J., et al. Active Surveillance of Grade Group 1 Prostate Cancer: Long-term Outcomes from a Large Prospective Cohort. Eur Urol, 2020. 77: 675.

https://pubmed.ncbi.nlm.nih.gov/31918957/

495.Carlsson, S., et al. Long-Term Outcomes of Active Surveillance for Prostate Cancer: The Memorial Sloan Kettering Cancer Center Experience. J Urol, 2020. 203: 1122.

https://pubmed.ncbi.nlm.nih.gov/31868556/

496.Bill-Axelson, A., et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer - 29-Year Follow-up. N Engl J Med, 2018. 379: 2319.

https://pubmed.ncbi.nlm.nih.gov/30575473/

497.Wilt, T.J., et al. Radical Prostatectomy or Observation for Clinically Localized Prostate Cancer: Extended Follow-up of the Prostate Cancer Intervention Versus Observation Trial (PIVOT). Eur Urol, 2020. 77: 713.

https://pubmed.ncbi.nlm.nih.gov/32089359/

498.Steineck, G., et al. Quality of life after radical prostatectomy or watchful waiting. N Engl J Med, 2002. 347: 790.

https://pubmed.ncbi.nlm.nih.gov/12226149/

499.Vernooij, R.W., et al. Radical prostatectomy versus deferred treatment for localised prostate cancer. Cochrane Database Syst Rev, 2020. 6: CD006590.

https://pubmed.ncbi.nlm.nih.gov/32495338/

500.Graversen, P.H., et al. Radical prostatectomy versus expectant primary treatment in stages I and II prostatic cancer. A fifteen-year follow-up. Urology, 1990. 36: 493.

https://pubmed.ncbi.nlm.nih.gov/2247914/

501.Adolfsson, J. Watchful waiting and active surveillance: the current position. BJU Int, 2008. 102: 10.

https://pubmed.ncbi.nlm.nih.gov/18422774/

502.Hatzinger, M., et al. [The history of prostate cancer from the beginning to DaVinci]. Aktuelle Urol, 2012. 43: 228.

https://pubmed.ncbi.nlm.nih.gov/23035261/

503.Wilt, T.J., et al. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl
J Med, 2017. 377: 132.

https://pubmed.ncbi.nlm.nih.gov/28700844/

504.Kretschmer, A., et al. Perioperative patient education improves long-term satisfaction rates of low-risk prostate cancer patients after radical prostatectomy. World J Urol, 2017. 35: 1205.

https://pubmed.ncbi.nlm.nih.gov/28093628/

505.Gyomber, D., et al. Improving informed consent for patients undergoing radical prostatectomy using multimedia techniques: a prospective randomized crossover study. BJU Int, 2010. 106: 1152.

https://pubmed.ncbi.nlm.nih.gov/20346048/

506.Huber, J., et al. Multimedia support for improving preoperative patient education: a randomized controlled trial using the example of radical prostatectomy. Ann Surg Oncol, 2013. 20: 15.

https://pubmed.ncbi.nlm.nih.gov/22851045/

507.Wake, N., et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med, 2019. 5: 4.

https://pubmed.ncbi.nlm.nih.gov/30783869/

508.De Nunzio, C., et al. The EORTC quality of life questionnaire predicts early and long-term incontinence in patients treated with robotic assisted radical prostatectomy: Analysis of a large single center cohort. Urol Oncol, 2019. 37: 1006.

https://pubmed.ncbi.nlm.nih.gov/31326315/

509.Chang, J.I., et al. Preoperative Pelvic Floor Muscle Exercise and Postprostatectomy Incontinence: A Systematic Review and Meta-analysis. Eur Urol, 2016. 69: 460.

https://pubmed.ncbi.nlm.nih.gov/26610857/

510.Bonkat, G., et al. EAU Guidelines on Urological Infections. In: EAU Guidelines published at the 38th EAU Annual Congress, Milan. EAU Guidelines Office, Arnhem, The Netherlands.

https://uroweb.org/guidelines/urological-infections

511.Kumar, S., et al. Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Syst Rev, 2006: CD006019.

https://pubmed.ncbi.nlm.nih.gov/17054269/

512.Liu, W., et al. Neoadjuvant hormone therapy for patients with high-risk prostate cancer: a systematic review and meta-analysis. Asian J Androl, 2021. 23: 429.

https://pubmed.ncbi.nlm.nih.gov/33586699/

513.Efstathiou, E., et al. Clinical and Biological Characterisation of Localised High-risk Prostate Cancer: Results of a Randomised Preoperative Study of a Luteinising Hormone-releasing Hormone Agonist with or Without Abiraterone Acetate plus Prednisone. Eur Urol, 2019. 76: 418.

https://pubmed.ncbi.nlm.nih.gov/31176622/

514.McKay, R.R., et al. Outcomes of Post-Neoadjuvant Intense Hormone Therapy and Surgery for High Risk Localized Prostate Cancer: Results of a Pooled Analysis of Contemporary Clinical Trials. J Urol, 2021. 205: 1689.

https://pubmed.ncbi.nlm.nih.gov/33502237/

515.Eastham, J.A., et al. Cancer and Leukemia Group B 90203 (Alliance): Radical Prostatectomy With or Without Neoadjuvant Chemohormonal Therapy in Localized, High-Risk Prostate Cancer. J Clin Oncol, 2020. 38: 3042.

https://pubmed.ncbi.nlm.nih.gov/32706639/

516.Laukhtina, E., et al. Oncologic impact of delaying radical prostatectomy in men with intermediate- and high-risk prostate cancer: a systematic review. World J Urol, 2021. 39: 4085.

https://pubmed.ncbi.nlm.nih.gov/34047825/

517.Walsh, P.C., et al. Impotence following radical prostatectomy: insight into etiology and prevention.
J Urol, 1982. 128: 492.

https://pubmed.ncbi.nlm.nih.gov/7120554/

518.Binder, J., et al. [Robot-assisted laparoscopy in urology. Radical prostatectomy and reconstructive retroperitoneal interventions]. Urologe A, 2002. 41: 144.

https://pubmed.ncbi.nlm.nih.gov/11993092/

519.Yaxley, J.W., et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet, 2016. 388: 1057.

https://pubmed.ncbi.nlm.nih.gov/27474375/

520.Coughlin, G.D., et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol, 2018. 19: 1051.

https://pubmed.ncbi.nlm.nih.gov/30017351/

521.Albertsen, P.C., et al. Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer. Jama, 1998. 280: 975.

https://pubmed.ncbi.nlm.nih.gov/9749479/

522.Albertsen, P.C., et al. Statistical considerations when assessing outcomes following treatment for prostate cancer. J Urol, 1999. 162: 439.

https://pubmed.ncbi.nlm.nih.gov/10411053/

523.Iversen, P., et al. Bicalutamide (150 mg) versus placebo as immediate therapy alone or as adjuvant to therapy with curative intent for early nonmetastatic prostate cancer: 5.3-year median followup from the Scandinavian Prostate Cancer Group Study Number 6. J Urol, 2004. 172: 1871.

https://pubmed.ncbi.nlm.nih.gov/15540741/

524.Jacobs, B.L., et al. Use of advanced treatment technologies among men at low risk of dying from prostate cancer. JAMA, 2013. 309: 2587.

https://pubmed.ncbi.nlm.nih.gov/23800935/

525.Allan, C., et al. Laparoscopic versus Robotic-Assisted Radical Prostatectomy for the Treatment of Localised Prostate Cancer: A Systematic Review. Urol Int, 2016. 96: 373.

https://pubmed.ncbi.nlm.nih.gov/26201500/

526.Ilic, D., et al. Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer. Cochrane Database Syst Rev, 2017. 9: CD009625.

https://pubmed.ncbi.nlm.nih.gov/28895658/

527.Begg, C.B., et al. Variations in morbidity after radical prostatectomy. N Engl J Med, 2002. 346: 1138.

https://pubmed.ncbi.nlm.nih.gov/11948274/

528.Gershman, B., et al. Redefining and Contextualizing the Hospital Volume-Outcome Relationship for Robot-Assisted Radical Prostatectomy: Implications for Centralization of Care. J Urol, 2017. 198: 92.

https://pubmed.ncbi.nlm.nih.gov/28153509/

529.Galfano, A., et al. A new anatomic approach for robot-assisted laparoscopic prostatectomy: a feasibility study for completely intrafascial surgery. Eur Urol, 2010. 58: 457.

https://pubmed.ncbi.nlm.nih.gov/20566236/

530.Checcucci, E., et al. Retzius-sparing robot-assisted radical prostatectomy vs the standard approach: a systematic review and analysis of comparative outcomes. BJU Int, 2020. 125: 8.

https://pubmed.ncbi.nlm.nih.gov/31373142/

531.Phukan, C., et al. Retzius sparing robotic assisted radical prostatectomy vs. conventional robotic assisted radical prostatectomy: a systematic review and meta-analysis. World J Urol, 2020. 38: 1123.

https://pubmed.ncbi.nlm.nih.gov/31089802/

532.Tai, T.E., et al. Effects of Retzius sparing on robot-assisted laparoscopic prostatectomy: a systematic review with meta-analysis. Surg Endosc, 2020. 34: 4020.

https://pubmed.ncbi.nlm.nih.gov/31617093/

533.Rosenberg, J.E., et al. Retzius-sparing versus standard robotic-assisted laparoscopic prostatectomy for the treatment of clinically localized prostate cancer. Cochrane Database Syst Rev, 2020. 8: CD013641.

https://pubmed.ncbi.nlm.nih.gov/32813279/

534.Lee, J., et al. Retzius Sparing Robot-Assisted Radical Prostatectomy Conveys Early Regain of Continence over Conventional Robot-Assisted Radical Prostatectomy: A Propensity Score Matched Analysis of 1,863 Patients. J Urol, 2020. 203: 137.

https://pubmed.ncbi.nlm.nih.gov/31347951/

535.Stonier, T., et al. Retzius-sparing robot-assisted radical prostatectomy (RS-RARP) vs standard RARP: it’s time for critical appraisal. BJU Int, 2019. 123: 5.

https://pubmed.ncbi.nlm.nih.gov/29959814/

536.Fossati, N., et al. The Benefits and Harms of Different Extents of Lymph Node Dissection During Radical Prostatectomy for Prostate Cancer: A Systematic Review. Eur Urol, 2017. 72: 84.

https://pubmed.ncbi.nlm.nih.gov/28126351/

537.Lestingi, J.F.P., et al. Extended Versus Limited Pelvic Lymph Node Dissection During Radical Prostatectomy for Intermediate- and High-risk Prostate Cancer: Early Oncological Outcomes from a Randomized Phase 3 Trial. Eur Urol, 2021. 79: 595.

https://pubmed.ncbi.nlm.nih.gov/33293077/

538.Touijer, K.A., et al. Limited versus Extended Pelvic Lymph Node Dissection for Prostate Cancer: A Randomized Clinical Trial. Eur Urol Oncol, 2021. 4: 532.

https://pubmed.ncbi.nlm.nih.gov/33865797/

539.Mattei, A., et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study. Eur Urol, 2008. 53: 118.

https://pubmed.ncbi.nlm.nih.gov/17709171/

540.Cimino, S., et al. Comparison between Briganti, Partin and MSKCC tools in predicting positive lymph nodes in prostate cancer: a systematic review and meta-analysis. Scand J Urol, 2017. 51: 345.

https://pubmed.ncbi.nlm.nih.gov/28644701/

541.Abdollah, F., et al. Indications for pelvic nodal treatment in prostate cancer should change. Validation of the Roach formula in a large extended nodal dissection series. Int J Radiat Oncol Biol Phys, 2012. 83: 624.

https://pubmed.ncbi.nlm.nih.gov/22099031/

542.Dell’Oglio, P., et al. External validation of the European association of urology recommendations for pelvic lymph node dissection in patients treated with robot-assisted radical prostatectomy.
J Endourol, 2014. 28: 416.

https://pubmed.ncbi.nlm.nih.gov/24188052/

543.Hinev, A.I., et al. Validation of nomograms predicting lymph node involvement in patients with prostate cancer undergoing extended pelvic lymph node dissection. Urol Int, 2014. 92: 300.

https://pubmed.ncbi.nlm.nih.gov/24480972/

544.Stabile, A., et al. Can Negative Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Avoid the Need for Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients? A Systematic Review and Meta-analysis with Backup Histology as Reference Standard. Eur Urol Oncol, 2022. 5: 1.

https://pubmed.ncbi.nlm.nih.gov/34538770/

545.Burkhard, F.C., et al. The role of lymphadenectomy in prostate cancer. Nat Clin Pract Urol, 2005.
2: 336.

https://pubmed.ncbi.nlm.nih.gov/16474786/

546.Ploussard, G., et al. Pelvic lymph node dissection during robot-assisted radical prostatectomy: efficacy, limitations, and complications-a systematic review of the literature. Eur Urol, 2014. 65: 7.

https://pubmed.ncbi.nlm.nih.gov/23582879/

547.Davis, J.W., et al. Robot-assisted extended pelvic lymph node dissection (PLND) at the time of radical prostatectomy (RP): a video-based illustration of technique, results, and unmet patient selection needs. BJU Int, 2011. 108: 993.

https://pubmed.ncbi.nlm.nih.gov/21917102/

548.Briganti, A., et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol, 2006. 50: 1006.

https://pubmed.ncbi.nlm.nih.gov/16959399/

549.Tyritzis, S.I., et al. Thromboembolic complications in 3,544 patients undergoing radical prostatectomy with or without lymph node dissection. J Urol, 2015. 193: 117.

https://pubmed.ncbi.nlm.nih.gov/25158271/

550.van der Poel, H.G., et al. Sentinel node biopsy for prostate cancer: report from a consensus panel meeting. BJU Int, 2017. 120: 204.

https://pubmed.ncbi.nlm.nih.gov/28188689/

551.Harke, N.N., et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol, 2018. 36: 1817.

https://pubmed.ncbi.nlm.nih.gov/29767326/

552.Wit, E.M.K., et al. Sentinel Node Procedure in Prostate Cancer: A Systematic Review to Assess Diagnostic Accuracy. Eur Urol, 2017. 71: 596.

https://pubmed.ncbi.nlm.nih.gov/27639533/

553.Weng, W.C., et al. Impact of prostatic anterior fat pads with lymph node staging in prostate cancer. J Cancer, 2018. 9: 3361.

https://pubmed.ncbi.nlm.nih.gov/30271497/

554.Hosny, M., et al. Can Anterior Prostatic Fat Harbor Prostate Cancer Metastasis? A Prospective Cohort Study. Curr Urol, 2017. 10: 182.

https://pubmed.ncbi.nlm.nih.gov/29234260/

555.Ball, M.W., et al. Pathological analysis of the prostatic anterior fat pad at radical prostatectomy: insights from a prospective series. BJU Int, 2017. 119: 444.

https://pubmed.ncbi.nlm.nih.gov/27611825/

556.Kwon, Y.S., et al. Oncologic outcomes in men with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institution international study. BMC Urol, 2015. 15: 79.

https://pubmed.ncbi.nlm.nih.gov/26231860/

557.Ozkan, B., et al. Role of anterior prostatic fat pad dissection for extended lymphadenectomy in prostate cancer: a non-randomized study of 100 patients. Int Urol Nephrol, 2015. 47: 959.

https://pubmed.ncbi.nlm.nih.gov/25899767/

558.Kim, I.Y., et al. Detailed analysis of patients with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institutional study. J Urol, 2013. 190: 527.

https://pubmed.ncbi.nlm.nih.gov/23485503/

559.Hansen, J., et al. Assessment of rates of lymph nodes and lymph node metastases in periprostatic fat pads in a consecutive cohort treated with retropubic radical prostatectomy. Urology, 2012.
80: 877.

https://pubmed.ncbi.nlm.nih.gov/22950996/

560.Rainwater, L.M., et al. Technical consideration in radical retropubic prostatectomy: blood loss after ligation of dorsal venous complex. J Urol, 1990. 143: 1163.

https://pubmed.ncbi.nlm.nih.gov/2342176/

561.Woldu, S.L., et al. Outcomes with delayed dorsal vein complex ligation during robotic assisted laparoscopic prostatectomy. Can J Urol, 2013. 20: 7079.

https://pubmed.ncbi.nlm.nih.gov/24331354/

562.Lei, Y., et al. Athermal division and selective suture ligation of the dorsal vein complex during robot-assisted laparoscopic radical prostatectomy: description of technique and outcomes. Eur Urol, 2011. 59: 235.

https://pubmed.ncbi.nlm.nih.gov/20863611/

563.Wu, S.D., et al. Suture versus staple ligation of the dorsal venous complex during robot-assisted laparoscopic radical prostatectomy. BJU Int, 2010. 106: 385.

https://pubmed.ncbi.nlm.nih.gov/20067457/

564.Walsh, P.C., et al. Radical prostatectomy and cystoprostatectomy with preservation of potency. Results using a new nerve-sparing technique. Br J Urol, 1984. 56: 694.

https://pubmed.ncbi.nlm.nih.gov/6534493/

565.Walz, J., et al. A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy: An Update. Eur Urol, 2016. 70: 301.

https://pubmed.ncbi.nlm.nih.gov/26850969/

566.Stolzenburg, J.U., et al. A comparison of outcomes for interfascial and intrafascial nerve-sparing radical prostatectomy. Urology, 2010. 76: 743.

https://pubmed.ncbi.nlm.nih.gov/20573384/

567.Steineck, G., et al. Degree of preservation of the neurovascular bundles during radical prostatectomy and urinary continence 1 year after surgery. Eur Urol, 2015. 67: 559.

https://pubmed.ncbi.nlm.nih.gov/25457018/

568.Shikanov, S., et al. Extrafascial versus interfascial nerve-sparing technique for robotic-assisted laparoscopic prostatectomy: comparison of functional outcomes and positive surgical margins characteristics. Urology, 2009. 74: 611.

https://pubmed.ncbi.nlm.nih.gov/19616830/

569.Tewari, A.K., et al. Anatomical grades of nerve sparing: a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int, 2011. 108: 984.

https://pubmed.ncbi.nlm.nih.gov/21917101/

570.Nielsen, M.E., et al. High anterior release of the levator fascia improves sexual function following open radical retropubic prostatectomy. J Urol, 2008. 180: 2557.

https://pubmed.ncbi.nlm.nih.gov/18930504/

571.Ko, Y.H., et al. Retrograde versus antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol, 2013. 63: 169.

https://pubmed.ncbi.nlm.nih.gov/23092543/

572.Tewari, A.K., et al. Functional outcomes following robotic prostatectomy using athermal, traction free risk-stratified grades of nerve sparing. World J Urol, 2013. 31: 471.

https://pubmed.ncbi.nlm.nih.gov/23354288/

573.Basourakos, S.P., et al. Clipless Robotic-assisted Radical Prostatectomy and Impact on Outcomes. Eur Urol Focus, 2022. 8: 1176.

https://pubmed.ncbi.nlm.nih.gov/34246618/

574.Preisser, F., et al. Association of neurovascular bundle preservation with oncological outcomes in patients with high-risk prostate cancer. Prostate Cancer Prostatic Dis, 2021. 24: 193.

https://pubmed.ncbi.nlm.nih.gov/32814844/

575.Vis, A.N., et al. Selection of patients for nerve sparing surgery in robot-assisted radical prostatectomy. BJUI Compass, 2022. 3: 6.

https://pubmed.ncbi.nlm.nih.gov/35475150/

576.Moris, L., et al. Evaluation of Oncological Outcomes and Data Quality in Studies Assessing Nerve-sparing Versus Non-Nerve-sparing Radical Prostatectomy in Nonmetastatic Prostate Cancer: A Systematic Review. Eur Urol Focus, 2022. 8: 690.

https://pubmed.ncbi.nlm.nih.gov/34147405/

577.Kozikowski, M., et al. Clinical utility of MRI in the decision-making process before radical prostatectomy: Systematic review and meta-analysis. PLoS One, 2019. 14: e0210194.

https://pubmed.ncbi.nlm.nih.gov/30615661/

578.Michl, U., et al. Nerve-sparing Surgery Technique, Not the Preservation of the Neurovascular Bundles, Leads to Improved Long-term Continence Rates After Radical Prostatectomy. Eur Urol, 2016. 69: 584.

https://pubmed.ncbi.nlm.nih.gov/26277303/

579.Avulova, S., et al. The Effect of Nerve Sparing Status on Sexual and Urinary Function: 3-Year Results from the CEASAR Study. J Urol, 2018. 199: 1202.

https://pubmed.ncbi.nlm.nih.gov/29253578/

580.Engel, J., et al. Survival benefit of radical prostatectomy in lymph node-positive patients with prostate cancer. Eur Urol, 2010. 57: 754.

https://pubmed.ncbi.nlm.nih.gov/20106588/

581.Beulens, A.J.W., et al. Linking surgical skills to postoperative outcomes: a Delphi study on the robot-assisted radical prostatectomy. J Robot Surg, 2019. 13: 675.

https://pubmed.ncbi.nlm.nih.gov/30610535/

582.Gilbert, S.M., et al. Functional Outcomes Following Nerve Sparing Prostatectomy Augmented with Seminal Vesicle Sparing Compared to Standard Nerve Sparing Prostatectomy: Results from a Randomized Controlled Trial. J Urol, 2017. 198: 600.

https://pubmed.ncbi.nlm.nih.gov/28392393/

583.Steiner, M.S., et al. Impact of anatomical radical prostatectomy on urinary continence. J Urol, 1991. 145: 512.

https://pubmed.ncbi.nlm.nih.gov/1997701/

584.Li, H., et al. The Use of Unidirectional Barbed Suture for Urethrovesical Anastomosis during Robot-Assisted Radical Prostatectomy: A Systematic Review and Meta-Analysis of Efficacy and Safety. PLoS One, 2015. 10: e0131167.

https://pubmed.ncbi.nlm.nih.gov/26135310/

585.Kowalewski, K.F., et al. Interrupted versus Continuous Suturing for Vesicourethral Anastomosis During Radical Prostatectomy: A Systematic Review and Meta-analysis. Eur Urol Focus, 2019. 5: 980.

https://pubmed.ncbi.nlm.nih.gov/29907547/

586.Matsuyama, H., et al. Running suture versus interrupted suture for vesicourethral anastomosis in retropubic radical prostatectomy: a randomized study. Int J Urol, 2015. 22: 271.

https://pubmed.ncbi.nlm.nih.gov/25400263/

587.Wiatr, T., et al. Single Running Suture versus Single-Knot Running Suture for Vesicourethral Anastomosis in Laparoscopic Radical Prostatectomy: A Prospective Randomised Comparative Study. Urol Int, 2015. 95: 445.

https://pubmed.ncbi.nlm.nih.gov/26655169/

588.Van Velthoven, R.F., et al. Technique for laparoscopic running urethrovesical anastomosis:the single knot method. Urology, 2003. 61: 699.

https://pubmed.ncbi.nlm.nih.gov/12670546/

589.Schoeppler, G.M., et al. The impact of bladder neck mucosal eversion during open radical prostatectomy on bladder neck stricture and urinary extravasation. Int Urol Nephrol, 2012. 44: 1403.

https://pubmed.ncbi.nlm.nih.gov/22585294/

590.Borboroglu, P.G., et al. Risk factors for vesicourethral anastomotic stricture after radical prostatectomy. Urology, 2000. 56: 96.

https://pubmed.ncbi.nlm.nih.gov/10869633/

591.Modig, K.K., et al. Vesicourethral Anastomotic Stenosis After Open or Robot-assisted Laparoscopic Retropubic Prostatectomy-Results from the Laparoscopic Prostatectomy Robot Open Trial. Eur Urol Focus, 2021. 7: 317.

https://pubmed.ncbi.nlm.nih.gov/31711932/

592.Bellangino, M., et al. Systematic Review of Studies Reporting Positive Surgical Margins After Bladder Neck Sparing Radical Prostatectomy. Curr Urol Rep, 2017. 18: 99.

https://pubmed.ncbi.nlm.nih.gov/29116405/

593.Nyarangi-Dix, J.N., et al. Complete bladder neck preservation promotes long-term post-prostatectomy continence without compromising midterm oncological outcome: analysis of a randomised controlled cohort. World J Urol, 2018. 36: 349.

https://pubmed.ncbi.nlm.nih.gov/29214353/

594.Ma, X., et al. Bladder neck preservation improves time to continence after radical prostatectomy: a systematic review and meta-analysis. Oncotarget, 2016. 7: 67463.

https://pubmed.ncbi.nlm.nih.gov/27634899/

595.Mungovan, S.F., et al. Preoperative Membranous Urethral Length Measurement and Continence Recovery Following Radical Prostatectomy: A Systematic Review and Meta-analysis. Eur Urol, 2017. 71: 368.

https://pubmed.ncbi.nlm.nih.gov/27394644/

596.Lardas, M., et al. Patient- and Tumour-related Prognostic Factors for Urinary Incontinence After Radical Prostatectomy for Nonmetastatic Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus, 2022. 8: 674.

https://pubmed.ncbi.nlm.nih.gov/33967010/

597.Guru, K.A., et al. Is a cystogram necessary after robot-assisted radical prostatectomy? Urol Oncol, 2007. 25: 465.

https://pubmed.ncbi.nlm.nih.gov/18047953/

598.Tillier, C., et al. Vesico-urethral anastomosis (VUA) evaluation of short- and long-term outcome after robot-assisted laparoscopic radical prostatectomy (RARP): selective cystogram to improve outcome. J Robot Surg, 2017. 11: 441.

https://pubmed.ncbi.nlm.nih.gov/28078524/

599.Yadav, R., et al. Selective indication for check cystogram before catheter removal following robot assisted radical prostatectomy. Indian J Urol, 2016. 32: 120.

https://pubmed.ncbi.nlm.nih.gov/27127354/

600.Schoeppler, G.M., et al. Detection of urinary leakage after radical retropubic prostatectomy by contrast enhanced ultrasound - do we still need conventional retrograde cystography? BJU Int, 2010. 106: 1632.

https://pubmed.ncbi.nlm.nih.gov/20590540/

601.Gratzke, C., et al. Early Catheter Removal after Robot-assisted Radical Prostatectomy: Surgical Technique and Outcomes for the Aalst Technique (ECaRemA Study). Eur Urol, 2016. 69: 917.

https://pubmed.ncbi.nlm.nih.gov/26578444/

602.James, P., et al. Safe removal of the urethral catheter 2 days following laparoscopic radical prostatectomy. ISRN Oncol, 2012. 2012: 912642.

https://pubmed.ncbi.nlm.nih.gov/22957273/

603.Lista, G., et al. Early Catheter Removal After Robot-assisted Radical Prostatectomy: Results from a Prospective Single-institutional Randomized Trial (Ripreca Study). Eur Urol Focus, 2020. 6: 259.

https://pubmed.ncbi.nlm.nih.gov/30413390/

604.Brassetti, A., et al. Removing the urinary catheter on post-operative day 2 after robot-assisted laparoscopic radical prostatectomy: a feasibility study from a single high-volume referral centre.
J Robot Surg, 2018. 12: 467.

https://pubmed.ncbi.nlm.nih.gov/29177945/

605.Tilki, D., et al. The impact of time to catheter removal on short-, intermediate- and long-term urinary continence after radical prostatectomy. World J Urol, 2018. 36: 1247.

https://pubmed.ncbi.nlm.nih.gov/29582100/

606.Berrondo, C., et al. Antibiotic prophylaxis at the time of catheter removal after radical prostatectomy: A prospective randomized clinical trial. Urol Oncol, 2019. 37: 181 e7.

https://pubmed.ncbi.nlm.nih.gov/30558984/

607.Martinschek, A., et al. Transurethral versus suprapubic catheter at robot-assisted radical prostatectomy: a prospective randomized trial with 1-year follow-up. World J Urol, 2016. 34: 407.

https://pubmed.ncbi.nlm.nih.gov/26337521/

608.Harke, N., et al. Postoperative patient comfort in suprapubic drainage versus transurethral catheterization following robot-assisted radical prostatectomy: a prospective randomized clinical trial. World J Urol, 2017. 35: 389.

https://pubmed.ncbi.nlm.nih.gov/27334135/

609.Krane, L.S., et al. Impact of percutaneous suprapubic tube drainage on patient discomfort after radical prostatectomy. Eur Urol, 2009. 56: 325.

https://pubmed.ncbi.nlm.nih.gov/19394131/

610.Morgan, M.S., et al. An Assessment of Patient Comfort and Morbidity After Robot-Assisted Radical Prostatectomy with Suprapubic Tube Versus Urethral Catheter Drainage. J Endourol, 2016. 30: 300.

https://pubmed.ncbi.nlm.nih.gov/26472083/

611.Galfano, A., et al. Pain and discomfort after Retzius-sparing robot-assisted radical prostatectomy: a comparative study between suprapubic cystostomy and urethral catheter as urinary drainage. Minerva Urol Nefrol, 2019. 71: 381.

https://pubmed.ncbi.nlm.nih.gov/31144484/

612.Prasad, S.M., et al. Early removal of urethral catheter with suprapubic tube drainage versus urethral catheter drainage alone after robot-assisted laparoscopic radical prostatectomy. J Urol, 2014. 192: 89.

https://pubmed.ncbi.nlm.nih.gov/24440236/

613.Afzal, M.Z., et al. Modification of Technique for Suprapubic Catheter Placement After Robot-assisted Radical Prostatectomy Reduces Catheter-associated Complications. Urology, 2015. 86: 401.

https://pubmed.ncbi.nlm.nih.gov/26189333/

614.Porcaro, A.B., et al. Is a Drain Needed After Robotic Radical Prostatectomy With or Without Pelvic Lymph Node Dissection? Results of a Single-Center Randomized Clinical Trial. J Endourol, 2021. 35: 922.

https://pubmed.ncbi.nlm.nih.gov/30398382/

615.Chenam, A., et al. Prospective randomised non-inferiority trial of pelvic drain placement vs no pelvic drain placement after robot-assisted radical prostatectomy. BJU Int, 2018. 121: 357.

https://pubmed.ncbi.nlm.nih.gov/28872774/

616.Ramsay, C., et al. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol Assess, 2012. 16: 1.

https://pubmed.ncbi.nlm.nih.gov/23127367/

617.Novara, G., et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 382.

https://pubmed.ncbi.nlm.nih.gov/22749851/

618.Novara, G., et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 431.

https://pubmed.ncbi.nlm.nih.gov/22749853/

619.Ficarra, V., et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 418.

https://pubmed.ncbi.nlm.nih.gov/22749850/

620.Ficarra, V., et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol, 2012. 62: 405.

https://pubmed.ncbi.nlm.nih.gov/22749852/

621.Maffezzini, M., et al. Evaluation of complications and results in a contemporary series of 300 consecutive radical retropubic prostatectomies with the anatomic approach at a single institution. Urology, 2003. 61: 982.

https://pubmed.ncbi.nlm.nih.gov/12736020/

622.Haglind, E., et al. Urinary Incontinence and Erectile Dysfunction After Robotic Versus Open Radical Prostatectomy: A Prospective, Controlled, Nonrandomised Trial. Eur Urol, 2015. 68: 216.

https://pubmed.ncbi.nlm.nih.gov/25770484/

623.Mukkala, A.N., et al. A systematic review and meta-analysis of unplanned hospital visits and re-admissions following radical prostatectomy for prostate cancer. Can Urol Assoc J, 2021. 15: E531.

https://pubmed.ncbi.nlm.nih.gov/33750517/

624.Dindo, D., et al. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg, 2004. 240: 205.

https://pubmed.ncbi.nlm.nih.gov/15273542/

625.Joshi, N., et al. Impact of posterior musculofascial reconstruction on early continence after robot-assisted laparoscopic radical prostatectomy: results of a prospective parallel group trial. Eur Urol, 2010. 58: 84.

https://pubmed.ncbi.nlm.nih.gov/20362386/

626.Sutherland, D.E., et al. Posterior rhabdosphincter reconstruction during robotic assisted radical prostatectomy: results from a phase II randomized clinical trial. J Urol, 2011. 185: 1262.

https://pubmed.ncbi.nlm.nih.gov/21334025/

627.Jeong, C.W., et al. Effects of new 1-step posterior reconstruction method on recovery of continence after robot-assisted laparoscopic prostatectomy: results of a prospective, single-blind, parallel group, randomized, controlled trial. J Urol, 2015. 193: 935.

https://pubmed.ncbi.nlm.nih.gov/25315960/

628.Menon, M., et al. Assessment of early continence after reconstruction of the periprostatic tissues in patients undergoing computer assisted (robotic) prostatectomy: results of a 2 group parallel randomized controlled trial. J Urol, 2008. 180: 1018.

https://pubmed.ncbi.nlm.nih.gov/18639300/

629.Stolzenburg, J.U., et al. Influence of bladder neck suspension stitches on early continence after radical prostatectomy: a prospective randomized study of 180 patients. Asian J Androl, 2011. 13: 806.

https://pubmed.ncbi.nlm.nih.gov/21909121/

630.Hurtes, X., et al. Anterior suspension combined with posterior reconstruction during robot-assisted laparoscopic prostatectomy improves early return of urinary continence: a prospective randomized multicentre trial. BJU Int, 2012. 110: 875.

https://pubmed.ncbi.nlm.nih.gov/22260307/

631.Student, V., Jr., et al. Advanced Reconstruction of Vesicourethral Support (ARVUS) during Robot-assisted Radical Prostatectomy: One-year Functional Outcomes in a Two-group Randomised Controlled Trial. Eur Urol, 2017. 71: 822.

https://pubmed.ncbi.nlm.nih.gov/27283216/

632.Noguchi, M., et al. A randomized clinical trial of suspension technique for improving early recovery of urinary continence after radical retropubic prostatectomy. BJU Int, 2008. 102: 958.

https://pubmed.ncbi.nlm.nih.gov/18485031/

633.Tikkinen, K.A.O., et al. EAU Guidelines on Thromboprophylaxis in Urological Surgery. In: EAU Guidelines presented at the 32rd EAU Annual Congress London 2017. EAU Guidelines Office, Arnhem, the Netherlands.

https://uroweb.org/guidelines/archive/thromboprophylaxis

634.Viani, G.A., et al. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: A randomized clinical trial. Cancer, 2016. 122: 2004.

https://pubmed.ncbi.nlm.nih.gov/27028170/

635.Yu, T., et al. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures. PLoS One, 2016.
11: e0154499.

https://pubmed.ncbi.nlm.nih.gov/27171271/

636.Zapatero, A., et al. Reduced late urinary toxicity with high-dose intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer. Clin Transl Oncol, 2017. 19: 1161.

https://pubmed.ncbi.nlm.nih.gov/28374321/

637.de Crevoisier, R., et al. Daily Versus Weekly Prostate Cancer Image Guided Radiation Therapy: Phase 3 Multicenter Randomized Trial. Int J Radiat Oncol Biol Phys, 2018. 102: 1420.

https://pubmed.ncbi.nlm.nih.gov/30071296/

638.Murray, J., et al. A randomised assessment of image guided radiotherapy within a phase 3 trial of conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer. Radiother Oncol, 2020. 142: 62.

https://pubmed.ncbi.nlm.nih.gov/31767473/

639.Tocco, B.R., et al. MR-Guided Radiotherapy for Prostate Cancer. Front Oncol, 2020. 10: 616291.

https://pubmed.ncbi.nlm.nih.gov/33363041/

640.Christiansen, R.L., et al. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother Oncol, 2022. 167: 165.

https://pubmed.ncbi.nlm.nih.gov/34923034/

641.Tetar, S.U., et al. Magnetic Resonance-guided Stereotactic Radiotherapy for Localized Prostate Cancer: Final Results on Patient-reported Outcomes of a Prospective Phase 2 Study. Eur Urol Oncol, 2021. 4: 628.

https://pubmed.ncbi.nlm.nih.gov/32536573/

642.Ugurluer, G., et al. Magnetic resonance image-guided adaptive stereotactic body radiotherapy for prostate cancer: preliminary results of outcome and toxicity. Br J Radiol, 2021. 94: 20200696.

https://pubmed.ncbi.nlm.nih.gov/33095670/

643.Ma, T.M., et al. Magnetic resonance imaging-guided stereotactic body radiotherapy for prostate cancer (mirage): a phase iii randomized trial. BMC Cancer, 2021. 21: 538.

https://pubmed.ncbi.nlm.nih.gov/33975579/

644.Kishan, A.U., et al. Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. Eur Urol, 2020. 77: 201.

https://pubmed.ncbi.nlm.nih.gov/31718822/

645.Michalski, J.M., et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol, 2018. 4: e180039.

https://pubmed.ncbi.nlm.nih.gov/29543933/

646.Zietman, A.L., et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/american college of radiology 95-09. J Clin Oncol, 2010. 28: 1106.

https://pubmed.ncbi.nlm.nih.gov/20124169/

647.Viani, G.A., et al. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys, 2009. 74: 1405.

https://pubmed.ncbi.nlm.nih.gov/19616743/

648.Peeters, S.T., et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol, 2006. 24: 1990.

https://pubmed.ncbi.nlm.nih.gov/16648499/

649.Beckendorf, V., et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys, 2011. 80: 1056.

https://pubmed.ncbi.nlm.nih.gov/21147514/

650.Heemsbergen, W.D., et al. Long-term results of the Dutch randomized prostate cancer trial: impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother Oncol, 2014. 110: 104.

https://pubmed.ncbi.nlm.nih.gov/24246414/

651.Dearnaley, D.P., et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol, 2014. 15: 464.

https://pubmed.ncbi.nlm.nih.gov/24581940/

652.Pasalic, D., et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int J Radiat Oncol Biol Phys, 2019. 104: 790.

https://pubmed.ncbi.nlm.nih.gov/30836166/

653.Kalbasi, A., et al. Dose-Escalated Irradiation and Overall Survival in Men With Nonmetastatic Prostate Cancer. JAMA Oncol, 2015. 1: 897.

https://pubmed.ncbi.nlm.nih.gov/26181727/

654.Kerkmeijer, L.G.W., et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J Clin Oncol, 2021. 39: 787.

https://pubmed.ncbi.nlm.nih.gov/33471548/

655.Groen, V.H., et al. Patterns of Failure Following External Beam Radiotherapy With or Without an Additional Focal Boost in the Randomized Controlled FLAME Trial for Localized Prostate Cancer. Eur Urol, 2022. 82: 252.

https://pubmed.ncbi.nlm.nih.gov/34953603/

656.Fowler, J.F. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol, 2005. 44: 265.

https://pubmed.ncbi.nlm.nih.gov/16076699/

657.Dasu, A., et al. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol, 2012. 51: 963.

https://pubmed.ncbi.nlm.nih.gov/22966812/

658.Kuban, D.A., et al. Preliminary Report of a Randomized Dose Escalation Trial for Prostate Cancer using Hypofractionation. Int J Radiat Oncol Biol Phys, 2010. 78: S58.

https://www.redjournal.org/article/S0360-3016(10)01144-2/fulltext

659.Pollack, A., et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol, 2013. 31: 3860.

https://pubmed.ncbi.nlm.nih.gov/24101042/

660.Lee, W.R., et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J Clin Oncol, 2016. 34: 2325.

https://pubmed.ncbi.nlm.nih.gov/27044935/

661.Dearnaley, D., et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol, 2016. 17: 1047.

https://pubmed.ncbi.nlm.nih.gov/27339115/

662.Incrocci, L., et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol, 2016. 17: 1061.

https://pubmed.ncbi.nlm.nih.gov/27339116/

663.Catton, C.N., et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol, 2017. 35: 1884.

https://pubmed.ncbi.nlm.nih.gov/28296582/

664.Koontz, B.F., et al. A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol, 2015. 68: 683.

https://pubmed.ncbi.nlm.nih.gov/25171903/

665.Hocht, S., et al. Hypofractionated radiotherapy for localized prostate cancer. Strahlenther Onkol, 2017. 193: 1.

https://pubmed.ncbi.nlm.nih.gov/27628966/

666.Hickey, B.E., et al. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst Rev, 2019. 9: CD011462.

https://pubmed.ncbi.nlm.nih.gov/31476800/

667.de Vries, K.C., et al. Hyprofractionated Versus Conventionally Fractionated Radiation Therapy for Patients with Intermediate- or High-Risk, Localized, Prostate Cancer: 7-Year Outcomes From the Randomized, Multicenter, Open-Label, Phase 3 HYPRO Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 108.

https://pubmed.ncbi.nlm.nih.gov/31593756/

668.Widmark, A., et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet, 2019. 394: 385.

https://pubmed.ncbi.nlm.nih.gov/31227373/

669.Jackson, W.C., et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int
J Radiat Oncol Biol Phys, 2019. 104: 778.

https://pubmed.ncbi.nlm.nih.gov/30959121/

670.Cushman, T.R., et al. Stereotactic body radiation therapy for prostate cancer: systematic review and meta-analysis of prospective trials. Oncotarget, 2019. 10: 5660.

https://pubmed.ncbi.nlm.nih.gov/31608141/

671.Brand, D.H., et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol, 2019. 20: 1531.

https://pubmed.ncbi.nlm.nih.gov/31540791/

672.Rasmusson, E., et al. Erectile Dysfunction and Absorbed Dose to Penile Base Structures in a Randomized Trial Comparing Ultrahypofractionated and Conventionally Fractionated Radiation Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys, 2020. 107: 143.

https://pubmed.ncbi.nlm.nih.gov/32004582/

673.Greco, C., et al. Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients With Intermediate-Risk Prostate Cancer: Results From the PROSINT Phase 2 Randomized Clinical Trial. JAMA Oncol, 2021. 7: 700.

https://pubmed.ncbi.nlm.nih.gov/33704378/

674.Bolla, M., et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol, 2010. 11: 1066.

https://pubmed.ncbi.nlm.nih.gov/20933466/

675.Pilepich, M.V., et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma--long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys, 2005. 61: 1285.

https://pubmed.ncbi.nlm.nih.gov/15817329/

676.Roach, M., 3rd, et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol, 2008. 26: 585.

https://pubmed.ncbi.nlm.nih.gov/18172188/

677.D’Amico, A.V., et al. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA, 2008. 299: 289.

https://pubmed.ncbi.nlm.nih.gov/18212313/

678.Denham, J.W., et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol, 2011. 12: 451.

https://pubmed.ncbi.nlm.nih.gov/21440505/

679.Lawton, C.A., et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys, 2007. 69: 646.

https://pubmed.ncbi.nlm.nih.gov/17531401/

680.Horwitz, E.M., et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol, 2008. 26: 2497.

https://pubmed.ncbi.nlm.nih.gov/18413638/

681.Bolla, M., et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med, 2009. 360: 2516.

https://pubmed.ncbi.nlm.nih.gov/19516032/

682.Pisansky, T.M., et al. Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol, 2015. 33: 332.

https://pubmed.ncbi.nlm.nih.gov/25534388/

683.Nabid, A., et al. Androgen deprivation therapy and radiotherapy in intermediate-risk prostate cancer: A randomised phase III trial. Eur J Cancer, 2021. 143: 64.

https://pubmed.ncbi.nlm.nih.gov/33279855/

684.Fossa, S.D., et al. Ten- and 15-yr Prostate Cancer-specific Mortality in Patients with Nonmetastatic Locally Advanced or Aggressive Intermediate Prostate Cancer, Randomized to Lifelong Endocrine Treatment Alone or Combined with Radiotherapy: Final Results of The Scandinavian Prostate Cancer Group-7. Eur Urol, 2016. 70: 684.

https://pubmed.ncbi.nlm.nih.gov/27025586/

685.Mason, M.D., et al. Final Report of the Intergroup Randomized Study of Combined Androgen-Deprivation Therapy Plus Radiotherapy Versus Androgen-Deprivation Therapy Alone in Locally Advanced Prostate Cancer. J Clin Oncol, 2015. 33: 2143.

https://pubmed.ncbi.nlm.nih.gov/25691677/

686.Sargos, P., et al. Long-term androgen deprivation, with or without radiotherapy, in locally advanced prostate cancer: updated results from a phase III randomised trial. BJU Int, 2020. 125: 810.

https://pubmed.ncbi.nlm.nih.gov/30946523/

687.Kishan, A.U., et al. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. Lancet Oncol, 2022. 23: 304.

https://pubmed.ncbi.nlm.nih.gov/35051385/

688.Zapatero, A., et al. Risk-Adapted Androgen Deprivation and Escalated Three-Dimensional Conformal Radiotherapy for Prostate Cancer: Does Radiation Dose Influence Outcome of Patients Treated With Adjuvant Androgen Deprivation? A GICOR Study. J Clin Oncol, 2005. 23: 6561.

https://pubmed.ncbi.nlm.nih.gov/16170164/

689.Zapatero, A., et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol, 2015. 16: 320.

https://pubmed.ncbi.nlm.nih.gov/25702876/

690.Bolla, M., et al. Short Androgen Suppression and Radiation Dose Escalation for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991. J Clin Oncol, 2016. 34: 1748.

https://pubmed.ncbi.nlm.nih.gov/26976418/

691.Spratt, D.E., et al. Prostate Radiotherapy With Adjuvant Androgen Deprivation Therapy (ADT) Improves Metastasis-Free Survival Compared to Neoadjuvant ADT: An Individual Patient Meta-Analysis. J Clin Oncol, 2021. 39: 136.

https://pubmed.ncbi.nlm.nih.gov/33275486/

692.Malone, S., et al. Sequencing of Androgen-Deprivation Therapy With External-Beam Radiotherapy in Localized Prostate Cancer: A Phase III Randomized Controlled Trial. J Clin Oncol, 2020. 38: 593.

https://pubmed.ncbi.nlm.nih.gov/31829912/

693.Gray, P.J., et al. Patient-reported outcomes after 3-dimensional conformal, intensity-modulated, or proton beam radiotherapy for localized prostate cancer. Cancer, 2013. 119: 1729.

https://pubmed.ncbi.nlm.nih.gov/23436283/

694.Sheets, N.C., et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA 2012. 307: 1611.

https://pubmed.ncbi.nlm.nih.gov/22511689/

695.NICE. Biodegradable spacer insertion to reduce rectal toxicity during radiotherapy for prostate cancer. Interventional procedures guidance [IPG590]. 2017. Access date December 2022.

https://www.nice.org.uk/guidance/ipg590

696.Miller, L.E., et al. Association of the Placement of a Perirectal Hydrogel Spacer With the Clinical Outcomes of Men Receiving Radiotherapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open, 2020. 3: e208221.

https://pubmed.ncbi.nlm.nih.gov/32585020/

697.Hamstra, D.A., et al. Continued Benefit to Rectal Separation for Prostate Radiation Therapy: Final Results of a Phase III Trial. Int J Radiat Oncol Biol Phys, 2017. 97: 976.

https://pubmed.ncbi.nlm.nih.gov/28209443/

698.Aminsharifi, A., et al. Major Complications and Adverse Events Related to the Injection of the SpaceOAR Hydrogel System Before Radiotherapy for Prostate Cancer: Review of the Manufacturer and User Facility Device Experience Database. J Endourol, 2019. 33: 868.

https://pubmed.ncbi.nlm.nih.gov/31452385/

699.Pinkawa, M., et al. Learning curve in the application of a hydrogel spacer to protect the rectal wall during radiotherapy of localized prostate cancer. Urology, 2013. 82: 963.

https://pubmed.ncbi.nlm.nih.gov/24074991/

700.Henry, A., et al. GEC-ESTRO ACROP prostate brachytherapy guidelines. Radiother Oncol, 2022. 167: 244.

https://pubmed.ncbi.nlm.nih.gov/34999134/

701.Martens, C., et al. Relationship of the International Prostate Symptom score with urinary flow studies, and catheterization rates following 125I prostate brachytherapy. Brachytherapy, 2006. 5: 9.

https://pubmed.ncbi.nlm.nih.gov/16563992/

702.Le, H., et al. The influence of prostate volume on outcome after high-dose-rate brachytherapy alone for localized prostate cancer. Int J Radiat Oncol Biol Phys, 2013. 87: 270.

https://pubmed.ncbi.nlm.nih.gov/23849693/

703.Salembier, C., et al. A history of transurethral resection of the prostate should not be a contra-indication for low-dose-rate (125)I prostate brachytherapy: results of a prospective Uro-GEC phase-II trial. J Contemp Brachyther, 2020. 12: 1.

https://pubmed.ncbi.nlm.nih.gov/32190063/

704.Salembier, C., et al. Prospective multi-center dosimetry study of low-dose Iodine-125 prostate brachytherapy performed after transurethral resection. J Contemp Brachyther, 2013. 5: 63.

https://pubmed.ncbi.nlm.nih.gov/23878549/

705.Stone, N.N., et al. Prostate brachytherapy in men with gland volume of 100cc or greater: Technique, cancer control, and morbidity. Brachytherapy, 2013. 12: 217.

https://pubmed.ncbi.nlm.nih.gov/23384439/

706.Crook, J.M., et al. Comparison of health-related quality of life 5 years after SPIRIT: Surgical Prostatectomy Versus Interstitial Radiation Intervention Trial. J Clin Oncol, 2011. 29: 362.

https://pubmed.ncbi.nlm.nih.gov/21149658/

707.Sylvester, J.E., et al. Fifteen-year biochemical relapse-free survival, cause-specific survival, and overall survival following I(125) prostate brachytherapy in clinically localized prostate cancer: Seattle experience. Int J Radiat Oncol Biol Phys, 2011. 81: 376.

https://pubmed.ncbi.nlm.nih.gov/20864269/

708.Potters, L., et al. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol, 2005. 173: 1562.

https://pubmed.ncbi.nlm.nih.gov/15821486/

709.Stone, N.N., et al. Intermediate term biochemical-free progression and local control following 125iodine brachytherapy for prostate cancer. J Urol, 2005. 173: 803.

https://pubmed.ncbi.nlm.nih.gov/15711273/

710.Zelefsky, M.J., et al. Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys, 2007. 67: 327.

https://pubmed.ncbi.nlm.nih.gov/17084558/

711.Lawton, C.A., et al. Results of a phase II trial of transrectal ultrasound-guided permanent radioactive implantation of the prostate for definitive management of localized adenocarcinoma of the prostate (radiation therapy oncology group 98-05). Int J Radiat Oncol Biol Phys, 2007. 67: 39.

https://pubmed.ncbi.nlm.nih.gov/17084551/

712.Stock, R.G., et al. Importance of post-implant dosimetry in permanent prostate brachytherapy. Eur Urol, 2002. 41: 434.

https://pubmed.ncbi.nlm.nih.gov/12074816/

713.Keyes, M., et al. American Brachytherapy Society Task Group Report: Use of androgen deprivation therapy with prostate brachytherapy-A systematic literature review. Brachytherapy, 2017. 16: 245.

https://pubmed.ncbi.nlm.nih.gov/28110898/

714.Morris, W.J., et al. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int J Radiat Oncol Biol Phys, 2017. 98: 275.

https://pubmed.ncbi.nlm.nih.gov/28262473/

715.Rodda, S., et al. ASCENDE-RT: An Analysis of Treatment-Related Morbidity for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost with a Dose-Escalated External Beam Boost for High- and Intermediate-Risk Prostate Cancer. Int J Radiat Oncol Biol Phys, 2017. 98: 286.

https://pubmed.ncbi.nlm.nih.gov/28433432/

716.Hoskin, P.J., et al. GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: an update. Radiother Oncol, 2013. 107: 325.

https://pubmed.ncbi.nlm.nih.gov/23773409/

717.Galalae, R.M., et al. Long-term outcome after elective irradiation of the pelvic lymphatics and local dose escalation using high-dose-rate brachytherapy for locally advanced prostate cancer. Int J Radiat Oncol Biol Phys, 2002. 52: 81.

https://pubmed.ncbi.nlm.nih.gov/11777625/

718.Pieters, B.R., et al. Comparison of three radiotherapy modalities on biochemical control and overall survival for the treatment of prostate cancer: a systematic review. Radiother Oncol, 2009. 93: 168.

https://pubmed.ncbi.nlm.nih.gov/19748692/

719.Parry, M.G., et al. Impact of High-Dose-Rate and Low-Dose-Rate Brachytherapy Boost on Toxicity, Functional and Cancer Outcomes in Patients Receiving External Beam Radiation Therapy for Prostate Cancer: A National Population-Based Study. Int J Radiat Oncol Biol Phys, 2021. 109: 1219.

https://pubmed.ncbi.nlm.nih.gov/33279595/

720.Hoskin, P.J., et al. Randomised trial of external-beam radiotherapy alone or with high-dose-rate brachytherapy for prostate cancer: Mature 12-year results. Radiother Oncol, 2021. 154: 214.

https://pubmed.ncbi.nlm.nih.gov/33011207/

721.Joseph, D., et al. Radiation Dose Escalation or Longer Androgen Suppression to Prevent Distant Progression in Men With Locally Advanced Prostate Cancer: 10-Year Data From the TROG 03.04 RADAR Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 693.

https://pubmed.ncbi.nlm.nih.gov/32092343/

722.Jackson, W.C., et al. Addition of Androgen-Deprivation Therapy or Brachytherapy Boost to External Beam Radiotherapy for Localized Prostate Cancer: A Network Meta-Analysis of Randomized Trials. J Clin Oncol, 2020. 38: 3024.

https://pubmed.ncbi.nlm.nih.gov/32396488/

723.Viani, G.A., et al. HDR brachytherapy as monotherapy for prostate cancer: A systematic review with meta-analysis. Brachytherapy, 2021. 20: 307.

https://pubmed.ncbi.nlm.nih.gov/33461894/

724.Morton, G., et al. Prostate high dose-rate brachytherapy as monotherapy for low and intermediate risk prostate cancer: Early toxicity and quality-of life results from a randomized phase II clinical trial of one fraction of 19Gy or two fractions of 13.5Gy. Radiother Oncol, 2017. 122: 87.

https://pubmed.ncbi.nlm.nih.gov/27823821/

725.Matzinger, O., et al. Acute toxicity of curative radiotherapy for intermediate- and high-risk localised prostate cancer in the EORTC trial 22991. Eur J Cancer, 2009. 45: 2825.

https://pubmed.ncbi.nlm.nih.gov/19682889/

726.Hoskin, P., et al. High-dose-rate brachytherapy alone given as two or one fraction to patients for locally advanced prostate cancer: acute toxicity. Radiother Oncol, 2014. 110: 268.

https://pubmed.ncbi.nlm.nih.gov/24231242/

727.King, C.R., et al. Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials. Int J Radiat Oncol Biol Phys, 2013. 87: 939.

https://pubmed.ncbi.nlm.nih.gov/24119836/

728.Pagliarulo, V., et al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur Urol, 2012. 61: 11.

https://pubmed.ncbi.nlm.nih.gov/21871711/

729.Oefelein, M.G., et al. Reassessment of the definition of castrate levels of testosterone: implications for clinical decision making. Urology, 2000. 56: 1021.

https://pubmed.ncbi.nlm.nih.gov/11113751/

730.Morote, J., et al. Individual variations of serum testosterone in patients with prostate cancer receiving androgen deprivation therapy. BJU Int, 2009. 103: 332.

https://pubmed.ncbi.nlm.nih.gov/19007366/

731.Pickles, T., et al. Incomplete testosterone suppression with luteinizing hormone-releasing hormone agonists: does it happen and does it matter? BJU Int, 2012. 110: E500.

https://pubmed.ncbi.nlm.nih.gov/22564197/

732.Klotz, L., et al. MP74-01 Nadir testosterone on ADT predicts for time to castrate resistant progression: A secondary analysis of the PR-7 intermittent vs continuous ADT trial. J Urol. 191: e855.

https://www.auajournals.org/doi/10.1016/j.juro.2014.02.2334

733.Desmond, A.D., et al. Subcapsular orchiectomy under local anaesthesia. Technique, results and implications. Br J Urol, 1988. 61: 143.

https://pubmed.ncbi.nlm.nih.gov/3349279/

734.Scherr, D.S., et al. The nonsteroidal effects of diethylstilbestrol: the rationale for androgen deprivation therapy without estrogen deprivation in the treatment of prostate cancer. J Urol, 2003. 170: 1703.

https://pubmed.ncbi.nlm.nih.gov/14532759/

735.Farrugia, D., et al. Stilboestrol plus adrenal suppression as salvage treatment for patients failing treatment with luteinizing hormone-releasing hormone analogues and orchidectomy. BJU Int, 2000. 85: 1069.

https://pubmed.ncbi.nlm.nih.gov/10848697/

736.Hedlund, P.O., et al. Parenteral estrogen versus combined androgen deprivation in the treatment of metastatic prostatic cancer: part 2. Final evaluation of the Scandinavian Prostatic Cancer Group (SPCG) Study No. 5. Scand J Urol Nephrol, 2008. 42: 220.

https://pubmed.ncbi.nlm.nih.gov/18432528/

737.Gilbert, D.C., et al. Transdermal oestradiol as a method of androgen suppression for prostate cancer within the STAMPEDE trial platform. BJU Int, 2018. 121: 680.

https://pubmed.ncbi.nlm.nih.gov/29388336/

738.Bubley, G.J. Is the flare phenomenon clinically significant? Urology, 2001. 58: 5.

https://pubmed.ncbi.nlm.nih.gov/11502435/

739.Krakowsky, Y., et al. Risk of Testosterone Flare in the Era of the Saturation Model: One More Historical Myth. Eur Urol Focus, 2019. 5: 81.

https://pubmed.ncbi.nlm.nih.gov/28753828/

740.Klotz, L., et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int, 2008. 102: 1531.

https://pubmed.ncbi.nlm.nih.gov/19035858/

741.Seidenfeld, J., et al. Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med, 2000. 132: 566.

https://pubmed.ncbi.nlm.nih.gov/10744594/

742.Ostergren, P.B., et al. Luteinizing Hormone-Releasing Hormone Agonists are Superior to Subcapsular Orchiectomy in Lowering Testosterone Levels of Men with Prostate Cancer: Results from a Randomized Clinical Trial. J Urol, 2017. 197: 1441.

https://pubmed.ncbi.nlm.nih.gov/27939836/

743.Shore, N.D. Experience with degarelix in the treatment of prostate cancer. Ther Adv Urol, 2013. 5: 11.

https://pubmed.ncbi.nlm.nih.gov/23372607/

744.Sciarra, A., et al. A meta-analysis and systematic review of randomized controlled trials with degarelix versus gonadotropin-releasing hormone agonists for advanced prostate cancer. Medicine (Baltimore), 2016. 95: e3845.

https://pubmed.ncbi.nlm.nih.gov/27399062/

745.Cirne, F., et al. The cardiovascular effects of gonadotropin-releasing hormone antagonists in men with prostate cancer. Eur Heart J Cardiovasc Pharmacother, 2022. 8: 253.

https://pubmed.ncbi.nlm.nih.gov/33470403/

746.Abufaraj, M., et al. Differential Impact of Gonadotropin-releasing Hormone Antagonist Versus Agonist on Clinical Safety and Oncologic Outcomes on Patients with Metastatic Prostate Cancer: A Meta-analysis of Randomized Controlled Trials. Eur Urol, 2021. 79: 44.

https://pubmed.ncbi.nlm.nih.gov/32605859/

747.Shore, N.D., et al. Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. N Engl J Med, 2020. 382: 2187.

https://pubmed.ncbi.nlm.nih.gov/32469183/

748.U.S. Food & Drug Adminstration. FDA approves relugolix for advanced prostate cancer. 2020. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-relugolix-advanced-prostate-cancer

749.European Medicines Agency. Orgovyx approved for advanced prostate cancer. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/orgovyx

750.Moffat, L.E. Comparison of Zoladex, diethylstilbestrol and cyproterone acetate treatment in advanced prostate cancer. Eur Urol, 1990. 18 Suppl 3: 26.

https://pubmed.ncbi.nlm.nih.gov/2151272/

751.Schroder, F.H., et al. Metastatic prostate cancer treated by flutamide versus cyproterone acetate. Final analysis of the “European Organization for Research and Treatment of Cancer” (EORTC) Protocol 30892. Eur Urol, 2004. 45: 457.

https://pubmed.ncbi.nlm.nih.gov/15041109/

752.Smith, M.R., et al. Bicalutamide monotherapy versus leuprolide monotherapy for prostate cancer: effects on bone mineral density and body composition. J Clin Oncol, 2004. 22: 2546.

https://pubmed.ncbi.nlm.nih.gov/15226323/

753.Iversen, P. Antiandrogen monotherapy: indications and results. Urology, 2002. 60: 64.

https://pubmed.ncbi.nlm.nih.gov/12231053/

754.Wadhwa, V.K., et al. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU Int, 2009. 104: 800.

https://pubmed.ncbi.nlm.nih.gov/19338564/

755.Montgomery, R.B., et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res, 2008. 68: 4447.

https://pubmed.ncbi.nlm.nih.gov/18519708/

756.U.S. Food & Drug Adminstration. FDA approves abiraterone acetate in combination with prednisone for high-risk metastatic castration-sensitive prostate cancer. 2018. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abiraterone-acetate-combination-prednisone-high-risk-metastatic-castration-sensitive

757.U.S. Food & Drug Adminstration. FDA approves enzalutamide for metastatic castration-sensitive prostate cancer. 2019. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-enzalutamide-metastatic-castration-sensitive-prostate-cancer

758.U.S. Food & Drug Adminstration. FDA approves apalutamide for metastatic castration-sensitive prostate cancer. 2019. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-apalutamide-metastatic-castration-sensitive-prostate-cancer

759.European Medicines Agency. Zytiga. 2011. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/zytiga

760.European Medicines Agency. Erleada (apalutamide). 2019. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/erleada

761.European Medicines Agency. Nubeqa (darolutamide). 2020. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/nubeqa

762.European Medicines Agency. Xtandi (enzalutamide). 2013. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/xtandi

763.Chi, K.N., et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med, 2019. 381: 13.

https://pubmed.ncbi.nlm.nih.gov/31150574/

764.Armstrong, A.J., et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol, 2019. 37: 2974.

https://pubmed.ncbi.nlm.nih.gov/31329516/

765.Fizazi, K., et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer.
N Engl J Med, 2017. 377: 352.

https://pubmed.ncbi.nlm.nih.gov/28578607/

766.Moilanen, A.M., et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep, 2015. 5: 12007.

https://pubmed.ncbi.nlm.nih.gov/26137992/

767.Zurth, C., et al. Blood-brain barrier penetration of [14C]darolutamide compared with [14C]enzalutamide in rats using whole body autoradiography. J Clin Oncol, 2018. 36: 345.

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.345

768.Lord, C.J., et al. PARP inhibitors: Synthetic lethality in the clinic. Science, 2017. 355: 1152.

https://pubmed.ncbi.nlm.nih.gov/28302823/

769.Hargadon, K.M., et al. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol, 2018. 62: 29.

https://pubmed.ncbi.nlm.nih.gov/29990692/

770.Le, D.T., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med, 2015.
372: 2509.

https://pubmed.ncbi.nlm.nih.gov/26028255/

771.de Bono, J.S., et al. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res, 2019. 25: 928.

https://pubmed.ncbi.nlm.nih.gov/30037818/

772.Sarker, D., et al. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 2009. 15: 4799.

https://pubmed.ncbi.nlm.nih.gov/19638457/

773.Sgouros, G., et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov, 2020. 19: 589.

https://pubmed.ncbi.nlm.nih.gov/32728208/

774.U.S. Food & Drug Administration. FDA approval of Pluvicto (lutetium Lu 177 vipivotide tetraxetan) for the treatment of adult patients with prostate-specific membrane antigen-positive metastatic castration-resistant prostate cancer who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-pluvicto-lutetium-lu-177-vipivotide-tetraxetan-treatment-adult

775.Fahmy, W.E., et al. Cryosurgery for prostate cancer. Arch Androl, 2003. 49: 397.

https://pubmed.ncbi.nlm.nih.gov/12893518/

776.Rees, J., et al. Cryosurgery for prostate cancer. BJU Int, 2004. 93: 710.

https://pubmed.ncbi.nlm.nih.gov/15049977/

777.Han, K.R., et al. Third-generation cryosurgery for primary and recurrent prostate cancer. BJU Int, 2004. 93: 14.

https://pubmed.ncbi.nlm.nih.gov/14678360/

778.van der Poel, H.G., et al. Focal Therapy in Primary Localised Prostate Cancer: The European Association of Urology Position in 2018. Eur Urol, 2018. 74: 84.

https://pubmed.ncbi.nlm.nih.gov/29373215/

779.Valerio, M., et al. New and Established Technology in Focal Ablation of the Prostate: A Systematic Review. Eur Urol, 2017. 71: 17.

https://pubmed.ncbi.nlm.nih.gov/27595377/

780.Ramsay, C.R., et al. Ablative therapy for people with localised prostate cancer: a systematic review and economic evaluation. Health Technol Assess, 2015. 19: 1.

https://pubmed.ncbi.nlm.nih.gov/26140518/

781.Madersbacher, S., et al. High-energy shockwaves and extracorporeal high-intensity focused ultrasound. J Endourol, 2003. 17: 667.

https://pubmed.ncbi.nlm.nih.gov/14622487/

782.Mouraviev, V., et al. Pathologic basis of focal therapy for early-stage prostate cancer. Nat Rev Urol, 2009. 6: 205.

https://pubmed.ncbi.nlm.nih.gov/19352395/

783.Cooperberg, M.R., et al. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol, 2007. 178: S14.

https://pubmed.ncbi.nlm.nih.gov/17644125/

784.Polascik, T.J., et al. Pathologic stage T2a and T2b prostate cancer in the recent prostate-specific antigen era: implications for unilateral ablative therapy. Prostate, 2008. 68: 1380.

https://pubmed.ncbi.nlm.nih.gov/18543281/

785.Ahmed, H.U., et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat Clin Pract Oncol, 2007. 4: 632.

https://pubmed.ncbi.nlm.nih.gov/17965641/

786.Eggener, S.E., et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol, 2007. 178: 2260.

https://pubmed.ncbi.nlm.nih.gov/17936815/

787.Crawford, E.D., et al. Targeted focal therapy: a minimally invasive ablation technique for early prostate cancer. Oncology (Williston Park), 2007. 21: 27.

https://pubmed.ncbi.nlm.nih.gov/17313155/

788.Hopstaken, J.S., et al. An Updated Systematic Review on Focal Therapy in Localized Prostate Cancer: What Has Changed over the Past 5 Years? Eur Urol, 2022. 81: 5.

https://pubmed.ncbi.nlm.nih.gov/34489140/

789.Guillaumier, S., et al. A Multicentre Study of 5-year Outcomes Following Focal Therapy in Treating Clinically Significant Nonmetastatic Prostate Cancer. Eur Urol, 2018. 74: 422.

https://pubmed.ncbi.nlm.nih.gov/29960750/

790.Hamdy, F.C., et al. Partial ablation versus radical prostatectomy in intermediate-risk prostate cancer: the PART feasibility RCT. Health Technol Assess, 2018. 22: 1.

https://pubmed.ncbi.nlm.nih.gov/30264692/

791.Baco, E., et al. MP21-7901 Focal ablation versus radical prostatectomy for intermediate-risk prostate cancer: interim analysis of a randomized controlled Trial. J Urol, 2021. 206: e815.

https://www.auajournals.org/doi/abs/10.1097/JU.0000000000002067.06

792.Reddy, D., et al. Comparative healthcare research outcomes of novel Surgery in prostate cancer (IP4-CHRONOS): Pilot RCT assessing feasibility of randomization for focal therapy in localized prostate cancer. J Clin Oncol, 2022. 40: 5086.

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.5086

793.Shah, T.T., et al. Focal therapy compared to radical prostatectomy for non-metastatic prostate cancer: a propensity score-matched study. Prostate Cancer Prostatic Dis, 2021. 24: 567.

https://pubmed.ncbi.nlm.nih.gov/33504940/

794.van Son, M.J., et al. Conventional radical versus focal treatment for localised prostate cancer: a propensity score weighted comparison of 6-year tumour control. Prostate Cancer Prostatic Dis, 2021. 24: 1120.

https://pubmed.ncbi.nlm.nih.gov/33934114/

795.Lovegrove, C.E., et al. Evaluation of functional outcomes after a second focal high-intensity focused ultrasonography (HIFU) procedure in men with primary localized, non-metastatic prostate cancer: results from the HIFU Evaluation and Assessment of Treatment (HEAT) registry. BJU Int, 2020.
125: 853.

https://pubmed.ncbi.nlm.nih.gov/31971335/

796.Gill, I.S., et al. Randomized Trial of Partial Gland Ablation with Vascular Targeted Phototherapy versus Active Surveillance for Low Risk Prostate Cancer: Extended Followup and Analyses of Effectiveness. J Urol, 2018. 200: 786.

https://pubmed.ncbi.nlm.nih.gov/29864437/

797.Bates, A.S., et al. A Systematic Review of Focal Ablative Therapy for Clinically Localised Prostate Cancer in Comparison with Standard Management Options: Limitations of the Available Evidence and Recommendations for Clinical Practice and Further Research. Eur Urol Oncol, 2021. 4: 405.

https://pubmed.ncbi.nlm.nih.gov/33423943/

798.Azzouzi, A.R., et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol, 2017. 18: 181.

https://pubmed.ncbi.nlm.nih.gov/28007457/

799.Albisinni, S., et al. Comparing High-Intensity Focal Ultrasound Hemiablation to Robotic Radical Prostatectomy in the Management of Unilateral Prostate Cancer: A Matched-Pair Analysis.
J Endourol, 2017. 31: 14.

https://pubmed.ncbi.nlm.nih.gov/27799004/

800.Zheng, X., et al. Focal Laser Ablation Versus Radical Prostatectomy for Localized Prostate Cancer: Survival Outcomes From a Matched Cohort. Clin Genitourin Cancer, 2019. 17: 464.

https://pubmed.ncbi.nlm.nih.gov/31594734/

801.Zhou, X., et al. Comparative Effectiveness of Radiotherapy versus Focal Laser Ablation in Patients with Low and Intermediate Risk Localized Prostate Cancer. Sci Rep, 2020. 10: 9112.

https://pubmed.ncbi.nlm.nih.gov/32499484/

802.Marconi, L., et al. Robot-assisted Radical Prostatectomy After Focal Therapy: Oncological, Functional Outcomes and Predictors of Recurrence. Eur Urol, 2019. 76: 27.

https://pubmed.ncbi.nlm.nih.gov/30904357/

803.Spitznagel, T., et al. Salvage Robotic-assisted Laparoscopic Radical Prostatectomy Following Focal High-Intensity Focused Ultrasound for ISUP 2/3 Cancer. Urology, 2021. 156: 147.

https://pubmed.ncbi.nlm.nih.gov/34186136/

804.MacLennan, S., et al. A core outcome set for localised prostate cancer effectiveness trials. BJU Int, 2017. 120: E64.

https://pubmed.ncbi.nlm.nih.gov/28346770/

805.Willemse, P.M., et al. Systematic Review of Active Surveillance for Clinically Localised Prostate Cancer to Develop Recommendations Regarding Inclusion of Intermediate-risk Disease, Biopsy Characteristics at Inclusion and Monitoring, and Surveillance Repeat Biopsy Strategy. Eur Urol, 2022. 81: 337.

https://pubmed.ncbi.nlm.nih.gov/34980492/

806.Loeb, S., et al. Active surveillance for prostate cancer: a systematic review of clinicopathologic variables and biomarkers for risk stratification. Eur Urol, 2015. 67: 619.

https://pubmed.ncbi.nlm.nih.gov/25457014/

807.Ha, Y.S., et al. Prostate-specific antigen density toward a better cutoff to identify better candidates for active surveillance. Urology, 2014. 84: 365.

https://pubmed.ncbi.nlm.nih.gov/24925834/

808.Petrelli, F., et al. Predictive Factors for Reclassification and Relapse in Prostate Cancer Eligible for Active Surveillance: A Systematic Review and Meta-analysis. Urology, 2016. 91: 136.

https://pubmed.ncbi.nlm.nih.gov/26896733/

809.Marks, R.A., et al. The relationship between the extent of surgical margin positivity and prostate specific antigen recurrence in radical prostatectomy specimens. Hum Pathol, 2007. 38: 1207.

https://pubmed.ncbi.nlm.nih.gov/17490720/

810.Moreira, D.M., et al. Baseline Perineural Invasion is Associated with Shorter Time to Progression in Men with Prostate Cancer Undergoing Active Surveillance: Results from the REDEEM Study. J Urol, 2015. 194: 1258.

https://pubmed.ncbi.nlm.nih.gov/25988518/

811.Schoots, I.G., et al. Is magnetic resonance imaging-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int, 2018. 122: 946.

https://pubmed.ncbi.nlm.nih.gov/29679430/

812.Klotz, L., et al. Randomized Study of Systematic Biopsy Versus Magnetic Resonance Imaging and Targeted and Systematic Biopsy in Men on Active Surveillance (ASIST): 2-year Postbiopsy Follow-up. Eur Urol, 2019.

https://pubmed.ncbi.nlm.nih.gov/31708295/

813.Chiam, K., et al. Use of multiparametric magnetic resonance imaging (mpMRI) in active surveillance for low-risk prostate cancer: a scoping review on the benefits and harm of mpMRI in different biopsy scenarios. Prostate Cancer Prostatic Dis, 2021. 24: 662.

https://pubmed.ncbi.nlm.nih.gov/33654249/

814.Dieffenbacher, S., et al. Standardized Magnetic Resonance Imaging Reporting Using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Criteria and Magnetic Resonance Imaging/Transrectal Ultrasound Fusion with Transperineal Saturation Biopsy to Select Men on Active Surveillance. Eur Urol Focus, 2021. 7: 102.

https://pubmed.ncbi.nlm.nih.gov/30878348/

815.Schiavina, R., et al. The role of multiparametric MRI in active surveillance for low-risk prostate cancer: The ROMAS randomized controlled trial. Urol Oncol, 2021. 39: 433.e1.

https://pubmed.ncbi.nlm.nih.gov/33191117/

816.Bratt, O., et al. The Swedish national guidelines on prostate cancer, part 1: early detection, diagnostics, staging, patient support and primary management of non-metastatic disease. Scand
J Urol, 2022. 56: 265.

https://pubmed.ncbi.nlm.nih.gov/35811480/

817.Yerram, N.K., et al. Magnetic Resonance Imaging-Targeted and Systematic Biopsy for Detection of Grade Progression in Patients on Active Surveillance for Prostate Cancer. J Urol, 2021. 205: 1352.

https://pubmed.ncbi.nlm.nih.gov/33356479/

818.Moore, C.M., et al. Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations-A Report of a European School of Oncology Task Force. Eur Urol, 2017. 71: 648.

https://pubmed.ncbi.nlm.nih.gov/27349615/

819.Schoots, I.G., et al. Role of MRI in low-risk prostate cancer: finding the wolf in sheep’s clothing or the sheep in wolf’s clothing? Curr Opin Urol, 2017. 27: 238.

https://pubmed.ncbi.nlm.nih.gov/28306604/

820.Chu, C.E., et al. Diagnostic Accuracy and Prognostic Value of Serial Prostate Multiparametric Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. Eur Urol Oncol, 2022. 5: 537.

https://pubmed.ncbi.nlm.nih.gov/33483265/

821.Hettiarachchi, D., et al. Can the Use of Serial Multiparametric Magnetic Resonance Imaging During Active Surveillance of Prostate Cancer Avoid the Need for Prostate Biopsies?-A Systematic Diagnostic Test Accuracy Review. Eur Urol Oncol, 2021. 4: 426.

https://pubmed.ncbi.nlm.nih.gov/32972894/

822.Rajwa, P., et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur Urol, 2021.
80: 549.

https://pubmed.ncbi.nlm.nih.gov/34020828/

823.Caglic, I., et al. MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur Radiol, 2021. 31: 2696.

https://pubmed.ncbi.nlm.nih.gov/33196886/

824.Olivier, J., et al. Prostate Cancer Patients Under Active Surveillance with a Suspicious Magnetic Resonance Imaging Finding Are at Increased Risk of Needing Treatment: Results of the Movember Foundation’s Global Action Plan Prostate Cancer Active Surveillance (GAP3) Consortium. Eur Urol Open Sci, 2022. 35: 59.

https://pubmed.ncbi.nlm.nih.gov/35024633/

825.Stavrinides, V., et al. Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models. Prostate Cancer Prostatic Dis, 2021. 24: 1028.

https://pubmed.ncbi.nlm.nih.gov/33958731/

826.Chu, C.E., et al. Multiparametric Magnetic Resonance Imaging Alone is Insufficient to Detect Grade Reclassification in Active Surveillance for Prostate Cancer. Eur Urol, 2020. 78: 515.

https://pubmed.ncbi.nlm.nih.gov/32631744/

827.Deniffel, D., et al. Does the Visibility of Grade Group 1 Prostate Cancer on Baseline Multiparametric Magnetic Resonance Imaging Impact Clinical Outcomes? J Urol, 2020. 204: 1187.

https://pubmed.ncbi.nlm.nih.gov/32496160/

828.Fujihara, A., et al. Multiparametric magnetic resonance imaging facilitates reclassification during active surveillance for prostate cancer. BJU Int, 2021. 127: 712.

https://pubmed.ncbi.nlm.nih.gov/33043575/

829.Amin, A., et al. The Magnetic Resonance Imaging in Active Surveillance (MRIAS) Trial: Use of Baseline Multiparametric Magnetic Resonance Imaging and Saturation Biopsy to Reduce the Frequency of Surveillance Prostate Biopsies. J Urol, 2020. 203: 910.

https://pubmed.ncbi.nlm.nih.gov/31825297/

830.Mamawala, M.K., et al. Utility of multiparametric magnetic resonance imaging in the risk stratification of men with Grade Group 1 prostate cancer on active surveillance. BJU Int, 2020. 125: 861.

https://pubmed.ncbi.nlm.nih.gov/32039537/

831.Gallagher, K.M., et al. Four-year outcomes from a multiparametric magnetic resonance imaging (MRI)-based active surveillance programme: PSA dynamics and serial MRI scans allow omission of protocol biopsies. BJU Int, 2019. 123: 429.

https://pubmed.ncbi.nlm.nih.gov/30113755/

832.Olivier, J., et al. Low-risk prostate cancer selected for active surveillance with negative MRI at entry: can repeat biopsies at 1 year be avoided? A pilot study. World J Urol, 2019. 37: 253.

https://pubmed.ncbi.nlm.nih.gov/30039385/

833.Chu, C.E., et al. The Clinical Significance of Multiple Negative Surveillance Prostate Biopsies for Men on Active Surveillance-Does Cancer Vanish or Simply Hide? J Urol, 2021. 205: 109.

https://pubmed.ncbi.nlm.nih.gov/33198555/

834.O’Connor, L.P., et al. Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. Eur Urol Oncol, 2021. 4: 227.

https://pubmed.ncbi.nlm.nih.gov/33867045/

835.Rajwa, P., et al. Association of Negative Followup Biopsy and Reclassification during Active Surveillance of Prostate Cancer: A Systematic Review and Meta-Analysis. J Urol, 2021. 205: 1559.

https://pubmed.ncbi.nlm.nih.gov/33683937/

836.Klotz, L., et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol, 2010. 28: 126.

https://pubmed.ncbi.nlm.nih.gov/19917860/

837.Ross, A.E., et al. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol, 2010. 28: 2810.

https://pubmed.ncbi.nlm.nih.gov/20439642/

838.Thomsen, F.B., et al. Association between PSA kinetics and cancer-specific mortality in patients with localised prostate cancer: analysis of the placebo arm of the SPCG-6 study. Ann Oncol, 2016. 27: 460.

https://pubmed.ncbi.nlm.nih.gov/26681677/

839.Liu, J.L., et al. Advances in the selection of patients with prostate cancer for active surveillance. Nat Rev Urol, 2021. 18: 197.

https://pubmed.ncbi.nlm.nih.gov/33623103/

840.McLeod, D.G., et al. Bicalutamide 150 mg plus standard care vs standard care alone for early prostate cancer. BJU Int, 2006. 97: 247.

https://pubmed.ncbi.nlm.nih.gov/16430622/

841.Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council Trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. Br J Urol, 1997. 79: 235.

https://pubmed.ncbi.nlm.nih.gov/9052476/

842.Enikeev, D., et al. Active Surveillance for Intermediate-Risk Prostate Cancer: Systematic Review and Meta-analysis of Current Protocols and Outcomes. Clin Genitourin Cancer, 2020. 18: e739.

https://pubmed.ncbi.nlm.nih.gov/32768356/

843.Baboudjian, M., et al. Active Surveillance for Intermediate-risk Prostate Cancer: A Systematic Review, Meta-analysis, and Metaregression. Eur Urol Oncol, 2022. 5: 617.

https://pubmed.ncbi.nlm.nih.gov/35934625/

844.Morash, C., et al. Active surveillance for the management of localized prostate cancer: Guideline recommendations. Can Urol Assoc J, 2015. 9: 171.

https://pubmed.ncbi.nlm.nih.gov/26225165/

845.Musunuru, H.B., et al. Active Surveillance for Intermediate Risk Prostate Cancer: Survival Outcomes in the Sunnybrook Experience. J Urol, 2016. 196: 1651.

https://pubmed.ncbi.nlm.nih.gov/27569437/

846.Raldow, A.C., et al. Risk Group and Death From Prostate Cancer: Implications for Active Surveillance in Men With Favorable Intermediate-Risk Prostate Cancer. JAMA Oncol, 2015. 1: 334.

https://pubmed.ncbi.nlm.nih.gov/26181182/

847.Luo, X., et al. Prostatectomy Versus Observation for Localized Prostate Cancer: A Meta-Analysis. Scand J Surg, 2021. 110: 78.

https://pubmed.ncbi.nlm.nih.gov/31662032/

848.Studer, U.E., et al. Using PSA to guide timing of androgen deprivation in patients with T0-4 N0-2 M0 prostate cancer not suitable for local curative treatment (EORTC 30891). Eur Urol, 2008. 53: 941.

https://pubmed.ncbi.nlm.nih.gov/18191322/

849.James, N.D., et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet, 2016. 387: 1163.

https://pubmed.ncbi.nlm.nih.gov/26719232/

850.Krauss, D., et al. Lack of benefit for the addition of androgen deprivation therapy to dose-escalated radiotherapy in the treatment of intermediate- and high-risk prostate cancer. Int J Radiat Oncol Biol Phys, 2011. 80: 1064.

https://pubmed.ncbi.nlm.nih.gov/20584576/

851.Kupelian, P.A., et al. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys, 2008. 71: 16.

https://pubmed.ncbi.nlm.nih.gov/17996382/

852.Nabid, A., et al. Optimizing Treatment in Intermediate-Risk Prostate Cancer: Secondary Analysis of a Randomized Phase 3 Trial. Int J Radiat Oncol Biol Phys, 2021. 111: 732.

https://pubmed.ncbi.nlm.nih.gov/33901566/

853.King, M.T., et al. Low dose rate brachytherapy for primary treatment of localized prostate cancer: A systemic review and executive summary of an evidence-based consensus statement. Brachytherapy, 2021. 20: 1114.

https://pubmed.ncbi.nlm.nih.gov/34509378/

854.Joniau, S., et al. Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study. Eur Urol, 2015. 67: 157.

https://pubmed.ncbi.nlm.nih.gov/24486307/

855.Donohue, J.F., et al. Poorly differentiated prostate cancer treated with radical prostatectomy: long-term outcome and incidence of pathological downgrading. J Urol, 2006. 176: 991.

https://pubmed.ncbi.nlm.nih.gov/16890678/

856.Nguyen, D.D., et al. Systematic Review of Time to Definitive Treatment for Intermediate Risk and High Risk Prostate Cancer: Are Delays Associated with Worse Outcomes? J Urol, 2021. 205: 1263.

https://pubmed.ncbi.nlm.nih.gov/33443458/

857.Bianco, F.J., Jr., et al. Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function (“trifecta”). Urology, 2005. 66: 83.

https://pubmed.ncbi.nlm.nih.gov/16194712/

858.Walz, J., et al. A nomogram predicting 10-year life expectancy in candidates for radical prostatectomy or radiotherapy for prostate cancer. J Clin Oncol, 2007. 25: 3576.

https://pubmed.ncbi.nlm.nih.gov/17704404/

859.Eastham, J.A., et al. Variations among individual surgeons in the rate of positive surgical margins in radical prostatectomy specimens. J Urol, 2003. 170: 2292.

https://pubmed.ncbi.nlm.nih.gov/14634399/

860.Vickers, A.J., et al. The surgical learning curve for laparoscopic radical prostatectomy: a retrospective cohort study. Lancet Oncol, 2009. 10: 475.

https://pubmed.ncbi.nlm.nih.gov/19342300/

861.Trinh, Q.D., et al. A systematic review of the volume-outcome relationship for radical prostatectomy. Eur Urol, 2013. 64: 786.

https://pubmed.ncbi.nlm.nih.gov/23664423/

862.Joniau, S., et al. Pretreatment tables predicting pathologic stage of locally advanced prostate cancer. Eur Urol, 2015. 67: 319.

https://pubmed.ncbi.nlm.nih.gov/24684960/

863.Loeb, S., et al. Intermediate-term potency, continence, and survival outcomes of radical prostatectomy for clinically high-risk or locally advanced prostate cancer. Urology, 2007. 69: 1170.

https://pubmed.ncbi.nlm.nih.gov/17572209/

864.Carver, B.S., et al. Long-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancer. J Urol, 2006. 176: 564.

https://pubmed.ncbi.nlm.nih.gov/16813890/

865.Freedland, S.J., et al. Radical prostatectomy for clinical stage T3a disease. Cancer, 2007. 109: 1273.

https://pubmed.ncbi.nlm.nih.gov/17315165/

866.Joniau, S., et al. Radical prostatectomy in very high-risk localized prostate cancer: long-term outcomes and outcome predictors. Scand J Urol Nephrol, 2012. 46: 164.

https://pubmed.ncbi.nlm.nih.gov/22364377/

867.Johnstone, P.A., et al. Radical prostatectomy for clinical T4 prostate cancer. Cancer, 2006. 106: 2603.

https://pubmed.ncbi.nlm.nih.gov/16700037/

868.Marra, G., et al. Management of Patients with Node-positive Prostate Cancer at Radical Prostatectomy and Pelvic Lymph Node Dissection: A Systematic Review. Eur Urol Oncol, 2020. 3: 565.

https://pubmed.ncbi.nlm.nih.gov/32933887/

869.Roach, M., et al. Sequence of hormonal therapy and radiotherapy field size in unfavourable, localised prostate cancer (NRG/RTOG 9413): long-term results of a randomised, phase 3 trial. Lancet Oncol, 2018. 19: 1504.

https://pubmed.ncbi.nlm.nih.gov/30316827/

870.Murthy, V., et al. Prostate-Only Versus Whole-Pelvic Radiation Therapy in High-Risk and Very High-Risk Prostate Cancer (POP-RT): Outcomes From Phase III Randomized Controlled Trial. J Clin Oncol, 2021. 39: 1234.

https://pubmed.ncbi.nlm.nih.gov/33497252/

871.Murthy, V., et al. Late toxicity and quality of life with prostate only or whole pelvic radiation therapy in high risk prostate cancer (POP-RT): A randomised trial. Radiother Oncol, 2020. 145: 71.

https://pubmed.ncbi.nlm.nih.gov/31923712/

872.Studer, U.E., et al. Immediate or deferred androgen deprivation for patients with prostate cancer not suitable for local treatment with curative intent: European Organisation for Research and Treatment of Cancer (EORTC) Trial 30891. J Clin Oncol, 2006. 24: 1868.

https://pubmed.ncbi.nlm.nih.gov/16622261/

873.Moris, L., et al. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. Eur Urol, 2020.
77: 614.

https://pubmed.ncbi.nlm.nih.gov/32146018/

874.Gongora, M., et al. Characteristics of Patients in SPCG-15-A Randomized Trial Comparing Radical Prostatectomy with Primary Radiotherapy plus Androgen Deprivation Therapy in Men with Locally Advanced Prostate Cancer. Eur Urol Open Sci, 2022. 41: 63.

https://pubmed.ncbi.nlm.nih.gov/35813256/

875.Yossepowitch, O., et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J Urol, 2007. 178: 493.

https://pubmed.ncbi.nlm.nih.gov/17561152/

876.Bastian, P.J., et al. Clinical and pathologic outcome after radical prostatectomy for prostate cancer patients with a preoperative Gleason sum of 8 to 10. Cancer, 2006. 107: 1265.

https://pubmed.ncbi.nlm.nih.gov/16900523/

877.Surgery Versus Radiotherapy for Locally Advanced Prostate Cancer (SPCG-15). ClinicalTrials: NCT02102477. 2014. Access date December 2022.

https://clinicaltrials.gov/ct2/show/NCT02102477

878.Chang, K., et al. Comparison of two adjuvant hormone therapy regimens in patients with high-risk localized prostate cancer after radical prostatectomy: primary results of study CU1005. Asian J Androl, 2016. 18: 452.

https://pubmed.ncbi.nlm.nih.gov/26323560/

879.Walz, J., et al. Pathological results and rates of treatment failure in high-risk prostate cancer patients after radical prostatectomy. BJU Int, 2011. 107: 765.

https://pubmed.ncbi.nlm.nih.gov/20875089/

880.Spahn, M., et al. Outcome predictors of radical prostatectomy in patients with prostate-specific antigen greater than 20 ng/ml: a European multi-institutional study of 712 patients. Eur Urol, 2010. 58: 1.

https://pubmed.ncbi.nlm.nih.gov/20299147/

881.Zwergel, U., et al. Outcome of prostate cancer patients with initial PSA> or =20 ng/ml undergoing radical prostatectomy. Eur Urol, 2007. 52: 1058.

https://pubmed.ncbi.nlm.nih.gov/17418938/

882.Magheli, A., et al. Importance of tumor location in patients with high preoperative prostate specific antigen levels (greater than 20 ng/ml) treated with radical prostatectomy. J Urol, 2007. 178: 1311.

https://pubmed.ncbi.nlm.nih.gov/17698095/

883.Ward, J.F., et al. Radical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-year outcome. BJU Int, 2005. 95: 751.

https://pubmed.ncbi.nlm.nih.gov/15794776/

884.Ventimiglia, E., et al. A Systematic Review of the Role of Definitive Local Treatment in Patients with Clinically Lymph Node-positive Prostate Cancer. Eur Urol Oncol, 2019. 2: 294.

https://pubmed.ncbi.nlm.nih.gov/31200844/

885.Tward, J.D., et al. Radiation therapy for clinically node-positive prostate adenocarcinoma is correlated with improved overall and prostate cancer-specific survival. Pract Radiat Oncol, 2013.
3: 234.

https://pubmed.ncbi.nlm.nih.gov/24674370/

886.Lin, C.C., et al. Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J Natl Cancer Inst, 2015. 107: djv119.

https://pubmed.ncbi.nlm.nih.gov/25957435/

887.Seisen, T., et al. Efficacy of Local Treatment in Prostate Cancer Patients with Clinically Pelvic Lymph Node-positive Disease at Initial Diagnosis. Eur Urol, 2017. 73: 452.

https://pubmed.ncbi.nlm.nih.gov/28890245/

888.James, N.D., et al. Failure-Free Survival and Radiotherapy in Patients With Newly Diagnosed Nonmetastatic Prostate Cancer: Data From Patients in the Control Arm of the STAMPEDE Trial. JAMA Oncol, 2016. 2: 348.

https://pubmed.ncbi.nlm.nih.gov/26606329/

889.Rusthoven, C.G., et al. The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int J Radiat Oncol Biol Phys, 2014. 88: 1064.

https://pubmed.ncbi.nlm.nih.gov/24661660/

890.Moschini, M., et al. Outcomes for Patients with Clinical Lymphadenopathy Treated with Radical Prostatectomy. Eur Urol, 2016. 69: 193.

https://pubmed.ncbi.nlm.nih.gov/26264160/

891.Fischer-Valuck, B.W., et al. Overall survival comparison between androgen deprivation therapy (ADT) plus external beam radiation therapy (EBRT) vs ADT plus EBRT with brachytherapy boost in clinically node-positive prostate cancer. Brachytherapy, 2020. 19: 557.

https://pubmed.ncbi.nlm.nih.gov/32624405/

892.James, N.D., et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy.
N Engl J Med, 2017. 377: 338.

https://pubmed.ncbi.nlm.nih.gov/28578639/

893.Fizazi, K., et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol, 2015. 16: 787.

https://pubmed.ncbi.nlm.nih.gov/26028518/

894.Vale, C.L., et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol, 2016. 17: 243.

https://pubmed.ncbi.nlm.nih.gov/26718929/

895.Attard, G., et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet, 2022. 399: 447.

https://pubmed.ncbi.nlm.nih.gov/34953525/

896.Bryant, A.K., et al. Definitive Radiation Therapy and Survival in Clinically Node-Positive Prostate Cancer. Int J Radiat Oncol Biol Phys, 2018. 101: 1188.

https://pubmed.ncbi.nlm.nih.gov/29891203/

897.Sarkar, R.R., et al. Association between Radical Prostatectomy and Survival in Men with Clinically Node-positive Prostate Cancer. Eur Urol Oncol, 2019. 2: 584.

https://pubmed.ncbi.nlm.nih.gov/31411995/

898.Würnschimmel, C., et al. Radical prostatectomy for localized prostate cancer: 20-year oncological outcomes from a German high-volume center. Urol Oncol, 2021. 39: 830.e17.

https://pubmed.ncbi.nlm.nih.gov/34092484/

899.Bader, P., et al. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J Urol, 2002. 168: 514.

https://pubmed.ncbi.nlm.nih.gov/12131300/

900.Briganti, A., et al. Two positive nodes represent a significant cut-off value for cancer specific survival in patients with node positive prostate cancer. A new proposal based on a two-institution experience on 703 consecutive N+ patients treated with radical prostatectomy, extended pelvic lymph node dissection and adjuvant therapy. Eur Urol, 2009. 55: 261.

https://pubmed.ncbi.nlm.nih.gov/18838212/

901.Schumacher, M.C., et al. Good outcome for patients with few lymph node metastases after radical retropubic prostatectomy. Eur Urol, 2008. 54: 344.

https://pubmed.ncbi.nlm.nih.gov/18511183/

902.Abdollah, F., et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol, 2015. 67: 212.

https://pubmed.ncbi.nlm.nih.gov/24882672/

903.Pound, C.R., et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA, 1999. 281: 1591.

https://pubmed.ncbi.nlm.nih.gov/10235151/

904.Aus, G., et al. Prognostic factors and survival in node-positive (N1) prostate cancer-a prospective study based on data from a Swedish population-based cohort. Eur Urol, 2003. 43: 627.

https://pubmed.ncbi.nlm.nih.gov/12767363/

905.Cheng, L., et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer, 2001. 91: 66.

https://pubmed.ncbi.nlm.nih.gov/11148561/

906.Seiler, R., et al. Removal of limited nodal disease in patients undergoing radical prostatectomy: long-term results confirm a chance for cure. J Urol, 2014. 191: 1280.

https://pubmed.ncbi.nlm.nih.gov/24262495/

907.Passoni, N.M., et al. Prognosis of patients with pelvic lymph node (LN) metastasis after radical prostatectomy: value of extranodal extension and size of the largest LN metastasis. BJU Int, 2014. 114: 503.

https://pubmed.ncbi.nlm.nih.gov/24053552/

908.Daneshmand, S., et al. Prognosis of patients with lymph node positive prostate cancer following radical prostatectomy: long-term results. J Urol, 2004. 172: 2252.

https://pubmed.ncbi.nlm.nih.gov/15538242/

909.Touijer, K.A., et al. Long-term outcome of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur Urol, 2014. 65: 20.

https://pubmed.ncbi.nlm.nih.gov/23619390/

910.Spratt, D.E., et al. Individual Patient-Level Meta-Analysis of the Performance of the Decipher Genomic Classifier in High-Risk Men After Prostatectomy to Predict Development of Metastatic Disease. J Clin Oncol, 2017. 35: 1991.

https://pubmed.ncbi.nlm.nih.gov/28358655/

911.Jairath, N.K., et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer. Eur Urol, 2021. 79: 374.

https://pubmed.ncbi.nlm.nih.gov/33293078/

912.Wiegel, T., et al. Adjuvant Radiotherapy Versus Wait-and-See After Radical Prostatectomy: 10-year Follow-up of the ARO 96-02/AUO AP 09/95 Trial. Eur Urol, 2014. 66: 243.

https://pubmed.ncbi.nlm.nih.gov/24680359/

913.Thompson, I.M., et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol, 2009. 181: 956.

https://pubmed.ncbi.nlm.nih.gov/19167731/

914.Bolla, M., et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet, 2012. 380: 2018.

https://pubmed.ncbi.nlm.nih.gov/23084481/

915.Hackman, G., et al. Randomised Trial of Adjuvant Radiotherapy Following Radical Prostatectomy Versus Radical Prostatectomy Alone in Prostate Cancer Patients with Positive Margins or Extracapsular Extension. Eur Urol, 2019. 76: 586.

https://pubmed.ncbi.nlm.nih.gov/31375279/

916.Fossati, N., et al. Long-term Impact of Adjuvant Versus Early Salvage Radiation Therapy in pT3N0 Prostate Cancer Patients Treated with Radical Prostatectomy: Results from a Multi-institutional Series. Eur Urol, 2017. 71: 886.

https://pubmed.ncbi.nlm.nih.gov/27484843/

917.Buscariollo, D.L., et al. Long-term results of adjuvant versus early salvage postprostatectomy radiation: A large single-institutional experience. Pract Radiat Oncol, 2017. 7: e125.

https://pubmed.ncbi.nlm.nih.gov/28274403/

918.Hwang, W.L., et al. Comparison Between Adjuvant and Early-Salvage Postprostatectomy Radiotherapy for Prostate Cancer With Adverse Pathological Features. JAMA Oncol, 2018.
4: e175230.

https://pubmed.ncbi.nlm.nih.gov/29372236/

919.Parker, C.C., et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. Lancet, 2020. 396: 1413.

https://pubmed.ncbi.nlm.nih.gov/33002429/

920.Kneebone, A., et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol, 2020. 21: 1331.

https://pubmed.ncbi.nlm.nih.gov/33002437/

921.Sargos, P., et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol, 2020. 21: 1341.

https://pubmed.ncbi.nlm.nih.gov/33002438/

922.Vale, C.L., et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet, 2020. 396: 1422.

https://pubmed.ncbi.nlm.nih.gov/33002431/

923.Tilki, D., et al. Timing of radiotherapy after radical prostatectomy. Lancet, 2020. 396: 1374.

https://pubmed.ncbi.nlm.nih.gov/33002430/

924.Ghadjar, P., et al. Postoperative radiotherapy in prostate cancer. Lancet, 2021. 397: 1623.

https://pubmed.ncbi.nlm.nih.gov/33933203/

925.Tilki, D., et al. Adjuvant Versus Early Salvage Radiation Therapy for Men at High Risk for Recurrence Following Radical Prostatectomy for Prostate Cancer and the Risk of Death. J Clin Oncol, 2021.
39: 2284.

https://pubmed.ncbi.nlm.nih.gov/34086480/

926.Iversen, P., et al. Antiandrogen monotherapy in patients with localized or locally advanced prostate cancer: final results from the bicalutamide Early Prostate Cancer programme at a median follow-up of 9.7 years. BJU Int, 2010. 105: 1074.

https://pubmed.ncbi.nlm.nih.gov/22129214/

927.Ahlgren, G.M., et al. Docetaxel Versus Surveillance After Radical Prostatectomy for High-risk Prostate Cancer: Results from the Prospective Randomised, Open-label Phase 3 Scandinavian Prostate Cancer Group 12 Trial. Eur Urol, 2018. 73: 870.

https://pubmed.ncbi.nlm.nih.gov/29395502/

928.Schweizer, M.T., et al. Adjuvant leuprolide with or without docetaxel in patients with high-risk prostate cancer after radical prostatectomy (TAX-3501): important lessons for future trials. Cancer, 2013. 119: 3610.

https://pubmed.ncbi.nlm.nih.gov/23943299/

929.Ghavamian, R., et al. Radical retropubic prostatectomy plus orchiectomy versus orchiectomy alone for pTxN+ prostate cancer: a matched comparison. J Urol, 1999. 161: 1223.

https://pubmed.ncbi.nlm.nih.gov/10081874/

930.Messing, E.M., et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol, 2006. 7: 472.

https://pubmed.ncbi.nlm.nih.gov/16750497/

931.Abdollah, F., et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J Clin Oncol, 2014. 32: 3939.

https://pubmed.ncbi.nlm.nih.gov/25245445/

932.Tilki, D., et al. Adjuvant Versus Early Salvage Radiation Therapy After Radical Prostatectomy for pN1 Prostate Cancer and the Risk of Death. J Clin Oncol, 2022. 40: 2186.

https://pubmed.ncbi.nlm.nih.gov/35290082/

933.Abdollah, F., et al. Impact of Adjuvant Radiotherapy in Node-positive Prostate Cancer Patients: The Importance of Patient Selection. Eur Urol, 2018. 74: 253.

https://pubmed.ncbi.nlm.nih.gov/29720348/

934.Gupta, M., et al. Adjuvant radiation with androgen-deprivation therapy for men with lymph node metastases after radical prostatectomy: identifying men who benefit. BJU Int, 2019. 123: 252.

https://pubmed.ncbi.nlm.nih.gov/29626845/

935.Tilki, D., et al. Adjuvant radiation therapy is associated with better oncological outcome compared with salvage radiation therapy in patients with pN1 prostate cancer treated with radical prostatectomy. BJU Int, 2017. 119: 717.

https://pubmed.ncbi.nlm.nih.gov/27743493/

936.Mandel, P., et al. Long-term oncological outcomes in patients with limited nodal disease undergoing radical prostatectomy and pelvic lymph node dissection without adjuvant treatment. World J Urol, 2017. 35: 1833.

https://pubmed.ncbi.nlm.nih.gov/28828530/

937.Kimura, S., et al. Prognostic Significance of Prostate-Specific Antigen Persistence after Radical Prostatectomy: A Systematic Review and Meta-Analysis. Cancers (Basel), 2021. 13: 948.

https://pubmed.ncbi.nlm.nih.gov/33668270/

938.Ploussard, G., et al. Management of Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy: A Systematic Review of the Literature. Eur Urol Oncol, 2021. 4: 150.

https://pubmed.ncbi.nlm.nih.gov/33574012/

939.Moreira, D.M., et al. Natural history of persistently elevated prostate specific antigen after radical prostatectomy: results from the SEARCH database. J Urol, 2009. 182: 2250.

https://pubmed.ncbi.nlm.nih.gov/19758614/

940.Moreira, D.M., et al. Definition and preoperative predictors of persistently elevated prostate-specific antigen after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int, 2010. 105: 1541.

https://pubmed.ncbi.nlm.nih.gov/19912191/

941.Spratt, D.E., et al. Performance of a Prostate Cancer Genomic Classifier in Predicting Metastasis in Men with Prostate-specific Antigen Persistence Postprostatectomy. Eur Urol, 2018. 74: 107.

https://pubmed.ncbi.nlm.nih.gov/29233664/

942.Preisser, F., et al. Persistent Prostate-Specific Antigen After Radical Prostatectomy and Its Impact on Oncologic Outcomes. Eur Urol, 2019. 76: 106.

https://pubmed.ncbi.nlm.nih.gov/30772034/

943.Xiang, C., et al. Prediction of Biochemical Recurrence Following Radiotherapy among Patients with Persistent PSA after Radical Prostatectomy: A Single-Center Experience. Urol Int, 2018. 101: 47.

https://pubmed.ncbi.nlm.nih.gov/29627830/

944.Rogers, C.G., et al. Natural history of disease progression in patients who fail to achieve an undetectable prostate-specific antigen level after undergoing radical prostatectomy. Cancer, 2004. 101: 2549.

https://pubmed.ncbi.nlm.nih.gov/15470681/

945.Perera, M., et al. Sensitivity, Specificity, and Predictors of Positive 68Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2016. 70: 926.

https://pubmed.ncbi.nlm.nih.gov/27363387/

946.Farolfi, A., et al. (68)Ga-PSMA-11 PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy and PSA <0.5 ng/ml. Efficacy and impact on treatment strategy. Eur
J Nucl Med Mol Imaging, 2019. 46: 11.

https://pubmed.ncbi.nlm.nih.gov/29905907/

947.Ceci, F., et al. (68)Ga-PSMA-11 PET/CT in recurrent prostate cancer: efficacy in different clinical stages of PSA failure after radical therapy. Eur J Nucl Med Mol Imaging, 2019. 46: 31.

https://pubmed.ncbi.nlm.nih.gov/30350010/

948.Rauscher, I., et al. Efficacy, Predictive Factors, and Prediction Nomograms for (68)Ga-labeled Prostate-specific Membrane Antigen-ligand Positron-emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer After Radical Prostatectomy. Eur Urol, 2018. 73: 656.

https://pubmed.ncbi.nlm.nih.gov/29358059/

949.Wondergem, M., et al. Early lesion detection with (18)F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2019. 46: 1911.

https://pubmed.ncbi.nlm.nih.gov/31230088/

950.Mena, E., et al. Clinical impact of PSMA-based (18)F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. Eur J Nucl Med Mol Imaging, 2018. 45: 4.

https://pubmed.ncbi.nlm.nih.gov/28894899/

951.Habl, G., et al. (68) Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. Prostate, 2017. 77: 920.

https://pubmed.ncbi.nlm.nih.gov/28317152/

952.Schmidt-Hegemann, N.S., et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat Oncol, 2018. 13: 37.

https://pubmed.ncbi.nlm.nih.gov/29499730/

953.Farolfi, A., et al. (68)Ga-PSMA-11 Positron Emission Tomography Detects Residual Prostate Cancer after Prostatectomy in a Multicenter Retrospective Study. J Urol, 2019. 202: 1174.

https://pubmed.ncbi.nlm.nih.gov/31233369/

954.Meijer, D., et al. Biochemical Persistence of Prostate-Specific Antigen After Robot-Assisted Laparoscopic Radical Prostatectomy: Tumor Localizations Using PSMA PET/CT Imaging. J Nucl Med, 2021. 62: 961.

https://pubmed.ncbi.nlm.nih.gov/33158904/

955.Bartkowiak, D., et al. The impact of prostate-specific antigen persistence after radical prostatectomy on the efficacy of salvage radiotherapy in patients with primary N0 prostate cancer. BJU Int, 2019. 124: 785.

https://pubmed.ncbi.nlm.nih.gov/31220400/

956.Wiegel, T., et al. Prostate-specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial. Int
J Radiat Oncol Biol Phys, 2015. 91: 288.

https://pubmed.ncbi.nlm.nih.gov/25445556/

957.Choo, R., et al. Prospective study evaluating postoperative radiotherapy plus 2-year androgen suppression for post-radical prostatectomy patients with pathologic T3 disease and/or positive surgical margins. Int J Radiat Oncol Biol Phys, 2009. 75: 407.

https://pubmed.ncbi.nlm.nih.gov/19211197/

958.Gandaglia, G., et al. Impact of Postoperative Radiotherapy in Men with Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy for Prostate Cancer: A Long-term Survival Analysis. Eur Urol, 2017. 72: 910.

https://pubmed.ncbi.nlm.nih.gov/28622831/

959.Garcia-Barreras, S., et al. Predictive factors and the important role of detectable prostate-specific antigen for detection of clinical recurrence and cancer-specific mortality following robot-assisted radical prostatectomy. Clin Transl Oncol, 2018. 20: 1004.

https://pubmed.ncbi.nlm.nih.gov/29243074/

960.Lohm, G., et al. Salvage radiotherapy in patients with persistently detectable PSA or PSA rising from an undetectable range after radical prostatectomy gives comparable results. World J Urol, 2013.
31: 423.

https://pubmed.ncbi.nlm.nih.gov/22460203/

961.Ploussard, G., et al. Clinical outcomes after salvage radiotherapy without androgen deprivation therapy in patients with persistently detectable PSA after radical prostatectomy: results from a national multicentre study. World J Urol, 2014. 32: 1331.

https://pubmed.ncbi.nlm.nih.gov/24270970/

962.Fossati, N., et al. Impact of Early Salvage Radiation Therapy in Patients with Persistently Elevated or Rising Prostate-specific Antigen After Radical Prostatectomy. Eur Urol, 2018. 73: 436.

https://pubmed.ncbi.nlm.nih.gov/28779974/

963.Guerif, S.G., et al. The acute toxicity results of the GETUG-AFU 22 study: A multicenter randomized phase II trial comparing the efficacy of a short hormone therapy in combination with radiotherapy to radiotherapy alone as a salvage treatment for patients with detectable PSA after radical prostatectomy. J Clin Oncol, 2017. 35: 16.

https://ascopubs.org/doi/abs/10.1200/JCO.2017.35.6_suppl.16

964.Arlen, P.M., et al. Prostate Specific Antigen Working Group guidelines on prostate specific antigen doubling time. J Urol, 2008. 179: 2181.

https://pubmed.ncbi.nlm.nih.gov/18423743/

965.Vickers, A.J., et al. PSA Velocity and Doubling Time in Diagnosis and Prognosis of Prostate Cancer. Br J Med Surg Urol, 2012. 5: 162.

https://pubmed.ncbi.nlm.nih.gov/22712027/

966.O’Brien, M.F., et al. Pretreatment prostate-specific antigen (PSA) velocity and doubling time are associated with outcome but neither improves prediction of outcome beyond pretreatment PSA alone in patients treated with radical prostatectomy. J Clin Oncol, 2009. 27: 3591.

https://pubmed.ncbi.nlm.nih.gov/19506163/

967.Heidenreich, A. Identification of high-risk prostate cancer: role of prostate-specific antigen, PSA doubling time, and PSA velocity. Eur Urol, 2008. 54: 976.

https://pubmed.ncbi.nlm.nih.gov/18640768/

968.Ramirez, M.L., et al. Current applications for prostate-specific antigen doubling time. Eur Urol, 2008. 54: 291.

https://pubmed.ncbi.nlm.nih.gov/18439749/

969.Vickers, A.J., et al. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol, 2009. 27: 398.

https://pubmed.ncbi.nlm.nih.gov/19064972/

970.Lee, A.K., et al. Utility of prostate-specific antigen kinetics in addition to clinical factors in the selection of patients for salvage local therapy. J Clin Oncol, 2005. 23: 8192.

https://pubmed.ncbi.nlm.nih.gov/16278472/

971.Campbell, S.R., et al. Integrating Prostate-specific Antigen Kinetics into Contemporary Predictive Nomograms of Salvage Radiotherapy After Radical Prostatectomy. Eur Urol Oncol, 2022. 5: 304.

https://pubmed.ncbi.nlm.nih.gov/34016556/

972.Smith, M.R., et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol, 2005. 23: 2918.

https://pubmed.ncbi.nlm.nih.gov/15860850/

973.Amling, C.L., et al. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J Urol, 2001. 165: 1146.

https://pubmed.ncbi.nlm.nih.gov/11257657/

974.Toussi, A., et al. Standardizing the Definition of Biochemical Recurrence after Radical Prostatectomy-What Prostate Specific Antigen Cut Point Best Predicts a Durable Increase and Subsequent Systemic Progression? J Urol, 2016. 195: 1754.

https://pubmed.ncbi.nlm.nih.gov/26721226/

975.Stephenson, A.J., et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol, 2006. 24: 3973.

https://pubmed.ncbi.nlm.nih.gov/16921049/

976.Roach, M., 3rd, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys, 2006. 65: 965.

https://pubmed.ncbi.nlm.nih.gov/16798415/

977.Van den Broeck, T., et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol, 2019. 75: 967.

https://pubmed.ncbi.nlm.nih.gov/30342843/

978.Jackson, W.C., et al. Intermediate Endpoints After Postprostatectomy Radiotherapy: 5-Year Distant Metastasis to Predict Overall Survival. Eur Urol, 2018. 74: 413.

https://pubmed.ncbi.nlm.nih.gov/29306514/

979.Choueiri, T.K., et al. Impact of postoperative prostate-specific antigen disease recurrence and the use of salvage therapy on the risk of death. Cancer, 2010. 116: 1887.

https://pubmed.ncbi.nlm.nih.gov/20162710/

980.Freiberger, C., et al. Long-term prognostic significance of rising PSA levels following radiotherapy for localized prostate cancer - focus on overall survival. Radiat Oncol, 2017. 12: 98.

https://pubmed.ncbi.nlm.nih.gov/28615058/

981.Royce, T.J., et al. Surrogate End Points for All-Cause Mortality in Men With Localized Unfavorable-Risk Prostate Cancer Treated With Radiation Therapy vs Radiation Therapy Plus Androgen Deprivation Therapy: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2017.
3: 652.

https://pubmed.ncbi.nlm.nih.gov/28097317/

982.Tilki, D., et al. External Validation of the European Association of Urology Biochemical Recurrence Risk Groups to Predict Metastasis and Mortality After Radical Prostatectomy in a European Cohort. Eur Urol, 2019. 75: 896.

https://pubmed.ncbi.nlm.nih.gov/30955970/

983.Zagars, G.K., et al. Kinetics of serum prostate-specific antigen after external beam radiation for clinically localized prostate cancer. Radiother Oncol, 1997. 44: 213.

https://pubmed.ncbi.nlm.nih.gov/9380819/

984.Rouviere, O., et al. Imaging of prostate cancer local recurrences: why and how? Eur Radiol, 2010. 20: 1254.

https://pubmed.ncbi.nlm.nih.gov/19921202/

985.Beresford, M.J., et al. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin Oncol (R Coll Radiol), 2010. 22: 46.

https://pubmed.ncbi.nlm.nih.gov/19948393/

986.Gomez, P., et al. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int, 2004. 94: 299.

https://pubmed.ncbi.nlm.nih.gov/15291855/

987.Kane, C.J., et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology, 2003. 61: 607.

https://pubmed.ncbi.nlm.nih.gov/12639656/

988.Evangelista, L., et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med, 2013. 38: 305.

https://pubmed.ncbi.nlm.nih.gov/23486334/

989.Fanti, S., et al. PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging, 2016. 43: 55.

https://pubmed.ncbi.nlm.nih.gov/26450693/

990.Fuccio, C., et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med, 2010. 24: 485.

https://pubmed.ncbi.nlm.nih.gov/20544323/

991.Fuccio, C., et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol, 2012. 81: e893.

https://pubmed.ncbi.nlm.nih.gov/22621862/

992.Treglia, G., et al. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med, 2014. 52: 725.

https://pubmed.ncbi.nlm.nih.gov/24310773/

993.Castellucci, P., et al. Early Biochemical Relapse After Radical Prostatectomy: Which Prostate Cancer Patients May Benefit from a Restaging 11C-Choline PET/CT Scan Before Salvage Radiation Therapy? J Nucl Med, 2014. 55: 1424.

https://pubmed.ncbi.nlm.nih.gov/24935990/

994.Mitchell, C.R., et al. Operational characteristics of (11)c-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment.
J Urol, 2013. 189: 1308.

https://pubmed.ncbi.nlm.nih.gov/23123372/

995.Soyka, J.D., et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2012. 39: 936.

https://pubmed.ncbi.nlm.nih.gov/22415598/

996.Ceci, F., et al. Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial. Eur J Nucl Med Mol Imaging, 2014. 41: 2222.

https://pubmed.ncbi.nlm.nih.gov/25182750/

997.Beer, A.J., et al. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol, 2011. 12: 181.

https://pubmed.ncbi.nlm.nih.gov/20599424/

999.Beheshti, M., et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging, 2008.
35: 1766.

https://pubmed.ncbi.nlm.nih.gov/18465129/

999.Songmen, S., et al. Axumin Positron Emission Tomography: Novel Agent for Prostate Cancer Biochemical Recurrence. J Clin Imaging Sci, 2019. 9: 49.

https://pubmed.ncbi.nlm.nih.gov/31819826/

1000.U.S. Food & Drug Adminstration. FDA approves new diagnostic imaging agent to detect recurrent prostate cancer - axumin. 2016. Access date December 2022.

https://www.fda.gov/news-events/press-announcements/fda-approves-new-diagnostic-imaging-agent-detect-recurrent-prostate-cancer

1001.European Medicine Agency. Axumin 2017. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/axumin

1002.Nanni, C., et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging, 2016. 43: 1601.

https://pubmed.ncbi.nlm.nih.gov/26960562/

1003.Bach-Gansmo, T., et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine ((18)F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol, 2017. 197: 676.

https://pubmed.ncbi.nlm.nih.gov/27746282/

1004.Abiodun-Ojo, O.A., et al. Salvage Radiotherapy Management Decisions in Postprostatectomy Patients with Recurrent Prostate Cancer Based on (18)F-Fluciclovine PET/CT Guidance. J Nucl Med, 2021. 62: 1089.

https://pubmed.ncbi.nlm.nih.gov/33517323/

1005.Morigi, J.J., et al. Prospective Comparison of 18F-Fluoromethylcholine Versus 68Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy. J Nucl Med, 2015. 56: 1185.

https://pubmed.ncbi.nlm.nih.gov/26112024/

1006.Afshar-Oromieh, A., et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2014. 41: 11.

https://pubmed.ncbi.nlm.nih.gov/24072344/

1007.Caroli, P., et al. (68)Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients. Eur J Nucl Med Mol Imaging, 2018. 45: 2035.

https://pubmed.ncbi.nlm.nih.gov/29922948/

1008.Fendler, W.P., et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol, 2019. 5: 856.

https://pubmed.ncbi.nlm.nih.gov/30920593/

1009.Morris, M.J., et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin Cancer Res, 2021. 27: 3674.

https://pubmed.ncbi.nlm.nih.gov/33622706/

1010.Giesel, F.L., et al. Intraindividual Comparison of (18)F-PSMA-1007 and (18)F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J Nucl Med, 2018. 59: 1076.

https://pubmed.ncbi.nlm.nih.gov/29269569/

1011.Eiber, M., et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging, 2011. 33: 1160.

https://pubmed.ncbi.nlm.nih.gov/21509875/

1012.Zacho, H.D., et al. Prospective comparison of (68)Ga-PSMA PET/CT, (18)F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging, 2018. 45: 1884.

https://pubmed.ncbi.nlm.nih.gov/29876619/

1013.Renard-Penna, R., et al. Targeting Local Recurrence After Surgery With MRI Imaging for Prostate Cancer in the Setting of Salvage Radiation Therapy. Front Oncol, 2022. 12: 775387.

https://pubmed.ncbi.nlm.nih.gov/35242702/

1014.Song, W., et al. Prognostic factors after salvage radiotherapy alone in patients with biochemical recurrence after radical prostatectomy. Int J Urol, 2016. 23: 56.

https://pubmed.ncbi.nlm.nih.gov/26502086/

1015.Sharma, V., et al. Multiparametric Magnetic Resonance Imaging Is an Independent Predictor of Salvage Radiotherapy Outcomes After Radical Prostatectomy. Eur Urol, 2018. 73: 879.

https://pubmed.ncbi.nlm.nih.gov/29195777/

1016.Achard, V., et al. Recurrent prostate cancer after radical prostatectomy: restaging performance of 18F-choline hybrid PET/MRI. Med Oncol, 2019. 36: 67.

https://pubmed.ncbi.nlm.nih.gov/31190232/

1017.Luiting, H.B., et al. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int, 2020. 125: 206.

https://pubmed.ncbi.nlm.nih.gov/31680398/

1018.Boreta, L., et al. Location of Recurrence by Gallium-68 PSMA-11 PET Scan in Prostate Cancer Patients Eligible for Salvage Radiotherapy. Urology, 2019. 129: 165.

https://pubmed.ncbi.nlm.nih.gov/30928607/

1019.Guberina, N., et al. Whole-Body Integrated [(68)Ga]PSMA-11-PET/MR Imaging in Patients with Recurrent Prostate Cancer: Comparison with Whole-Body PET/CT as the Standard of Reference. Mol Imaging Biol, 2020. 22: 788.

https://pubmed.ncbi.nlm.nih.gov/31482413/

1020.Metser, U., et al. The Contribution of Multiparametric Pelvic and Whole-Body MRI to Interpretation of (18)F-Fluoromethylcholine or (68)Ga-HBED-CC PSMA-11 PET/CT in Patients with Biochemical Failure After Radical Prostatectomy. J Nucl Med, 2019. 60: 1253.

https://pubmed.ncbi.nlm.nih.gov/30902875/

1021.Freitag, M.T., et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in (68)Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging, 2017. 44: 776.

https://pubmed.ncbi.nlm.nih.gov/27988802/

1022.Jani, A.B., et al. (18)F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. Lancet, 2021. 397: 1895.

https://pubmed.ncbi.nlm.nih.gov/33971152/

1023.Donati, O.F., et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology, 2013. 268: 440.

https://pubmed.ncbi.nlm.nih.gov/23481164/

1024.Abd-Alazeez, M., et al. Multiparametric MRI for detection of radiorecurrent prostate cancer: added value of apparent diffusion coefficient maps and dynamic contrast-enhanced images. Prostate Cancer Prostatic Dis, 2015. 18: 128.

https://pubmed.ncbi.nlm.nih.gov/25644248/

1025.Alonzo, F., et al. Detection of locally radio-recurrent prostate cancer at multiparametric MRI: Can dynamic contrast-enhanced imaging be omitted? Diagn Interv Imaging, 2016. 97: 433.

https://pubmed.ncbi.nlm.nih.gov/26928245/

1026.Dinis Fernandes, C., et al. Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Reson Imaging, 2019. 50: 269.

https://pubmed.ncbi.nlm.nih.gov/30585368/

1027.Dinis Fernandes, C., et al. Quantitative 3-T multi-parametric MRI and step-section pathology of recurrent prostate cancer patients after radiation therapy. Eur Radiol, 2019. 29: 4160.

https://pubmed.ncbi.nlm.nih.gov/30421016/

1028.Rasing, M., et al. Value of Targeted Biopsies and Combined PSMA PET/CT and mp-MRI Imaging in Locally Recurrent Prostate Cancer after Primary Radiotherapy. Cancers (Basel), 2022. 14: 781.

https://pubmed.ncbi.nlm.nih.gov/35159048/

1029.Boorjian, S.A., et al. Radiation therapy after radical prostatectomy: impact on metastasis and survival. J Urol, 2009. 182: 2708.

https://pubmed.ncbi.nlm.nih.gov/19836762/

1030.Kneebone, A., et al. A Phase III Multi-Centre Randomised Trial comparing adjuvant versus early salvage Radiotherapy following a Radical Prostatectomy: Results of the TROG 08.03 and ANZUP “RAVES” Trial. Int J Radiat Oncol Biol Phys, 2019. 105: S37.

https://www.redjournal.org/article/S0360-3016(19)31291-X/fulltext

1031.Stish, B.J., et al. Improved Metastasis-Free and Survival Outcomes With Early Salvage Radiotherapy in Men With Detectable Prostate-Specific Antigen After Prostatectomy for Prostate Cancer. J Clin Oncol, 2016. 34: 3864.

https://pubmed.ncbi.nlm.nih.gov/27480153/

1032.Pfister, D., et al. Early salvage radiotherapy following radical prostatectomy. Eur Urol, 2014.
65: 1034.

https://pubmed.ncbi.nlm.nih.gov/23972524/

1033.Siegmann, A., et al. Salvage radiotherapy after prostatectomy - what is the best time to treat? Radiother Oncol, 2012. 103: 239.

https://pubmed.ncbi.nlm.nih.gov/22119375/

1034.Ohri, N., et al. Can early implementation of salvage radiotherapy for prostate cancer improve the therapeutic ratio? A systematic review and regression meta-analysis with radiobiological modelling. Eur J Cancer, 2012. 48: 837.

https://pubmed.ncbi.nlm.nih.gov/21945099/

1035.Wiegel, T., et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome--results of a retrospective study. Int J Radiat Oncol Biol Phys, 2009. 73: 1009.

https://pubmed.ncbi.nlm.nih.gov/18963539/

1036.Trock, B.J., et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA, 2008. 299: 2760.

https://pubmed.ncbi.nlm.nih.gov/18560003/

1037.Sweeney, C., et al. The Development of Intermediate Clinical Endpoints in Cancer of the Prostate (ICECaP). J Natl Cancer Inst, 2015. 107: djv261.

https://pubmed.ncbi.nlm.nih.gov/26409187/

1038.Xie, W., et al. Metastasis-Free Survival Is a Strong Surrogate of Overall Survival in Localized Prostate Cancer. J Clin Oncol, 2017. 35: 3097.

https://pubmed.ncbi.nlm.nih.gov/28796587/

1039.Bartkowiak, D., et al. Prostate-specific antigen after salvage radiotherapy for postprostatectomy biochemical recurrence predicts long-term outcome including overall survival. Acta Oncol, 2018.
57: 362.

https://pubmed.ncbi.nlm.nih.gov/28816074/

1040.Soto, D.E., et al. Concurrent androgen deprivation therapy during salvage prostate radiotherapy improves treatment outcomes in high-risk patients. Int J Radiat Oncol Biol Phys, 2012. 82: 1227.

https://pubmed.ncbi.nlm.nih.gov/21549519/

1041.Tendulkar, R.D., et al. Contemporary Update of a Multi-Institutional Predictive Nomogram for Salvage Radiotherapy After Radical Prostatectomy. J Clin Oncol, 2016. 34: 3648.

https://pubmed.ncbi.nlm.nih.gov/27528718/

1042.Jackson, W.C., et al. Combining prostate-specific antigen nadir and time to nadir allows for early identification of patients at highest risk for development of metastasis and death following salvage radiation therapy. Pract Radiat Oncol, 2014. 4: 99.

https://pubmed.ncbi.nlm.nih.gov/24890350/

1043.Shipley, W., et al. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer.
N Eng J Med, 2017. 376: 417.

https://www.nejm.org/doi/full/10.1056/NEJMoa1607529

1044.Carrie, C., et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol, 2019. 20: 1740.

https://pubmed.ncbi.nlm.nih.gov/31629656/

1045.Pollack, A., et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial. Lancet, 2022. 399: 1886.

https://pubmed.ncbi.nlm.nih.gov/35569466/

1046.Ramey, S.J., et al. Multi-institutional Evaluation of Elective Nodal Irradiation and/or Androgen Deprivation Therapy with Postprostatectomy Salvage Radiotherapy for Prostate Cancer. Eur Urol, 2018. 74: 99.

https://pubmed.ncbi.nlm.nih.gov/29128208/

1047.Dess, R.T., et al. Association of Presalvage Radiotherapy PSA Levels After Prostatectomy With Outcomes of Long-term Antiandrogen Therapy in Men With Prostate Cancer. JAMA Oncol, 2020.
6: 735.

https://pubmed.ncbi.nlm.nih.gov/32215583/

1048.Spratt, D.E., et al. A Systematic Review and Framework for the Use of Hormone Therapy with Salvage Radiation Therapy for Recurrent Prostate Cancer. Eur Urol, 2018. 73: 156.

https://pubmed.ncbi.nlm.nih.gov/28716370/

1049.Michalski, J.M., et al. Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys, 2010. 76: 361.

https://pubmed.ncbi.nlm.nih.gov/19394158/

1050.Malone, S., et al. Postoperative radiotherapy for prostate cancer: a comparison of four consensus guidelines and dosimetric evaluation of 3D-CRT versus tomotherapy IMRT. Int J Radiat Oncol Biol Phys, 2012. 84: 725.

https://pubmed.ncbi.nlm.nih.gov/22444999/

1051.Robin, S., et al. Prostate Bed Delineation Guidelines for Postoperative Radiation Therapy: On Behalf Of The Francophone Group of Urological Radiation Therapy. Int J Radiat Oncol Biol Phys, 2021. 109: 1243.

https://pubmed.ncbi.nlm.nih.gov/33186618/

1052.Pisansky, T.M., et al. Salvage Radiation Therapy Dose Response for Biochemical Failure of Prostate Cancer After Prostatectomy-A Multi-Institutional Observational Study. Int J Radiat Oncol Biol Phys, 2016. 96: 1046.

https://pubmed.ncbi.nlm.nih.gov/27745980/

1053.King, C.R. The dose-response of salvage radiotherapy following radical prostatectomy: A systematic review and meta-analysis. Radiother Oncol, 2016. 121: 199.

https://pubmed.ncbi.nlm.nih.gov/27863963/

1054.Fossati, N., et al. Assessing the Optimal Timing for Early Salvage Radiation Therapy in Patients with Prostate-specific Antigen Rise After Radical Prostatectomy. Eur Urol, 2016. 69: 728.

https://pubmed.ncbi.nlm.nih.gov/26497924/

1055.Abugharib, A., et al. Very Early Salvage Radiotherapy Improves Distant Metastasis-Free Survival.
J Urol, 2017. 197: 662.

https://pubmed.ncbi.nlm.nih.gov/27614333/

1056.Fiorino, C., et al. Predicting the 5-Year Risk of Biochemical Relapse After Postprostatectomy Radiation Therapy in >/=PT2, pN0 Patients With a Comprehensive Tumor Control Probability Model. Int J Radiat Oncol Biol Phys, 2016. 96: 333.

https://pubmed.ncbi.nlm.nih.gov/27497691/

1076.Qi, X., et al. Toxicity and Biochemical Outcomes of Dose-Intensified Postoperative Radiation Therapy for Prostate Cancer: Results of a Randomized Phase III Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 282.

https://pubmed.ncbi.nlm.nih.gov/31669564/

1058.Ghadjar, P., et al. Acute Toxicity and Quality of Life After Dose-Intensified Salvage Radiation Therapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: First Results of the Randomized Trial SAKK 09/10. J Clin Oncol, 2015. 33: 4158.

https://pubmed.ncbi.nlm.nih.gov/26527774/

1059.Ghadjar, P., et al. Impact of dose intensified salvage radiation therapy on urinary continence recovery after radical prostatectomy: Results of the randomized trial SAKK 09/10. Radiother Oncol, 2018. 126: 257.

https://pubmed.ncbi.nlm.nih.gov/29103826/

1060.Goenka, A., et al. Improved toxicity profile following high-dose postprostatectomy salvage radiation therapy with intensity-modulated radiation therapy. Eur Urol, 2011. 60: 1142.

https://pubmed.ncbi.nlm.nih.gov/21855208/

1061.Ost, P., et al. High-dose salvage intensity-modulated radiotherapy with or without androgen deprivation after radical prostatectomy for rising or persisting prostate-specific antigen: 5-year results. Eur Urol, 2011. 60: 842.

https://pubmed.ncbi.nlm.nih.gov/21514039/

1062.Roach, P.J., et al. The Impact of (68)Ga-PSMA PET/CT on Management Intent in Prostate Cancer: Results of an Australian Prospective Multicenter Study. J Nucl Med, 2018. 59: 82.

https://pubmed.ncbi.nlm.nih.gov/28646014/

1063.Emmett, L., et al. Treatment Outcomes from (68)Ga-PSMA PET/CT-Informed Salvage Radiation Treatment in Men with Rising PSA After Radical Prostatectomy: Prognostic Value of a Negative PSMA PET. J Nucl Med, 2017. 58: 1972.

https://pubmed.ncbi.nlm.nih.gov/28747524/

1064.Meijer, D., et al. Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Is Associated with Improved Oncological Outcome in Men Treated with Salvage Radiation Therapy for Biochemically Recurrent Prostate Cancer. Eur Urol Oncol, 2022. 5: 146.

https://pubmed.ncbi.nlm.nih.gov/35074282/

1065.Ghadjar, P., et al. Dose-intensified Versus Conventional-dose Salvage Radiotherapy for Biochemically Recurrent Prostate Cancer After Prostatectomy: The SAKK 09/10 Randomized Phase 3 Trial. Eur Urol, 2021. 80: 306.

https://pubmed.ncbi.nlm.nih.gov/34140144/

1066.Steuber, T., et al. Standard of Care Versus Metastases-directed Therapy for PET-detected Nodal Oligorecurrent Prostate Cancer Following Multimodality Treatment: A Multi-institutional Case-control Study. Eur Urol Focus, 2019. 5: 1007.

https://pubmed.ncbi.nlm.nih.gov/29530632/

1067.De Bleser, E., et al. Metastasis-directed Therapy in Treating Nodal Oligorecurrent Prostate Cancer: A Multi-institutional Analysis Comparing the Outcome and Toxicity of Stereotactic Body Radiotherapy and Elective Nodal Radiotherapy. Eur Urol, 2019. 76: 732.

https://pubmed.ncbi.nlm.nih.gov/31331782/

1068.Suardi, N., et al. Long-term outcomes of salvage lymph node dissection for clinically recurrent prostate cancer: results of a single-institution series with a minimum follow-up of 5 years. Eur Urol, 2015. 67: 299.

https://pubmed.ncbi.nlm.nih.gov/24571959/

1069.Tilki, D., et al. Salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy. J Urol, 2015. 193: 484.

https://pubmed.ncbi.nlm.nih.gov/25180792/

1070.Fossati, N., et al. Identifying the Optimal Candidate for Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer: Results from a Large, Multi-institutional Analysis. Eur Urol, 2019.
75: 176.

https://pubmed.ncbi.nlm.nih.gov/30301694/

1071.Ploussard, G., et al. Salvage Lymph Node Dissection for Nodal Recurrent Prostate Cancer: A Systematic Review. Eur Urol, 2019. 76: 493.

https://pubmed.ncbi.nlm.nih.gov/30391078/

1072.Ost, P., et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol, 2015. 67: 852.

https://pubmed.ncbi.nlm.nih.gov/25240974/

1073.Rischke, H.C., et al. Adjuvant radiotherapy after salvage lymph node dissection because of nodal relapse of prostate cancer versus salvage lymph node dissection only. Strahlenther Onkol, 2015. 191: 310.

https://pubmed.ncbi.nlm.nih.gov/25326142/

1074.Bravi, C.A., et al. Long-term Outcomes of Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer After Radical Prostatectomy: Not as Good as Previously Thought. Eur Urol, 2020. 78: 661.

https://pubmed.ncbi.nlm.nih.gov/32624288/

1075.Knipper, S., et al. Cohort Study of Oligorecurrent Prostate Cancer Patients: Oncological Outcomes of Patients Treated with Salvage Lymph Node Dissection via Prostate-specific Membrane Antigen-radioguided Surgery. Eur Urol, 2023. 83: 62.

https://pubmed.ncbi.nlm.nih.gov/35718637/

1076.Valle, L.F., et al. A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). Eur Urol, 2021. 80: 280.

https://pubmed.ncbi.nlm.nih.gov/33309278/

1077.Gontero, P., et al. Salvage Radical Prostatectomy for Recurrent Prostate Cancer: Morbidity and Functional Outcomes from a Large Multicenter Series of Open versus Robotic Approaches. J Urol, 2019. 202: 725.

https://pubmed.ncbi.nlm.nih.gov/31075058/

1078.Chade, D.C., et al. Cancer control and functional outcomes of salvage radical prostatectomy for radiation-recurrent prostate cancer: a systematic review of the literature. Eur Urol, 2012. 61: 961.

https://pubmed.ncbi.nlm.nih.gov/22280856/

1079.Marra, G., et al. Oncological outcomes of salvage radical prostatectomy for recurrent prostate cancer in the contemporary era: A multicenter retrospective study. Urol Oncol, 2021. 39: 296.e21.

https://pubmed.ncbi.nlm.nih.gov/33436329/

1080.Chade, D.C., et al. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur Urol, 2011. 60: 205.

https://pubmed.ncbi.nlm.nih.gov/21420229/

1081.Mandel, P., et al. Salvage radical prostatectomy for recurrent prostate cancer: verification of European Association of Urology guideline criteria. BJU Int, 2016. 117: 55.

https://pubmed.ncbi.nlm.nih.gov/25711672/

1082.Ogaya-Pinies, G., et al. Salvage robotic-assisted radical prostatectomy: oncologic and functional outcomes from two high-volume institutions. World J Urol, 2019. 37: 1499.

https://pubmed.ncbi.nlm.nih.gov/30006908/

1083.Gotto, G.T., et al. Impact of prior prostate radiation on complications after radical prostatectomy.
J Urol, 2010. 184: 136.

https://pubmed.ncbi.nlm.nih.gov/20478594/

1084.Ginsburg, K.B., et al. Avoidance of androgen deprivation therapy in radiorecurrent prostate cancer as a clinically meaningful endpoint for salvage cryoablation. Prostate, 2017. 77: 1446.

https://pubmed.ncbi.nlm.nih.gov/28856702/

1085.Spiess, P.E., et al. A pretreatment nomogram predicting biochemical failure after salvage cryotherapy for locally recurrent prostate cancer. BJU Int, 2010. 106: 194.

https://pubmed.ncbi.nlm.nih.gov/19922545/

1086.Li, R., et al. The Effect of Androgen Deprivation Therapy Before Salvage Whole-gland Cryoablation After Primary Radiation Failure in Prostate Cancer Treatment. Urology, 2015. 85: 1137.

https://pubmed.ncbi.nlm.nih.gov/25799176/

1087.Kovac, E., et al. Five-Year Biochemical Progression-Free Survival Following Salvage Whole-Gland Prostate Cryoablation: Defining Success with Nadir Prostate-Specific Antigen. J Endourol, 2016.
30: 624.

https://pubmed.ncbi.nlm.nih.gov/26915721/

1088.Ahmad, I., et al. Prostate gland lengths and iceball dimensions predict micturition functional outcome following salvage prostate cryotherapy in men with radiation recurrent prostate cancer. PLoS One, 2013. 8: e69243.

https://pubmed.ncbi.nlm.nih.gov/23950886/

1089.Pisters, L.L., et al. Salvage prostate cryoablation: initial results from the cryo on-line data registry.
J Urol, 2008. 180: 559.

https://pubmed.ncbi.nlm.nih.gov/18554664/

1090.Henríquez López, I., et al. Salvage brachytherapy for locally-recurrent prostate cancer after radiation therapy: A comparison of efficacy and toxicity outcomes with high-dose rate and low-dose rate brachytherapy. Radiother Oncol, 2019. 141: 156.

https://pubmed.ncbi.nlm.nih.gov/31570236/

1091.Crook, J.M., et al. A Prospective Phase 2 Trial of Transperineal Ultrasound-Guided Brachytherapy for Locally Recurrent Prostate Cancer After External Beam Radiation Therapy (NRG Oncology/RTOG-0526). Int J Radiat Oncol Biol Phys, 2019. 103: 335.

https://pubmed.ncbi.nlm.nih.gov/30312717/

1092.Smith, W.H., et al. Salvage low dose rate brachytherapy for prostate cancer recurrence following definitive external beam radiation therapy. Radiother Oncol, 2021. 155: 42.

https://pubmed.ncbi.nlm.nih.gov/33075391/

1093.Łyczek, J., et al. HDR brachytherapy as a solution in recurrences of locally advanced prostate cancer. J Contemp Brachyther, 2009. 1: 105.

https://pubmed.ncbi.nlm.nih.gov/27795720/

1094.Pasquier, D., et al. Salvage Stereotactic Body Radiation Therapy for Local Prostate Cancer Recurrence After Radiation Therapy: A Retrospective Multicenter Study of the GETUG. Int J Radiat Oncol Biol Phys, 2019. 105: 727.

https://pubmed.ncbi.nlm.nih.gov/31344433/

1095.Fuller, D., et al. Retreatment for Local Recurrence of Prostatic Carcinoma After Prior Therapeutic Irradiation: Efficacy and Toxicity of HDR-Like SBRT. Int J Radiat Oncol Biol Phys, 2020. 106: 291.

https://pubmed.ncbi.nlm.nih.gov/31629838/

1096.Bergamin, S., et al. Interim Results of a Prospective Prostate-Specific Membrane Antigen-Directed Focal Stereotactic Reirradiation Trial for Locally Recurrent Prostate Cancer. Int J Radiat Oncol Biol Phys, 2020. 108: 1172.

https://pubmed.ncbi.nlm.nih.gov/32659332/

1097.Crouzet, S., et al. Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: Multi-institutional analysis of 418 patients. BJU Int, 2017.
119: 896.

https://pubmed.ncbi.nlm.nih.gov/28063191/

1098.Murat, F.J., et al. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol, 2009. 55: 640.

https://pubmed.ncbi.nlm.nih.gov/18508188/

1099.Kanthabalan, A., et al. Focal salvage high-intensity focused ultrasound in radiorecurrent prostate cancer. BJU Int, 2017. 120: 246.

https://pubmed.ncbi.nlm.nih.gov/28258616/

1000.Jones, T.A., et al. High Intensity Focused Ultrasound for Radiorecurrent Prostate Cancer: A North American Clinical Trial. J Urol, 2018. 199: 133.

https://pubmed.ncbi.nlm.nih.gov/28652121/

1101.van den Bergh, R.C., et al. Role of Hormonal Treatment in Prostate Cancer Patients with Nonmetastatic Disease Recurrence After Local Curative Treatment: A Systematic Review. Eur Urol, 2016. 69: 802.

https://pubmed.ncbi.nlm.nih.gov/26691493/

1102.Duchesne, G.M., et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol, 2016. 17: 727.

https://pubmed.ncbi.nlm.nih.gov/27155740/

1103.Siddiqui, S.A., et al. Timing of androgen deprivation therapy and its impact on survival after radical prostatectomy: a matched cohort study. J Urol, 2008. 179: 1830.

https://pubmed.ncbi.nlm.nih.gov/18353378/

1104.Boorjian, S.A., et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol, 2011. 59: 893.

https://pubmed.ncbi.nlm.nih.gov/21388736/

1105.Crook, J.M., et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N Engl
J Med, 2012. 367: 895.

https://pubmed.ncbi.nlm.nih.gov/22931259/

1106.Levine, G.N., et al. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation, 2010. 121: 833.

https://pubmed.ncbi.nlm.nih.gov/20124128/

1107.O’Farrell, S., et al. Risk and Timing of Cardiovascular Disease After Androgen-Deprivation Therapy in Men With Prostate Cancer. J Clin Oncol, 2015. 33: 1243.

https://pubmed.ncbi.nlm.nih.gov/25732167/

1108.James, N.D., et al. Survival with Newly Diagnosed Metastatic Prostate Cancer in the “Docetaxel Era”: Data from 917 Patients in the Control Arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). Eur Urol, 2015. 67: 1028.

https://pubmed.ncbi.nlm.nih.gov/25301760/

1109.Glass, T.R., et al. Metastatic carcinoma of the prostate: identifying prognostic groups using recursive partitioning. J Urol, 2003. 169: 164.

https://pubmed.ncbi.nlm.nih.gov/12478127/

1110.Gravis, G., et al. Prognostic Factors for Survival in Noncastrate Metastatic Prostate Cancer: Validation of the Glass Model and Development of a Novel Simplified Prognostic Model. Eur Urol, 2015. 68: 196.

https://pubmed.ncbi.nlm.nih.gov/25277272/

1111.Gravis, G., et al. Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. Eur Urol, 2016. 70: 256.

https://pubmed.ncbi.nlm.nih.gov/26610858/

1112.Sweeney, C.J., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer.
N Engl J Med, 2015. 373: 737.

https://pubmed.ncbi.nlm.nih.gov/26244877/

1113.Kyriakopoulos, C.E., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol, 2018. 36: 1080.

https://pubmed.ncbi.nlm.nih.gov/29384722/

1114.Gravis, G., et al. Burden of Metastatic Castrate Naive Prostate Cancer Patients, to Identify Men More Likely to Benefit from Early Docetaxel: Further Analyses of CHAARTED and GETUG-AFU15 Studies. Eur Urol, 2018. 73: 847.

https://pubmed.ncbi.nlm.nih.gov/29475737/

1115.Parker, C.C., et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet, 2018. 392: 2353.

https://pubmed.ncbi.nlm.nih.gov/30355464/

1116.Francini, E., et al. Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate, 2018. 78: 889.

https://pubmed.ncbi.nlm.nih.gov/29707790/

1117.Hussain, M., et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J Clin Oncol, 2006. 24: 3984.

https://pubmed.ncbi.nlm.nih.gov/16921051/

1118.Harshman, L.C., et al. Seven-Month Prostate-Specific Antigen Is Prognostic in Metastatic Hormone-Sensitive Prostate Cancer Treated With Androgen Deprivation With or Without Docetaxel. J Clin Oncol, 2018. 36: 376.

https://pubmed.ncbi.nlm.nih.gov/29261442/

1119.Davey, P., et al. Cardiovascular risk profiles of GnRH agonists and antagonists: real-world analysis from UK general practice. World J Urol, 2021. 39: 307.

https://pubmed.ncbi.nlm.nih.gov/32979057/

1120.Boland, J., et al. Cardiovascular Toxicity of Androgen Deprivation Therapy. Curr Cardiol Rep, 2021. 23: 109.

https://pubmed.ncbi.nlm.nih.gov/34216282/

1121.Kunath, F., et al. Non-steroidal antiandrogen monotherapy compared with luteinising hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst Rev, 2014. 6: CD009266.

https://pubmed.ncbi.nlm.nih.gov/24979481/

1122.Niraula, S., et al. Treatment of prostate cancer with intermittent versus continuous androgen deprivation: a systematic review of randomized trials. J Clin Oncol, 2013. 31: 2029.

https://pubmed.ncbi.nlm.nih.gov/23630216/

1123.Botrel, T.E., et al. Intermittent versus continuous androgen deprivation for locally advanced, recurrent or metastatic prostate cancer: a systematic review and meta-analysis. BMC Urol, 2014. 14: 9.

https://pubmed.ncbi.nlm.nih.gov/24460605/

1124.Tsai, H.T., et al. Efficacy of intermittent androgen deprivation therapy vs conventional continuous androgen deprivation therapy for advanced prostate cancer: a meta-analysis. Urology, 2013. 82: 327.

https://pubmed.ncbi.nlm.nih.gov/23896094/

1125.Brungs, D., et al. Intermittent androgen deprivation is a rational standard-of-care treatment for all stages of progressive prostate cancer: results from a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2014. 17: 105.

https://pubmed.ncbi.nlm.nih.gov/24686773/

1126.Magnan, S., et al. Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Oncol, 2015. 1: 1261.

https://pubmed.ncbi.nlm.nih.gov/26378418/

1127.Hussain, M., et al. Intermittent versus continuous androgen deprivation in prostate cancer. N Engl
J Med, 2013. 368: 1314.

https://pubmed.ncbi.nlm.nih.gov/23550669/

1128.Kunath, F., et al. Early versus deferred standard androgen suppression therapy for advanced hormone-sensitive prostate cancer. Cochrane Database Syst Rev, 2019. 6: CD003506.

https://pubmed.ncbi.nlm.nih.gov/31194882/

1129.Walsh, P.C. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. J Urol, 1997. 158: 1623.

https://pubmed.ncbi.nlm.nih.gov/9302187/

1130.Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet, 2000. 355: 1491.

https://pubmed.ncbi.nlm.nih.gov/10801170/

1131.Schmitt, B., et al. Maximal androgen blockade for advanced prostate cancer. Cochrane Database Syst Rev, 2000: CD001526.

https://pubmed.ncbi.nlm.nih.gov/10796804/

1132.Davis, I.D., et al. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer.
N Engl J Med, 2019. 381: 121.

https://pubmed.ncbi.nlm.nih.gov/31157964/

1133.Gu, W., et al. Rezvilutamide versus bicalutamide in combination with androgen-deprivation therapy in patients with high-volume, metastatic, hormone-sensitive prostate cancer (CHART): a randomised, open-label, phase 3 trial. Lancet Oncol, 2022. 23: 1249.

https://pubmed.ncbi.nlm.nih.gov/36075260/

1134.Gravis, G., et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol, 2013. 14: 149.

https://pubmed.ncbi.nlm.nih.gov/23306100/

1135.Clarke, N.W., et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol, 2019. 30: 1992.

https://pubmed.ncbi.nlm.nih.gov/31560068/

1136.Smith, T.J., et al. Recommendations for the Use of WBC Growth Factors: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol, 2015. 33: 3199.

https://pubmed.ncbi.nlm.nih.gov/26169616/

1137.Sathianathen, N.J., et al. Taxane-based chemohormonal therapy for metastatic hormone-sensitive prostate cancer. Cochrane Database Syst Rev, 2018. 10: CD012816.

https://pubmed.ncbi.nlm.nih.gov/30320443/

1138.Rydzewska, L.H.M., et al. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: A systematic review and meta-analysis. Eur
J Cancer, 2017. 84: 88.

https://pubmed.ncbi.nlm.nih.gov/28800492/

1139.Hoyle, A.P., et al. Abiraterone in “High-” and “Low-risk” Metastatic Hormone-sensitive Prostate Cancer. Eur Urol, 2019. 76: 719.

https://pubmed.ncbi.nlm.nih.gov/31447077/

1140.Armstrong, A.J., et al. Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer. J Clin Oncol, 2022. 40: 1616.

https://pubmed.ncbi.nlm.nih.gov/35420921/

1141.Chi, K.N., et al. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J Clin Oncol, 2021.
39: 2294.

https://pubmed.ncbi.nlm.nih.gov/33914595/

1142.Sweeney, C.J., et al. Overall Survival of Men with Metachronous Metastatic Hormone-sensitive Prostate Cancer Treated with Enzalutamide and Androgen Deprivation Therapy. Eur Urol, 2021. 80: 275.

https://pubmed.ncbi.nlm.nih.gov/34030924/

1143.Fizazi, K., et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 21398042195×13980421952 factorial design. Lancet, 2022. 399: 1695.

https://pubmed.ncbi.nlm.nih.gov/35405085/

1144.Fizazi, K., et al. A phase 3 trial with a 2x2 factorial design of abiraterone acetate plus prednisone and/or local radiotherapy in men with de novo metastatic castration-sensitive prostate cancer (mCSPC): First results of PEACE-1. J Clin Oncol, 2021. 39: 5000.

https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.5000

1145.Smith, M.R., et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer.
N Engl J Med, 2022. 386: 1132.

https://pubmed.ncbi.nlm.nih.gov/35179323/

1146.Marchioni, M., et al. New Antiandrogen Compounds Compared to Docetaxel for Metastatic Hormone Sensitive Prostate Cancer: Results from a Network Meta-Analysis. J Urol, 2020. 203: 751.

https://pubmed.ncbi.nlm.nih.gov/31689158/

1147.Sathianathen, N.J., et al. Indirect Comparisons of Efficacy between Combination Approaches in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Network Meta-analysis. Eur Urol, 2020. 77: 365.

https://pubmed.ncbi.nlm.nih.gov/31679970/

1148.Boeve, L.M.S., et al. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur Urol, 2019. 75: 410.

https://pubmed.ncbi.nlm.nih.gov/30266309/

1149.Parker, C.C., et al. Radiotherapy to the prostate for men with metastatic prostate cancer in the UK and Switzerland: Long-term results from the STAMPEDE randomised controlled trial. PLoS Med, 2022. 19: e1003998.

https://pubmed.ncbi.nlm.nih.gov/35671327/

1150.Ali, A., et al. Association of Bone Metastatic Burden With Survival Benefit From Prostate Radiotherapy in Patients With Newly Diagnosed Metastatic Prostate Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2021. 7: 555.

https://pubmed.ncbi.nlm.nih.gov/33599706/

1151.Burdett, S., et al. Prostate Radiotherapy for Metastatic Hormone-sensitive Prostate Cancer: A STOPCAP Systematic Review and Meta-analysis. Eur Urol, 2019. 76: 115.

https://pubmed.ncbi.nlm.nih.gov/30826218/

1152.Ost, P., et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J Clin Oncol, 2018. 36: 446.

https://pubmed.ncbi.nlm.nih.gov/29240541/

1153.Phillips, R., et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol, 2020. 6: 650.

https://pubmed.ncbi.nlm.nih.gov/32215577/

1154.Deek, M.P., et al. Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials. J Clin Oncol, 2022: Jco2200644.

https://pubmed.ncbi.nlm.nih.gov/36001857/

1155.Glicksman, R.M., et al. Curative-intent Metastasis-directed Therapies for Molecularly-defined Oligorecurrent Prostate Cancer: A Prospective Phase II Trial Testing the Oligometastasis Hypothesis. Eur Urol, 2021. 80: 374.

https://pubmed.ncbi.nlm.nih.gov/33685838/

1156.Battaglia, A., et al. Novel Insights into the Management of Oligometastatic Prostate Cancer: A Comprehensive Review. Eur Urol Oncol, 2019. 2: 174.

https://pubmed.ncbi.nlm.nih.gov/31017094/

1157.Connor, M.J., et al. Targeting Oligometastasis with Stereotactic Ablative Radiation Therapy or Surgery in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review of Prospective Clinical Trials. Eur Urol Oncol, 2020. 3: 582.

https://pubmed.ncbi.nlm.nih.gov/32891600/

1158.Marvaso, G., et al. Oligorecurrent Prostate Cancer and Stereotactic Body Radiotherapy: Where Are We Now? A Systematic Review and Meta-analysis of Prospective Studies. Eur Urol Open Sci, 2021. 27: 19.

https://pubmed.ncbi.nlm.nih.gov/34337513/

1159.Devos, G., et al. Oncological Outcomes of Metastasis-Directed Therapy in Oligorecurrent Prostate Cancer Patients Following Radical Prostatectomy. Cancers (Basel), 2020. 12: 2271.

https://pubmed.ncbi.nlm.nih.gov/32823690/

1160.Eisenhauer, E.A., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45: 228.

https://pubmed.ncbi.nlm.nih.gov/19097774/

1161.U.S. Food and Drug Administration. FDA approves liquid biopsy NGS companion diagnostic test for multiple cancers and biomarkers. 2020. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-liquid-biopsy-ngs-companion-diagnostic-test-multiple-cancers-and-biomarkers

1162.Lotan, T.L., et al. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol, 2020. 44: e15.

https://pubmed.ncbi.nlm.nih.gov/32044806/

1163.Dienstmann, R., et al. Standardized decision support in next generation sequencing reports of somatic cancer variants. Mol Oncol, 2014. 8: 859.

https://pubmed.ncbi.nlm.nih.gov/24768039/

1164.Li, M.M., et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn, 2017. 19: 4.

https://pubmed.ncbi.nlm.nih.gov/27993330/

1165.Hussain, M., et al. LBA12_PRPROfound: Phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations. Ann Oncol, 2019. 30: Suppl 5, v881.

https://www.annalsofoncology.org/article/S0923-7534(19)60399-6/pdf

1166.de Bono, J., et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 382: 2091.

https://pubmed.ncbi.nlm.nih.gov/32343890/

1167.Hussain, M., et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 383: 2345.

https://pubmed.ncbi.nlm.nih.gov/32955174/

1168.U.S. Food & Drug Administration. Pembrolizumab (KEYTRUDA). 2016. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/pembrolizumab-keytruda-checkpoint-inhibitor

1169.de Wit, R., et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer.
N Engl J Med, 2019. 381: 2506.

https://pubmed.ncbi.nlm.nih.gov/31566937/

1170.Loriot, Y., et al. Prior long response to androgen deprivation predicts response to next-generation androgen receptor axis targeted drugs in castration resistant prostate cancer. Eur J Cancer, 2015. 51: 1946.

https://pubmed.ncbi.nlm.nih.gov/26208462/

1171.Smith, M.R., et al. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. Cancer, 2011. 117: 2077.

https://pubmed.ncbi.nlm.nih.gov/21523719/

1172.Crawford, E.D., et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology, 2014. 83: 664.

https://pubmed.ncbi.nlm.nih.gov/24411213/

1173.Fendler, W.P., et al. Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clin Cancer Res, 2019. 25: 7448.

https://pubmed.ncbi.nlm.nih.gov/31511295/

1174.Hussain, M., et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2018. 378: 2465.

https://pubmed.ncbi.nlm.nih.gov/29949494/

1175.Smith, M.R., et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N Engl
J Med, 2018. 378: 1408.

https://pubmed.ncbi.nlm.nih.gov/29420164/

1176.Fizazi, K., et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl
J Med, 2019. 380: 1235.

https://pubmed.ncbi.nlm.nih.gov/30763142/

1177.Fizazi, K., et al. Nonmetastatic, Castration-Resistant Prostate Cancer and Survival with Darolutamide. N Engl J Med, 2020. 383: 1040.

https://pubmed.ncbi.nlm.nih.gov/32905676/

1178.Sternberg, C.N., et al. Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med, 2020. 382: 2197.

https://pubmed.ncbi.nlm.nih.gov/32469184/

1179.Smith, M.R., et al. Apalutamide and Overall Survival in Prostate Cancer. Eur Urol, 2021. 79: 150.

https://pubmed.ncbi.nlm.nih.gov/32907777/

1180.Hussain, M., et al. Effects of continued androgen-deprivation therapy and other prognostic factors on response and survival in phase II chemotherapy trials for hormone-refractory prostate cancer: a Southwest Oncology Group report. J Clin Oncol, 1994. 12: 1868.

https://pubmed.ncbi.nlm.nih.gov/8083710/

1181.Taylor, C.D., et al. Importance of continued testicular suppression in hormone-refractory prostate cancer. J Clin Oncol, 1993. 11: 2167.

https://pubmed.ncbi.nlm.nih.gov/8229130/

1182.Ryan, C.J., et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl
J Med, 2013. 368: 138.

https://pubmed.ncbi.nlm.nih.gov/23228172/

1183.Ryan, C.J., et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol, 2015. 16: 152.

https://pubmed.ncbi.nlm.nih.gov/25601341/

1184.Roviello, G., et al. Targeting the androgenic pathway in elderly patients with castration-resistant prostate cancer: A meta-analysis of randomized trials. Medicine (Baltimore), 2016. 95: e4636.

https://pubmed.ncbi.nlm.nih.gov/27787354/

1185.Beer, T.M., et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med, 2014. 371: 424.

https://pubmed.ncbi.nlm.nih.gov/24881730/

1186.Graff, J.N., et al. Efficacy and safety of enzalutamide in patients 75 years or older with chemotherapy-naive metastatic castration-resistant prostate cancer: results from PREVAIL. Ann Oncol, 2016. 27: 286.

https://pubmed.ncbi.nlm.nih.gov/26578735/

1187.Evans, C.P., et al. The PREVAIL Study: Primary Outcomes by Site and Extent of Baseline Disease for Enzalutamide-treated Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer. Eur Urol, 2016. 70: 675.

https://pubmed.ncbi.nlm.nih.gov/27006332/

1188.Shore, N.D., et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol, 2016. 17: 153.

https://pubmed.ncbi.nlm.nih.gov/26774508/

1189.Beer, T.M., et al. Enzalutamide in Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer: Extended Analysis of the Phase 3 PREVAIL Study. Eur Urol, 2017. 71: 151.

https://pubmed.ncbi.nlm.nih.gov/27477525/

1190.Tannock, I.F., et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 2004. 351: 1502.

https://pubmed.ncbi.nlm.nih.gov/15470213/

1191.Scher, H.I., et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol, 2016. 34: 1402.

https://pubmed.ncbi.nlm.nih.gov/26903579/

1192.Armstrong, A.J., et al. Prediction of survival following first-line chemotherapy in men with castration-resistant metastatic prostate cancer. Clin Cancer Res, 2010. 16: 203.

https://pubmed.ncbi.nlm.nih.gov/20008841/

1193.Italiano, A., et al. Docetaxel-based chemotherapy in elderly patients (age 75 and older) with castration-resistant prostate cancer. Eur Urol, 2009. 55: 1368.

https://pubmed.ncbi.nlm.nih.gov/18706755/

1194.Horgan, A.M., et al. Tolerability and efficacy of docetaxel in older men with metastatic castrate-resistant prostate cancer (mCRPC) in the TAX 327 trial. J Geriatr Oncol, 2014. 5: 119.

https://pubmed.ncbi.nlm.nih.gov/24495703/

1195.Kellokumpu-Lehtinen, P.L., et al. 2-Weekly versus 3-weekly docetaxel to treat castration-resistant advanced prostate cancer: a randomised, phase 3 trial. Lancet Oncol, 2013. 14: 117.

https://pubmed.ncbi.nlm.nih.gov/23294853/

1196.Kantoff, P.W., et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl
J Med, 2010. 363: 411.

https://pubmed.ncbi.nlm.nih.gov/20818862/

1197.Sweeney, C., et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet, 2021. 398: 131.

https://pubmed.ncbi.nlm.nih.gov/34246347/

1198.Clarke, N.W., et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evidence, 2022. 1: EVIDoa2200043.

https://evidence.nejm.org/doi/full/10.1056/EVIDoa2200043

1199.Chi, K.N., et al. Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. J Clin Oncol, 2022. 40: 12.

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.6_suppl.012

1200.Petrylak, D.P., et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351: 1513.

https://pubmed.ncbi.nlm.nih.gov/15470214/

1201.Berthold, D.R., et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol, 2008. 26: 242.

https://pubmed.ncbi.nlm.nih.gov/18182665/

1202.Rathkopf, D.E., et al. Updated interim efficacy analysis and long-term safety of abiraterone acetate in metastatic castration-resistant prostate cancer patients without prior chemotherapy (COU-AA-302). Eur Urol, 2014. 66: 815.

https://pubmed.ncbi.nlm.nih.gov/24647231/

1203.Small, E.J., et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol, 2006. 24: 3089.

https://pubmed.ncbi.nlm.nih.gov/16809734/

1204.de Bono, J.S., et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 2010. 376: 1147.

https://pubmed.ncbi.nlm.nih.gov/20888992/

1205.Sartor, A., et al. Cabazitaxel vs docetaxel in chemotherapy-naive (CN) patients with metastatic castration-resistant prostate cancer (mCRPC): A three-arm phase III study (FIRSTANA). J Clin Oncol 2016. 34: Abstract 5006.

https://ascopubs.org/doi/10.1200/JCO.2016.34.15_suppl.5006

1206.Eisenberger, M., et al. Phase III Study Comparing a Reduced Dose of Cabazitaxel (20 mg/m(2)) and the Currently Approved Dose (25 mg/m(2)) in Postdocetaxel Patients With Metastatic Castration-Resistant Prostate Cancer-PROSELICA. J Clin Oncol, 2017. 35: 3198.

https://pubmed.ncbi.nlm.nih.gov/28809610/

1207.Di Lorenzo, G., et al. Peg-filgrastim and cabazitaxel in prostate cancer patients. Anticancer Drugs, 2013. 24: 84.

https://pubmed.ncbi.nlm.nih.gov/23044721/

1208.de Bono, J.S., et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med, 2011. 364: 1995.

https://pubmed.ncbi.nlm.nih.gov/21612468/

1209.Fizazi, K., et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol, 2012. 13: 983.

https://pubmed.ncbi.nlm.nih.gov/22995653/

1210.Scher, H.I., et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med, 2012. 367: 1187.

https://pubmed.ncbi.nlm.nih.gov/22894553/

1211.Parker, C., et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med, 2013. 369: 213.

https://pubmed.ncbi.nlm.nih.gov/23863050/

1212.Hoskin, P., et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol, 2014. 15: 1397.

https://pubmed.ncbi.nlm.nih.gov/25439694/

1213.European Medicines Agency. EMA restricts use of prostate cancer medicine Xofigo. 2018. Access date December 2022.

https://www.ema.europa.eu/en/news/ema-restricts-use-prostate-cancer-medicine-xofigo

1214.Smith, M., et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2019. 20: 408.

https://pubmed.ncbi.nlm.nih.gov/30738780/

1215.de Bono, J.S., et al. Subsequent Chemotherapy and Treatment Patterns After Abiraterone Acetate in Patients with Metastatic Castration-resistant Prostate Cancer: Post Hoc Analysis of COU-AA-302. Eur Urol, 2017. 71: 656.

https://pubmed.ncbi.nlm.nih.gov/27402060/

1216.Badrising, S., et al. Clinical activity and tolerability of enzalutamide (MDV3100) in patients with metastatic, castration-resistant prostate cancer who progress after docetaxel and abiraterone treatment. Cancer, 2014. 120: 968.

https://pubmed.ncbi.nlm.nih.gov/24382803/

1217.Zhang, T., et al. Enzalutamide versus abiraterone acetate for the treatment of men with metastatic castration-resistant prostate cancer. Expert Opin Pharmacother, 2015. 16: 473.

https://pubmed.ncbi.nlm.nih.gov/25534660/

1218.Antonarakis, E.S., et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer.
N Engl J Med, 2014. 371: 1028.

https://pubmed.ncbi.nlm.nih.gov/25184630/

1219.Attard, G., et al. Abiraterone Alone or in Combination With Enzalutamide in Metastatic Castration-Resistant Prostate Cancer With Rising Prostate-Specific Antigen During Enzalutamide Treatment.
J Clin Oncol, 2018. 36: 2639.

https://pubmed.ncbi.nlm.nih.gov/30028657/

1220.Hofman, M.S., et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet, 2021. 397: 797.

https://pubmed.ncbi.nlm.nih.gov/33581798/

1221.Mateo, J., et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med, 2015. 373: 1697.

https://pubmed.ncbi.nlm.nih.gov/26510020/

1222.Mateo, J., et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol, 2020. 21: 162.

https://pubmed.ncbi.nlm.nih.gov/31806540/

1223.Serafini, A.N. Current status of systemic intravenous radiopharmaceuticals for the treatment of painful metastatic bone disease. Int J Radiat Oncol Biol Phys, 1994. 30: 1187.

https://pubmed.ncbi.nlm.nih.gov/7525518/

1224.Ballinger, J.R. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol, 2018. 91: 20170969.

https://pubmed.ncbi.nlm.nih.gov/29474096/

1225.Emmett, L., et al. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci, 2017. 64: 52.

https://pubmed.ncbi.nlm.nih.gov/28303694/

1226.Calopedos, R.J.S., et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2017. 20: 352.

https://pubmed.ncbi.nlm.nih.gov/28440324/

1227.Hofman, M.S., et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol, 2018. 19: 825.

https://pubmed.ncbi.nlm.nih.gov/29752180/

1228.Emmett, L., et al. Results of a Prospective Phase 2 Pilot Trial of (177)Lu-PSMA-617 Therapy for Metastatic Castration-Resistant Prostate Cancer Including Imaging Predictors of Treatment Response and Patterns of Progression. Clin Genitourin Cancer, 2019. 17: 15.

https://pubmed.ncbi.nlm.nih.gov/30425003/

1229.Sartor, O., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer.
N Engl J Med, 2021. 385: 1091.

https://pubmed.ncbi.nlm.nih.gov/34161051/

1230.Sadaghiani, M.S., et al. (177) Lu-PSMA radioligand therapy effectiveness in metastatic castration-resistant prostate cancer: An updated systematic review and meta-analysis. Prostate, 2022. 82: 826.

https://pubmed.ncbi.nlm.nih.gov/35286735/

1231.Lee, D.Y., et al. Effects of (225)Ac-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis. J Nucl Med, 2022. 63: 840.

https://pubmed.ncbi.nlm.nih.gov/34503960/

1232.European Medicines Agency. Lynparza (olaparib). 2014. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza

1233.Abida, W., et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol, 2020. 38: 3763.

https://pubmed.ncbi.nlm.nih.gov/32795228/

1234.U.S. Food and Drug Administration. FDA grants accelerated approval to rucaparib for BRCA-mutated metastatic castration-resistant prostate cancer. 2020. Access date December 2022.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate

1235.Khalaf, D.J., et al. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol, 2019. 20: 1730.

https://pubmed.ncbi.nlm.nih.gov/31727538/

1236.Miyake, H., et al. Comparative Assessment of Efficacies Between 2 Alternative Therapeutic Sequences With Novel Androgen Receptor-Axis-Targeted Agents in Patients With Chemotherapy-Naïve Metastatic Castration-Resistant Prostate Cancer. Clin Genitourin Cancer, 2017. 15: e591.

https://pubmed.ncbi.nlm.nih.gov/28063845/

1237.Terada, N., et al. Exploring the optimal sequence of abiraterone and enzalutamide in patients with chemotherapy-naïve castration-resistant prostate cancer: The Kyoto-Baltimore collaboration. Int
J Urol, 2017. 24: 441.

https://pubmed.ncbi.nlm.nih.gov/28455853/

1238.Azad, A.A., et al. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol, 2015. 67: 23.

https://pubmed.ncbi.nlm.nih.gov/25018038/

1239.Kobayashi, T., et al. Sequential Use of Androgen Receptor Axis-targeted Agents in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Retrospective Analysis With 3-Year Follow-up. Clin Genitourin Cancer, 2020. 18: e46.

https://pubmed.ncbi.nlm.nih.gov/31759831/

1240.Komura, K., et al. Comparison of Radiographic Progression-Free Survival and PSA Response on Sequential Treatment Using Abiraterone and Enzalutamide for Newly Diagnosed Castration-Resistant Prostate Cancer: A Propensity Score Matched Analysis from Multicenter Cohort. J Clin Med, 2019. 8.

https://pubmed.ncbi.nlm.nih.gov/31430900/

1241.Matsubara, N., et al. Abiraterone Followed by Enzalutamide Versus Enzalutamide Followed by Abiraterone in Chemotherapy-naive Patients With Metastatic Castration-resistant Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 142.

https://pubmed.ncbi.nlm.nih.gov/29042308/

1242.Maughan, B.L., et al. Comparing Sequencing of Abiraterone and Enzalutamide in Men With Metastatic Castration-Resistant Prostate Cancer: A Retrospective Study. Prostate, 2017. 77: 33.

https://pubmed.ncbi.nlm.nih.gov/27527643/

1243.de Bono, J.S., et al. Antitumour Activity and Safety of Enzalutamide in Patients with Metastatic Castration-resistant Prostate Cancer Previously Treated with Abiraterone Acetate Plus Prednisone for >24 weeks in Europe. Eur Urol, 2018. 74: 37.

https://pubmed.ncbi.nlm.nih.gov/28844372/

1244.Mori, K., et al. Sequential therapy of abiraterone and enzalutamide in castration-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2020. 23: 539.

https://pubmed.ncbi.nlm.nih.gov/32152435/

1245.Lavaud, P., et al. Anticancer Activity and Tolerance of Treatments Received Beyond Progression in Men Treated Upfront with Androgen Deprivation Therapy With or Without Docetaxel for Metastatic Castration-naïve Prostate Cancer in the GETUG-AFU 15 Phase 3 Trial. Eur Urol, 2018. 73: 696.

https://pubmed.ncbi.nlm.nih.gov/29074061/

1246.Bahl, A., et al. Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol, 2013. 24: 2402.

https://pubmed.ncbi.nlm.nih.gov/23723295/

1247.de Bono, J.S., et al. Final overall survival (OS) analysis of PROfound: Olaparib vs physician’s choice of enzalutamide or abiraterone in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) gene alterations. Ann Oncol 2020. 31: S507.

https://oncologypro.esmo.org/meeting-resources/esmo-virtual-congress-2020/final-overall-survival-os-analysis-of-profound-olaparib-vs-physician-s-choice-of-enzalutamide-or-abiraterone-in-patients-pts-with-metastatic-c

1248.Hofman, M.S., et al. TheraP: 177Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic castration-resistant prostate cancer (mCRPC) progressing after docetaxel—Overall survival after median follow-up of 3 years (ANZUP 1603). J Clin Oncol, 2022. 40: 5000.

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.5000

1249.Hager, S., et al. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann Oncol, 2016. 27: 975.

https://pubmed.ncbi.nlm.nih.gov/27052650/

1250.Corn, P.G., et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial. Lancet Oncol, 2019. 20: 1432.

https://pubmed.ncbi.nlm.nih.gov/31515154/

1251.Aparicio, A.M., et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res, 2013. 19: 3621.

https://pubmed.ncbi.nlm.nih.gov/23649003/

1252.Mota, J.M., et al. Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precis Oncol, 2020. 4: 355.

https://pubmed.ncbi.nlm.nih.gov/32856010/

1253.Schmid, S., et al. Activity of Platinum-Based Chemotherapy in Patients With Advanced Prostate Cancer With and Without DNA Repair Gene Aberrations. JAMA Netw Open, 2020. 3: e2021692.

https://pubmed.ncbi.nlm.nih.gov/33112397/

1254.Gillessen, S., et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol, 2015. 26: 1589.

https://pubmed.ncbi.nlm.nih.gov/26041764/

1255.Saad, F., et al. Prostate-specific Antigen Progression in Enzalutamide-treated Men with Nonmetastatic Castration-resistant Prostate Cancer: Any Rise in Prostate-specific Antigen May Require Closer Monitoring. Eur Urol, 2020. 78: 847.

https://pubmed.ncbi.nlm.nih.gov/33010985/

1256.Aggarwal, R., et al. Heterogeneous Flare in Prostate-specific Membrane Antigen Positron Emission Tomography Tracer Uptake with Initiation of Androgen Pathway Blockade in Metastatic Prostate Cancer. Eur Urol Oncol, 2018. 1: 78.

https://pubmed.ncbi.nlm.nih.gov/31100231/

1257.Payne, H., et al. Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol, 2011. 29: 593.

https://pubmed.ncbi.nlm.nih.gov/20060331/

1258.Pezaro, C.J., et al. Visceral disease in castration-resistant prostate cancer. Eur Urol, 2014. 65: 270.

https://pubmed.ncbi.nlm.nih.gov/24295792/

1259.Ohlmann, C., et al. Second-line chemotherapy with docetaxel for prostate-specific antigen relapse in men with hormone refractory prostate cancer previously treated with docetaxel based chemotherapy. Eur Urol Suppl 2006. 5: abstract #289.

https://ascopubs.org/doi/abs/10.1200/jco.2005.23.16_suppl.46821259.

1260.Gillessen, S., et al. Management of Patients with Advanced Prostate Cancer: Report of the Advanced Prostate Cancer Consensus Conference 2019. Eur Urol, 2020. 77: 508.

https://pubmed.ncbi.nlm.nih.gov/32001144/

1261.Rao, K., et al. Uro-oncology multidisciplinary meetings at an Australian tertiary referral centre--impact on clinical decision-making and implications for patient inclusion. BJU Int, 2014. 114 Suppl 1: 50.

https://pubmed.ncbi.nlm.nih.gov/25070295/

1262.Cereceda, L.E., et al. Management of vertebral metastases in prostate cancer: a retrospective analysis in 119 patients. Clin Prostate Cancer, 2003. 2: 34.

https://pubmed.ncbi.nlm.nih.gov/15046682/

1263.Chaichana, K.L., et al. Outcome following decompressive surgery for different histological types of metastatic tumors causing epidural spinal cord compression. Clinical article. J Neurosurg Spine, 2009. 11: 56.

https://pubmed.ncbi.nlm.nih.gov/19569942/

1264.Hoskin, P., et al. A Multicenter Randomized Trial of Ibandronate Compared With Single-Dose Radiotherapy for Localized Metastatic Bone Pain in Prostate Cancer. J Natl Cancer Inst, 2015. 107: djv197.

https://pubmed.ncbi.nlm.nih.gov/26242893/

1265.Frankel, B.M., et al. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty. Spine J, 2007. 7: 575.

https://pubmed.ncbi.nlm.nih.gov/17905320/

1266.Dutka, J., et al. Time of survival and quality of life of the patients operatively treated due to pathological fractures due to bone metastases. Ortop Traumatol Rehabil, 2003. 5: 276.

https://pubmed.ncbi.nlm.nih.gov/18034018/

1267.Frankel, B.M., et al. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery, 2007. 61: 531.

https://pubmed.ncbi.nlm.nih.gov/17881965/

1268.Lawton, A.J., et al. Assessment and Management of Patients With Metastatic Spinal Cord Compression: A Multidisciplinary Review. J Clin Oncol, 2019. 37: 61.

https://pubmed.ncbi.nlm.nih.gov/30395488/

1269.Saad, F., et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst, 2002. 94: 1458.

https://pubmed.ncbi.nlm.nih.gov/12359855/

1270.Fizazi, K., et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet, 2011. 377: 813.

https://pubmed.ncbi.nlm.nih.gov/21353695/

1271.Smith, M.R., et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 2012. 379: 39.

https://pubmed.ncbi.nlm.nih.gov/22093187/

1272.Marco, R.A., et al. Functional and oncological outcome of acetabular reconstruction for the treatment of metastatic disease. J Bone Joint Surg Am, 2000. 82: 642.

https://pubmed.ncbi.nlm.nih.gov/10819275/

1273.Stopeck, A.T., et al. Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Support Care Cancer, 2016. 24: 447.

https://pubmed.ncbi.nlm.nih.gov/26335402/

1274.Aapro, M., et al. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Ann Oncol, 2008. 19: 420.

https://pubmed.ncbi.nlm.nih.gov/17906299/

1275.Medication-Related Osteonecrosis of the Jaws, ed. S. Otto. 2015, Berlin Heidelberg.

1276.European Medicine Agency. Xgeva. 2019. Access date December 2022.

https://www.ema.europa.eu/en/medicines/human/EPAR/xgeva

1277.Stopeck, A.T., et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol, 2010. 28: 5132.

https://pubmed.ncbi.nlm.nih.gov/21060033/

1278.Body, J.J., et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer, 2015. 51: 1812.

https://pubmed.ncbi.nlm.nih.gov/26093811/

1279.Rice, S.M., et al. Depression and Prostate Cancer: Examining Comorbidity and Male-Specific Symptoms. Am J Mens Health, 2018. 12: 1864.

https://pubmed.ncbi.nlm.nih.gov/29957106/

1280.van Stam, M.A., et al. Prevalence and correlates of mental health problems in prostate cancer survivors: A case-control study comparing survivors with general population peers. Urol Oncol, 2017. 35: 531 e1.

https://pubmed.ncbi.nlm.nih.gov/28457651/

1281.Horwitz, E.M., et al. Definitions of biochemical failure that best predict clinical failure in patients with prostate cancer treated with external beam radiation alone: a multi-institutional pooled analysis.
J Urol, 2005. 173: 797.

https://pubmed.ncbi.nlm.nih.gov/15711272/

1282.Stamey, T.A., et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J Urol, 1989. 141: 1076.

https://pubmed.ncbi.nlm.nih.gov/2468795/

1283.Jackson, W.C., et al. Impact of Biochemical Failure After Salvage Radiation Therapy on Prostate Cancer-specific Mortality: Competition Between Age and Time to Biochemical Failure. Eur Urol Oncol, 2018. 1: 276.

https://pubmed.ncbi.nlm.nih.gov/31100248/

1284.Grivas, N., et al. Ultrasensitive prostate-specific antigen level as a predictor of biochemical progression after robot-assisted radical prostatectomy: Towards risk adapted follow-up. J Clin Lab Anal, 2019. 33: e22693.

https://pubmed.ncbi.nlm.nih.gov/30365194/

1285.Shen, S., et al. Ultrasensitive serum prostate specific antigen nadir accurately predicts the risk of early relapse after radical prostatectomy. J Urol, 2005. 173: 777.

https://pubmed.ncbi.nlm.nih.gov/15711268/

1286.Zakaria, A.S., et al. Detectable Prostate-specific antigen value between 0.01 and 0.1 ng/ml following robotic-assisted radical prostatectomy (RARP): does it correlate with future biochemical recurrence? World J Urol, 2021. 39: 1853.

https://pubmed.ncbi.nlm.nih.gov/32696130/

1287.Teeter, A.E., et al. Does Early Prostate Specific Antigen Doubling Time after Radical Prostatectomy, Calculated Prior to Prostate Specific Antigen Recurrence, Correlate with Prostate Cancer Outcomes? A Report from the SEARCH Database Group. J Urol, 2018. 199: 713.

https://pubmed.ncbi.nlm.nih.gov/28870860/

1288.Seikkula, H., et al. Role of ultrasensitive prostate-specific antigen in the follow-up of prostate cancer after radical prostatectomy. Urol Oncol, 2015. 33: 16.e1.

https://pubmed.ncbi.nlm.nih.gov/25456996/

1289.Lonergan, P.E., et al. Natural history of an immediately detectable PSA following radical prostatectomy in a contemporary cohort. Prostate, 2021. 81: 1009.

https://pubmed.ncbi.nlm.nih.gov/34288004/

1290.Ray, M.E., et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys, 2006. 64: 1140.

https://pubmed.ncbi.nlm.nih.gov/16198506/

1291.Oefelein, M.G., et al. The incidence of prostate cancer progression with undetectable serum prostate specific antigen in a series of 394 radical prostatectomies. J Urol, 1995. 154: 2128.

https://pubmed.ncbi.nlm.nih.gov/7500474/

1292.Doneux, A., et al. The utility of digital rectal examination after radical radiotherapy for prostate cancer. Clin Oncol (R Coll Radiol), 2005. 17: 172.

https://pubmed.ncbi.nlm.nih.gov/15901001/

1293.Chaplin, B.J., et al. Digital rectal examination is no longer necessary in the routine follow-up of men with undetectable prostate specific antigen after radical prostatectomy: the implications for follow-up. Eur Urol, 2005. 48: 906.

https://pubmed.ncbi.nlm.nih.gov/16126322/

1294.Warren, K.S., et al. Is routine digital rectal examination required for the followup of prostate cancer? J Urol, 2007. 178: 115.

https://pubmed.ncbi.nlm.nih.gov/17499293/

1295.Beesley, L.J., et al. Individual and Population Comparisons of Surgery and Radiotherapy Outcomes in Prostate Cancer Using Bayesian Multistate Models. JAMA Netw Open, 2019. 2: e187765.

https://pubmed.ncbi.nlm.nih.gov/30707231/

1296.Marshall, C.H., et al. Timing of Androgen Deprivation Treatment for Men with Biochemical Recurrent Prostate Cancer in the Context of Novel Therapies. J Urol, 2021. 206: 623.

https://pubmed.ncbi.nlm.nih.gov/34003011/

1297.Loblaw, A., et al. Follow-up Care for Survivors of Prostate Cancer - Clinical Management: a Program in Evidence-Based Care Systematic Review and Clinical Practice Guideline. Clin Oncol (R Coll Radiol), 2017. 29: 711.

https://pubmed.ncbi.nlm.nih.gov/28928084/

1298.Thorstenson, A., et al. Incidence of fractures causing hospitalisation in prostate cancer patients: results from the population-based PCBaSe Sweden. Eur J Cancer, 2012. 48: 1672.

https://pubmed.ncbi.nlm.nih.gov/22386317/

1299.Franck Lissbrant, I., et al. Set-up and preliminary results from the Patient-overview Prostate Cancer. Longitudinal registration of treatment of advanced prostate cancer in the National Prostate Cancer Register of Sweden. Scand J Urol, 2020. 54: 227.

https://pubmed.ncbi.nlm.nih.gov/32363988/

1300.Saad, F., et al. Testosterone Breakthrough Rates during Androgen Deprivation Therapy for Castration Sensitive Prostate Cancer. J Urol, 2020. 204: 416.

https://pubmed.ncbi.nlm.nih.gov/32096678/

1301.Rouleau, M., et al. Discordance between testosterone measurement methods in castrated prostate cancer patients. Endocr Connect, 2019.

https://pubmed.ncbi.nlm.nih.gov/30673630/

1302.Morote, J., et al. Serum Testosterone Levels in Prostate Cancer Patients Undergoing Luteinizing Hormone-Releasing Hormone Agonist Therapy. Clin Genitourin Cancer, 2018. 16: e491.

https://pubmed.ncbi.nlm.nih.gov/29198640/

1303.Long, M.E., et al. Decreased testosterone recovery after androgen deprivation therapy for prostate cancer. Can J Urol, 2021. 28: 10738.

https://pubmed.ncbi.nlm.nih.gov/34378507/

1304.Nascimento, B., et al. Testosterone Recovery Profiles After Cessation of Androgen Deprivation Therapy for Prostate Cancer. J Sex Med, 2019. 16: 872.

https://pubmed.ncbi.nlm.nih.gov/31080102/

1305.Beer, T.M., et al. Hepatic effects assessed by review of safety data in enzalutamide castration-resistant prostate cancer (CRPC) trials. J Clin Oncol, 2018. 36: 199.

https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.199

1306.Yanagisawa, T., et al. Abiraterone acetate versus nonsteroidal antiandrogen with androgen deprivation therapy for high-risk metastatic hormone-sensitive prostate cancer. Prostate, 2022. 82: 3.

https://pubmed.ncbi.nlm.nih.gov/34559410/

1307.Daniell, H.W. Osteoporosis due to androgen deprivation therapy in men with prostate cancer. Urology, 2001. 58: 101.

https://pubmed.ncbi.nlm.nih.gov/11502461/

1308.Beer, T.M., et al. The prognostic value of hemoglobin change after initiating androgen-deprivation therapy for newly diagnosed metastatic prostate cancer: A multivariate analysis of Southwest Oncology Group Study 8894. Cancer, 2006. 107: 489.

https://pubmed.ncbi.nlm.nih.gov/16804926/

1309.Ebbinge, M., et al. Clinical and prognostic significance of changes in haemoglobin concentration during 1 year of androgen-deprivation therapy for hormone-naïve bone-metastatic prostate cancer. BJU Int, 2018. 122: 583.

https://pubmed.ncbi.nlm.nih.gov/29611275/

1310.Sini, C., et al. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother Oncol, 2016. 118: 79.

https://pubmed.ncbi.nlm.nih.gov/26702990/

1311.Turner, P.G., et al. Toxicity and Efficacy of Concurrent Androgen Deprivation Therapy, Pelvic Radiotherapy, and Radium-223 in Patients with De Novo Metastatic Hormone-Sensitive Prostate Cancer. Clin Cancer Res, 2021. 27: 4549.

https://pubmed.ncbi.nlm.nih.gov/34187853/

1312.Iacovelli, R., et al. The Cardiovascular Toxicity of Abiraterone and Enzalutamide in Prostate Cancer. Clin Genitourin Cancer, 2018. 16: e645.

https://pubmed.ncbi.nlm.nih.gov/29339044/

1313.Rizzo, A., et al. Risk of cardiovascular toxicities and hypertension in nonmetastatic castration-resistant prostate cancer patients treated with novel hormonal agents: a systematic review and meta-analysis. Expert Opin Drug Metab Toxicol, 2021. 17: 1237.

https://pubmed.ncbi.nlm.nih.gov/34407702/

1314.Gong, J., et al. Reduced Cardiorespiratory Fitness and Increased Cardiovascular Mortality After Prolonged Androgen Deprivation Therapy for Prostate Cancer. JACC CardioOncol, 2020. 2: 553.

https://pubmed.ncbi.nlm.nih.gov/34396266/

1315.Lopes, R.D., et al. Cardiovascular Safety of Degarelix Versus Leuprolide in Patients With Prostate Cancer: The Primary Results of the PRONOUNCE Randomized Trial. Circulation, 2021. 144: 1295.

https://pubmed.ncbi.nlm.nih.gov/34459214/

1316.Attard, G., et al. Assessment of the Safety of Glucocorticoid Regimens in Combination With Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer: A Randomized, Open-label Phase 2 Study. JAMA Oncol, 2019. 5: 1159.

https://pubmed.ncbi.nlm.nih.gov/31246234/

1317.James, N., et al. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer. Health Technol Assess, 2016. 20: 1.

https://pubmed.ncbi.nlm.nih.gov/27434595/

1318.Ng, H.S., et al. Development of comorbidities in men with prostate cancer treated with androgen deprivation therapy: an Australian population-based cohort study. Prostate Cancer Prostatic Dis, 2018. 21: 403.

https://pubmed.ncbi.nlm.nih.gov/29720722/

1319.Kanis, J.A., et al. Case finding for the management of osteoporosis with FRAX--assessment and intervention thresholds for the UK. Osteoporos Int, 2008. 19: 1395.

https://pubmed.ncbi.nlm.nih.gov/18751937/

1320.Cianferotti, L., et al. The prevention of fragility fractures in patients with non-metastatic prostate cancer: a position statement by the international osteoporosis foundation. Oncotarget, 2017.
8: 75646.

https://pubmed.ncbi.nlm.nih.gov/29088899/

1321.Rubin, K.H., et al. Comparison of different screening tools (FRAX®, OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone, 2013. 56: 16.

https://pubmed.ncbi.nlm.nih.gov/23669650/

1322.Conde, F.A., et al. Risk factors for male osteoporosis. Urol Oncol, 2003. 21: 380.

https://pubmed.ncbi.nlm.nih.gov/14670549/

1323.Hamdy, R.C., et al. Algorithm for the management of osteoporosis. South Med J, 2010. 103: 1009.

https://pubmed.ncbi.nlm.nih.gov/20818296/

1324.Higano, C.S. Bone loss and the evolving role of bisphosphonate therapy in prostate cancer. Urol Oncol, 2003. 21: 392.

https://pubmed.ncbi.nlm.nih.gov/14670551/

1325.Sharma, A., et al. A prospective longitudinal study to evaluate bone health, implication of FRAX tool and impact on quality of life (FACT-P) in advanced prostate cancer patients. Am J Clin Exp Urol, 2021. 9: 211.

https://pubmed.ncbi.nlm.nih.gov/34327260/

1326.Edmunds, K., et al. Incidence of the adverse effects of androgen deprivation therapy for prostate cancer: a systematic literature review. Support Care Cancer, 2020. 28: 2079.

https://pubmed.ncbi.nlm.nih.gov/31912360/

1327.Edmunds, K., et al. The role of exercise in the management of adverse effects of androgen deprivation therapy for prostate cancer: a rapid review. Support Care Cancer, 2020. 28: 5661.

https://pubmed.ncbi.nlm.nih.gov/32699997/

1328.Thomas, H.R., et al. Association Between Androgen Deprivation Therapy and Patient-reported Depression in Men With Recurrent Prostate Cancer. Clin Genitourin Cancer, 2018. 16: 313.

https://pubmed.ncbi.nlm.nih.gov/29866496/

1329.Hoogland, A.I., et al. Systemic inflammation and symptomatology in patients with prostate cancer treated with androgen deprivation therapy: Preliminary findings. Cancer, 2021. 127: 1476.

https://pubmed.ncbi.nlm.nih.gov/33378113/

1330.Gonzalez, B.D., et al. Course and Predictors of Cognitive Function in Patients With Prostate Cancer Receiving Androgen-Deprivation Therapy: A Controlled Comparison. J Clin Oncol, 2015. 33: 2021.

https://pubmed.ncbi.nlm.nih.gov/25964245/

1331.Duthie, C.J., et al. Maintenance of sexual activity following androgen deprivation in males. Crit Rev Oncol Hematol, 2020. 153: 103064.

https://pubmed.ncbi.nlm.nih.gov/32712517/

1332.Miller, P.D., et al. Prostate specific antigen and bone scan correlation in the staging and monitoring of patients with prostatic cancer. Br J Urol, 1992. 70: 295.

https://pubmed.ncbi.nlm.nih.gov/1384920/

1333.Bryce, A.H., et al. Patterns of Cancer Progression of Metastatic Hormone-sensitive Prostate Cancer in the ECOG3805 CHAARTED Trial. Eur Urol Oncol, 2020. 3: 717.

https://pubmed.ncbi.nlm.nih.gov/32807727/

1334.Padhani, A.R., et al. Rationale for Modernising Imaging in Advanced Prostate Cancer. Eur Urol Focus, 2017. 3: 223.

https://pubmed.ncbi.nlm.nih.gov/28753774/

1335.Lecouvet, F.E., et al. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer, 2014. 50: 2519.

https://pubmed.ncbi.nlm.nih.gov/25139492/

1336.Ulmert, D., et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol, 2012. 62: 78.

https://pubmed.ncbi.nlm.nih.gov/22306323/

1337.Padhani, A.R., et al. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur Urol, 2017. 71: 81.

https://pubmed.ncbi.nlm.nih.gov/27317091/

1338.Trabulsi, E.J., et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline.
J Clin Oncol, 2020. 38: 1963.

https://pubmed.ncbi.nlm.nih.gov/31940221/

1339.Bourke, L., et al. Survivorship and improving quality of life in men with prostate cancer. Eur Urol, 2015. 68: 374.

https://pubmed.ncbi.nlm.nih.gov/25941049/

1340.Prashar, J., et al. Supportive care needs of men with prostate cancer: A systematic review update. Eur J Cancer Care (Engl), 2022. 31: e13541.

https://pubmed.ncbi.nlm.nih.gov/35038783/

1341.Resnick, M.J., et al. Prostate cancer survivorship care guideline: American Society of Clinical Oncology Clinical Practice Guideline endorsement. J Clin Oncol, 2015. 33: 1078.

https://pubmed.ncbi.nlm.nih.gov/25667275/

1342.Yiannopoulou, K.G., et al. Cognitive and Psychological Impacts of Different Treatment Options for Prostate Cancer: A Critical Analysis. Curr Urol, 2020. 14: 169.

https://pubmed.ncbi.nlm.nih.gov/33488334/

1343.Venderbos, L.D.F., et al. Europa Uomo Patient Reported Outcome Study (EUPROMS): Descriptive Statistics of a Prostate Cancer Survey from Patients for Patients. Eur Urol Focus, 2021. 7: 987.

https://pubmed.ncbi.nlm.nih.gov/33281109/

1344.Downing, A., et al. Quality of life in men living with advanced and localised prostate cancer in the UK: a population-based study. Lancet Oncol, 2019. 20: 436.

https://pubmed.ncbi.nlm.nih.gov/30713036/

1345.Luckenbaugh, A.N., et al. Association between Treatment for Localized Prostate Cancer and Mental Health Outcomes. J Urol, 2022. 207: 1029.

https://pubmed.ncbi.nlm.nih.gov/34978488/

1346.Carlsson, S., et al. Surgery-related complications in 1253 robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University Hospital, Sweden. Urology, 2010. 75: 1092.

https://pubmed.ncbi.nlm.nih.gov/20022085/

1347.Ficarra, V., et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol, 2009. 55: 1037.

https://pubmed.ncbi.nlm.nih.gov/19185977/

1348.Rabbani, F., et al. Comprehensive standardized report of complications of retropubic and laparoscopic radical prostatectomy. Eur Urol, 2010. 57: 371.

https://pubmed.ncbi.nlm.nih.gov/19945779/

1349.Resnick, M.J., et al. Long-term functional outcomes after treatment for localized prostate cancer.
N Engl J Med, 2013. 368: 436.

https://pubmed.ncbi.nlm.nih.gov/23363497/

1350.Parekh, A., et al. Reduced penile size and treatment regret in men with recurrent prostate cancer after surgery, radiotherapy plus androgen deprivation, or radiotherapy alone. Urology, 2013. 81: 130.

https://pubmed.ncbi.nlm.nih.gov/23273077/

1351.Msezane, L.P., et al. Bladder neck contracture after robot-assisted laparoscopic radical prostatectomy: evaluation of incidence and risk factors and impact on urinary function. J Endourol, 2008. 22: 377.

https://pubmed.ncbi.nlm.nih.gov/18095861/

1352.Chiong, E., et al. Port-site hernias occurring after the use of bladeless radially expanding trocars. Urology, 2010. 75: 574.

https://pubmed.ncbi.nlm.nih.gov/19854489/

1353.Haglind, E., et al. Corrigendum re: “Urinary Incontinence and Erectile Dysfunction After Robotic Versus Open Radical Prostatectomy: A Prospective, Controlled, Nonrandomised Trial” [Eur Urol 2015;68:216-25]. Eur Urol, 2017. 72: e81.

https://pubmed.ncbi.nlm.nih.gov/28552613/

1354.Park, B., et al. Comparison of oncological and functional outcomes of pure versus robotic-assisted laparoscopic radical prostatectomy performed by a single surgeon. Scand J Urol, 2013. 47: 10.

https://pubmed.ncbi.nlm.nih.gov/22835035/

1355.Alder, R., et al. Incidence of Inguinal Hernia after Radical Prostatectomy: A Systematic Review and Meta-Analysis. J Urol, 2020. 203: 265.

https://pubmed.ncbi.nlm.nih.gov/31039101/

1356.Fernando, H., et al. Incidence, Predictive Factors and Preventive Measures for Inguinal Hernia following Robotic and Laparoscopic Radical Prostatectomy: A Systematic Review. J Urol, 2019. 201: 1072.

https://pubmed.ncbi.nlm.nih.gov/30730406/

1357.Donovan, J.L., et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med, 2016. 375: 1425.

https://pubmed.ncbi.nlm.nih.gov/27626365/

1358.Barocas, D.A., et al. Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA, 2017. 317: 1126.

https://pubmed.ncbi.nlm.nih.gov/28324093/

1359.Wallis, C.J., et al. Second malignancies after radiotherapy for prostate cancer: systematic review and meta-analysis. BMJ, 2016. 352: i851.

https://pubmed.ncbi.nlm.nih.gov/26936410/

1360.Budaus, L., et al. Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol, 2012. 61: 112.

https://pubmed.ncbi.nlm.nih.gov/22001105/

1361.Nguyen, P.L., et al. Adverse Effects of Androgen Deprivation Therapy and Strategies to Mitigate Them. Eur Urol, 2014: 67(5):825.

https://pubmed.ncbi.nlm.nih.gov/25097095/

1362.Donovan, K.A., et al. Psychological effects of androgen-deprivation therapy on men with prostate cancer and their partners. Cancer, 2015. 121: 4286.

https://pubmed.ncbi.nlm.nih.gov/26372364/

1363.Cherrier, M.M., et al. Cognitive and mood changes in men undergoing intermittent combined androgen blockade for non-metastatic prostate cancer. Psychooncology, 2009. 18: 237.

https://pubmed.ncbi.nlm.nih.gov/18636420/

1364.Alibhai, S.M., et al. Effects of long-term androgen deprivation therapy on cognitive function over
36 months in men with prostate cancer. Cancer, 2017. 123: 237.

https://pubmed.ncbi.nlm.nih.gov/27583806/

1365.Herr, H.W., et al. Quality of life of asymptomatic men with nonmetastatic prostate cancer on androgen deprivation therapy. J Urol, 2000. 163: 1743.

https://pubmed.ncbi.nlm.nih.gov/10799173/

1366.Potosky, A.L., et al. Quality-of-life outcomes after primary androgen deprivation therapy: results from the Prostate Cancer Outcomes Study. J Clin Oncol, 2001. 19: 3750.

https://pubmed.ncbi.nlm.nih.gov/11533098/

1367.Walker, L.M., et al. Luteinizing hormone--releasing hormone agonists: a quick reference for prevalence rates of potential adverse effects. Clin Genitourin Cancer, 2013. 11: 375.

https://pubmed.ncbi.nlm.nih.gov/23891497/

1368.Elliott, S., et al. Androgen deprivation therapy for prostate cancer: recommendations to improve patient and partner quality of life. J Sex Med, 2010. 7: 2996.

https://pubmed.ncbi.nlm.nih.gov/20626600/

1369.Iversen, P., et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol, 2000. 164: 1579.

https://pubmed.ncbi.nlm.nih.gov/11025708/

1370.Iversen, P., et al. Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function. BJU Int, 2001. 87: 47.

https://pubmed.ncbi.nlm.nih.gov/11121992/

1371.Boccardo, F., et al. Bicalutamide monotherapy versus flutamide plus goserelin in prostate cancer patients: results of an Italian Prostate Cancer Project study. J Clin Oncol, 1999. 17: 2027.

https://pubmed.ncbi.nlm.nih.gov/10561254/

1372.Irani, J., et al. Efficacy of venlafaxine, medroxyprogesterone acetate, and cyproterone acetate for the treatment of vasomotor hot flushes in men taking gonadotropin-releasing hormone analogues for prostate cancer: a double-blind, randomised trial. Lancet Oncol, 2010. 11: 147.

https://pubmed.ncbi.nlm.nih.gov/19963436/

1373.Sloan, J.A., et al. Methodologic lessons learned from hot flash studies. J Clin Oncol, 2001. 19: 4280.

https://pubmed.ncbi.nlm.nih.gov/11731510/

1374.Moraska, A.R., et al. Gabapentin for the management of hot flashes in prostate cancer survivors: a longitudinal continuation Study-NCCTG Trial N00CB. J Support Oncol, 2010. 8: 128.

https://pubmed.ncbi.nlm.nih.gov/20552926/

1375.Frisk, J., et al. Two modes of acupuncture as a treatment for hot flushes in men with prostate cancer--a prospective multicenter study with long-term follow-up. Eur Urol, 2009. 55: 156.

https://pubmed.ncbi.nlm.nih.gov/18294761/

1376.Smith, M.R., et al. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol, 2006. 175: 136.

https://pubmed.ncbi.nlm.nih.gov/16406890/

1377.Cree, M., et al. Mortality and institutionalization following hip fracture. J Am Geriatr Soc, 2000. 48: 283.

https://pubmed.ncbi.nlm.nih.gov/10733054/

1378.Compston, J.E., et al. Osteoporosis. Lancet, 2019. 393: 364.

https://pubmed.ncbi.nlm.nih.gov/30696576/

1379.Saylor, P.J., et al. Metabolic complications of androgen deprivation therapy for prostate cancer.
J Urol, 2009. 181: 1998.

https://pubmed.ncbi.nlm.nih.gov/19286225/

1380.Gonnelli, S., et al. Obesity and fracture risk. Clin Cases Miner Bone Metab, 2014. 11: 9.

https://pubmed.ncbi.nlm.nih.gov/25002873/

1381.Sieber, P.R., et al. Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. J Urol, 2004. 171: 2272.

https://pubmed.ncbi.nlm.nih.gov/15126801/

1382.Wadhwa, V.K., et al. Bicalutamide monotherapy preserves bone mineral density, muscle strength and has significant health-related quality of life benefits for osteoporotic men with prostate cancer. BJU Int, 2011. 107: 1923.

https://pubmed.ncbi.nlm.nih.gov/20950306/

1383.Higano, C., et al. Bone mineral density in patients with prostate cancer without bone metastases treated with intermittent androgen suppression. Urology, 2004. 64: 1182.

https://pubmed.ncbi.nlm.nih.gov/15596194/

1384.Nobes, J.P., et al. A prospective, randomized pilot study evaluating the effects of metformin and lifestyle intervention on patients with prostate cancer receiving androgen deprivation therapy. BJU Int, 2012. 109: 1495.

https://pubmed.ncbi.nlm.nih.gov/21933330/

1385.Grundy, S.M., et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 2005.
112: 2735.

https://pubmed.ncbi.nlm.nih.gov/16157765/

1386.Braga-Basaria, M., et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol, 2006. 24: 3979.

https://pubmed.ncbi.nlm.nih.gov/16921050/

1387.Cheung, A.S., et al. Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer, 2014. 21: R371.

https://pubmed.ncbi.nlm.nih.gov/25056176/

1388.Smith, M.R., et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol, 2012. 30: 3271.

https://pubmed.ncbi.nlm.nih.gov/22649143/

1389.Saigal, C.S., et al. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer, 2007. 110: 1493.

https://pubmed.ncbi.nlm.nih.gov/17657815/

1390.Lu-Yao, G., et al. Changing patterns in competing causes of death in men with prostate cancer: a population based study. J Urol, 2004. 171: 2285.

https://pubmed.ncbi.nlm.nih.gov/15126804/

1391.Keating, N.L., et al. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst, 2010. 102: 39.

https://pubmed.ncbi.nlm.nih.gov/19996060/

1392.Efstathiou, J.A., et al. Cardiovascular mortality and duration of androgen deprivation for locally advanced prostate cancer: analysis of RTOG 92-02. Eur Urol, 2008. 54: 816.

https://pubmed.ncbi.nlm.nih.gov/18243498/

1393.Jones, C.U., et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med, 2011. 365: 107.

https://pubmed.ncbi.nlm.nih.gov/21751904/

1394.Butler, S.S., et al. Risk of cardiovascular mortality with androgen deprivation therapy in prostate cancer: A secondary analysis of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Randomized Controlled Trial. Cancer, 2021. 127: 2213.

https://pubmed.ncbi.nlm.nih.gov/33905530/

1395.Nguyen, P.L., et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA, 2011. 306: 2359.

https://pubmed.ncbi.nlm.nih.gov/22147380/

1396.Bourke, L., et al. Endocrine therapy in prostate cancer: time for reappraisal of risks, benefits and cost-effectiveness? Br J Cancer, 2013. 108: 9.

https://pubmed.ncbi.nlm.nih.gov/23321508/

1397.Blankfield, R.P. Androgen deprivation therapy for prostate cancer and cardiovascular death. JAMA, 2012. 307: 1252; author reply 1252.

https://pubmed.ncbi.nlm.nih.gov/22453560/

1398.Bosco, C., et al. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol, 2015. 68: 386.

https://pubmed.ncbi.nlm.nih.gov/25484142/

1399.Nguyen, P.L., et al. Influence of androgen deprivation therapy on all-cause mortality in men with high-risk prostate cancer and a history of congestive heart failure or myocardial infarction. Int
J Radiat Oncol Biol Phys, 2012. 82: 1411.

https://pubmed.ncbi.nlm.nih.gov/21708431/

1400.Tsai, H.K., et al. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J Natl Cancer Inst, 2007. 99: 1516.

https://pubmed.ncbi.nlm.nih.gov/17925537/

1401.Tisseverasinghe, S., et al. Should Prostate Cancer Patients With History of Cardiovascular Events Be Preferentially Treated With Luteinizing Hormone-Releasing Hormone Antagonists? J Clin Oncol, 2022. 40: 4173.

https://pubmed.ncbi.nlm.nih.gov/35862876/

1402.Gilbert, S.E., et al. Effects of a lifestyle intervention on endothelial function in men on long-term androgen deprivation therapy for prostate cancer. Br J Cancer, 2016. 114: 401.

https://pubmed.ncbi.nlm.nih.gov/26766737/

1403.Wilding, S., et al. Cancer-related symptoms, mental well-being, and psychological distress in men diagnosed with prostate cancer treated with androgen deprivation therapy. Qual Life Res, 2019.
28: 2741.

https://pubmed.ncbi.nlm.nih.gov/31115843/

1404.Bourke, L., et al. Exercise for Men with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol, 2015: 69:693.

https://pubmed.ncbi.nlm.nih.gov/26632144/

1405.Meng, F., et al. Stroke related to androgen deprivation therapy for prostate cancer: a meta-analysis and systematic review. BMC Cancer, 2016. 16: 180.

https://pubmed.ncbi.nlm.nih.gov/26940836/

1406.Nead, K.T., et al. Androgen Deprivation Therapy and Future Alzheimer’s Disease Risk. J Clin Oncol, 2016. 34: 566.

https://pubmed.ncbi.nlm.nih.gov/26644522/

1407.Bennett, D., et al. Factors influencing job loss and early retirement in working men with prostate cancer-findings from the population-based Life After Prostate Cancer Diagnosis (LAPCD) study.
J Cancer Surviv, 2018. 12: 669.

https://pubmed.ncbi.nlm.nih.gov/30058009/

1408.James, C., et al. Fear of cancer recurrence and PSA anxiety in patients with prostate cancer: a systematic review. Support Care Cancer, 2022. 30: 5577.

https://pubmed.ncbi.nlm.nih.gov/35106656/

1409.Mundle, R., et al. The effectiveness of psychological intervention for depression, anxiety, and distress in prostate cancer: a systematic review of literature. Prostate Cancer Prostatic Dis, 2021. 24: 674.

https://pubmed.ncbi.nlm.nih.gov/33750905/

1410.Borji, M., et al. Positive Effects of Cognitive Behavioral Therapy on Depression, Anxiety and Stress of Family Caregivers of Patients with Prostate Cancer: A Randomized Clinical Trial. Asian Pac
J Cancer Prev, 2017. 18: 3207.

https://pubmed.ncbi.nlm.nih.gov/29281868/

1411.Bourke, L., et al. A qualitative study evaluating experiences of a lifestyle intervention in men with prostate cancer undergoing androgen suppression therapy. Trials, 2012. 13: 208.

https://pubmed.ncbi.nlm.nih.gov/23151126/

1412.Berruti, A., et al. Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. J Urol, 2000. 164: 1248.

https://pubmed.ncbi.nlm.nih.gov/10992374/

1413.Carlin, B.I., et al. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer, 2000. 88: 2989.

https://pubmed.ncbi.nlm.nih.gov/10898342/

1414.Smith, D.P., et al. Quality of life three years after diagnosis of localised prostate cancer: population based cohort study. BMJ, 2009. 339: b4817.

https://pubmed.ncbi.nlm.nih.gov/19945997/

1415.Taylor, K.L., et al. Long-term disease-specific functioning among prostate cancer survivors and noncancer controls in the prostate, lung, colorectal, and ovarian cancer screening trial. J Clin Oncol, 2012. 30: 2768.

https://pubmed.ncbi.nlm.nih.gov/22734029/

1416.Bhanvadia, S.K., et al. Financial Toxicity Among Patients with Prostate, Bladder, and Kidney Cancer: A Systematic Review and Call to Action. Eur Urol Oncol, 2021. 4: 396.

https://pubmed.ncbi.nlm.nih.gov/33820747/

1417.Ratti, M.M., et al. Standardising the Assessment of Patient-reported Outcome Measures in Localised Prostate Cancer. A Systematic Review. Eur Urol Oncol, 2022. 5: 153.

https://pubmed.ncbi.nlm.nih.gov/34785188/

1418.Groenvold, M., et al. Validation of the EORTC QLQ-C30 quality of life questionnaire through combined qualitative and quantitative assessment of patient-observer agreement. J Clin Epidemiol, 1997. 50: 441.

https://pubmed.ncbi.nlm.nih.gov/9179103/

1419.van Andel, G., et al. An international field study of the EORTC QLQ-PR25: a questionnaire for assessing the health-related quality of life of patients with prostate cancer. Eur J Cancer, 2008.
44: 2418.

https://pubmed.ncbi.nlm.nih.gov/18774706/

1420.Cella, D.F., et al. The Functional Assessment of Cancer Therapy scale: development and validation of the general measure. J Clin Oncol, 1993. 11: 570.

https://pubmed.ncbi.nlm.nih.gov/8445433/

1421.Esper, P., et al. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology, 1997. 50: 920.

https://pubmed.ncbi.nlm.nih.gov/9426724/

1422.Wei, J.T., et al. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology, 2000. 56: 899.

https://pubmed.ncbi.nlm.nih.gov/11113727/

1423.Szymanski, K.M., et al. Development and validation of an abbreviated version of the expanded prostate cancer index composite instrument for measuring health-related quality of life among prostate cancer survivors. Urology, 2010. 76: 1245.

https://pubmed.ncbi.nlm.nih.gov/20350762/

1424.Litwin, M.S., et al. The UCLA Prostate Cancer Index: development, reliability, and validity of a health-related quality of life measure. Med Care, 1998. 36: 1002.

https://pubmed.ncbi.nlm.nih.gov/9674618/

1425.Giesler, R.B., et al. Assessing quality of life in men with clinically localized prostate cancer: development of a new instrument for use in multiple settings. Qual Life Res, 2000. 9: 645.

https://pubmed.ncbi.nlm.nih.gov/11236855/

1426.Hoffman, K.E., et al. Patient-Reported Outcomes Through 5 Years for Active Surveillance, Surgery, Brachytherapy, or External Beam Radiation With or Without Androgen Deprivation Therapy for Localized Prostate Cancer. JAMA, 2020. 323: 149.

https://pubmed.ncbi.nlm.nih.gov/31935027/

1427.Lantz, A., et al. Functional and Oncological Outcomes After Open Versus Robot-assisted Laparoscopic Radical Prostatectomy for Localised Prostate Cancer: 8-Year Follow-up. Eur Urol, 2021. 80: 650.

https://pubmed.ncbi.nlm.nih.gov/34538508/

1428.Fransson, P., et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncol, 2021. 22: 235.

https://pubmed.ncbi.nlm.nih.gov/33444529/

1429.Aksnessæther, B.Y., et al. Second Cancers in Patients With Locally Advanced Prostate Cancer Randomized to Lifelong Endocrine Treatment With or Without Radical Radiation Therapy: Long-Term Follow-up of the Scandinavian Prostate Cancer Group-7 Trial. Int J Radiat Oncol Biol Phys, 2020. 106: 706.

https://pubmed.ncbi.nlm.nih.gov/31786279/

1430.Hunt, A.A., et al. Risk of erectile dysfunction after modern radiotherapy for intact prostate cancer. Prostate Cancer Prostatic Dis, 2021. 24: 128.

https://pubmed.ncbi.nlm.nih.gov/32647352/

1431.Giberti, C., et al. Radical retropubic prostatectomy versus brachytherapy for low-risk prostatic cancer: a prospective study. World J Urol, 2009. 27: 607.

https://pubmed.ncbi.nlm.nih.gov/19455340/

1432.Giberti, C., et al. Robotic prostatectomy versus brachytherapy for the treatment of low risk prostate cancer. Can J Urol, 2017. 24: 8728.

https://pubmed.ncbi.nlm.nih.gov/28436359/

1433.Lardas, M., et al. Quality of Life Outcomes after Primary Treatment for Clinically Localised Prostate Cancer: A Systematic Review. Eur Urol, 2017. 72: 869.

https://pubmed.ncbi.nlm.nih.gov/28757301/

1434.Giesler, R.B., et al. Improving the quality of life of patients with prostate carcinoma: a randomized trial testing the efficacy of a nurse-driven intervention. Cancer, 2005. 104: 752.

https://pubmed.ncbi.nlm.nih.gov/15986401/

1435.Schumacher, O., et al. Effects of Exercise During Radiation Therapy on Physical Function and Treatment-Related Side Effects in Men With Prostate Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys, 2021. 111: 716.

https://pubmed.ncbi.nlm.nih.gov/34246737/

1436.Kang, D.W., et al. Effects of Exercise on Cardiorespiratory Fitness and Biochemical Progression in Men With Localized Prostate Cancer Under Active Surveillance: The ERASE Randomized Clinical Trial. JAMA Oncol, 2021. 7: 1487.

https://pubmed.ncbi.nlm.nih.gov/34410322/

1437.Shao, W., et al. The effects of exercise on body composition of prostate cancer patients receiving androgen deprivation therapy: An update systematic review and meta-analysis. PLoS One, 2022. 17: e0263918.

https://pubmed.ncbi.nlm.nih.gov/35167609/

1438.Anderson, C.A., et al. Conservative management for postprostatectomy urinary incontinence. Cochrane Database Syst Rev, 2015. 1: CD001843.

https://pubmed.ncbi.nlm.nih.gov/25602133/

1439.Chen, Y.C., et al. Surgical treatment for urinary incontinence after prostatectomy: A meta-analysis and systematic review. PLoS One, 2017. 12: e0130867.

https://pubmed.ncbi.nlm.nih.gov/28467435/

1440.Crivellaro, S., et al. Systematic review of surgical treatment of post radical prostatectomy stress urinary incontinence. Neurourol Urodyn, 2016. 35: 875.

https://pubmed.ncbi.nlm.nih.gov/26397171/

1441.Cornu, J.-N., et al. , EAU Guidelines on Non-neurogenic Male LUTS, 2023. In: EAU Guidelines published at the 38th EAU Annual Congress, Milan. EAU Guidelines Office, Arnhem, The Netherlands.

https://uroweb.org/guidelines/management-of-non-neurogenic-male-luts

1442.Skolarus, T.A., et al. Androgen-deprivation-associated bone disease. Curr Opin Urol, 2014. 24: 601.

https://pubmed.ncbi.nlm.nih.gov/25144145/

1443.Patel, H.R., et al. Effects of tadalafil treatment after bilateral nerve-sparing radical prostatectomy: quality of life, psychosocial outcomes, and treatment satisfaction results from a randomized, placebo-controlled phase IV study. BMC Urol, 2015. 15: 31.

https://pubmed.ncbi.nlm.nih.gov/25879460/

1444.Philippou, Y.A., et al. Penile rehabilitation for postprostatectomy erectile dysfunction. Cochrane Database Syst Rev, 2018. 10: CD012414.

https://pubmed.ncbi.nlm.nih.gov/30352488/

1445.Salonia, A., et al., EAU Guidelines on Sexual and Reproductive Health. In: EAU Guidelines published at the 38th EAU Annual Congress, Milan. EAU Guidelines Office, Arnhem, The Netherlands.

https://uroweb.org/guidelines/sexual-and-reproductive-health

1446.Dieperink, K.B., et al. The effects of multidisciplinary rehabilitation: RePCa-a randomised study among primary prostate cancer patients. Br J Cancer, 2013. 109: 3005.

https://pubmed.ncbi.nlm.nih.gov/24169342/

1447.Dieperink, K.B., et al. Long-term follow-up 3 years after a randomized rehabilitation study among radiated prostate cancer survivors. J Cancer Surviv, 2021. 15: 668.

https://pubmed.ncbi.nlm.nih.gov/33079329/

1448.Galvao, D.A., et al. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol, 2010. 28: 340.

https://pubmed.ncbi.nlm.nih.gov/19949016/

1449.Bourke, L., et al. Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: a randomised controlled trial. Eur Urol, 2014. 65: 865.

https://pubmed.ncbi.nlm.nih.gov/Medline:24119318/

1450.Cella, D., et al. Estimating clinically meaningful changes for the Functional Assessment of Cancer Therapy--Prostate: results from a clinical trial of patients with metastatic hormone-refractory prostate cancer. Value Health, 2009. 12: 124.

https://pubmed.ncbi.nlm.nih.gov/18647260/

1451.Galvão, D.A., et al. Psychological distress in men with prostate cancer undertaking androgen deprivation therapy: modifying effects of exercise from a year-long randomized controlled trial. Prostate Cancer Prostatic Dis, 2021. 24: 758.

https://pubmed.ncbi.nlm.nih.gov/33558661/

1452.Lopez, P., et al. Resistance Exercise Dosage in Men with Prostate Cancer: Systematic Review, Meta-analysis, and Meta-regression. Med Sci Sports Exerc, 2021. 53: 459.

https://pubmed.ncbi.nlm.nih.gov/32890199/

1453.Nair-Shalliker, V., et al. Post-treatment levels of plasma 25- and 1,25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Sci Rep, 2020. 10: 7736.

https://pubmed.ncbi.nlm.nih.gov/32385370/

1454.Grant, W.B. Review of Recent Advances in Understanding the Role of Vitamin D in Reducing Cancer Risk: Breast, Colorectal, Prostate, and Overall Cancer. Anticancer Res, 2020. 40: 491.

https://pubmed.ncbi.nlm.nih.gov/31892604/

1455.Coleman, R., et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann Oncol, 2020.
31: 1650.

https://pubmed.ncbi.nlm.nih.gov/32801018/

1456.Shapiro, C.L., et al. Management of Osteoporosis in Survivors of Adult Cancers With Nonmetastatic Disease: ASCO Clinical Practice Guideline. J Clin Oncol, 2019. 37: 2916.

https://pubmed.ncbi.nlm.nih.gov/31532726/

1457.Briot, K., et al. French recommendations for osteoporosis prevention and treatment in patients with prostate cancer treated by androgen deprivation. Joint Bone Spine, 2019. 86: 21.

https://pubmed.ncbi.nlm.nih.gov/30287350/

1458.Saylor, P.J., et al. Bone Health and Bone-Targeted Therapies for Prostate Cancer: ASCO Endorsement of a Cancer Care Ontario Guideline. J Clin Oncol, 2020. 38: 1736.

https://pubmed.ncbi.nlm.nih.gov/31990618/

1459.Brown, J.E., et al. Guidance for the assessment and management of prostate cancer treatment-induced bone loss. A consensus position statement from an expert group. J Bone Oncol, 2020.
25: 100311.

https://pubmed.ncbi.nlm.nih.gov/32995252/

1460.Smith, M.R., et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol, 2003. 169: 2008.

https://pubmed.ncbi.nlm.nih.gov/12771706/

1461.Michaelson, M.D., et al. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol, 2007. 25: 1038.

https://pubmed.ncbi.nlm.nih.gov/17369566/

1462.Migliorati, C.A., et al. Bisphosphonate-associated osteonecrosis: a long-term complication of bisphosphonate treatment. Lancet Oncol, 2006. 7: 508.

https://pubmed.ncbi.nlm.nih.gov/16750501/

1463.Wadhwa, V.K., et al. Frequency of zoledronic acid to prevent further bone loss in osteoporotic patients undergoing androgen deprivation therapy for prostate cancer. BJU Int, 2010. 105: 1082.

https://pubmed.ncbi.nlm.nih.gov/19912210/

1464.Clemons, M., et al. A randomised trial of 4- versus 12-weekly administration of bone-targeted agents in patients with bone metastases from breast or castration-resistant prostate cancer. Eur
J Cancer, 2021. 142: 132.

https://pubmed.ncbi.nlm.nih.gov/33023785/

1465.Smith, M.R., et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer.
N Engl J Med, 2009. 361: 745.

https://pubmed.ncbi.nlm.nih.gov/19671656/

1466.Chen, R.C., et al. Association Between Choice of Radical Prostatectomy, External Beam Radiotherapy, Brachytherapy, or Active Surveillance and Patient-Reported Quality of Life Among Men With Localized Prostate Cancer. JAMA, 2017. 317: 1141.

https://pubmed.ncbi.nlm.nih.gov/28324092/

1467.Sanda, M.G., et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J Urol, 2018. 199: 683.

https://pubmed.ncbi.nlm.nih.gov/29203269/

1468.Makarov, D.V., et al. AUA White Paper on Implementation of Shared Decision Making into Urological Practice. Urol Pract, 2016. 3: 355.

https://www.sciencedirect.com/science/article/abs/pii/S2352077915002733

1469.Stiggelbout, A.M., et al. Shared decision making: Concepts, evidence, and practice. Patient Educ Couns, 2015. 98: 1172.

https://pubmed.ncbi.nlm.nih.gov/26215573/

1470.Violette, P.D., et al. Decision aids for localized prostate cancer treatment choice: Systematic review and meta-analysis. CA Cancer J Clin, 2015. 65: 239.

https://pubmed.ncbi.nlm.nih.gov/25772796/

1471.Ramsey, S.D., et al. Unanticipated and underappreciated outcomes during management of local stage prostate cancer: a prospective survey. J Urol, 2010. 184: 120.

https://pubmed.ncbi.nlm.nih.gov/20478590/

1472.Connolly, T., et al. Regret in Decision Making. Curr Direct Psych Sci, 2002. 11: 212.

https://journals.sagepub.com/doi/10.1111/1467-8721.00203

1473.Maguire, R., et al. Expecting the worst? The relationship between retrospective and prospective appraisals of illness on quality of life in prostate cancer survivors. Psychooncology, 2018. 27: 1237.

https://pubmed.ncbi.nlm.nih.gov/29430755/

1474.Schroeck, F.R., et al. Satisfaction and regret after open retropubic or robot-assisted laparoscopic radical prostatectomy. Eur Urol, 2008. 54: 785.

https://pubmed.ncbi.nlm.nih.gov/18585849/

1475.Steentjes, L., et al. Factors associated with current and severe physical side-effects after prostate cancer treatment: What men report. Eur J Cancer Care (Engl), 2018. 27.

https://pubmed.ncbi.nlm.nih.gov/27726215/

1476.Orom, H., et al. What Is a “Good” Treatment Decision? Decisional Control, Knowledge, Treatment Decision Making, and Quality of Life in Men with Clinically Localized Prostate Cancer. Med Decis Making, 2016. 36: 714.

https://pubmed.ncbi.nlm.nih.gov/26957566/

1477.Davison, B.J., et al. Quality of life, sexual function and decisional regret at 1 year after surgical treatment for localized prostate cancer. BJU Int, 2007. 100: 780.

https://pubmed.ncbi.nlm.nih.gov/17578466/

1478.Wilding, S., et al. Decision regret in men living with and beyond nonmetastatic prostate cancer in the United Kingdom: A population-based patient-reported outcome study. Psychooncology, 2020.
29: 886.

https://pubmed.ncbi.nlm.nih.gov/32065691/

1479.Martínez-González, N.A., et al. Shared decision making for men facing prostate cancer treatment: a systematic review of randomized controlled trials. Patient Prefer Adherence, 2019. 13: 1153.

https://pubmed.ncbi.nlm.nih.gov/31413545/

1480.Menichetti, J., et al. Quality of life in active surveillance and the associations with decision-making-a literature review. Transl Androl Urol, 2018. 7: 160.

https://pubmed.ncbi.nlm.nih.gov/29594030/

1481.Ivlev, I., et al. Prostate Cancer Screening Patient Decision Aids: A Systematic Review and Meta-analysis. Am J Prev Med, 2018. 55: 896.

https://pubmed.ncbi.nlm.nih.gov/30337235/

1482.Kinsella, N., et al. A Single Educational Seminar Increases Confidence and Decreases Dropout from Active Surveillance by 5 Years After Diagnosis of Prostate Cancer. Eur Urol Oncol, 2019. 2: 464.

https://pubmed.ncbi.nlm.nih.gov/31277784/

1483.Hoffman, R.M., et al. Selecting Active Surveillance: Decision Making Factors for Men with a Low-Risk Prostate Cancer. Med Decis Making, 2019. 39: 962.

https://pubmed.ncbi.nlm.nih.gov/31631745/

1484.Berry, D.L., et al. Decision Support with the Personal Patient Profile-Prostate: A Multicenter Randomized Trial. J Urol, 2018. 199: 89.

https://pubmed.ncbi.nlm.nih.gov/28754540/

1485.Campagna, J.P., et al. Prostate Cancer Survival Estimates by the General Public Using Unrestricted Internet Searches and Online Nomograms. Eur Urol Focus, 2020. 6: 959.

https://pubmed.ncbi.nlm.nih.gov/30723050/

1486.de Freitas, H.M., et al. Patient Preferences for Metastatic Hormone-Sensitive Prostate Cancer Treatments: A Discrete Choice Experiment Among Men in Three European Countries. Adv Ther, 2019. 36: 318.

https://pubmed.ncbi.nlm.nih.gov/30617763/

1487.Lorent, M., et al. Meta-analysis of predictive models to assess the clinical validity and utility for patient-centered medical decision making: application to the CAncer of the Prostate Risk Assessment (CAPRA). BMC Med Inform Decis Mak, 2019. 19: 2.

https://pubmed.ncbi.nlm.nih.gov/30616621/

1488.Riikonen, J.M., et al. Decision Aids for Prostate Cancer Screening Choice: A Systematic Review and Meta-analysis. JAMA Intern Med, 2019. 179: 1072.

https://pubmed.ncbi.nlm.nih.gov/31233091/

1489.Vromans, R.D., et al. Communicative aspects of decision aids for localized prostate cancer treatment - A systematic review. Urol Oncol, 2019. 37: 409.

https://pubmed.ncbi.nlm.nih.gov/31053529/