7. REFERENCES
1.Skolarikos, A., et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol, 2015. 67: 750.
https://pubmed.ncbi.nlm.nih.gov/25454613
2.Turk, C., et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol, 2016. 69: 468.
https://pubmed.ncbi.nlm.nih.gov/26318710
3.Turk, C., et al. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur Urol, 2016. 69: 475.
https://pubmed.ncbi.nlm.nih.gov/26344917
4.Phillips, B., et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 2009.
https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/
5.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.
https://pubmed.ncbi.nlm.nih.gov/18467413
6.Sorokin, I., et al. Epidemiology of stone disease across the world. World J Urol, 2017. 35: 1301.
https://pubmed.ncbi.nlm.nih.gov/28213860
7.Monga, M., et al. Prevalence of Stone Disease and Procedure Trends in the United States. Urology, 2023. 176: 63.
https://pubmed.ncbi.nlm.nih.gov/37062518
8.Stamatelou, K.K., et al. Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int, 2003. 63: 1817.
https://pubmed.ncbi.nlm.nih.gov/12675858
9.Hesse, A., et al. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol, 2003. 44: 709.
https://pubmed.ncbi.nlm.nih.gov/14644124
10.Zhe, M., et al. Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4,770,691 participants. Urolithiasis, 2017. 45: 441.
https://pubmed.ncbi.nlm.nih.gov/27837248
11.Corrales, M., et al. Classification of Stones According to Michel Daudon: A Narrative Review. Eur Urol Focus, 2021. 7: 13.
https://pubmed.ncbi.nlm.nih.gov/33288482
12.Halbritter, J. Genetics of kidney stone disease-Polygenic meets monogenic. Nephrol Ther, 2021. 17S: S88.
https://pubmed.ncbi.nlm.nih.gov/33910705
13.Leusmann, D.B. Whewellite, weddellite and company: where do all the strange names originate? BJU Int, 2000. 86: 411.
https://pubmed.ncbi.nlm.nih.gov/10971263
14.Strohmaier, W.L. Course of calcium stone disease without treatment. What can we expect? Eur Urol, 2000. 37: 339.
https://pubmed.ncbi.nlm.nih.gov/10720863
15.Ferraro, P.M., et al. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J Nephrol, 2017. 30: 227.
https://pubmed.ncbi.nlm.nih.gov/26969574
16.Keoghane, S., et al. The natural history of untreated renal tract calculi. BJU Int, 2010. 105: 1627.
https://pubmed.ncbi.nlm.nih.gov/20438563
17.Straub, M., et al. Diagnosis and metaphylaxis of stone disease. Consensus concept of the National Working Committee on Stone Disease for the upcoming German Urolithiasis Guideline. World J Urol, 2005. 23: 309.
https://pubmed.ncbi.nlm.nih.gov/16315051
18.Pawar, A.S., et al. Incidence and characteristics of kidney stones in patients with horseshoe kidney: A systematic review and meta-analysis. Urol Ann, 2018. 10: 87.
https://pubmed.ncbi.nlm.nih.gov/29416282
19.Dissayabutra, T., et al. Urinary stone risk factors in the descendants of patients with kidney stone disease. Pediatr Nephrol, 2018. 33: 1173.
https://pubmed.ncbi.nlm.nih.gov/29594505
20.Hu, H., et al. Association between Circulating Vitamin D Level and Urolithiasis: A Systematic Review and Meta-Analysis. Nutrients, 2017. 9.
https://pubmed.ncbi.nlm.nih.gov/28335477
21.Geraghty, R.M., et al. Worldwide Impact of Warmer Seasons on the Incidence of Renal Colic and Kidney Stone Disease: Evidence from a Systematic Review of Literature. J Endourol, 2017. 31: 729.
https://pubmed.ncbi.nlm.nih.gov/28338351
22.Guo, Z.L., et al. Association between cadmium exposure and urolithiasis risk: A systematic review and meta-analysis. Medicine (Baltimore), 2018. 97: e9460.
https://pubmed.ncbi.nlm.nih.gov/29505519
23.Hesse, A.T., Tiselius H-G,. Siener R., et al. (Eds.), Urinary Stones, Diagnosis, Treatment and Prevention of Recurrence. 3rd edition. . 2009, Basel.
24.Basiri, A., et al. Familial relations and recurrence pattern in nephrolithiasis: new words about old subjects. Urol J, 2010. 7: 81.
https://pubmed.ncbi.nlm.nih.gov/20535692
25.Goldfarb, D.S., et al. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int, 2005. 67: 1053.
https://pubmed.ncbi.nlm.nih.gov/15698445
26.Asplin, J.R., et al. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J Urol, 2007. 177: 565.
https://pubmed.ncbi.nlm.nih.gov/17222634
27.Gonzalez, R.D., et al. Kidney stone risk following modern bariatric surgery. Curr Urol Rep, 2014. 15: 401.
https://pubmed.ncbi.nlm.nih.gov/24658828
28.Rendina, D., et al. Metabolic syndrome and nephrolithiasis: a systematic review and meta-analysis of the scientific evidence. J Nephrol, 2014. 27: 371.
https://pubmed.ncbi.nlm.nih.gov/24696310
29.Dell’Orto, V.G., et al. Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review. Br J Clin Pharmacol, 2014. 77: 958.
https://pubmed.ncbi.nlm.nih.gov/24219102
30.Mufti, U.B., et al. Nephrolithiasis in autosomal dominant polycystic kidney disease. J Endourol, 2010. 24: 1557.
https://pubmed.ncbi.nlm.nih.gov/20818989
31.Chen, Y., et al. Current trend and risk factors for kidney stones in persons with spinal cord injury: a longitudinal study. Spinal Cord, 2000. 38: 346.
https://pubmed.ncbi.nlm.nih.gov/10889563
32.Hara, A., et al. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. Environ Res, 2016. 145: 1.
https://pubmed.ncbi.nlm.nih.gov/26613344
33.Gambaro, G., et al. The Risk of Chronic Kidney Disease Associated with Urolithiasis and its Urological Treatments: A Review. J Urol, 2017. 198: 268.
https://pubmed.ncbi.nlm.nih.gov/28286070
34.Lucato, P., et al. Nephrolithiasis, bone mineral density, osteoporosis, and fractures: a systematic review and comparative meta-analysis. Osteoporos Int, 2016. 27: 3155.
https://pubmed.ncbi.nlm.nih.gov/27289533
35.Kim, S.C., et al. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res, 2007. 35: 319.
https://pubmed.ncbi.nlm.nih.gov/17965956
36.McGrath, T.A., et al. Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis. Eur Radiol, 2020. 30: 2791.
https://pubmed.ncbi.nlm.nih.gov/31980881
37.Dahm, P., et al. A systematic review and meta-analysis of clinical signs, symptoms, and imaging findings in patients with suspected renal colic. J Am Coll Emerg Physicians Open, 2022. 3: e12831.
https://pubmed.ncbi.nlm.nih.gov/36474707
38.Ray, A.A., et al. Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology, 2010. 76: 295.
https://pubmed.ncbi.nlm.nih.gov/20206970
39.Smith-Bindman, R., et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med, 2014. 371: 1100.
https://pubmed.ncbi.nlm.nih.gov/25229916
40.Heidenreich, A., et al. Modern approach of diagnosis and management of acute flank pain: review of all imaging modalities. Eur Urol, 2002. 41: 351.
https://pubmed.ncbi.nlm.nih.gov/12074804
41.Kennish, S.J., et al. Is the KUB radiograph redundant for investigating acute ureteric colic in the non-contrast enhanced computed tomography era? Clin Radiol, 2008. 63: 1131.
https://pubmed.ncbi.nlm.nih.gov/18774360
42.Worster, A., et al. The accuracy of noncontrast helical computed tomography versus intravenous pyelography in the diagnosis of suspected acute urolithiasis: a meta-analysis. Ann Emerg Med, 2002. 40: 280.
https://pubmed.ncbi.nlm.nih.gov/12192351
43.Yamashita, S., et al. Noncontrast Computed Tomography Parameters for Predicting Shock Wave Lithotripsy Outcome in Upper Urinary Tract Stone Cases. Biomed Res Int, 2018. 2018: 9253952.
https://pubmed.ncbi.nlm.nih.gov/30627582
44.Wu, D.S., et al. Indinavir urolithiasis. Curr Opin Urol, 2000. 10: 557.
https://pubmed.ncbi.nlm.nih.gov/11148725
45.Wiesenthal, J.D., et al. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res, 2010. 38: 307.
https://pubmed.ncbi.nlm.nih.gov/20625891
46.Kluner, C., et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr, 2006. 30: 44.
https://pubmed.ncbi.nlm.nih.gov/16365571
47.Caoili, E.M., et al. Urinary tract abnormalities: initial experience with multi-detector row CT urography. Radiology, 2002. 222: 353.
https://pubmed.ncbi.nlm.nih.gov/11818599
48.Van Der Molen, A.J., et al. CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol, 2008. 18: 4.
https://pubmed.ncbi.nlm.nih.gov/17973110
49.Thomson, J.M., et al. Computed tomography versus intravenous urography in diagnosis of acute flank pain from urolithiasis: a randomized study comparing imaging costs and radiation dose. Australas Radiol, 2001. 45: 291.
https://pubmed.ncbi.nlm.nih.gov/11531751
50.Smith-Bindman, R., et al. Computed Tomography Radiation Dose in Patients With Suspected Urolithiasis. JAMA Intern Med, 2015. 175: 1413.
https://pubmed.ncbi.nlm.nih.gov/26121191
51.Rodger, F., et al. Diagnostic Accuracy of Low and Ultra-Low Dose CT for Identification of Urinary Tract Stones: A Systematic Review. Urol Int, 2018. 100: 375.
https://pubmed.ncbi.nlm.nih.gov/29649823
52.Saikiran, P. Effectiveness of Low Dose Over Standard dose CT for Detection of Urolithiasis: A Systematic Review. Indian Journal of Forensic Medicine & Toxicology, 2020. 14: 4447.
53.Moore, C.L., et al. Imaging in Suspected Renal Colic: Systematic Review of the Literature and Multispecialty Consensus. J Urol, 2019. 202: 475.
https://pubmed.ncbi.nlm.nih.gov/31412438
54.Poletti, P.A., et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol, 2007. 188: 927.
https://pubmed.ncbi.nlm.nih.gov/17377025
55.Xiang, H., et al. Systematic review and meta-analysis of the diagnostic accuracy of low-dose computed tomography of the kidneys, ureters and bladder for urolithiasis. J Med Imaging Radiat Oncol, 2017. 61: 582.
https://pubmed.ncbi.nlm.nih.gov/28139077
56.Mandel, N., et al. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J Urol, 2003. 169: 2026.
https://pubmed.ncbi.nlm.nih.gov/12771710
57.Kourambas, J., et al. Role of stone analysis in metabolic evaluation and medical treatment of nephrolithiasis. J Endourol, 2001. 15: 181.
https://pubmed.ncbi.nlm.nih.gov/11325090
58.Hesse, A., et al. Quality control in urinary stone analysis: results of 44 ring trials (1980-2001). Clin Chem Lab Med, 2005. 43: 298.
https://pubmed.ncbi.nlm.nih.gov/15843235
59.Abdel-Halim, R.E., et al. A review of urinary stone analysis techniques. Saudi Med J, 2006. 27: 1462.
https://pubmed.ncbi.nlm.nih.gov/17013464
60.Gilad, R., et al. Interpreting the results of chemical stone analysis in the era of modern stone analysis techniques. J Nephrol, 2017. 30: 135.
https://pubmed.ncbi.nlm.nih.gov/26956131
61.Thiruchelvam, N., et al. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int, 2005. 95: 1280.
https://pubmed.ncbi.nlm.nih.gov/15892817
62.Bonkat, G., et al., EAU Guidelines on Urological Infections, in EAU Guidelines, Edn. published as the 39th EAU Annual Meeting, Paris, E.A.o.U.G. Office, Editor. 2022, European Association of Urology Guidelines Office: Arnhem, The Netherlands.
63.Williams, J.C., Jr., et al. Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis, 2021. 49: 1.
https://pubmed.ncbi.nlm.nih.gov/33048172
64.Somani, B.K., et al. Review on diagnosis and management of urolithiasis in pregnancy: an ESUT practical guide for urologists. World J Urol, 2017. 35: 1637.
https://pubmed.ncbi.nlm.nih.gov/28424869
65.Asrat, T., et al. Ultrasonographic detection of ureteral jets in normal pregnancy. Am J Obstet Gynecol, 1998. 178: 1194.
https://pubmed.ncbi.nlm.nih.gov/9662301
66.Swartz, M.A., et al. Admission for nephrolithiasis in pregnancy and risk of adverse birth outcomes. Obstet Gynecol, 2007. 109: 1099.
https://pubmed.ncbi.nlm.nih.gov/17470589
67.Patel, S.J., et al. Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerations. Radiographics, 2007. 27: 1705.
https://pubmed.ncbi.nlm.nih.gov/18025513
68.Juan, Y.S., et al. Management of symptomatic urolithiasis during pregnancy. Kaohsiung J Med Sci, 2007. 23: 241.
https://pubmed.ncbi.nlm.nih.gov/17525006
69.Opinion, C. Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation: Correction. Obstet Gynecol, 2018. 132: 786.
https://pubmed.ncbi.nlm.nih.gov/30134410
70.Masselli, G., et al. Stone disease in pregnancy: imaging-guided therapy. Insights Imaging, 2014. 5: 691.
https://pubmed.ncbi.nlm.nih.gov/25249333
71.(MHRA), M.a.H.p.R.A., Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use, MHRA, Editor. 2015, MHRA.
72.committee, T.A.C.o.O.a.G.A.W.s.h.c.p. Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet Gynecol, 2017. 130: e210.
https://pubmed.ncbi.nlm.nih.gov/28937575
73.Practice, A.I.o.U.i.M., AIUM Practice parameter for the performance of obstetric ultrasound examinations 2013, A.P.P.f.t.P.o.O.U. Examinations, Editor. 2013, AIUM.
74.Administration, U.S.F.D. Avoid Fetal “Keepsake” Images, Heartbeat Monitors. 2014. 2018.
75.Sharp, C., et al., Diagnostic Medical Exposures: Advice on Exposure to Ionising Radiation during Pregnancy. 1998, Chilton, Didcot, Oxon, OX11 0RQ.
76.Kanal, E., et al. ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol, 2007. 188: 1447.
https://pubmed.ncbi.nlm.nih.gov/17515363
77.Roy, C., et al. Assessment of painful ureterohydronephrosis during pregnancy by MR urography. Eur Radiol, 1996. 6: 334.
https://pubmed.ncbi.nlm.nih.gov/8798002
78.White, W.M., et al. Predictive value of current imaging modalities for the detection of urolithiasis during pregnancy: a multicenter, longitudinal study. J Urol, 2013. 189: 931.
https://pubmed.ncbi.nlm.nih.gov/23017526
79.Sternberg, K., et al. Pediatric stone disease: an evolving experience. J Urol, 2005. 174: 1711.
https://pubmed.ncbi.nlm.nih.gov/16148688
80.Bernardor, J., et al. Pediatric urolithiasis: what can pediatricians expect from radiologists? Pediatr Radiol, 2023. 53: 695.
https://pubmed.ncbi.nlm.nih.gov/36329164
81.Authors on behalf of, I., et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP, 2012. 41: 1.
https://pubmed.ncbi.nlm.nih.gov/22925378
82.Protection, I.C.o.R. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP, 2007. 37.
https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
83.Passerotti, C., et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J Urol, 2009. 182: 1829.
https://pubmed.ncbi.nlm.nih.gov/19692054
84.Tasian, G.E., et al. Evaluation and medical management of kidney stones in children. J Urol, 2014. 192: 1329.
https://pubmed.ncbi.nlm.nih.gov/24960469
85.Palmer, L.S. Pediatric urologic imaging. Urol Clin North Am, 2006. 33: 409.
https://pubmed.ncbi.nlm.nih.gov/16829274
86.Darge, K., et al. [Modern ultrasound technologies and their application in pediatric urinary tract imaging]. Radiologe, 2005. 45: 1101.
https://pubmed.ncbi.nlm.nih.gov/16086170
87.Pepe, P., et al. Functional evaluation of the urinary tract by color-Doppler ultrasonography (CDU) in 100 patients with renal colic. Eur J Radiol, 2005. 53: 131.
https://pubmed.ncbi.nlm.nih.gov/15607864
88.Morrison, J.C., et al. Use of Ultrasound in Pediatric Renal Stone Diagnosis and Surgery. Curr Urol Rep, 2017. 18: 22.
https://pubmed.ncbi.nlm.nih.gov/28233230
89.Stratton, K.L., et al. Implications of ionizing radiation in the pediatric urology patient. J Urol, 2010. 183: 2137.
https://pubmed.ncbi.nlm.nih.gov/20399463
90.Grivas, N., et al. Imaging modalities and treatment of paediatric upper tract urolithiasis: A systematic review and update on behalf of the EAU urolithiasis guidelines panel. J Pediatr Urol, 2020. 16: 612.
https://pubmed.ncbi.nlm.nih.gov/32739360
91.Niemann, T., et al. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol, 2008. 191: 396.
https://pubmed.ncbi.nlm.nih.gov/18647908
92.Rob, S., et al. Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: is there a difference? Results from a systematic review of the literature. Clin Radiol, 2017. 72: 11.
https://pubmed.ncbi.nlm.nih.gov/27810168
93.Leppert, A., et al. Impact of magnetic resonance urography on preoperative diagnostic workup in children affected by hydronephrosis: should IVU be replaced? J Pediatr Surg, 2002. 37: 1441.
https://pubmed.ncbi.nlm.nih.gov/12378450
94.Pathan, S.A., et al. Delivering safe and effective analgesia for management of renal colic in the emergency department: a double-blind, multigroup, randomised controlled trial. Lancet, 2016. 387: 1999.
https://pubmed.ncbi.nlm.nih.gov/26993881
95.Pathan, S.A., et al. A Systematic Review and Meta-analysis Comparing the Efficacy of Nonsteroidal Anti-inflammatory Drugs, Opioids, and Paracetamol in the Treatment of Acute Renal Colic. Eur Urol, 2018. 73: 583.
https://pubmed.ncbi.nlm.nih.gov/29174580
96.Forouzanfar, M.M., et al. Comparison of Intravenous Ibuprofen with Intravenous Ketorolac in Renal Colic Pain Management; A Clinical Trial. Anesth Pain Med, 2019. 9: e86963.
https://pubmed.ncbi.nlm.nih.gov/30881914
97.Gu, H.Y., et al. Increasing Nonsteroidal Anti-inflammatory Drugs and Reducing Opioids or Paracetamol in the Management of Acute Renal Colic: Based on Three-Stage Study Design of Network Meta-Analysis of Randomized Controlled Trials. Front Pharmacol, 2019. 10: 96.
https://pubmed.ncbi.nlm.nih.gov/30853910
98.Schmidt, M., et al. Diclofenac use and cardiovascular risks: series of nationwide cohort studies. BMJ, 2018. 362: k3426.
https://pubmed.ncbi.nlm.nih.gov/30181258
99.Coxib, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 2013. 382: 769.
https://pubmed.ncbi.nlm.nih.gov/23726390
100.Moussa, M., et al. Intradermal sterile water injection versus diclofenac sodium in acute renal colic pain: A randomized controlled trial. Am J Emerg Med, 2021. 44: 395.
https://pubmed.ncbi.nlm.nih.gov/32444296
101.Holdgate, A., et al. Nonsteroidal anti-inflammatory drugs (NSAIDs) versus opioids for acute renal colic. Cochrane Database Syst Rev, 2005. 2004: CD004137.
https://pubmed.ncbi.nlm.nih.gov/15846699
102.Safaie, A., et al. Intravenous morphine plus ibuprofen or ketorolac versus intravenous morphine alone in reducing renal colic pain intensity in emergency department: A randomized, double-blind clinical trial. Turk J Emerg Med, 2022. 22: 8.
https://pubmed.ncbi.nlm.nih.gov/35284698
103.Beltaief, K., et al. Acupuncture versus titrated morphine in acute renal colic: a randomized controlled trial. J Pain Res, 2018. 11: 335.
https://pubmed.ncbi.nlm.nih.gov/29483783
104.Kaynar, M., et al. Comparison of the efficacy of diclofenac, acupuncture, and acetaminophen in the treatment of renal colic. Am J Emerg Med, 2015. 33: 749.
https://pubmed.ncbi.nlm.nih.gov/25827597
105.Holdgate, A., et al. Systematic review of the relative efficacy of non-steroidal anti-inflammatory drugs and opioids in the treatment of acute renal colic. BMJ, 2004. 328: 1401.
https://pubmed.ncbi.nlm.nih.gov/15178585
106.Seitz, C., et al. Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol, 2009. 56: 455.
https://pubmed.ncbi.nlm.nih.gov/19560860
107.Lee, A., et al. Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev, 2007. 2007: CD002765.
https://pubmed.ncbi.nlm.nih.gov/17443518
108.Hollingsworth, J.M., et al. Alpha blockers for treatment of ureteric stones: systematic review and meta-analysis. BMJ, 2016. 355: i6112.
https://pubmed.ncbi.nlm.nih.gov/27908918
109.Guercio, S., et al. Randomized prospective trial comparing immediate versus delayed ureteroscopy for patients with ureteral calculi and normal renal function who present to the emergency department. J Endourol, 2011. 25: 1137.
https://pubmed.ncbi.nlm.nih.gov/21682597
110.Hinojosa-Gonzalez, D.E., et al. Emergent urinary decompression in acute stone-related urinary obstruction: A systematic review and meta-analysis. Journal of Clinical Urology, 2021. 16: 19.
https://journals.sagepub.com/doi/abs/10.1177/20514158211017027?journalCode=urob
111.Zul Khairul Azwadi, I., et al. Percutaneous nephrostomy versus retrograde ureteral stenting for acute upper obstructive uropathy: a systematic review and meta-analysis. Sci Rep, 2021. 11: 6613.
https://pubmed.ncbi.nlm.nih.gov/33758312
112.Weltings, S., et al. Lessons from Literature: Nephrostomy Versus Double J Ureteral Catheterization in Patients with Obstructive Urolithiasis-Which Method Is Superior? J Endourol, 2019. 33: 777.
https://pubmed.ncbi.nlm.nih.gov/31250680
113.Wang, C.J., et al. Percutaneous nephrostomy versus ureteroscopic management of sepsis associated with ureteral stone impaction: a randomized controlled trial. Urolithiasis, 2016. 44: 415.
https://pubmed.ncbi.nlm.nih.gov/26662171
114.Bonkat, G., et al. Management of Urosepsis in 2018. Eur Urol Focus, 2019. 5: 5.
https://pubmed.ncbi.nlm.nih.gov/30448051
115.Evans, L., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med, 2021. 47: 1181.
https://pubmed.ncbi.nlm.nih.gov/34599691
116.Pietropaolo, A., et al. Outcomes of Elective Ureteroscopy for Ureteric Stones in Patients with Prior Urosepsis and Emergency Drainage: Prospective Study over 5 yr from a Tertiary Endourology Centre. Eur Urol Focus, 2020. 6: 151.
https://pubmed.ncbi.nlm.nih.gov/30219711
117.Dellabella, M., et al. Randomized trial of the efficacy of tamsulosin, nifedipine and phloroglucinol in medical expulsive therapy for distal ureteral calculi. J Urol, 2005. 174: 167.
https://pubmed.ncbi.nlm.nih.gov/15947613
118.Borghi, L., et al. Nifedipine and methylprednisolone in facilitating ureteral stone passage: a randomized, double-blind, placebo-controlled study. J Urol, 1994. 152: 1095.
https://pubmed.ncbi.nlm.nih.gov/8072071
119.Porpiglia, F., et al. Effectiveness of nifedipine and deflazacort in the management of distal ureter stones. Urology, 2000. 56: 579.
https://pubmed.ncbi.nlm.nih.gov/11018608
120.Dellabella, M., et al. Medical-expulsive therapy for distal ureterolithiasis: randomized prospective study on role of corticosteroids used in combination with tamsulosin-simplified treatment regimen and health-related quality of life. Urology, 2005. 66: 712.
https://pubmed.ncbi.nlm.nih.gov/16230122
121.Yilmaz, E., et al. The comparison and efficacy of 3 different alpha1-adrenergic blockers for distal ureteral stones. J Urol, 2005. 173: 2010.
https://pubmed.ncbi.nlm.nih.gov/15879806
122.Liu, X.J., et al. Role of silodosin as medical expulsive therapy in ureteral calculi: a meta-analysis of randomized controlled trials. Urolithiasis, 2018. 46: 211.
https://pubmed.ncbi.nlm.nih.gov/28365782
123.Hsu, Y.P., et al. Silodosin versus tamsulosin for medical expulsive treatment of ureteral stones: A systematic review and meta-analysis. PLoS One, 2018. 13: e0203035.
https://pubmed.ncbi.nlm.nih.gov/30153301
124.Pickard, R., et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet, 2015. 386: 341.
https://pubmed.ncbi.nlm.nih.gov/25998582
125.Furyk, J.S., et al. Distal Ureteric Stones and Tamsulosin: A Double-Blind, Placebo-Controlled, Randomized, Multicenter Trial. Ann Emerg Med, 2016. 67: 86.
https://pubmed.ncbi.nlm.nih.gov/26194935
126.Sur, R.L., et al. Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur Urol, 2015. 67: 959.
https://pubmed.ncbi.nlm.nih.gov/25465978
127.Turk, C., et al. Medical Expulsive Therapy for Ureterolithiasis: The EAU Recommendations in 2016. Eur Urol, 2017. 71: 504.
https://pubmed.ncbi.nlm.nih.gov/27506951
128.Ye, Z., et al. Efficacy and Safety of Tamsulosin in Medical Expulsive Therapy for Distal Ureteral Stones with Renal Colic: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial. Eur Urol, 2018. 73: 385.
https://pubmed.ncbi.nlm.nih.gov/29137830
129.Bai, Y., et al. Tadalafil Facilitates the Distal Ureteral Stone Expulsion: A Meta-Analysis. J Endourol, 2017. 31: 557.
https://pubmed.ncbi.nlm.nih.gov/28384011
130.Porpiglia, F., et al. Corticosteroids and tamsulosin in the medical expulsive therapy for symptomatic distal ureter stones: single drug or association? Eur Urol, 2006. 50: 339.
https://pubmed.ncbi.nlm.nih.gov/16574310
131.Kachrilas, S., et al. The current role of percutaneous chemolysis in the management of urolithiasis: review and results. Urolithiasis, 2013. 41: 323.
https://pubmed.ncbi.nlm.nih.gov/23743991
132.Ong, A., et al. Selection and Outcomes for Dissolution Therapy in Uric Acid Stones: A Systematic Review of Literature. Curr Urol Rep, 2023. 24: 355.
https://pubmed.ncbi.nlm.nih.gov/37079196
133.El-Gamal, O., et al. Role of combined use of potassium citrate and tamsulosin in the management of uric acid distal ureteral calculi. Urol Res, 2012. 40: 219.
https://pubmed.ncbi.nlm.nih.gov/21858663
134.Elbaset, M.A., et al. Optimal non-invasive treatment of 1-2.5 cm radiolucent renal stones: oral dissolution therapy, shock wave lithotripsy or combined treatment-a randomized controlled trial. World J Urol, 2020. 38: 207.
https://pubmed.ncbi.nlm.nih.gov/30944968
135.Musa, A.A. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial: results of a prospective randomized study. Int Urol Nephrol, 2008. 40: 19.
https://pubmed.ncbi.nlm.nih.gov/17394095
136.Shen, P., et al. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: a systematic review and meta-analysis. J Urol, 2011. 186: 1328.
https://pubmed.ncbi.nlm.nih.gov/21855945
137.Wang, H., et al. Meta-Analysis of Stenting versus Non-Stenting for the Treatment of Ureteral Stones. PLoS One, 2017. 12: e0167670.
https://pubmed.ncbi.nlm.nih.gov/28068364
138.Ghoneim, I.A., et al. Extracorporeal shock wave lithotripsy in impacted upper ureteral stones: a prospective randomized comparison between stented and non-stented techniques. Urology, 2010. 75: 45.
https://pubmed.ncbi.nlm.nih.gov/19811806
139.Platonov, M.A., et al. Pacemakers, implantable cardioverter/defibrillators, and extracorporeal shockwave lithotripsy: evidence-based guidelines for the modern era. J Endourol, 2008. 22: 243.
https://pubmed.ncbi.nlm.nih.gov/18294028
140.Li, W.M., et al. Clinical predictors of stone fragmentation using slow-rate shock wave lithotripsy. Urol Int, 2007. 79: 124.
https://pubmed.ncbi.nlm.nih.gov/17851280
141.Yilmaz, E., et al. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology, 2005. 66: 1160.
https://pubmed.ncbi.nlm.nih.gov/16360432
142.Pace, K.T., et al. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol, 2005. 174: 595.
https://pubmed.ncbi.nlm.nih.gov/16006908
143.Madbouly, K., et al. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol, 2005. 173: 127.
https://pubmed.ncbi.nlm.nih.gov/15592053
144.Semins, M.J., et al. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol, 2008. 179: 194.
https://pubmed.ncbi.nlm.nih.gov/18001796
145.Li, K., et al. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol, 2013. 190: 1260.
https://pubmed.ncbi.nlm.nih.gov/23538240
146.Nguyen, D.P., et al. Optimization of Extracorporeal Shock Wave Lithotripsy Delivery Rates Achieves Excellent Outcomes for Ureteral Stones: Results of a Prospective Randomized Trial. J Urol, 2015. 194: 418.
https://pubmed.ncbi.nlm.nih.gov/25661296
147.Pishchalnikov, Y.A., et al. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J Endourol, 2006. 20: 537.
https://pubmed.ncbi.nlm.nih.gov/16903810
148.Kang, D.H., et al. Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis. PLoS One, 2016. 11: e0158661.
https://pubmed.ncbi.nlm.nih.gov/27387279
149.Al-Dessoukey, A.A., et al. Ultraslow full-power shock wave lithotripsy versus slow power-ramping shock wave lithotripsy in stones with high attenuation value: A randomized comparative study. Int J Urol, 2020. 27: 165.
https://pubmed.ncbi.nlm.nih.gov/31793084
150.Connors, B.A., et al. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int, 2009. 104: 1004.
https://pubmed.ncbi.nlm.nih.gov/19338532
151.Moon, K.B., et al. Optimal shock wave rate for shock wave lithotripsy in urolithiasis treatment: a prospective randomized study. Korean J Urol, 2012. 53: 790.
https://pubmed.ncbi.nlm.nih.gov/23185672
152.Ng, C.F., et al. A prospective, randomized study of the clinical effects of shock wave delivery for unilateral kidney stones: 60 versus 120 shocks per minute. J Urol, 2012. 188: 837.
https://pubmed.ncbi.nlm.nih.gov/22819406
153.Al-Dessoukey, A.A., et al. Ultraslow full-power shock wave lithotripsy protocol in the management of high attenuation value upper ureteric stones: A randomized comparative study. Int J Urol, 2021. 28: 33.
https://pubmed.ncbi.nlm.nih.gov/32985780
154.Lopez-Acon, J.D., et al. Analysis of the Efficacy and Safety of Increasing the Energy Dose Applied Per Session by Increasing the Number of Shock Waves in Extracorporeal Lithotripsy: A Prospective and Comparative Study. J Endourol, 2017. 31: 1289.
https://pubmed.ncbi.nlm.nih.gov/29048206
155.Connors, B.A., et al. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int, 2009. 103: 104.
https://pubmed.ncbi.nlm.nih.gov/18680494
156.Handa, R.K., et al. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. BJU Int, 2012. 110: E1041.
https://pubmed.ncbi.nlm.nih.gov/22612388
157.Skuginna, V., et al. Does Stepwise Voltage Ramping Protect the Kidney from Injury During Extracorporeal Shockwave Lithotripsy? Results of a Prospective Randomized Trial. Eur Urol, 2016. 69: 267.
https://pubmed.ncbi.nlm.nih.gov/26119561
158.Maloney, M.E., et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J Endourol, 2006. 20: 603.
https://pubmed.ncbi.nlm.nih.gov/16999607
159.Demirci, D., et al. Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J Endourol, 2007. 21: 1407.
https://pubmed.ncbi.nlm.nih.gov/18044996
160.Honey, R.J., et al. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Urology, 2010. 75: 38.
https://pubmed.ncbi.nlm.nih.gov/19896176
161.Ng, C.F., et al. Effect of Stepwise Voltage Escalation on Treatment Outcomes following Extracorporeal Shock Wave Lithotripsy of Renal Calculi: A Prospective Randomized Study. J Urol, 2019. 202: 986.
https://pubmed.ncbi.nlm.nih.gov/31112104
162.Abdelbary, A.M., et al. Value of early second session shock wave lithotripsy in treatment of upper ureteric stones compared to laser ureteroscopy. World J Urol, 2021. 39: 3089.
https://pubmed.ncbi.nlm.nih.gov/33471164
163.Pishchalnikov, Y.A., et al. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol, 2006. 176: 2706.
https://pubmed.ncbi.nlm.nih.gov/17085200
164.Tailly, G.G., et al. Optical coupling control: an important step toward better shockwave lithotripsy. J Endourol, 2014. 28: 1368.
https://pubmed.ncbi.nlm.nih.gov/24978424
165.Jain, A., et al. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol, 2007. 51: 1680.
https://pubmed.ncbi.nlm.nih.gov/17112655
166.Van Besien, J., et al. Ultrasonography Is Not Inferior to Fluoroscopy to Guide Extracorporeal Shock Waves during Treatment of Renal and Upper Ureteric Calculi: A Randomized Prospective Study. Biomed Res Int, 2017. 2017: 7802672.
https://pubmed.ncbi.nlm.nih.gov/28589147
167.Eichel, L., et al. Operator experience and adequate anesthesia improve treatment outcome with third-generation lithotripters. J Endourol, 2001. 15: 671.
https://pubmed.ncbi.nlm.nih.gov/11697394
168.Sorensen, C., et al. Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. J Urol, 2002. 168: 35.
https://pubmed.ncbi.nlm.nih.gov/12050487
169.Cleveland, R.O., et al. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J Endourol, 2004. 18: 629.
https://pubmed.ncbi.nlm.nih.gov/15597649
170.Aboumarzouk, O.M., et al. Analgesia for patients undergoing shockwave lithotripsy for urinary stones - a systematic review and meta-analysis. Int Braz J Urol, 2017. 43: 394.
https://pubmed.ncbi.nlm.nih.gov/28338301
171.Honey, R.J., et al. A prospective study examining the incidence of bacteriuria and urinary tract infection after shock wave lithotripsy with targeted antibiotic prophylaxis. J Urol, 2013. 189: 2112.
https://pubmed.ncbi.nlm.nih.gov/23276509
172.Lu, Y., et al. Antibiotic prophylaxis for shock wave lithotripsy in patients with sterile urine before treatment may be unnecessary: a systematic review and meta-analysis. J Urol, 2012. 188: 441.
https://pubmed.ncbi.nlm.nih.gov/22704118
173.Oestreich, M.C., et al. Alpha-blockers after shock wave lithotripsy for renal or ureteral stones in adults. Cochrane Database Syst Rev, 2020. 11: CD013393.
https://pubmed.ncbi.nlm.nih.gov/33179245
174.Yuan, C., et al. Efficacy and Safety of External Physical Vibration Lithecbole After Extracorporeal Shock Wave Lithotripsy or Retrograde Intrarenal Surgery for Urinary Stone: A Systematic Review and Meta-analysis. J Endourol, 2021. 35: 712.
https://pubmed.ncbi.nlm.nih.gov/32972194
175.Tzelves, L., et al. Shockwave Lithotripsy Complications According to Modified Clavien-Dindo Grading System. A Systematic Review and Meta-regression Analysis in a Sample of 115 Randomized Controlled Trials. Eur Urol Focus, 2022. 8: 1452.
https://pubmed.ncbi.nlm.nih.gov/34848163
176.Preminger, G.M., et al. 2007 Guideline for the management of ureteral calculi. Eur Urol, 2007. 52: 1610.
https://pubmed.ncbi.nlm.nih.gov/18074433
177.Lingeman, J.E., et al. Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA, 1990. 263: 1789.
https://pubmed.ncbi.nlm.nih.gov/2313851
178.Krambeck, A.E., et al. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of followup. J Urol, 2006. 175: 1742.
https://pubmed.ncbi.nlm.nih.gov/16600747
179.Eassa, W.A., et al. Prospective study of the long-term effects of shock wave lithotripsy on renal function and blood pressure. J Urol, 2008. 179: 964.
https://pubmed.ncbi.nlm.nih.gov/18207167
180.Yu, C., et al. A systematic review and meta-analysis of new onset hypertension after extracorporeal shock wave lithotripsy. Int Urol Nephrol, 2014. 46: 719.
https://pubmed.ncbi.nlm.nih.gov/24162890
181.Fankhauser, C.D., et al. Long-term Adverse Effects of Extracorporeal Shock-wave Lithotripsy for Nephrolithiasis and Ureterolithiasis: A Systematic Review. Urology, 2015. 85: 991.
https://pubmed.ncbi.nlm.nih.gov/25917723
182.Fankhauser, C.D., et al. Prevalence of hypertension and diabetes after exposure to extracorporeal shock-wave lithotripsy in patients with renal calculi: a retrospective non-randomized data analysis. Int Urol Nephrol, 2018. 50: 1227.
https://pubmed.ncbi.nlm.nih.gov/29785660
183.Ather, M.H., et al. Does ureteral stenting prior to shock wave lithotripsy influence the need for intervention in steinstrasse and related complications? Urol Int, 2009. 83: 222.
https://pubmed.ncbi.nlm.nih.gov/19752621
184.Madbouly, K., et al. Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol, 2002. 167: 1239.
https://pubmed.ncbi.nlm.nih.gov/11832705
185.Sayed, M.A., et al. Steinstrasse after extracorporeal shockwave lithotripsy: aetiology, prevention and management. BJU Int, 2001. 88: 675.
https://pubmed.ncbi.nlm.nih.gov/11890235
186.Skolarikos, A., et al. Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol, 2006. 50: 981.
https://pubmed.ncbi.nlm.nih.gov/16481097
187.Osman, M.M., et al. 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol, 2005. 47: 860.
https://pubmed.ncbi.nlm.nih.gov/15925084
188.Tan, Y.M., et al. Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the Storz Modulith SL 20 lithotripter at the Singapore general hospital. Scand J Urol Nephrol, 2002. 36: 363.
https://pubmed.ncbi.nlm.nih.gov/12487741
189.Muller-Mattheis, V.G., et al. Bacteremia during extracorporeal shock wave lithotripsy of renal calculi. J Urol, 1991. 146: 733.
https://pubmed.ncbi.nlm.nih.gov/1875482
190.Maker, V., et al. Gastrointestinal injury secondary to extracorporeal shock wave lithotripsy: a review of the literature since its inception. J Am Coll Surg, 2004. 198: 128.
https://pubmed.ncbi.nlm.nih.gov/14698320
191.Chen, C.S., et al. Subcapsular hematoma of spleen--a complication following extracorporeal shock wave lithotripsy for ureteral calculus. Changgeng Yi Xue Za Zhi, 1992. 15: 215.
https://pubmed.ncbi.nlm.nih.gov/1295657
192.Kim, T.B., et al. Life-threatening complication after extracorporeal shock wave lithotripsy for a renal stone: a hepatic subcapsular hematoma. Korean J Urol, 2010. 51: 212.
https://pubmed.ncbi.nlm.nih.gov/20414400
193.Ng, C.F., et al. Hepatic haematoma after shockwave lithotripsy for renal stones. Urol Res, 2012. 40: 785.
https://pubmed.ncbi.nlm.nih.gov/22782117
194.Wendt-Nordahl, G., et al. Do new generation flexible ureterorenoscopes offer a higher treatment success than their predecessors? Urol Res, 2011. 39: 185.
https://pubmed.ncbi.nlm.nih.gov/21052986
195.Wang, Q., et al. Rigid ureteroscopic lithotripsy versus percutaneous nephrolithotomy for large proximal ureteral stones: A meta-analysis. PLoS One, 2017. 12: e0171478.
https://pubmed.ncbi.nlm.nih.gov/28182718
196.Wang, Y., et al. Comparison of the efficacy and safety of URSL, RPLU, and MPCNL for treatment of large upper impacted ureteral stones: a randomized controlled trial. BMC Urol, 2017. 17: 50.
https://pubmed.ncbi.nlm.nih.gov/28662708
197.Deng, T., et al. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J Urol, 2019. 37: 1687.
https://pubmed.ncbi.nlm.nih.gov/30430253
198.Aboumarzouk, O.M., et al. Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol, 2012. 26: 1257.
https://pubmed.ncbi.nlm.nih.gov/22642568
199.Geraghty, R., et al. Evidence for Ureterorenoscopy and Laser Fragmentation (URSL) for Large Renal Stones in the Modern Era. Curr Urol Rep, 2015. 16: 54.
https://pubmed.ncbi.nlm.nih.gov/26077357
200.Binbay, M., et al. Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol, 2010. 24: 1929.
https://pubmed.ncbi.nlm.nih.gov/21043835
201.Yaghoubian, A.J., et al. Displacement of Lower Pole Stones During Retrograde Intrarenal Surgery Improves Stone-free Status: A Prospective Randomized Controlled Trial. J Urol, 2023. 209: 963.
https://pubmed.ncbi.nlm.nih.gov/36753676
202.Luo, Z., et al. Comparison of retrograde intrarenal surgery under regional versus general anaesthesia: A systematic review and meta-analysis. Int J Surg, 2020. 82: 36.
https://pubmed.ncbi.nlm.nih.gov/32858209
203.Schembri, M., et al. Outcomes of loco-regional anaesthesia in ureteroscopy for stone disease: a systematic review. Curr Opin Urol, 2020. 30: 726.
https://pubmed.ncbi.nlm.nih.gov/32657841
204.Omar, M., et al. Randomized comparison of 4.5/6 Fr versus 6/7.5 Fr ureteroscopes for laser lithotripsy of lower/middle ureteral calculi: towards optimization of efficacy and safety of semirigid ureteroscopy. World J Urol, 2022. 40: 3075.
https://pubmed.ncbi.nlm.nih.gov/36208314
205.Wu, T., et al. Ureteroscopic Lithotripsy versus Laparoscopic Ureterolithotomy or Percutaneous Nephrolithotomy in the Management of Large Proximal Ureteral Stones: A Systematic Review and Meta-Analysis. Urol Int, 2017. 99: 308.
https://pubmed.ncbi.nlm.nih.gov/28586770
206.Agrawal, S., et al. Initial experience with slimmest single-use flexible ureteroscope Uscope PU3033A (PUSEN) in retrograde intrarenal surgery and its comparison with Uscope PU3022a: a single-center prospective study. World J Urol, 2021. 39: 3957.
https://pubmed.ncbi.nlm.nih.gov/33970313
207.Van Compernolle, D., et al. Reusable, Single-Use, or Both: A Cost Efficiency Analysis of Flexible Ureterorenoscopes After 983 Cases. J Endourol, 2021. 35: 1454.
https://pubmed.ncbi.nlm.nih.gov/33775101
208.Dragos, L.B., et al. Characteristics of current digital single-use flexible ureteroscopes versus their reusable counterparts: an in-vitro comparative analysis. Transl Androl Urol, 2019. 8: S359.
https://pubmed.ncbi.nlm.nih.gov/31656742
209.Davis, N.F., et al. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes. J Endourol, 2018. 32: 214.
https://pubmed.ncbi.nlm.nih.gov/29373918
210.Dickstein, R.J., et al. Is a safety wire necessary during routine flexible ureteroscopy? J Endourol, 2010. 24: 1589.
https://pubmed.ncbi.nlm.nih.gov/20836719
211.Eandi, J.A., et al. Evaluation of the impact and need for use of a safety guidewire during ureteroscopy. J Endourol, 2008. 22: 1653.
https://pubmed.ncbi.nlm.nih.gov/18721045
212.Ulvik, O., et al. Ureteroscopy with and without safety guide wire: should the safety wire still be mandatory? J Endourol, 2013. 27: 1197.
https://pubmed.ncbi.nlm.nih.gov/23795760
213.Peng, L., et al. Fluoroless versus conventional ureteroscopy for urinary stones: a systematic review and meta-analysis. Minerva Urol Nephrol, 2021. 73: 299.
https://pubmed.ncbi.nlm.nih.gov/33016033
214.Subiela, J.D., et al. Systematic Review and Meta-Analysis Comparing Fluoroless Ureteroscopy and Conventional Ureteroscopy in the Management of Ureteral and Renal Stones. J Endourol, 2021. 35: 417.
https://pubmed.ncbi.nlm.nih.gov/33076706
215.Ambani, S.N., et al. Ureteral stents for impassable ureteroscopy. J Endourol, 2013. 27: 549.
https://pubmed.ncbi.nlm.nih.gov/23066997
216.Pace, K.T., et al. Same Session Bilateral Ureteroscopy for Multiple Stones: Results from the CROES URS Global Study. J Urol, 2017. 198: 130.
https://pubmed.ncbi.nlm.nih.gov/28163031
217.Ge, H., et al. Bilateral Same-Session Ureteroscopy for Treatment of Ureteral Calculi: A Systematic Review and Meta-Analysis. J Endourol, 2016. 30: 1169.
https://pubmed.ncbi.nlm.nih.gov/27626367
218.Karim, S.S., et al. Role of pelvicalyceal anatomy in the outcomes of retrograde intrarenal surgery (RIRS) for lower pole stones: outcomes with a systematic review of literature. Urolithiasis, 2020. 48: 263.
https://pubmed.ncbi.nlm.nih.gov/31372691
219.Dragos, L.B., et al. Which Flexible Ureteroscopes (Digital vs. Fiber-Optic) Can Easily Reach the Difficult Lower Pole Calices and Have Better End-Tip Deflection: In Vitro Study on K-Box. A PETRA Evaluation. J Endourol, 2017. 31: 630.
https://pubmed.ncbi.nlm.nih.gov/28478744
220.Lane, J., et al. Correlation of Operative Time with Outcomes of Ureteroscopy and Stone Treatment: a Systematic Review of Literature. Curr Urol Rep, 2020. 21: 17.
https://pubmed.ncbi.nlm.nih.gov/32211985
221.Stern, J.M., et al. Safety and efficacy of ureteral access sheaths. J Endourol, 2007. 21: 119.
https://pubmed.ncbi.nlm.nih.gov/17338606
222.L’Esperance J, O., et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology, 2005. 66: 252.
https://pubmed.ncbi.nlm.nih.gov/16040093
223.Traxer, O., et al. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol, 2013. 189: 580.
https://pubmed.ncbi.nlm.nih.gov/22982421
224.Traxer, O., et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: The Clinical Research Office of the Endourological Society Ureteroscopy Global Study. World J Urol, 2015. 33: 2137.
https://pubmed.ncbi.nlm.nih.gov/25971204
225.Stern, K.L., et al. A Prospective Study Analyzing the Association Between High-grade Ureteral Access Sheath Injuries and the Formation of Ureteral Strictures. Urology, 2019. 128: 38.
https://pubmed.ncbi.nlm.nih.gov/30878681
226.Aykanat, C., et al. The Impact of Ureteral Access Sheath Size on Perioperative Parameters and Postoperative Ureteral Stricture in Retrograde Intrarenal Surgery. J Endourol, 2022. 36: 1013.
https://pubmed.ncbi.nlm.nih.gov/35229631
227.Lima, A., et al. Impact of ureteral access sheath on renal stone treatment: prospective comparative non-randomised outcomes over a 7-year period. World J Urol, 2020. 38: 1329.
https://pubmed.ncbi.nlm.nih.gov/31342247
228.Santiago, J.E., et al. To Dust or Not To Dust: a Systematic Review of Ureteroscopic Laser Lithotripsy Techniques. Curr Urol Rep, 2017. 18: 32.
https://pubmed.ncbi.nlm.nih.gov/28271355
229.Bach, T., et al. Working tools in flexible ureterorenoscopy--influence on flow and deflection: what does matter? J Endourol, 2008. 22: 1639.
https://pubmed.ncbi.nlm.nih.gov/18620506
230.Leijte, J.A., et al. Holmium laser lithotripsy for ureteral calculi: predictive factors for complications and success. J Endourol, 2008. 22: 257.
https://pubmed.ncbi.nlm.nih.gov/18294030
231.Pierre, S., et al. Holmium laser for stone management. World J Urol, 2007. 25: 235.
https://pubmed.ncbi.nlm.nih.gov/17340157
232.Ventimiglia, E., et al. High- and Low-Power Laser Lithotripsy Achieves Similar Results: A Systematic Review and Meta-Analysis of Available Clinical Series. J Endourol, 2021. 35: 1146.
https://pubmed.ncbi.nlm.nih.gov/33677987
233.Garcia Rojo, E., et al. Comparison of Low-Power vs High-Power Holmium Lasers in Pediatric Retrograde Intrarenal Surgery Outcomes. J Endourol, 2023. 37: 509.
https://pubmed.ncbi.nlm.nih.gov/36860192
234.Sanchez-Puy, A., et al. New Generation Pulse Modulation in Holmium:YAG Lasers: A Systematic Review of the Literature and Meta-Analysis. J Clin Med, 2022. 11.
https://pubmed.ncbi.nlm.nih.gov/35683595
235.Ibrahim, A., et al. Double-Blinded Prospective Randomized Clinical Trial Comparing Regular and Moses Modes of Holmium Laser Lithotripsy. J Endourol, 2020. 34: 624.
https://pubmed.ncbi.nlm.nih.gov/32143552
236.Perri, D., et al. Treatment of ureteral stones with LithoEVO device and Vapor Tunnel tool. Minerva Urol Nephrol, 2023. 75: 210.
https://pubmed.ncbi.nlm.nih.gov/36637458
237.Kronenberg, P., et al. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol, 2021. 31: 80.
https://pubmed.ncbi.nlm.nih.gov/33470684
238.Ulvik, O., et al. Thulium Fibre Laser versus Holmium:YAG for Ureteroscopic Lithotripsy: Outcomes from a Prospective Randomised Clinical Trial. Eur Urol, 2022. 82: 73.
https://pubmed.ncbi.nlm.nih.gov/35300888
239.Haas, C.R., et al. Pulse-modulated Holmium:YAG Laser vs the Thulium Fiber Laser for Renal and Ureteral Stones: A Single-center Prospective Randomized Clinical Trial. J Urol, 2023. 209: 374.
https://pubmed.ncbi.nlm.nih.gov/36621994
240.Chua, M.E., et al. Thulium fibre laser vs holmium: yttrium-aluminium-garnet laser lithotripsy for urolithiasis: meta-analysis of clinical studies. BJU Int, 2023. 131: 383.
https://pubmed.ncbi.nlm.nih.gov/36260370
241.Garg, S., et al. Ureteroscopic laser lithotripsy versus ballistic lithotripsy for treatment of ureteric stones: a prospective comparative study. Urol Int, 2009. 82: 341.
https://pubmed.ncbi.nlm.nih.gov/19440025
242.Binbay, M., et al. Evaluation of pneumatic versus holmium:YAG laser lithotripsy for impacted ureteral stones. Int Urol Nephrol, 2011. 43: 989.
https://pubmed.ncbi.nlm.nih.gov/21479563
243.Ahmed, M., et al. Systematic evaluation of ureteral occlusion devices: insertion, deployment, stone migration, and extraction. Urology, 2009. 73: 976.
https://pubmed.ncbi.nlm.nih.gov/19394493
244.John, T.T., et al. Adjunctive tamsulosin improves stone free rate after ureteroscopic lithotripsy of large renal and ureteric calculi: a prospective randomized study. Urology, 2010. 75: 1040.
https://pubmed.ncbi.nlm.nih.gov/19819530
245.Chen, H., et al. The Outcomes of Pre-Stenting on Renal and Ureteral Stones: A Meta-Analysis. Urol Int, 2022. 106: 495.
https://pubmed.ncbi.nlm.nih.gov/34788759
246.Law, Y.X.T., et al. Role of pre-operative ureteral stent on outcomes of retrograde intra-renal surgery (RIRS): systematic review and meta-analysis of 3831 patients and comparison of Asian and non-Asian cohorts. World J Urol, 2022. 40: 1377.
https://pubmed.ncbi.nlm.nih.gov/35072738
247.Allam, C.L., et al. The Role of Routine Ureteral Stenting Following Uncomplicated Ureteroscopic Treatment for Upper Ureteral and Renal Stones: A Randomized Control Trial. J Endourol, 2023. 37: 257.
https://pubmed.ncbi.nlm.nih.gov/36401514
248.Ehsanullah, S.A., et al. Stent diameter and stent-related symptoms, does size matter? A systematic review and meta-analysis. Urol Ann, 2022. 14: 295.
https://pubmed.ncbi.nlm.nih.gov/36505999
249.Moon, T.D. Ureteral stenting--an obsolete procedure? J Urol, 2002. 167: 1984.
https://pubmed.ncbi.nlm.nih.gov/11956423
250.Jian, Z., et al. Combination of solifenacin and tamsulosin may provide additional beneficial effects for ureteral stent-related symptoms-outcomes from a network meta-analysis. World J Urol, 2019. 37: 289.
https://pubmed.ncbi.nlm.nih.gov/30030658
251.Cheng, C., et al. The Effect of Preoperative Tamsulosin on Ureteral Navigation, Operation, and Safety: A Systematic Review and Meta-Analysis. Urol Int, 2023. 107: 557.
https://pubmed.ncbi.nlm.nih.gov/36812907
252.Kim, J.K., et al. Silodosin for Prevention of Ureteral Injuries Resulting from Insertion of a Ureteral Access Sheath: A Randomized Controlled Trial. Eur Urol Focus, 2022. 8: 572.
https://pubmed.ncbi.nlm.nih.gov/33741297
253.Dasgupta, R., et al. Shockwave Lithotripsy Versus Ureteroscopic Treatment as Therapeutic Interventions for Stones of the Ureter (TISU): A Multicentre Randomised Controlled Non-inferiority Trial. Eur Urol, 2021. 80: 46.
https://pubmed.ncbi.nlm.nih.gov/33810921
254.Perez Castro, E., et al. Differences in ureteroscopic stone treatment and outcomes for distal, mid-, proximal, or multiple ureteral locations: the Clinical Research Office of the Endourological Society ureteroscopy global study. Eur Urol, 2014. 66: 102.
https://pubmed.ncbi.nlm.nih.gov/24507782
255.Bhojani, N., et al. Risk Factors for Urosepsis After Ureteroscopy for Stone Disease: A Systematic Review with Meta-Analysis. J Endourol, 2021. 35: 991.
https://pubmed.ncbi.nlm.nih.gov/33544019
256.De Coninck, V., et al. Complications of ureteroscopy: a complete overview. World J Urol, 2020. 38: 2147.
https://pubmed.ncbi.nlm.nih.gov/31748953
257.Bhanot, R., et al. Predictors and Strategies to Avoid Mortality Following Ureteroscopy for Stone Disease: A Systematic Review from European Association of Urologists Sections of Urolithiasis (EULIS) and Uro-technology (ESUT). Eur Urol Focus, 2022. 8: 598.
https://pubmed.ncbi.nlm.nih.gov/33674255
258.Dupuis, H., et al. Preoperative risk factors for complications after flexible and rigid ureteroscopy for stone disease: A French multicentric study. Prog Urol, 2022. 32: 593.
https://pubmed.ncbi.nlm.nih.gov/35314100
259.Chugh, S., et al. Predictors of Urinary Infections and Urosepsis After Ureteroscopy for Stone Disease: a Systematic Review from EAU Section of Urolithiasis (EULIS). Curr Urol Rep, 2020. 21: 16.
https://pubmed.ncbi.nlm.nih.gov/32211969
260.Tokas, T., et al. Role of Intrarenal Pressure in Modern Day Endourology (Mini-PCNL and Flexible URS): a Systematic Review of Literature. Curr Urol Rep, 2021. 22: 52.
https://pubmed.ncbi.nlm.nih.gov/34622341
261.Zeng, G., et al. Mini Percutaneous Nephrolithotomy Is a Noninferior Modality to Standard Percutaneous Nephrolithotomy for the Management of 20-40mm Renal Calculi: A Multicenter Randomized Controlled Trial. Eur Urol, 2021. 79: 114.
https://pubmed.ncbi.nlm.nih.gov/32994063
262.Ruhayel, Y., et al. Tract Sizes in Miniaturized Percutaneous Nephrolithotomy: A Systematic Review from the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol, 2017. 72: 220.
https://pubmed.ncbi.nlm.nih.gov/28237786
263.Tikkinen, K.A.O., et al., EAU Guidelines on Thromboprophylaxis in Urological Surgery, in EAU Guidelines, Edn. published as the 32nd EAU Annual Meeting, London, E.A.o.U.G. Office, Editor. 2017, European Association of Urology Guidelines Office: Arnhem, The Netherlands.
264.Castellani, D., et al. The Impact of Lasers in Percutaneous Nephrolithotomy Outcomes: Results from a Systematic Review and Meta-Analysis of Randomized Comparative Trials. J Endourol, 2022. 36: 151.
https://pubmed.ncbi.nlm.nih.gov/34314230
265.Abdullatif, V.A., et al. The Safety and Efficacy of Endoscopic Combined Intrarenal Surgery (ECIRS) versus Percutaneous Nephrolithotomy (PCNL): A Systematic Review and Meta-Analysis. Adv Urol, 2022. 2022: 1716554.
https://pubmed.ncbi.nlm.nih.gov/35898579
266.Cracco, C.M., et al. Endoscopic combined intrarenal surgery (ECIRS) - Tips and tricks to improve outcomes: A systematic review. Turk J Urol, 2020. 46: S46.
https://pubmed.ncbi.nlm.nih.gov/32877638
267.Wen, J., et al. Minimally invasive percutaneous nephrolithotomy versus endoscopic combined intrarenal surgery with flexible ureteroscope for partial staghorn calculi: A randomised controlled trial. Int J Surg, 2016. 28: 22.
https://pubmed.ncbi.nlm.nih.gov/26898135
268.Davis, N.F., et al. Comparison of Treatment Outcomes for Fluoroscopic and Fluoroscopy-free Endourological Procedures: A Systematic Review on Behalf of the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol Focus, 2023. 9: 938.
https://pubmed.ncbi.nlm.nih.gov/37277273
269.Yang, Y.H., et al. Ultrasound-guided versus fluoroscopy-guided percutaneous nephrolithotomy: a systematic review and meta-analysis. World J Urol, 2019. 37: 777.
https://pubmed.ncbi.nlm.nih.gov/30244337
270.Zhu, W., et al. A prospective and randomised trial comparing fluoroscopic, total ultrasonographic, and combined guidance for renal access in mini-percutaneous nephrolithotomy. BJU Int, 2017. 119: 612.
https://pubmed.ncbi.nlm.nih.gov/27862806
271.Isac, W., et al. Endoscopic-guided versus fluoroscopic-guided renal access for percutaneous nephrolithotomy: a comparative analysis. Urology, 2013. 81: 251.
https://pubmed.ncbi.nlm.nih.gov/23374772
272.Taguchi, K., et al. Ureteroscopy-assisted puncture for ultrasonography-guided renal access significantly improves overall treatment outcomes in endoscopic combined intrarenal surgery. Int J Urol, 2021. 28: 913.
https://pubmed.ncbi.nlm.nih.gov/34028095
273.Srivastava, A., et al. A prospective randomized study comparing the four tract dilation methods of percutaneous nephrolithotomy. World J Urol, 2017. 35: 803.
https://pubmed.ncbi.nlm.nih.gov/27614706
274.Armas-Phan, M., et al. Ultrasound guidance can be used safely for renal tract dilatation during percutaneous nephrolithotomy. BJU Int, 2020. 125: 284.
https://pubmed.ncbi.nlm.nih.gov/30811835
275.Wu, Y., et al. Effectiveness and safety of four tract dilation methods of percutaneous nephrolithotomy: A meta-analysis. Exp Ther Med, 2020. 19: 2661.
https://pubmed.ncbi.nlm.nih.gov/32256747
276.Mykoniatis, I., et al. Mini percutaneous nephrolithotomy versus standard percutaneous nephrolithotomy for the management of renal stones over 2 cm: a systematic review and meta-analysis of randomized controlled trials. Minerva Urol Nephrol, 2022. 74: 409.
https://pubmed.ncbi.nlm.nih.gov/35147386
277.Deng, J., et al. Standard versus mini-percutaneous nephrolithotomy for renal stones: a meta-analysis. Scand J Surg, 2021. 110: 301.
https://pubmed.ncbi.nlm.nih.gov/32489145
278.Sharma, G., et al. Mini Versus Standard Percutaneous Nephrolithotomy for the Management of Renal Stone Disease: Systematic Review and Meta-analysis of Randomized Controlled Trials. Eur Urol Focus, 2022. 8: 1376.
https://pubmed.ncbi.nlm.nih.gov/34404619
279.Tzelves, L., et al. Suction Use During Endourological Procedures. Curr Urol Rep, 2020. 21: 46.
https://pubmed.ncbi.nlm.nih.gov/32915324
280.Lu, Y., et al. Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J Urol, 2013. 31: 1303.
https://pubmed.ncbi.nlm.nih.gov/22903789
281.Cormio, L., et al. Exit strategies following percutaneous nephrolithotomy (PCNL): a comparison of surgical outcomes in the Clinical Research Office of the Endourological Society (CROES) PCNL Global Study. World J Urol, 2013. 31: 1239.
https://pubmed.ncbi.nlm.nih.gov/22752586
282.Chen, Z.J., et al. Comparison of tubeless percutaneous nephrolithotomy and standard percutaneous nephrolithotomy for kidney stones: A meta-analysis of randomized trials. Asian J Surg, 2020. 43: 60.
https://pubmed.ncbi.nlm.nih.gov/30782495
283.Lee, J.Y., et al. Intraoperative and postoperative feasibility and safety of total tubeless, tubeless, small-bore tube, and standard percutaneous nephrolithotomy: a systematic review and network meta-analysis of 16 randomized controlled trials. BMC Urol, 2017. 17: 48.
https://pubmed.ncbi.nlm.nih.gov/28655317
284.Garofalo, M., et al. Tubeless procedure reduces hospitalization and pain after percutaneous nephrolithotomy: results of a multivariable analysis. Urolithiasis, 2013. 41: 347.
https://pubmed.ncbi.nlm.nih.gov/23632910
285.Jiang, H., et al. Improving Drainage After Percutaneous Nephrolithotomy Based on Health-Related Quality of Life: A Prospective Randomized Study. J Endourol, 2017. 31: 1131.
https://pubmed.ncbi.nlm.nih.gov/28891320
286.Seitz, C., et al. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol, 2012. 61: 146.
https://pubmed.ncbi.nlm.nih.gov/21978422
287.Liu, M., et al. Preoperative Midstream Urine Cultures vs Renal Pelvic Urine Culture or Stone Culture in Predicting Systemic Inflammatory Response Syndrome and Urosepsis After Percutaneous Nephrolithotomy: A Systematic Review and Meta-Analysis. J Endourol, 2021. 35: 1467.
https://pubmed.ncbi.nlm.nih.gov/34128382
288.Yu, J., et al. Antibiotic prophylaxis in perioperative period of percutaneous nephrolithotomy: a systematic review and meta-analysis of comparative studies. World J Urol, 2020. 38: 1685.
https://pubmed.ncbi.nlm.nih.gov/31562533
289.Yoshida, S., et al. The significance of intraoperative renal pelvic urine and stone cultures for patients at a high risk of post-ureteroscopy systemic inflammatory response syndrome. Urolithiasis, 2019. 47: 533.
https://pubmed.ncbi.nlm.nih.gov/30758524
290.Zhong, W., et al. Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol, 2008. 22: 2147.
https://pubmed.ncbi.nlm.nih.gov/18811571
291.Wu, C., et al. Comparison of renal pelvic pressure and postoperative fever incidence between standard- and mini-tract percutaneous nephrolithotomy. Kaohsiung J Med Sci, 2017. 33: 36.
https://pubmed.ncbi.nlm.nih.gov/28088272
292.Croghan, S.M., et al. Upper urinary tract pressures in endourology: a systematic review of range, variables and implications. BJU Int, 2023. 131: 267.
https://pubmed.ncbi.nlm.nih.gov/35485243
293.Baccaglini, W., et al. Tranexamic Acid Use for Hemorrhagic Events Prevention in Percutaneous Nephrolithotomy: Systematic Review and Meta-Analysis. J Endourol, 2022. 36: 906.
https://pubmed.ncbi.nlm.nih.gov/35072547
294.Kallidonis, P., et al. Is There Any Clinical Benefit for Peri-operative Administration of Tranexamic Acid for Patients Undergoing Percutaneous Nephrolithotomy? A Systematic Review and Meta-analysis. Curr Urol Rep, 2021. 22: 65.
https://pubmed.ncbi.nlm.nih.gov/34913084
295.Lee, M.J., et al. The Efficacy and Safety of Tranexamic Acid in the Management of Perioperative Bleeding After Percutaneous Nephrolithotomy: A Systematic Review and Meta-Analysis of Comparative Studies. J Endourol, 2022. 36: 303.
https://pubmed.ncbi.nlm.nih.gov/34569280
296.Wang, Z., et al. Comparison of safety and efficacy between single-tract and multiple-tract percutaneous nephrolithotomy treatment of complex renal calculi: a systematic review and meta-analysis. Minerva Urol Nephrol, 2021. 73: 731.
https://pubmed.ncbi.nlm.nih.gov/33781020
297.Winoker, J.S., et al. Opioid-Sparing Analgesic Effects of Peripheral Nerve Blocks in Percutaneous Nephrolithotomy: A Systematic Review. J Endourol, 2022. 36: 38.
https://pubmed.ncbi.nlm.nih.gov/34314232
298.Ma, Y., et al. Efficiency and Safety of Erector Spinae Plane Block in Percutaneous Nephrolithotomy: A Meta-Analysis Based on Randomized Controlled Trials. Urology, 2022. 168: 64.
https://pubmed.ncbi.nlm.nih.gov/35902000
299.Wang, J., et al. The Effect of Local Anesthetic Infiltration Around Nephrostomy Tract on Postoperative Pain Control after Percutaneous Nephrolithotomy: A Systematic Review and Meta-Analysis. Urol Int, 2016. 97: 125.
https://pubmed.ncbi.nlm.nih.gov/27379709
300.Zheng, C., et al. Efficiency and safety of quadratus lumborum block in percutaneous nephrolithotomy: a meta-analysis of randomized controlled studies. Urolithiasis, 2022. 51: 12.
https://pubmed.ncbi.nlm.nih.gov/36480122
301.Mariappan, P., et al. Stone and pelvic urine culture and sensitivity are better than bladder urine as predictors of urosepsis following percutaneous nephrolithotomy: a prospective clinical study. J Urol, 2005. 173: 1610.
https://pubmed.ncbi.nlm.nih.gov/15821509
302.Deng, T., et al. Antibiotic prophylaxis in ureteroscopic lithotripsy: a systematic review and meta-analysis of comparative studies. BJU Int, 2018. 122: 29.
https://pubmed.ncbi.nlm.nih.gov/29232047
303.Chew, B.H., et al. A Single Dose of Intraoperative Antibiotics Is Sufficient to Prevent Urinary Tract Infection During Ureteroscopy. J Endourol, 2016. 30: 63.
https://pubmed.ncbi.nlm.nih.gov/26413885
304.Schnabel, M.J., et al. Perioperative antibiotic prophylaxis for stone therapy. Curr Opin Urol, 2019. 29: 89.
https://pubmed.ncbi.nlm.nih.gov/30668554
305.Gravas, S., et al. Postoperative infection rates in low risk patients undergoing percutaneous nephrolithotomy with and without antibiotic prophylaxis: a matched case control study. J Urol, 2012. 188: 843.
https://pubmed.ncbi.nlm.nih.gov/22819398
306.Danilovic, A., et al. One week pre-operative oral antibiotics for percutaneous nephrolithotomy reduce risk of infection: a systematic review and meta-analysis. Int Braz J Urol, 2023. 49: 184.
https://pubmed.ncbi.nlm.nih.gov/36515617
307.Jung, H.D., et al. Antibiotic prophylaxis for percutaneous nephrolithotomy: An updated systematic review and meta-analysis. PLoS One, 2022. 17: e0267233.
https://pubmed.ncbi.nlm.nih.gov/35427380
308.Sur, R.L., et al. A Randomized Controlled Trial of Preoperative Prophylactic Antibiotics for Percutaneous Nephrolithotomy in Moderate to High Infectious Risk Population: A Report from the EDGE Consortium. J Urol, 2021. 205: 1379.
https://pubmed.ncbi.nlm.nih.gov/33369488
309.Zhou, G., et al. The influencing factors of infectious complications after percutaneous nephrolithotomy: a systematic review and meta-analysis. Urolithiasis, 2022. 51: 17.
https://pubmed.ncbi.nlm.nih.gov/36515726
310.Klingler, H.C., et al. Stone treatment and coagulopathy. Eur Urol, 2003. 43: 75.
https://pubmed.ncbi.nlm.nih.gov/12507547
311.Kefer, J.C., et al. Safety and efficacy of percutaneous nephrostolithotomy in patients on anticoagulant therapy. J Urol, 2009. 181: 144.
https://pubmed.ncbi.nlm.nih.gov/19012931
312.Baron, T.H., et al. Management of antithrombotic therapy in patients undergoing invasive procedures. N Engl J Med, 2013. 368: 2113.
https://pubmed.ncbi.nlm.nih.gov/23718166
313.Naspro, R., et al. Antiplatelet therapy in patients with coronary stent undergoing urologic surgery: is it still no man’s land? Eur Urol, 2013. 64: 101.
https://pubmed.ncbi.nlm.nih.gov/23428067
314.Eberli, D., et al. Urological surgery and antiplatelet drugs after cardiac and cerebrovascular accidents. J Urol, 2010. 183: 2128.
https://pubmed.ncbi.nlm.nih.gov/20399452
315.Razvi, H., et al. Risk factors for perinephric hematoma formation after shockwave lithotripsy: a matched case-control analysis. J Endourol, 2012. 26: 1478.
https://pubmed.ncbi.nlm.nih.gov/22712655
316.Schnabel, M.J., et al. Incidence and risk factors of renal hematoma: a prospective study of 1,300 SWL treatments. Urolithiasis, 2014. 42: 247.
https://pubmed.ncbi.nlm.nih.gov/24419328
317.Schnabel, M.J., et al. Antiplatelet and anticoagulative medication during shockwave lithotripsy. J Endourol, 2014. 28: 1034.
https://pubmed.ncbi.nlm.nih.gov/24851726
318.Aboumarzouk, O.M., et al. Flexible ureteroscopy and holmium:YAG laser lithotripsy for stone disease in patients with bleeding diathesis: a systematic review of the literature. Int Braz J Urol, 2012. 38: 298.
https://pubmed.ncbi.nlm.nih.gov/22765861
319.Elkoushy, M.A., et al. Ureteroscopy in patients with coagulopathies is associated with lower stone-free rate and increased risk of clinically significant hematuria. Int Braz J Urol, 2012. 38: 195.
https://pubmed.ncbi.nlm.nih.gov/22555043
320.Sharaf, A., et al. Ureteroscopy in Patients with Bleeding Diatheses, Anticoagulated, and on Anti-Platelet Agents: A Systematic Review and Meta-Analysis of the Literature. J Endourol, 2017. 31: 1217.
https://pubmed.ncbi.nlm.nih.gov/29048211
321.Sahin, C., et al. Transient cessation of antiplatelet medication before percutaneous stone surgery: does it have any safety concern on bleeding related problems? Urolithiasis, 2017. 45: 371.
https://pubmed.ncbi.nlm.nih.gov/27677484
322.Kuo, R.L., et al. Use of ureteroscopy and holmium:YAG laser in patients with bleeding diatheses. Urology, 1998. 52: 609.
https://pubmed.ncbi.nlm.nih.gov/9763079
323.Altay, B., et al. A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy. Lasers Med Sci, 2017. 32: 1615.
https://pubmed.ncbi.nlm.nih.gov/28733910
324.Gupta, A.D., et al. Coronary stent management in elective genitourinary surgery. BJU Int, 2012. 110: 480.
https://pubmed.ncbi.nlm.nih.gov/22192977
325.Delakas, D., et al. Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter. J Endourol, 2003. 17: 201.
https://pubmed.ncbi.nlm.nih.gov/12816580
326.El-Nahas, A.R., et al. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol, 2007. 51: 1688.
https://pubmed.ncbi.nlm.nih.gov/17161522
327.Lee, J.Y., et al. Stone heterogeneity index as the standard deviation of Hounsfield units: A novel predictor for shock-wave lithotripsy outcomes in ureter calculi. Sci Rep, 2016. 6: 23988.
https://pubmed.ncbi.nlm.nih.gov/27035621
328.Ohmori, K., et al. Effects of shock waves on the mouse fetus. J Urol, 1994. 151: 255.
https://pubmed.ncbi.nlm.nih.gov/8254823
329.Streem, S.B., et al. Extracorporeal shock wave lithotripsy in patients with bleeding diatheses. J Urol, 1990. 144: 1347.
https://pubmed.ncbi.nlm.nih.gov/2231922
330.Carey, S.W., et al. Extracorporeal shock wave lithotripsy for patients with calcified ipsilateral renal arterial or abdominal aortic aneurysms. J Urol, 1992. 148: 18.
https://pubmed.ncbi.nlm.nih.gov/1613866
331.Reeves, T., et al. Role of Endourological Procedures (PCNL and URS) on Renal Function: a Systematic Review. Curr Urol Rep, 2020. 21: 21.
https://pubmed.ncbi.nlm.nih.gov/32318942
332.Mehra, K., et al. Percutaneous Nephrolithotomy in Patients with Chronic Kidney Disease: A Systematic Review. Urol Int, 2022. 106: 461.
https://pubmed.ncbi.nlm.nih.gov/35045417
333.Shah, T.T., et al. Factors associated with spontaneous stone passage in a contemporary cohort of patients presenting with acute ureteric colic: results from the Multi-centre cohort study evaluating the role of Inflammatory Markers In patients presenting with acute ureteric Colic (MIMIC) study. BJU Int, 2019. 124: 504.
https://pubmed.ncbi.nlm.nih.gov/31001912
334.Skolarikos, A., et al. The role for active monitoring in urinary stones: a systematic review. J Endourol, 2010. 24: 923.
https://pubmed.ncbi.nlm.nih.gov/20482232
335.Yallappa, S., et al. Natural History of Conservatively Managed Ureteral Stones: Analysis of 6600 Patients. J Endourol, 2018. 32: 371.
https://pubmed.ncbi.nlm.nih.gov/29482379
336.Skolarikos, A., et al. Indications, prediction of success and methods to improve outcome of shock wave lithotripsy of renal and upper ureteral calculi. Arch Ital Urol Androl, 2010. 82: 56.
https://pubmed.ncbi.nlm.nih.gov/20593724
337.Guler, Y. Non-contrast computed tomography-based factors in predicting ESWL success: A systematic review and meta-analysis. Prog Urol, 2023. 33: 27.
https://pubmed.ncbi.nlm.nih.gov/36202729
338.Wang, W., et al. Ureteroscopy Is Equally Efficient and Safe in Obese and Morbidly Obese Patients: A Systematic Review and Meta-Analysis. Front Surg, 2022. 9: 736641.
https://pubmed.ncbi.nlm.nih.gov/35252322
339.Drake, T., et al. What are the Benefits and Harms of Ureteroscopy Compared with Shock-wave Lithotripsy in the Treatment of Upper Ureteral Stones? A Systematic Review. Eur Urol, 2017. 72: 772.
https://pubmed.ncbi.nlm.nih.gov/28456350
340.Wang, W., et al. Does previous unsuccessful shockwave lithotripsy influence the outcomes of ureteroscopy?-a systematic review and meta-analysis. Transl Androl Urol, 2021. 10: 2122.
https://pubmed.ncbi.nlm.nih.gov/34159093
341.Alsawi, M., et al. Primary versus delayed ureteroscopy for ureteric stones: A systematic review and meta-analysis. Journal of Clinical Urology, 2022: 20514158221088687.
https://journals.sagepub.com/doi/10.1177/20514158221088687
342.Peng, C.X., et al. Efficacy of emergency extracorporeal shock wave lithotripsy in the treatment of ureteral stones: a meta-analysis. BMC Urol, 2023. 23: 56.
https://pubmed.ncbi.nlm.nih.gov/37016405
343.Lai, S., et al. Optimal management of large proximal ureteral stones (>10 mm): A systematic review and meta-analysis of 12 randomized controlled trials. Int J Surg, 2020. 80: 205.
https://pubmed.ncbi.nlm.nih.gov/32622059
344.Sorensen, M.D., et al. Removal of Small, Asymptomatic Kidney Stones and Incidence of Relapse. N Engl J Med, 2022. 387: 506.
https://pubmed.ncbi.nlm.nih.gov/35947709
345.Han, D.S., et al. The Durability of Active Surveillance in Patients with Asymptomatic Kidney Stones: A Systematic Review. J Endourol, 2019. 33: 598.
https://pubmed.ncbi.nlm.nih.gov/31044612
346.Inci, K., et al. Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J Urol, 2007. 177: 2189.
https://pubmed.ncbi.nlm.nih.gov/17509315
347.Lovegrove, C.E., et al. Natural history of small asymptomatic kidney and residual stones over a long-term follow-up: systematic review over 25 years. BJU Int, 2022. 129: 442.
https://pubmed.ncbi.nlm.nih.gov/34157218
348.Brandt, B., et al. Painful caliceal calculi. The treatment of small nonobstructing caliceal calculi in patients with symptoms. Scand J Urol Nephrol, 1993. 27: 75.
https://pubmed.ncbi.nlm.nih.gov/8493473
349.Argyropoulos, A.N., et al. Evaluation of outcome following lithotripsy. Curr Opin Urol, 2010. 20: 154.
https://pubmed.ncbi.nlm.nih.gov/19898239
350.Srisubat, A., et al. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev, 2014. 11: CD007044.
https://pubmed.ncbi.nlm.nih.gov/25418417
351.Sahinkanat, T., et al. Evaluation of the effects of relationships between main spatial lower pole calyceal anatomic factors on the success of shock-wave lithotripsy in patients with lower pole kidney stones. Urology, 2008. 71: 801.
https://pubmed.ncbi.nlm.nih.gov/18279941
352.Danuser, H., et al. Extracorporeal shock wave lithotripsy of lower calyx calculi: how much is treatment outcome influenced by the anatomy of the collecting system? Eur Urol, 2007. 52: 539.
https://pubmed.ncbi.nlm.nih.gov/17400366
353.Dorantes-Carrillo, L.A., et al. Retrograde Intrarenal Surgery Versus Miniaturized Percutaneous Nephrolithotomy for Kidney Stones >1cm: A Systematic Review and Meta-analysis of Randomized Trials. Eur Urol Focus, 2022. 8: 259.
https://pubmed.ncbi.nlm.nih.gov/33627307
354.Bosio, A., et al. Flexible Ureterorenoscopy Versus Shockwave Lithotripsy for Kidney Stones </=2 cm: A Randomized Controlled Trial. Eur Urol Focus, 2022. 8: 1816.
https://pubmed.ncbi.nlm.nih.gov/35466071
355.Kallidonis, P., et al. The best treatment approach for lower calyceal stones </=20 mm in maximal diameter: mini percutaneous nephrolithotripsy, retrograde intrarenal surgery or shock wave lithotripsy. A systematic review and meta-analysis of the literature conducted by the European Section of Uro-Technology and Young Academic Urologists. Minerva Urol Nephrol, 2021. 73: 711.
https://pubmed.ncbi.nlm.nih.gov/34156200
356.Preminger, G.M. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res, 2006. 34: 108.
https://pubmed.ncbi.nlm.nih.gov/16463145
357.Zheng, C., et al. Extracorporeal shock wave lithotripsy versus retrograde intrarenal surgery for treatment for renal stones 1-2 cm: a meta-analysis. Urolithiasis, 2015. 43: 549.
https://pubmed.ncbi.nlm.nih.gov/26211003
358.Pearle, M.S., et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol, 2005. 173: 2005.
https://pubmed.ncbi.nlm.nih.gov/15879805
359.Zheng, C., et al. Retrograde intrarenal surgery versus percutaneous nephrolithotomy for treatment of renal stones >2 cm: a meta-analysis. Urol Int, 2014. 93: 417.
https://pubmed.ncbi.nlm.nih.gov/25170589
360.Karakoyunlu, N., et al. A comparison of standard PCNL and staged retrograde FURS in pelvis stones over 2 cm in diameter: a prospective randomized study. Urolithiasis, 2015. 43: 283.
https://pubmed.ncbi.nlm.nih.gov/25838180
361.Donaldson, J.F., et al. Systematic review and meta-analysis of the clinical effectiveness of shock wave lithotripsy, retrograde intrarenal surgery, and percutaneous nephrolithotomy for lower-pole renal stones. Eur Urol, 2015. 67: 612.
https://pubmed.ncbi.nlm.nih.gov/25449204
362.Fayad, M.K., et al. Retrograde intrarenal surgery versus percutaneous nephrolithotomy for treatment of renal pelvic stone more than 2 centimeters: a prospective randomized controlled trial. Urolithiasis, 2022. 50: 113.
https://pubmed.ncbi.nlm.nih.gov/34807274
363.Kumar, A., et al. A prospective, randomized comparison of shock wave lithotripsy, retrograde intrarenal surgery and miniperc for treatment of 1 to 2 cm radiolucent lower calyceal renal calculi: a single center experience. J Urol, 2015. 193: 160.
https://pubmed.ncbi.nlm.nih.gov/25066869
364.Zhang, W., et al. Retrograde Intrarenal Surgery Versus Percutaneous Nephrolithotomy Versus Extracorporeal Shockwave Lithotripsy for Treatment of Lower Pole Renal Stones: A Meta-Analysis and Systematic Review. J Endourol, 2015. 29: 745.
https://pubmed.ncbi.nlm.nih.gov/25531986
365.Junbo, L., et al. Retrograde Intrarenal Surgery vs. Percutaneous Nephrolithotomy vs. Extracorporeal Shock Wave Lithotripsy for Lower Pole Renal Stones 10-20 mm : A Meta-analysis and Systematic Review. Urol J, 2019. 16: 97.
https://pubmed.ncbi.nlm.nih.gov/30604405
366.Tsai, S.H., et al. Comparison of the efficacy and safety of shockwave lithotripsy, retrograde intrarenal surgery, percutaneous nephrolithotomy, and minimally invasive percutaneous nephrolithotomy for lower-pole renal stones: A systematic review and network meta-analysis. Medicine (Baltimore), 2020. 99: e19403.
https://pubmed.ncbi.nlm.nih.gov/32150088
367.Zhang, H., et al. Comparison of the Efficacy of Ultra-Mini PCNL, Flexible Ureteroscopy, and Shock Wave Lithotripsy on the Treatment of 1-2 cm Lower Pole Renal Calculi. Urol Int, 2019. 102: 153.
https://pubmed.ncbi.nlm.nih.gov/30352443
368.Kallidonis, P., et al. Systematic Review and Meta-Analysis Comparing Percutaneous Nephrolithotomy, Retrograde Intrarenal Surgery and Shock Wave Lithotripsy for Lower Pole Renal Stones Less Than 2 cm in Maximum Diameter. J Urol, 2020. 204: 427.
https://pubmed.ncbi.nlm.nih.gov/32150506
369.Barone, B., et al. Retrograde intra renal surgery versus percutaneous nephrolithotomy for renal stones >2 cm. A systematic review and meta-analysis. Minerva Urol Nefrol, 2020. 72: 441.
https://pubmed.ncbi.nlm.nih.gov/32083423
370.Liu, M., et al. Minimally invasive nephrolithotomy versus retrograde intrarenal surgery in surgical management of Lower calyceal stones: a systematic review with meta-analysis. Int J Surg, 2023. 109: 1481.
https://pubmed.ncbi.nlm.nih.gov/37037590
371.Manikandan, R., et al. Do anatomic factors pose a significant risk in the formation of lower pole stones? Urology, 2007. 69: 620.
https://pubmed.ncbi.nlm.nih.gov/17445636
372.Torricelli, F.C.M., et al. Renal Stone Features Are More Important Than Renal Anatomy to Predict Shock Wave Lithotripsy Outcomes: Results from a Prospective Study with CT Follow-Up. J Endourol, 2020. 34: 63.
https://pubmed.ncbi.nlm.nih.gov/31595801
373.Madbouly, K., et al. Impact of lower pole renal anatomy on stone clearance after shock wave lithotripsy: fact or fiction? J Urol, 2001. 165: 1415.
https://pubmed.ncbi.nlm.nih.gov/11342888
374.Abdelhamid, M., et al. A Prospective Evaluation of High-Resolution CT Parameters in Predicting Extracorporeal Shockwave Lithotripsy Success for Upper Urinary Tract Calculi. J Endourol, 2016. 30: 1227.
https://pubmed.ncbi.nlm.nih.gov/27597174
375.Gupta, N.P., et al. Infundibulopelvic anatomy and clearance of inferior caliceal calculi with shock wave lithotripsy. J Urol, 2000. 163: 24.
https://pubmed.ncbi.nlm.nih.gov/10604306
376.Torricelli, F.C., et al. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography. J Urol, 2015. 193: 2002.
https://pubmed.ncbi.nlm.nih.gov/25524240
377.Sumino, Y., et al. Predictors of lower pole renal stone clearance after extracorporeal shock wave lithotripsy. J Urol, 2002. 168: 1344.
https://pubmed.ncbi.nlm.nih.gov/12352389
378.Liu, L.R., et al. Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Cochrane Database Syst Rev, 2013: CD008569.
https://pubmed.ncbi.nlm.nih.gov/24318643
379.Chiong, E., et al. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology, 2005. 65: 1070.
https://pubmed.ncbi.nlm.nih.gov/15922429
380.Chan, L.H., et al. Primary SWL Is an Efficient and Cost-Effective Treatment for Lower Pole Renal Stones Between 10 and 20 mm in Size: A Large Single Center Study. J Endourol, 2017. 31: 510.
https://pubmed.ncbi.nlm.nih.gov/28355100
381.Sebaey, A., et al. Flexible ureterorenoscopy (RIRS) vs. Mini- percutaneous nephrolithotomy (MINI-PCNL) for renal stones 20–30 mm a prospective randomized study. African Journal of Urology, 2022. 28: 13.
https://afju.springeropen.com/articles/10.1186/s12301-022-00278-7
382.Assimos, D.G., et al. The role of open stone surgery since extracorporeal shock wave lithotripsy. J Urol, 1989. 142: 263.
https://pubmed.ncbi.nlm.nih.gov/2746742
383.Segura, J.W. Current surgical approaches to nephrolithiasis. Endocrinol Metab Clin North Am, 1990. 19: 919.
https://pubmed.ncbi.nlm.nih.gov/2081519
384.Honeck, P., et al. Does open stone surgery still play a role in the treatment of urolithiasis? Data of a primary urolithiasis center. J Endourol, 2009. 23: 1209.
https://pubmed.ncbi.nlm.nih.gov/19538063
385.Bichler, K.H., et al. Indications for open stone removal of urinary calculi. Urol Int, 1997. 59: 102.
https://pubmed.ncbi.nlm.nih.gov/9392057
386.Paik, M.L., et al. Is there a role for open stone surgery? Urol Clin North Am, 2000. 27: 323.
https://pubmed.ncbi.nlm.nih.gov/10778474
387.Alivizatos, G., et al. Is there still a role for open surgery in the management of renal stones? Curr Opin Urol, 2006. 16: 106.
https://pubmed.ncbi.nlm.nih.gov/16479213
388.Wang, X., et al. Laparoscopic pyelolithotomy compared to percutaneous nephrolithotomy as surgical management for large renal pelvic calculi: a meta-analysis. J Urol, 2013. 190: 888.
https://pubmed.ncbi.nlm.nih.gov/23454154
389.Soltani, M.H., et al. Stented Versus Stentless Laparoscopic Ureterolithotomy: A Systematic Review and Meta-Analysis. J Laparoendosc Adv Surg Tech A, 2017. 27: 1269.
https://pubmed.ncbi.nlm.nih.gov/28631946
390.Mao, T., et al. Efficacy and safety of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for treatment of large renal stones: a meta-analysis. J Int Med Res, 2021. 49: 300060520983136.
https://pubmed.ncbi.nlm.nih.gov/33472474
391.Muller, P.F., et al. Robotic stone surgery - Current state and future prospects: A systematic review. Arab J Urol, 2018. 16: 357.
https://pubmed.ncbi.nlm.nih.gov/30140470
392.Mantica, G., et al. The fight between PCNL, laparoscopic and robotic pyelolithotomy: do we have a winner? A systematic review and meta-analysis. Minerva Urol Nephrol, 2022. 74: 169.
https://pubmed.ncbi.nlm.nih.gov/35147384
393.Kumar, A., et al. A Prospective Randomized Comparison Between Laparoscopic Ureterolithotomy and Semirigid Ureteroscopy for Upper Ureteral Stones >2 cm: A Single-Center Experience. J Endourol, 2015. 29: 1248.
https://pubmed.ncbi.nlm.nih.gov/25177768
394.Torricelli, F.C., et al. Semi-rigid ureteroscopic lithotripsy versus laparoscopic ureterolithotomy for large upper ureteral stones: a meta - analysis of randomized controlled trials. Int Braz J Urol, 2016. 42: 645.
https://pubmed.ncbi.nlm.nih.gov/27564273
395.Xiao, Y., et al. Perioperative and long-term results of retroperitoneal laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for staghorn calculi: a single-center randomized controlled trial. World J Urol, 2019. 37: 1441.
https://pubmed.ncbi.nlm.nih.gov/30361956
396.Coptcoat, M.J., et al. The steinstrasse: a legacy of extracorporeal lithotripsy? Eur Urol, 1988. 14: 93.
https://pubmed.ncbi.nlm.nih.gov/3360043
397.Lucio, J., 2nd, et al. Steinstrasse predictive factors and outcomes after extracorporeal shockwave lithotripsy. Int Braz J Urol, 2011. 37: 477.
https://pubmed.ncbi.nlm.nih.gov/21888699
398.Moursy, E., et al. Tamsulosin as an expulsive therapy for steinstrasse after extracorporeal shock wave lithotripsy: a randomized controlled study. Scand J Urol Nephrol, 2010. 44: 315.
https://pubmed.ncbi.nlm.nih.gov/20560802
399.Resim, S., et al. Role of tamsulosin in treatment of patients with steinstrasse developing after extracorporeal shock wave lithotripsy. Urology, 2005. 66: 945.
https://pubmed.ncbi.nlm.nih.gov/16286100
400.Rabbani, S.M. Treatment of steinstrasse by transureteral lithotripsy. Urol J, 2008. 5: 89.
https://pubmed.ncbi.nlm.nih.gov/18592460
401.Lynch, M.F., et al. Percutaneous nephrostomy and ureteric stent insertion for acute renal deobstruction: Consensus based guidance. British Journal of Medical & Surgical Urology, 2008. 1: 120.
https://www.sciencedirect.com/science/article/pii/S1875974208000955
402.Rebuck, D.A., et al. The natural history of renal stone fragments following ureteroscopy. Urology, 2011. 77: 564.
https://pubmed.ncbi.nlm.nih.gov/21109293
403.Chew, B.H., et al. Natural History, Complications and Re-Intervention Rates of Asymptomatic Residual Stone Fragments after Ureteroscopy: a Report from the EDGE Research Consortium. J Urol, 2016. 195: 982.
https://pubmed.ncbi.nlm.nih.gov/26585680
404.Candau, C., et al. Natural history of residual renal stone fragments after ESWL. Eur Urol, 2000. 37: 18.
https://pubmed.ncbi.nlm.nih.gov/10671779
405.Brain, E., et al. Natural History of Post-Treatment Kidney Stone Fragments: A Systematic Review and Meta-Analysis. J Urol, 2021. 206: 526.
https://pubmed.ncbi.nlm.nih.gov/33904756
406.Olvera-Posada, D., et al. Natural History of Residual Fragments After Percutaneous Nephrolithotomy: Evaluation of Factors Related to Clinical Events and Intervention. Urology, 2016. 97: 46.
https://pubmed.ncbi.nlm.nih.gov/27421779
407.Portis, A.J., et al. Confident intraoperative decision making during percutaneous nephrolithotomy: does this patient need a second look? Urology, 2008. 71: 218.
https://pubmed.ncbi.nlm.nih.gov/18308087
408.Tokas, T., et al. Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature. World J Urol, 2017. 35: 897.
https://pubmed.ncbi.nlm.nih.gov/27738806
409.Omar, M., et al. Contemporary Imaging Practice Patterns Following Ureteroscopy for Stone Disease. J Endourol, 2015. 29: 1122.
https://pubmed.ncbi.nlm.nih.gov/25963170
410.Rippel, C.A., et al. Residual fragments following ureteroscopic lithotripsy: incidence and predictors on postoperative computerized tomography. J Urol, 2012. 188: 2246.
https://pubmed.ncbi.nlm.nih.gov/23083650
411.Tzelves, L., et al. Duration of Follow-up and Timing of Discharge from Imaging Follow-up, in Adult Patients with Urolithiasis After Surgical or Medical Intervention: A Systematic Review and Meta-analysis from the European Association of Urology Guideline Panel on Urolithiasis. Eur Urol Focus, 2023. 9: 188.
https://pubmed.ncbi.nlm.nih.gov/35851252
412.Beck, E.M., et al. The fate of residual fragments after extracorporeal shock wave lithotripsy monotherapy of infection stones. J Urol, 1991. 145: 6.
https://pubmed.ncbi.nlm.nih.gov/1984100
413.Zhou, Q., et al. Maternal and neonatal outcomes of pregnancy complicated by urolithiasis: a systematic review and meta-analysis. J Nephrol, 2021. 34: 1569.
https://pubmed.ncbi.nlm.nih.gov/34173939
414.Salehi-Pourmehr, H., et al. Management of urolithiasis in pregnancy: A systematic review and meta-analysis. Scand J Surg, 2023. 112: 105.
https://pubmed.ncbi.nlm.nih.gov/36692055
415.Keenan, R.A., et al. Symptomatic Hydronephrosis and Ureteral Calculi in Pregnancy: A Narrative Review with a Proposed Management Protocol. J Endourol, 2022. 36: 1099.
https://pubmed.ncbi.nlm.nih.gov/35345895
416.McKnoulty, M., et al. Spontaneous renal fornix rupture in pregnancy and the post partum period: a systematic review of outcomes and management. BMC Urol, 2020. 20: 116.
https://pubmed.ncbi.nlm.nih.gov/32753038
417.Mokhmalji, H., et al. Percutaneous nephrostomy versus ureteral stents for diversion of hydronephrosis caused by stones: a prospective, randomized clinical trial. J Urol, 2001. 165: 1088.
https://pubmed.ncbi.nlm.nih.gov/11257644
418.Tsai, Y.L., et al. Comparative study of conservative and surgical management for symptomatic moderate and severe hydronephrosis in pregnancy: a prospective randomized study. Acta Obstet Gynecol Scand, 2007. 86: 1047.
https://pubmed.ncbi.nlm.nih.gov/17712643
419.Dai, J.C., et al. Nephrolithiasis in Pregnancy: Treating for Two. Urology, 2021. 151: 44.
https://pubmed.ncbi.nlm.nih.gov/32866511
420.Mason, M.M., et al. A comparison of adverse pregnancy events between ureteral stents and percutaneous nephrostomy tubes in the treatment of nephrolithiasis during pregnancy: A propensity score-matched analysis of a large multi-institutional research network. World J Urol, 2023. 41: 1721.
https://pubmed.ncbi.nlm.nih.gov/35909212
421.Ishii, H., et al. Current status of ureteroscopy for stone disease in pregnancy. Urolithiasis, 2014. 42: 1.
https://pubmed.ncbi.nlm.nih.gov/24374899
422.Teleb, M., et al. Definitive ureteroscopy and intracorporeal lithotripsy in treatment of ureteral calculi during pregnancy. Arab J Urol, 2014. 12: 299.
https://pubmed.ncbi.nlm.nih.gov/26019966
423.Johnson, E.B., et al. Obstetric complications of ureteroscopy during pregnancy. J Urol, 2012. 188: 151.
https://pubmed.ncbi.nlm.nih.gov/22591961
424.Ramachandra, M., et al. Safety and feasibility of percutaneous nephrolithotomy (PCNL) during pregnancy: A review of literature. Turk J Urol, 2020. 46: 89.
https://pubmed.ncbi.nlm.nih.gov/32134719
425.Holmes, D.G., et al. Long-term complications related to the modified Indiana pouch. Urology, 2002. 60: 603.
https://pubmed.ncbi.nlm.nih.gov/12385916
426.Yang, W.J., et al. Long-term effects of ileal conduit urinary diversion on upper urinary tract in bladder cancer. Urology, 2006. 68: 324.
https://pubmed.ncbi.nlm.nih.gov/16904445
427.Assimos, D.G. Nephrolithiasis in patients with urinary diversion. J Urol, 1996. 155: 69.
https://pubmed.ncbi.nlm.nih.gov/7490901
428.Cohen, T.D., et al. Long-term incidence and risks for recurrent stones following contemporary management of upper tract calculi in patients with a urinary diversion. J Urol, 1996. 155: 62.
https://pubmed.ncbi.nlm.nih.gov/7490899
429.El-Assmy, A., et al. Extracorporeal shock wave lithotripsy of upper urinary tract calculi in patients with cystectomy and urinary diversion. Urology, 2005. 66: 510.
https://pubmed.ncbi.nlm.nih.gov/16140067
430.Deliveliotis, C., et al. Shockwave lithotripsy for urinary stones in patients with urinary diversion after radical cystectomy. J Endourol, 2002. 16: 717.
https://pubmed.ncbi.nlm.nih.gov/12542873
431.el-Nahas, A.R., et al. Percutaneous treatment of large upper tract stones after urinary diversion. Urology, 2006. 68: 500.
https://pubmed.ncbi.nlm.nih.gov/16979745
432.Ramachandra, M.N., et al. Challenges of Retrograde Ureteroscopy in Patients with Urinary Diversion: Outcomes and Lessons Learnt from a Systematic Review of Literature. Urol Int, 2018. 101: 249.
https://pubmed.ncbi.nlm.nih.gov/29614503
433.Stein, J.P., et al. Complications of the afferent antireflux valve mechanism in the Kock ileal reservoir. J Urol, 1996. 155: 1579.
https://pubmed.ncbi.nlm.nih.gov/8627827
434.Matlaga, B.R., et al. Computerized tomography guided access for percutaneous nephrostolithotomy. J Urol, 2003. 170: 45.
https://pubmed.ncbi.nlm.nih.gov/12796641
435.Hensle, T.W., et al. Preventing reservoir calculi after augmentation cystoplasty and continent urinary diversion: the influence of an irrigation protocol. BJU Int, 2004. 93: 585.
https://pubmed.ncbi.nlm.nih.gov/15008735
436.Raj, G.V., et al. The incidence of nephrolithiasis in patients with spinal neural tube defects. J Urol, 1999. 162: 1238.
https://pubmed.ncbi.nlm.nih.gov/10458475
437.Taskinen, S., et al. Additional surgery in patients with bladder augmentation. J Pediatr Urol, 2023. 19: 406 e1.
https://pubmed.ncbi.nlm.nih.gov/37061366
438.Gros, D.A., et al. Urolithiasis in spina bifida. Eur J Pediatr Surg, 1998. 8 Suppl 1: 68.
https://pubmed.ncbi.nlm.nih.gov/9926338
439.Shepard, C.L., et al. Urinary tract stone development in patients with myelodysplasia subjected to augmentation cystoplasty. Rev Urol, 2017. 19: 11.
https://pubmed.ncbi.nlm.nih.gov/28522925
440.Christman, M.S., et al. Morbidity and efficacy of ureteroscopic stone treatment in patients with neurogenic bladder. J Urol, 2013. 190: 1479.
https://pubmed.ncbi.nlm.nih.gov/23454151
441.Ganesan, C., et al. Kidney Stone Events after Kidney Transplant in the United States. Clin J Am Soc Nephrol, 2023. 18: 777.
https://pubmed.ncbi.nlm.nih.gov/37071657
442.Harper, J.M., et al. Risk factors for calculus formation in patients with renal transplants. Br J Urol, 1994. 74: 147.
https://pubmed.ncbi.nlm.nih.gov/7921929
443.Challacombe, B., et al. Multimodal management of urolithiasis in renal transplantation. BJU Int, 2005. 96: 385.
https://pubmed.ncbi.nlm.nih.gov/16042735
444.Rifaioglu, M.M., et al. Percutaneous management of stones in transplanted kidneys. Urology, 2008. 72: 508.
https://pubmed.ncbi.nlm.nih.gov/18653217
445.Gupta, M., et al. Treatment of stones associated with complex or anomalous renal anatomy. Urol Clin North Am, 2007. 34: 431.
https://pubmed.ncbi.nlm.nih.gov/17678992
446.Minon Cifuentes, J., et al. Percutaneous nephrolithotomy in transplanted kidney. Urology, 1991. 38: 232.
https://pubmed.ncbi.nlm.nih.gov/1887537
447.Wyatt, J., et al. Treatment outcomes for percutaneous nephrolithotomy in renal allografts. J Endourol, 2009. 23: 1821.
https://pubmed.ncbi.nlm.nih.gov/19814697
448.Lu, H.F., et al. Donor-gifted allograft urolithiasis: early percutaneous management. Urology, 2002. 59: 25.
https://pubmed.ncbi.nlm.nih.gov/11796274
449.Del Pizzo, J.J., et al. Ureteroscopic evaluation in renal transplant recipients. J Endourol, 1998. 12: 135.
https://pubmed.ncbi.nlm.nih.gov/9607439
450.Basiri, A., et al. Ureteroscopic management of urological complications after renal transplantation. Scand J Urol Nephrol, 2006. 40: 53.
https://pubmed.ncbi.nlm.nih.gov/16452057
451.Reeves, T., et al. Donor and post-transplant ureteroscopy for stone disease in patients with renal transplant: evidence from a systematic review. Curr Opin Urol, 2019. 29: 548.
https://pubmed.ncbi.nlm.nih.gov/30855381
452.Cerrato, C., et al. Shockwave Lithotripsy for De-Novo Urolithiasis after Kidney Transplantation: A Systematic Review of the Literature. J Clin Med, 2023. 12.
https://pubmed.ncbi.nlm.nih.gov/37445423
453.Garcia Rojo, E., et al. Real-world Global Outcomes of Retrograde Intrarenal Surgery in Anomalous Kidneys: A High Volume International Multicenter Study. Urology, 2022. 159: 41.
https://pubmed.ncbi.nlm.nih.gov/34715241
454.Parkhomenko, E., et al. Percutaneous Management of Stone Containing Calyceal Diverticula: Associated Factors and Outcomes. J Urol, 2017. 198: 864.
https://pubmed.ncbi.nlm.nih.gov/28483573
455.Bas, O., et al. Management of calyceal diverticular calculi: a comparison of percutaneous nephrolithotomy and flexible ureterorenoscopy. Urolithiasis, 2015. 43: 155.
https://pubmed.ncbi.nlm.nih.gov/25249328
456.Gaur, D.D. Retroperitoneal endoscopic ureterolithotomy: our experience in 12 patients. J Endourol, 1993. 7: 501.
https://pubmed.ncbi.nlm.nih.gov/8124346
457.Gaur, D.D., et al. Retroperitoneal laparoscopic pyelolithotomy. J Urol, 1994. 151: 927.
https://pubmed.ncbi.nlm.nih.gov/8126827
458.Lavan, L., et al. Outcomes of ureteroscopy for stone disease in anomalous kidneys: a systematic review. World J Urol, 2020. 38: 1135.
https://pubmed.ncbi.nlm.nih.gov/31101967
459.Chen, H., et al. No Wound for Stones <2 cm in Horseshoe Kidney: A Systematic Review of Comparative Studies. Urol Int, 2019. 103: 249.
https://pubmed.ncbi.nlm.nih.gov/31096234
460.Yi, X., et al. Comparison of the Efficacy and Safety of Extracorporeal Shock Wave Lithotripsy and Flexible Ureteroscopy for Treatment of Urolithiasis in Horseshoe Kidney Patients: A Systematic Review and Meta-Analysis. Front Surg, 2021. 8: 726233.
https://pubmed.ncbi.nlm.nih.gov/34760915
461.Salvi, M., et al. Active treatment of renal stones in pelvic ectopic kidney: systematic review of literature. Minerva Urol Nefrol, 2020. 72: 691.
https://pubmed.ncbi.nlm.nih.gov/32298068
462.Skolarikos, A., et al. Ureteropelvic obstruction and renal stones: etiology and treatment. Urolithiasis, 2015. 43: 5.
https://pubmed.ncbi.nlm.nih.gov/25362543
463.Ward, J.B., et al. Pediatric Urinary Stone Disease in the United States: The Urologic Diseases in America Project. Urology, 2019. 129: 180.
https://pubmed.ncbi.nlm.nih.gov/31005657
464.Matlaga, B.R., et al. Epidemiologic insights into pediatric kidney stone disease. Urol Res, 2010. 38: 453.
https://pubmed.ncbi.nlm.nih.gov/20967433
465.Alfandary, H., et al. Increasing Prevalence of Nephrolithiasis in Association with Increased Body Mass Index in Children: A Population Based Study. J Urol, 2018. 199: 1044.
https://pubmed.ncbi.nlm.nih.gov/29061537
466.Novak, T.E., et al. Sex prevalence of pediatric kidney stone disease in the United States: an epidemiologic investigation. Urology, 2009. 74: 104.
https://pubmed.ncbi.nlm.nih.gov/19428065
467.Bevill, M., et al. The Modern Metabolic Stone Evaluation in Children. Urology, 2017. 101: 15.
https://pubmed.ncbi.nlm.nih.gov/27838366
468.Kovacevic, L., et al. From hypercalciuria to hypocitraturia--a shifting trend in pediatric urolithiasis? J Urol, 2012. 188: 1623.
https://pubmed.ncbi.nlm.nih.gov/22910255
469.Cambareri, G.M., et al. National multi-institutional cooperative on urolithiasis in children: Age is a significant predictor of urine abnormalities. J Pediatr Urol, 2015. 11: 218.
https://pubmed.ncbi.nlm.nih.gov/26119451
470.Braun, D.A., et al. Prevalence of Monogenic Causes in Pediatric Patients with Nephrolithiasis or Nephrocalcinosis. Clin J Am Soc Nephrol, 2016. 11: 664.
https://pubmed.ncbi.nlm.nih.gov/26787776
471.Kant, A.K., et al. Contributors of water intake in US children and adolescents: associations with dietary and meal characteristics--National Health and Nutrition Examination Survey 2005-2006. Am J Clin Nutr, 2010. 92: 887.
https://pubmed.ncbi.nlm.nih.gov/20685949
472.Cogswell, M.E., et al. Vital signs: sodium intake among U.S. school-aged children - 2009-2010. MMWR Morb Mortal Wkly Rep, 2014. 63: 789.
https://pubmed.ncbi.nlm.nih.gov/25211544
473.Clark, M.A., et al. Nutritional quality of the diets of US public school children and the role of the school meal programs. J Am Diet Assoc, 2009. 109: S44.
https://pubmed.ncbi.nlm.nih.gov/19166672
474.Andrioli, V., et al. Infant nephrolithiasis and nephrocalcinosis: Natural history and predictors of surgical intervention. J Pediatr Urol, 2017. 13: 355 e1.
https://pubmed.ncbi.nlm.nih.gov/28729176
475.Sas, D.J., et al. Clinical, demographic, and laboratory characteristics of children with nephrolithiasis. Urolithiasis, 2016. 44: 241.
https://pubmed.ncbi.nlm.nih.gov/26467033
476.Telli, O., et al. What happens to asymptomatic lower pole kidney stones smaller than 10 mm in children during watchful waiting? Pediatr Nephrol, 2017. 32: 853.
https://pubmed.ncbi.nlm.nih.gov/28070668
477.Dos Santos, J., et al. Outcome Analysis of Asymptomatic Lower Pole Stones in Children. J Urol, 2016. 195: 1289.
https://pubmed.ncbi.nlm.nih.gov/26926554
478.Dincel, N., et al. Are small residual stone fragments really insignificant in children? J Pediatr Surg, 2013. 48: 840.
https://pubmed.ncbi.nlm.nih.gov/23583144
479.Barreto, L., et al. Medical and surgical interventions for the treatment of urinary stones in children. Cochrane Database Syst Rev, 2018. 6: CD010784.
https://pubmed.ncbi.nlm.nih.gov/29859007
480.Sun, F., et al. Meta-Analysis of the Safety and Efficacy of alpha-Adrenergic Blockers for Pediatric Urolithiasis in the Distal Ureter. Front Pediatr, 2022. 10: 809914.
https://pubmed.ncbi.nlm.nih.gov/35498769
481.Ziaeefar, P., et al. Medical Expulsive Therapy for Pediatric Ureteral Stones: A Meta-Analysis of Randomized Clinical Trials. J Clin Med, 2023. 12.
https://pubmed.ncbi.nlm.nih.gov/36835945
482.Lu, P., et al. The clinical efficacy of extracorporeal shock wave lithotripsy in pediatric urolithiasis: a systematic review and meta-analysis. Urolithiasis, 2015. 43: 199.
https://pubmed.ncbi.nlm.nih.gov/25721456
483.Dogan, H.S., et al. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy. J Pediatr Urol, 2015. 11: 84 e1.
https://pubmed.ncbi.nlm.nih.gov/25812469
484.Alsagheer, G., et al. Extracorporeal shock wave lithotripsy (ESWL) monotherapy in children: Predictors of successful outcome. J Pediatr Urol, 2017. 13: 515 e1.
https://pubmed.ncbi.nlm.nih.gov/28457667
485.Zeng, G., et al. Treatment of renal stones in infants: comparing extracorporeal shock wave lithotripsy and mini-percutaneous nephrolithotomy. Urol Res, 2012. 40: 599.
https://pubmed.ncbi.nlm.nih.gov/22580634
486.Badawy, A.A., et al. Extracorporeal shock wave lithotripsy as first line treatment for urinary tract stones in children: outcome of 500 cases. Int Urol Nephrol, 2012. 44: 661.
https://pubmed.ncbi.nlm.nih.gov/22350835
487.Jee, J.Y., et al. Efficacy of extracorporeal shock wave lithotripsy in pediatric and adolescent urolithiasis. Korean J Urol, 2013. 54: 865.
https://pubmed.ncbi.nlm.nih.gov/24363869
488.Cevik, B., et al. Procedural sedation and analgesia for pediatric shock wave lithotripsy: a 10 year experience of single institution. Urolithiasis, 2018. 46: 363.
https://pubmed.ncbi.nlm.nih.gov/28642966
489.Kumar, A., et al. A Single Center Experience Comparing Miniperc and Shockwave Lithotripsy for Treatment of Radiopaque 1-2 cm Lower Caliceal Renal Calculi in Children: A Prospective Randomized Study. J Endourol, 2015. 29: 805.
https://pubmed.ncbi.nlm.nih.gov/25633506
490.Wang, H.H., et al. Shock wave lithotripsy vs ureteroscopy: variation in surgical management of kidney stones at freestanding children’s hospitals. J Urol, 2012. 187: 1402.
https://pubmed.ncbi.nlm.nih.gov/22341283
491.Jurkiewicz, B., et al. Ureterolithotripsy in a paediatric population: a single institution’s experience. Urolithiasis, 2014. 42: 171.
https://pubmed.ncbi.nlm.nih.gov/24368682
492.Elsheemy, M.S., et al. Holmium:YAG laser ureteroscopic lithotripsy for ureteric calculi in children: predictive factors for complications and success. World J Urol, 2014. 32: 985.
https://pubmed.ncbi.nlm.nih.gov/23979150
493.Ishii, H., et al. Ureteroscopy for stone disease in the paediatric population: a systematic review. BJU Int, 2015. 115: 867.
https://pubmed.ncbi.nlm.nih.gov/25203925
494.Tanriverdi, O., et al. Comparison of ureteroscopic procedures with rigid and semirigid ureteroscopes in pediatric population: does the caliber of instrument matter? Pediatr Surg Int, 2010. 26: 733.
https://pubmed.ncbi.nlm.nih.gov/20521057
495.Dogan, H.S., et al. Factors affecting complication rates of ureteroscopic lithotripsy in children: results of multi-institutional retrospective analysis by Pediatric Stone Disease Study Group of Turkish Pediatric Urology Society. J Urol, 2011. 186: 1035.
https://pubmed.ncbi.nlm.nih.gov/21784482
496.Gokce, M.I., et al. Effect of Prestenting on Success and Complication Rates of Ureterorenoscopy in Pediatric Population. J Endourol, 2016. 30: 850.
https://pubmed.ncbi.nlm.nih.gov/27189236
497.Ellison, J.S., et al. Risk factors for repeat surgical intervention in pediatric nephrolithiasis: A Pediatric Health Information System database study. J Pediatr Urol, 2018. 14: 245 e1.
https://pubmed.ncbi.nlm.nih.gov/29580730
498.Unsal, A., et al. Retrograde intrarenal surgery in infants and preschool-age children. J Pediatr Surg, 2011. 46: 2195.
https://pubmed.ncbi.nlm.nih.gov/22075358
499.Erkurt, B., et al. Treatment of renal stones with flexible ureteroscopy in preschool age children. Urolithiasis, 2014. 42: 241.
https://pubmed.ncbi.nlm.nih.gov/24374900
500.Suliman, A., et al. Flexible ureterorenoscopy to treat upper urinary tract stones in children. Urolithiasis, 2020. 48: 57.
https://pubmed.ncbi.nlm.nih.gov/30370467
501.Xiao, J., et al. Treatment of upper urinary tract stones with flexible ureteroscopy in children. Can Urol Assoc J, 2019. 13: E78.
https://pubmed.ncbi.nlm.nih.gov/30169147
502.Tiryaki, T., et al. Ureteroscopy for treatment of ureteral stones in children: factors influencing the outcome. Urology, 2013. 81: 1047.
https://pubmed.ncbi.nlm.nih.gov/23465154
503.Lim, E.J., et al. Outcomes and lessons learnt from practice of retrograde intrarenal surgery (RIRS) in a paediatric setting of various age groups: a global study across 8 centres. World J Urol, 2022. 40: 1223.
https://pubmed.ncbi.nlm.nih.gov/35129624
504.Mokhless, I.A., et al. Retrograde intrarenal surgery monotherapy versus shock wave lithotripsy for stones 10 to 20 mm in preschool children: a prospective, randomized study. J Urol, 2014. 191: 1496.
https://pubmed.ncbi.nlm.nih.gov/24679882
505.Saad, K.S., et al. Percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Large Renal Stones in Pediatric Patients: A Randomized Controlled Trial. J Urol, 2015. 194: 1716.
https://pubmed.ncbi.nlm.nih.gov/26165587
506.Pelit, E.S., et al. Comparison of Mini-percutaneous Nephrolithotomy and Retrograde Intrarenal Surgery in Preschool-aged Children. Urology, 2017. 101: 21.
https://pubmed.ncbi.nlm.nih.gov/27818164
507.Bas, O., et al. Comparison of Retrograde Intrarenal Surgery and Micro-Percutaneous Nephrolithotomy in Moderately Sized Pediatric Kidney Stones. J Endourol, 2016. 30: 765.
https://pubmed.ncbi.nlm.nih.gov/26983791
508.Chen, Y., et al. Percutaneous nephrolithotomy versus retrograde intrarenal surgery for pediatric patients with upper urinary stones: a systematic review and meta-analysis. Urolithiasis, 2019. 47: 189.
https://pubmed.ncbi.nlm.nih.gov/29368009
509.Cicekbilek, I., et al. Effect of percutaneous nephrolithotomy on renal functions in children: assessment by quantitative SPECT of (99m)Tc-DMSA uptake by the kidneys. Ren Fail, 2015. 37: 1118.
https://pubmed.ncbi.nlm.nih.gov/26067745
510.Celik, H., et al. Comparison of the results of pediatric percutaneous nephrolithotomy with different sized instruments. Urolithiasis, 2017. 45: 203.
https://pubmed.ncbi.nlm.nih.gov/27155829
511.Dombrovskiy, V., et al. Percutaneous Nephrolithotomy in Children: Analysis of Nationwide Hospitalizations and Short-Term Outcomes for the United States, 2001-2014. J Endourol, 2018. 32: 912.
https://pubmed.ncbi.nlm.nih.gov/30113212
512.Senocak, C., et al. Predictive factors of bleeding among pediatric patients undergoing percutaneous nephrolithotomy. Urolithiasis, 2018. 46: 383.
https://pubmed.ncbi.nlm.nih.gov/28702679
513.Jones, P., et al. Role of Minimally Invasive Percutaneous Nephrolithotomy Techniques-Micro and Ultra-Mini PCNL (<15F) in the Pediatric Population: A Systematic Review. J Endourol, 2017. 31: 816.
https://pubmed.ncbi.nlm.nih.gov/28478724
514.Guven, S., et al. Percutaneous nephrolithotomy in children in different age groups: data from the Clinical Research Office of the Endourological Society (CROES) Percutaneous Nephrolithotomy Global Study. BJU Int, 2013. 111: 148.
https://pubmed.ncbi.nlm.nih.gov/22578216
515.Onal, B., et al. Factors affecting complication rates of percutaneous nephrolithotomy in children: results of a multi-institutional retrospective analysis by the Turkish pediatric urology society. J Urol, 2014. 191: 777.
https://pubmed.ncbi.nlm.nih.gov/24095906
516.Aghamir, S.M., et al. Comparing Bleeding Complications of Double and Single Access Totally Tubeless PCNL: Is It Safe to Obtain More Accesses? Urol Int, 2016. 96: 73.
https://pubmed.ncbi.nlm.nih.gov/26021886
517.Iqbal, N., et al. Comparison of outcomes of tubed versus tubeless percutaneous nephrolithotomy in children: A single center study. Turk J Urol, 2018. 44: 56.
https://pubmed.ncbi.nlm.nih.gov/29484229
518.Samad, L., et al. Does percutaneous nephrolithotomy in children cause significant renal scarring? J Pediatr Urol, 2007. 3: 36.
https://pubmed.ncbi.nlm.nih.gov/18947696
519.Modi, P.K., et al. Pediatric hospitalizations for upper urinary tract calculi: Epidemiological and treatment trends in the United States, 2001-2014. J Pediatr Urol, 2018. 14: 13 e1.
https://pubmed.ncbi.nlm.nih.gov/28966022
520.Agrawal, V., et al. Laparoscopic management of pediatric renal and ureteric stones. J Pediatr Urol, 2013. 9: 230.
https://pubmed.ncbi.nlm.nih.gov/22498008
521.Srivastava, A., et al. Laparoscopic Ureterolithotomy in Children: With and Without Stent - Initial Tertiary Care Center Experience with More Than 1-Year Follow-Up. Eur J Pediatr Surg, 2017. 27: 150.
https://pubmed.ncbi.nlm.nih.gov/26878339
522.Lee, R.S., et al. Early results of robot assisted laparoscopic lithotomy in adolescents. J Urol, 2007. 177: 2306.
https://pubmed.ncbi.nlm.nih.gov/17509345
523.Dai, J.C., et al. National Trends in CT Utilization and Estimated CT-related Radiation Exposure in the Evaluation and Follow-up of Stone Patients. Urology, 2019. 133: 50.
https://pubmed.ncbi.nlm.nih.gov/31404583
524.Vassileva, J., et al. Radiation exposure of patients during endourological procedures: IAEA-SEGUR study. J Radiol Prot, 2020. 40.
https://pubmed.ncbi.nlm.nih.gov/33086202
525.Yecies, T., et al. Identifying and managing the risks of medical ionizing radiation in endourology. Can J Urol, 2018. 25: 9154.
https://pubmed.ncbi.nlm.nih.gov/29524969
526.Jindal, T. The risk of radiation exposure to assisting staff in urological procedures: a literature review. Urol Nurs, 2013. 33: 136.
https://pubmed.ncbi.nlm.nih.gov/23930446
527.Vassileva, J., et al. Radiation Exposure of Surgical Team During Endourological Procedures: International Atomic Energy Agency-South-Eastern European Group for Urolithiasis Research Study. J Endourol, 2021. 35: 574.
https://pubmed.ncbi.nlm.nih.gov/32791856
528.Pierce, D.A., et al. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res, 2000. 154: 178.
https://pubmed.ncbi.nlm.nih.gov/10931690
529.Preston, D.L., et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res, 2007. 168: 1.
https://pubmed.ncbi.nlm.nih.gov/17722996
530.Pearce, M.S., et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 2012. 380: 499.
https://pubmed.ncbi.nlm.nih.gov/22681860
531.Mathews, J.D., et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 2013. 346: f2360.
https://pubmed.ncbi.nlm.nih.gov/23694687
532.Berrington de Gonzalez, A., et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med, 2009. 169: 2071.
https://pubmed.ncbi.nlm.nih.gov/20008689
533.Brenner, D.J., et al. Computed tomography--an increasing source of radiation exposure. N Engl J Med, 2007. 357: 2277.
https://pubmed.ncbi.nlm.nih.gov/18046031
534.Wrixon, A.D. New ICRP recommendations. J Radiol Prot, 2008. 28: 161.
https://pubmed.ncbi.nlm.nih.gov/18495983
535.Kim, C.H., et al. Are Urologists Performing Semi-rigid Ureteroscopic Lithotripsy Safe From Radiation Exposure? A Guidance to Reduce the Radiation Dose. Urology, 2016. 95: 54.
https://pubmed.ncbi.nlm.nih.gov/27289024
536.Singh, V., et al. Prospective randomized comparison between fluoroscopy-guided ureteroscopy versus ureteroscopy with real-time ultrasonography for the management of ureteral stones. Urol Ann, 2016. 8: 418.
https://pubmed.ncbi.nlm.nih.gov/28057984
537.Mohey, A., et al. Fluoroless-ureteroscopy for definitive management of distal ureteral calculi: randomized controlled trial. Can J Urol, 2018. 25: 9205.
https://pubmed.ncbi.nlm.nih.gov/29524976
538.Parks, J.H., et al. A single 24-hour urine collection is inadequate for the medical evaluation of nephrolithiasis. J Urol, 2002. 167: 1607.
https://pubmed.ncbi.nlm.nih.gov/11912373
539.Nayan, M., et al. Variations between two 24-hour urine collections in patients presenting to a tertiary stone clinic. Can Urol Assoc J, 2012. 6: 30.
https://pubmed.ncbi.nlm.nih.gov/22396364
540.Cameron, M., et al. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers. Kidney Int, 2012. 81: 1123.
https://pubmed.ncbi.nlm.nih.gov/22297671
541.Bobulescu, I.A., et al. Net Acid Excretion and Urinary Organic Anions in Idiopathic Uric Acid Nephrolithiasis. Clin J Am Soc Nephrol, 2019. 14: 411.
https://pubmed.ncbi.nlm.nih.gov/30745301
542.Cameron, M.A., et al. Uric acid nephrolithiasis. Urol Clin North Am, 2007. 34: 335.
https://pubmed.ncbi.nlm.nih.gov/17678984
543.Ferraz, R.R., et al. Preservation of urine samples for metabolic evaluation of stone-forming patients. Urol Res, 2006. 34: 329.
https://pubmed.ncbi.nlm.nih.gov/16896690
544.Capolongo, G., et al. Fasting versus 24-h urine pH in the evaluation of nephrolithiasis. Urol Res, 2011. 39: 367.
https://pubmed.ncbi.nlm.nih.gov/21336574
545.Gambaro, G., et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol, 2016. 29: 715.
https://pubmed.ncbi.nlm.nih.gov/27456839
546.Porowski, T., et al. Assessment of lithogenic risk in children based on a morning spot urine sample. J Urol, 2010. 184: 2103.
https://pubmed.ncbi.nlm.nih.gov/20850811
547.Tiselius, H.G. Metabolic evaluation and therapy. Curr Opin Urol, 2000. 10: 545.
https://pubmed.ncbi.nlm.nih.gov/11148723
548.Norman, R.W., et al. When should patients with symptomatic urinary stone disease be evaluated metabolically? J Urol, 1984. 132: 1137.
https://pubmed.ncbi.nlm.nih.gov/6502804
549.D., A., Urine evaluation (in: Evaluation of the stone former), in 2ND International Consultation on Stone Disease, H.M. Assimos D. Chew B, Hautmann R, Holmes R, Williams J, Wolf JS, Editor. 2007, Health Publications.
550.Tiselius, H.G. Standardized estimate of the ion activity product of calcium oxalate in urine from renal stone formers. Eur Urol, 1989. 16: 48.
https://pubmed.ncbi.nlm.nih.gov/2714318
551.Ackermann, D., et al. Use of the computer program EQUIL to estimate pH in model solutions and human urine. Urol Res, 1989. 17: 157.
https://pubmed.ncbi.nlm.nih.gov/2749945
552.Kavanagh, J.P., et al. Why does the Bonn Risk Index discriminate between calcium oxalate stone formers and healthy controls? J Urol, 2006. 175: 766.
https://pubmed.ncbi.nlm.nih.gov/16407047
553.Rodgers AL, A.-H.S., Jackson GE., JESS: What can it teach us?, in Proceedings of Renal Stone Disease 1st Annual International Urolithiasis Research Symposium, 2-3 November 2006., J.L.a.J.W. AP Evan, Jr, Editor. 2007, American Institute of Physics: Melville, New York
554.Sakhaee, K. Epidemiology and clinical pathophysiology of uric acid kidney stones. J Nephrol, 2014. 27: 241.
https://pubmed.ncbi.nlm.nih.gov/24497296
555.Hoppe, B., et al. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol, 2010. 25: 403.
https://pubmed.ncbi.nlm.nih.gov/19104842
556.Sarica, K., et al. The effect of calcium channel blockers on stone regrowth and recurrence after shock wave lithotripsy. Urol Res, 2006. 34: 184.
https://pubmed.ncbi.nlm.nih.gov/16463053
557.Fink, H.A., et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med, 2013. 158: 535.
https://pubmed.ncbi.nlm.nih.gov/23546565
558.Borghi, L., et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol, 1996. 155: 839.
https://pubmed.ncbi.nlm.nih.gov/8583588
559.Bao, Y., et al. Water for preventing urinary stones. Cochrane Database Syst Rev, 2012: CD004292.
https://pubmed.ncbi.nlm.nih.gov/22696340
560.Ferraro, P.M., et al. Effect of water composition and timing of ingestion on urinary lithogenic profile in healthy volunteers: a randomized crossover trial. J Nephrol, 2021. 34: 875.
https://pubmed.ncbi.nlm.nih.gov/32514990
561.Siener, R., et al. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int, 2003. 63: 1037.
https://pubmed.ncbi.nlm.nih.gov/12631085
562.Barghouthy, Y., et al. Role of Citrus Fruit Juices in Prevention of Kidney Stone Disease (KSD): A Narrative Review. Nutrients, 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/34836376
563.Wabner, C.L., et al. Effect of orange juice consumption on urinary stone risk factors. J Urol, 1993. 149: 1405.
https://pubmed.ncbi.nlm.nih.gov/8501777
564.Gettman, M.T., et al. Effect of cranberry juice consumption on urinary stone risk factors. J Urol, 2005. 174: 590.
https://pubmed.ncbi.nlm.nih.gov/16006907
565.Shuster, J., et al. Soft drink consumption and urinary stone recurrence: a randomized prevention trial. J Clin Epidemiol, 1992. 45: 911.
https://pubmed.ncbi.nlm.nih.gov/1624973
566.Ferraro, P.M., et al. Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol, 2013. 8: 1389.
https://pubmed.ncbi.nlm.nih.gov/23676355
567.Barghouthy, Y., et al. Tea and coffee consumption and the risk of urinary stones-a systematic review of the epidemiological data. World J Urol, 2021. 39: 2895.
https://pubmed.ncbi.nlm.nih.gov/33458786
568.Kocvara, R., et al. A prospective study of nonmedical prophylaxis after a first kidney stone. BJU Int, 1999. 84: 393.
https://pubmed.ncbi.nlm.nih.gov/10468751
569.Hess, B., et al. Effects of a ‘common sense diet’ on urinary composition and supersaturation in patients with idiopathic calcium urolithiasis. Eur Urol, 1999. 36: 136.
https://pubmed.ncbi.nlm.nih.gov/10420035
570.Barghouthy, Y., et al. The Relationship between Modern Fad Diets and Kidney Stone Disease: A Systematic Review of Literature. Nutrients, 2021. 13.
https://pubmed.ncbi.nlm.nih.gov/34959822
571.Ebisuno, S., et al. Results of long-term rice bran treatment on stone recurrence in hypercalciuric patients. Br J Urol, 1991. 67: 237.
https://pubmed.ncbi.nlm.nih.gov/1902388
572.Hiatt, R.A., et al. Randomized controlled trial of a low animal protein, high fiber diet in the prevention of recurrent calcium oxalate kidney stones. Am J Epidemiol, 1996. 144: 25.
https://pubmed.ncbi.nlm.nih.gov/8659482
573.Dussol, B., et al. A randomized trial of low-animal-protein or high-fiber diets for secondary prevention of calcium nephrolithiasis. Nephron Clin Pract, 2008. 110: c185.
https://pubmed.ncbi.nlm.nih.gov/18957869
574.Turney, B.W., et al. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol, 2014. 29: 363.
https://pubmed.ncbi.nlm.nih.gov/24752465
575.Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis, 2016. 44: 33.
https://pubmed.ncbi.nlm.nih.gov/26645872
576.Ferraro, P.M., et al. Total, Dietary, and Supplemental Vitamin C Intake and Risk of Incident Kidney Stones. Am J Kidney Dis, 2016. 67: 400.
https://pubmed.ncbi.nlm.nih.gov/26463139
577.Fink, H.A., et al. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur Urol, 2009. 56: 72.
https://pubmed.ncbi.nlm.nih.gov/19321253
578.Borghi, L., et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med, 2002. 346: 77.
https://pubmed.ncbi.nlm.nih.gov/11784873
579.Curhan, G.C., et al. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med, 1997. 126: 497.
https://pubmed.ncbi.nlm.nih.gov/9092314
580.von Unruh, G.E., et al. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol, 2004. 15: 1567.
https://pubmed.ncbi.nlm.nih.gov/15153567
581.Harris, S.S., et al. Effects of Hydration and Calcium Supplementation on Urine Calcium Concentration in Healthy Postmenopausal Women. J Am Coll Nutr, 2015. 34: 340.
https://pubmed.ncbi.nlm.nih.gov/25856469
582.B., E., Hyperuricosuric calcium stone disease, in Kidney Stones: Medical and Surgical Management, F.M. Coe FL, Pak CYC, Parks JH, Preminger GM, Editor. 1996, Lippincott-Raven: Philadelphia.
583.Coe, F.L. Hyperuricosuric calcium oxalate nephrolithiasis. Adv Exp Med Biol, 1980. 128: 439.
https://pubmed.ncbi.nlm.nih.gov/7424690
584.Siener, R., et al. The role of overweight and obesity in calcium oxalate stone formation. Obes Res, 2004. 12: 106.
https://pubmed.ncbi.nlm.nih.gov/14742848
585.Geraghty, R., et al. Does chronic hyperglycaemia increase the risk of kidney stone disease? results from a systematic review and meta-analysis. BMJ Open, 2020. 10: e032094.
https://pubmed.ncbi.nlm.nih.gov/31959605
586.Chang, C.W., et al. Metabolic Syndrome Increases the Risk of Kidney Stone Disease: A Cross-Sectional and Longitudinal Cohort Study. J Pers Med, 2021. 11.
https://pubmed.ncbi.nlm.nih.gov/34834506
587.Pearle, M.S., et al., Medical management of urolithiasis. 2nd International consultation on Stone Disease, ed. K.S. Denstedt J. 2008.
588.Barcelo, P., et al. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J Urol, 1993. 150: 1761.
https://pubmed.ncbi.nlm.nih.gov/8230497
589.Hofbauer, J., et al. Alkali citrate prophylaxis in idiopathic recurrent calcium oxalate urolithiasis--a prospective randomized study. Br J Urol, 1994. 73: 362.
https://pubmed.ncbi.nlm.nih.gov/8199822
590.Ettinger, B., et al. Potassium-magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J Urol, 1997. 158: 2069.
https://pubmed.ncbi.nlm.nih.gov/9366314
591.Lojanapiwat, B., et al. Alkaline citrate reduces stone recurrence and regrowth after shockwave lithotripsy and percutaneous nephrolithotomy. Int Braz J Urol, 2011. 37: 611.
https://pubmed.ncbi.nlm.nih.gov/22099273
592.Phillips, R., et al. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev, 2015. 2015: CD010057.
https://pubmed.ncbi.nlm.nih.gov/26439475
593.Favus, M.J., et al. The effects of allopurinol treatment on stone formation on hyperuricosuric calcium oxalate stone-formers. Scand J Urol Nephrol Suppl, 1980. 53: 265.
https://pubmed.ncbi.nlm.nih.gov/6938003
594.Ettinger, B., et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med, 1986. 315: 1386.
https://pubmed.ncbi.nlm.nih.gov/3534570
595.Smith, M.J. Placebo versus allopurinol for renal calculi. J Urol, 1977. 117: 690.
https://pubmed.ncbi.nlm.nih.gov/875139
596.Pearle, M.S., et al. Meta-analysis of randomized trials for medical prevention of calcium oxalate nephrolithiasis. J Endourol, 1999. 13: 679.
https://pubmed.ncbi.nlm.nih.gov/10608521
597.Gupta, M., et al. Prospective Randomized Evaluation of Idiopathic Hyperoxaluria Treatments. J Endourol, 2021. 35: 1844.
https://pubmed.ncbi.nlm.nih.gov/34254834
598.Cohen, T.D., et al. Clinical effect of captopril on the formation and growth of cystine calculi. J Urol, 1995. 154: 164.
https://pubmed.ncbi.nlm.nih.gov/7776415
599.Coulthard, M.G., et al. The treatment of cystinuria with captopril. Am J Kidney Dis, 1995. 25: 661.
https://pubmed.ncbi.nlm.nih.gov/7702068
600.Goldfarb, D.S., et al. Randomized controlled trial of febuxostat versus allopurinol or placebo in individuals with higher urinary uric acid excretion and calcium stones. Clin J Am Soc Nephrol, 2013. 8: 1960.
https://pubmed.ncbi.nlm.nih.gov/23929928
601.Nouvenne, A., et al. New pharmacologic approach to patients with idiopathic calcium nephrolithiasis and high uricosuria: Febuxostat vs allopurinol. A pilot study. European Journal of Internal Medicine, 2013. 24: e64.
https://www.ejinme.com/article/S0953-6205(13)00364-6/fulltext
602.Jarrar, K., et al. Struvite stones: long term follow up under metaphylaxis. Ann Urol (Paris), 1996. 30: 112.
https://pubmed.ncbi.nlm.nih.gov/8766146
603.Ettinger, B., et al. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J Urol, 1988. 139: 679.
https://pubmed.ncbi.nlm.nih.gov/3280829
604.Prien, E.L., Sr., et al. Magnesium oxide-pyridoxine therapy for recurrent calcium oxalate calculi. J Urol, 1974. 112: 509.
https://pubmed.ncbi.nlm.nih.gov/4414543
605.Pinheiro, V.B., et al. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology, 2013. 82: 33.
https://pubmed.ncbi.nlm.nih.gov/23602798
606.Hoppe, B., et al. The primary hyperoxalurias. Kidney Int, 2009. 75: 1264.
https://pubmed.ncbi.nlm.nih.gov/19225556
607.Madore, F., et al. Nephrolithiasis and risk of hypertension. Am J Hypertens, 1998. 11: 46.
https://pubmed.ncbi.nlm.nih.gov/9504449
608.Madore, F., et al. Nephrolithiasis and risk of hypertension in women. Am J Kidney Dis, 1998. 32: 802.
https://pubmed.ncbi.nlm.nih.gov/9820450
609.Borghi, L., et al. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing calcium stone recurrences. J Cardiovasc Pharmacol, 1993. 22 Suppl 6: S78.
https://pubmed.ncbi.nlm.nih.gov/7508066
610.Brocks, P., et al. Do thiazides prevent recurrent idiopathic renal calcium stones? Lancet, 1981. 2: 124.
https://pubmed.ncbi.nlm.nih.gov/6113485
611.Mortensen, J.T., et al. Thiazides in the prophylactic treatment of recurrent idiopathic kidney stones. Int Urol Nephrol, 1986. 18: 265.
https://pubmed.ncbi.nlm.nih.gov/3533825
612.Laerum, E., et al. Thiazide prophylaxis of urolithiasis. A double-blind study in general practice. Acta Med Scand, 1984. 215: 383.
https://pubmed.ncbi.nlm.nih.gov/6375276
613.Ohkawa, M., et al. Thiazide treatment for calcium urolithiasis in patients with idiopathic hypercalciuria. Br J Urol, 1992. 69: 571.
https://pubmed.ncbi.nlm.nih.gov/1638340
614.Scholz, D., et al. Double-blind study with thiazide in recurrent calcium lithiasis. J Urol, 1982. 128: 903.
https://pubmed.ncbi.nlm.nih.gov/7176047
615.Nicar, M.J., et al. Use of potassium citrate as potassium supplement during thiazide therapy of calcium nephrolithiasis. J Urol, 1984. 131: 430.
https://pubmed.ncbi.nlm.nih.gov/6699979
616.Fernandez-Rodriguez, A., et al. [The role of thiazides in the prophylaxis of recurrent calcium lithiasis]. Actas Urol Esp, 2006. 30: 305.
https://pubmed.ncbi.nlm.nih.gov/16749588
617.Dolin, D.J., et al. Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol, 2005. 19: 429.
https://pubmed.ncbi.nlm.nih.gov/15865542
618.Chow, G.K., et al. Medical treatment of cystinuria: results of contemporary clinical practice. J Urol, 1996. 156: 1576.
https://pubmed.ncbi.nlm.nih.gov/8863541
619.Pak, C.Y., et al. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol, 1986. 136: 1003.
https://pubmed.ncbi.nlm.nih.gov/3534301
620.Tekin, A., et al. Cystine calculi in children: the results of a metabolic evaluation and response to medical therapy. J Urol, 2001. 165: 2328.
https://pubmed.ncbi.nlm.nih.gov/11371943
621.Pedersen, S.A., et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: A nationwide case-control study from Denmark. J Am Acad Dermatol, 2018. 78: 673.
https://pubmed.ncbi.nlm.nih.gov/29217346
622.Pottegard, A., et al. Hydrochlorothiazide use is strongly associated with risk of lip cancer. J Intern Med, 2017. 282: 322.
https://pubmed.ncbi.nlm.nih.gov/28480532
623.Pottegard, A., et al. Association of Hydrochlorothiazide Use and Risk of Malignant Melanoma. JAMA Intern Med, 2018. 178: 1120.
https://pubmed.ncbi.nlm.nih.gov/29813157
624.Worcester, E.M., et al. New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol, 2008. 28: 120.
https://pubmed.ncbi.nlm.nih.gov/18359393
625.Curhan, G.C., et al. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med, 1993. 328: 833.
https://pubmed.ncbi.nlm.nih.gov/8441427
626.Wolf, H., et al. Do thiazides prevent recurrent idiopathic renal calcium oxalate stones? Proc Eur Dial Transplant Assoc, 1983. 20: 477.
https://pubmed.ncbi.nlm.nih.gov/6361755
627.Johansson, G., et al. Effects of magnesium hydroxide in renal stone disease. J Am Coll Nutr, 1982. 1: 179.
https://pubmed.ncbi.nlm.nih.gov/6764473
628.Khan, S.R., et al. Magnesium oxide administration and prevention of calcium oxalate nephrolithiasis. J Urol, 1993. 149: 412.
https://pubmed.ncbi.nlm.nih.gov/8426432
629.Solak, V., et al. Potassium citrate vs. hydrochlorothiazide to reduce urinary calcium excretion in calcium oxalate stone patients with hypercalciuria: a prospective randomized study. Int Urol Nephrol, 2021. 53: 1791.
https://pubmed.ncbi.nlm.nih.gov/33904027
630.Dhayat, N.A., et al. Hydrochlorothiazide and Prevention of Kidney-Stone Recurrence. N Engl J Med, 2023. 388: 781.
https://pubmed.ncbi.nlm.nih.gov/36856614
631.Dhayat, N.A., et al. Efficacy of standard and low dose hydrochlorothiazide in the recurrence prevention of calcium nephrolithiasis (NOSTONE trial): protocol for a randomized double-blind placebo-controlled trial. BMC Nephrol, 2018. 19: 349.
https://pubmed.ncbi.nlm.nih.gov/30526528
632.Hesse, A., et al. Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol, 1999. 17: 308.
https://pubmed.ncbi.nlm.nih.gov/10552150
633.Silverberg, S.J., et al. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med, 1999. 341: 1249.
https://pubmed.ncbi.nlm.nih.gov/10528034
634.Mollerup, C.L., et al. Risk of renal stone events in primary hyperparathyroidism before and after parathyroid surgery: controlled retrospective follow up study. BMJ, 2002. 325: 807.
https://pubmed.ncbi.nlm.nih.gov/12376441
635.Evan, A.E., et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int, 2008. 74: 223.
https://pubmed.ncbi.nlm.nih.gov/18449170
636.Verheyen, N., et al. Cinacalcet hydrochloride for the treatment of hyperparathyroidism. Expert Opin Pharmacother, 2013. 14: 793.
https://pubmed.ncbi.nlm.nih.gov/23452174
637.Rizzato, G., et al. Nephrolithiasis as a presenting feature of chronic sarcoidosis: a prospective study. Sarcoidosis Vasc Diffuse Lung Dis, 1996. 13: 167.
https://pubmed.ncbi.nlm.nih.gov/8893387
638.Garrelfs, S.F., et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med, 2021. 384: 1216.
https://pubmed.ncbi.nlm.nih.gov/33789010
639.Groothoff, J.W., et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol, 2023. 19: 194.
https://pubmed.ncbi.nlm.nih.gov/36604599
640.Takei, K., et al. Oral calcium supplement decreases urinary oxalate excretion in patients with enteric hyperoxaluria. Urol Int, 1998. 61: 192.
https://pubmed.ncbi.nlm.nih.gov/9933846
641.Hoppe, B., et al. Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci, 2003. 8: e437.
https://pubmed.ncbi.nlm.nih.gov/12957811
642.Prezioso, D., et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl, 2015. 87: 105.
https://pubmed.ncbi.nlm.nih.gov/26150027
643.Domrongkitchaiporn, S., et al. Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis, 2002. 39: 383.
https://pubmed.ncbi.nlm.nih.gov/11840381
644.AP., M. Genetic renal abnormalities. Medicine, 2007. 35: 386.
https://www.sciencedirect.com/science/article/pii/S1357303907001090
645.Sromicki, J., et al. Prospective long-term evaluation of incomplete distal renal tubular acidosis in idiopathic calcium nephrolithiasis diagnosed by low-dose NH(4)CL loading - gender prevalences and impact of alkali treatment. J Nephrol, 2022. 35: 1619.
https://pubmed.ncbi.nlm.nih.gov/34973150
646.Dhayat, N.A., et al. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers. Clin J Am Soc Nephrol, 2017. 12: 1507.
https://pubmed.ncbi.nlm.nih.gov/28775126
647.Oliveira, B., et al. Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am J Physiol Renal Physiol, 2016. 311: F1243.
https://pubmed.ncbi.nlm.nih.gov/27605580
648.Mandel, N.S., et al. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J Urol, 1989. 142: 1516.
https://pubmed.ncbi.nlm.nih.gov/2585627
649.Kim, S., et al. Development of Nephrolithiasis in Asymptomatic Hyperuricemia: A Cohort Study. Am J Kidney Dis, 2017. 70: 173.
https://pubmed.ncbi.nlm.nih.gov/28410765
650.Millman, S., et al. Pathogenesis and clinical course of mixed calcium oxalate and uric acid nephrolithiasis. Kidney Int, 1982. 22: 366.
https://pubmed.ncbi.nlm.nih.gov/7176335
651.Pak, C.Y., et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. Urology, 2002. 60: 789.
https://pubmed.ncbi.nlm.nih.gov/12429297
652.Chou, Y.H., et al. Clinical study of ammonium acid urate urolithiasis. Kaohsiung J Med Sci, 2012. 28: 259.
https://pubmed.ncbi.nlm.nih.gov/22531304
653.Wagner, C.A., et al. Urinary pH and stone formation. J Nephrol, 2010. 23 Suppl 16: S165.
https://pubmed.ncbi.nlm.nih.gov/21170875
654.Coe, F.L., et al. Kidney stone disease. J Clin Invest, 2005. 115: 2598.
https://pubmed.ncbi.nlm.nih.gov/16200192
655.Miano, R., et al. Stones and urinary tract infections. Urol Int, 2007. 79 Suppl 1: 32.
https://pubmed.ncbi.nlm.nih.gov/17726350
656.Rodman JS, S.E., Lopez ML., Diagnosis and treatment of uric acid calculi., in Kidney Stones. Medical and Surgical Management, F.M. Coe FL, Pak CYC, Parks JH, Preminger GM., Editor. 1996, Lippincott-Raven: Philadelphia.
657.Low, R.K., et al. Uric acid-related nephrolithiasis. Urol Clin North Am, 1997. 24: 135.
https://pubmed.ncbi.nlm.nih.gov/9048857
658.Shekarriz, B., et al. Uric acid nephrolithiasis: current concepts and controversies. J Urol, 2002. 168: 1307.
https://pubmed.ncbi.nlm.nih.gov/12352383
659.Wilcox, W.R., et al. Solubility of uric acid and monosodium urate. Med Biol Eng, 1972. 10: 522.
https://pubmed.ncbi.nlm.nih.gov/5074854
660.Mattle, D., et al. Preventive treatment of nephrolithiasis with alkali citrate--a critical review. Urol Res, 2005. 33: 73.
https://pubmed.ncbi.nlm.nih.gov/15875173
661.Marchini, G.S., et al. Gout, stone composition and urinary stone risk: a matched case comparative study. J Urol, 2013. 189: 1334.
https://pubmed.ncbi.nlm.nih.gov/23022002
662.Kramer, G., et al. Role of bacteria in the development of kidney stones. Curr Opin Urol, 2000. 10: 35.
https://pubmed.ncbi.nlm.nih.gov/10650513
663.Gettman, M.T., et al. Struvite stones: diagnosis and current treatment concepts. J Endourol, 1999. 13: 653.
https://pubmed.ncbi.nlm.nih.gov/10608517
664.Wall, I., et al. Biochemical risk factors in patients with renal staghorn stone disease. Urology, 1986. 28: 377.
https://pubmed.ncbi.nlm.nih.gov/3787896
665.Akagashi, K., et al. Characteristics of patients with staghorn calculi in our experience. Int J Urol, 2004. 11: 276.
https://pubmed.ncbi.nlm.nih.gov/15147542
666.Amaro, C.R., et al. Metabolic investigation of patients with staghorn calculus: is it necessary? Int Braz J Urol, 2009. 35: 658.
https://pubmed.ncbi.nlm.nih.gov/20028571
667.Resnick, M.I., et al. Bilateral staghorn calculi--patient evaluation and management. J Urol, 1980. 123: 338.
https://pubmed.ncbi.nlm.nih.gov/7359631
668.Kristensen, C., et al. Reduced glomerular filtration rate and hypercalciuria in primary struvite nephrolithiasis. Kidney Int, 1987. 32: 749.
https://pubmed.ncbi.nlm.nih.gov/3430961
669.Iqbal, M.W., et al. Should metabolic evaluation be performed in patients with struvite stones? Urolithiasis, 2017. 45: 185.
https://pubmed.ncbi.nlm.nih.gov/27240693
670.Bichler, K.H., et al. Urinary infection stones. Int J Antimicrob Agents, 2002. 19: 488.
https://pubmed.ncbi.nlm.nih.gov/12135839
671.Carpentier, X., et al. Relationships between carbonation rate of carbapatite and morphologic characteristics of calcium phosphate stones and etiology. Urology, 2009. 73: 968.
https://pubmed.ncbi.nlm.nih.gov/19394492
672.Thompson, R.B., et al. Bacteriology of infected stones. Urology, 1973. 2: 627.
https://pubmed.ncbi.nlm.nih.gov/4587909
673.McLean, R.J., et al. The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol, 1988. 16: 37.
https://pubmed.ncbi.nlm.nih.gov/3053050
674.Wong HY, R.C., Griffith DP., Medical management and prevention of struvite stones, in Kidney Stones: Medical and Surgical Management, Coe & F.M. FL, Pak CYC, Parks JH, Preminger GM., Editors. 1996, Lippincott-Raven: Philadelphia.
675.Wall, I., et al. Long-term acidification of urine in patients treated for infected renal stones. Urol Int, 1990. 45: 336.
https://pubmed.ncbi.nlm.nih.gov/2288050
676.Griffith, D.P., et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur Urol, 1991. 20: 243.
https://pubmed.ncbi.nlm.nih.gov/1726639
677.Williams, J.J., et al. A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis. N Engl J Med, 1984. 311: 760.
https://pubmed.ncbi.nlm.nih.gov/6472365
678.Leusmann, D.B., et al. Results of 5,035 stone analyses: a contribution to epidemiology of urinary stone disease. Scand J Urol Nephrol, 1990. 24: 205.
https://pubmed.ncbi.nlm.nih.gov/2237297
679.Milliner, D.S., et al. Urolithiasis in pediatric patients. Mayo Clin Proc, 1993. 68: 241.
https://pubmed.ncbi.nlm.nih.gov/8474265
680.Prot-Bertoye, C., et al. CKD and Its Risk Factors among Patients with Cystinuria. Clin J Am Soc Nephrol, 2015. 10: 842.
https://pubmed.ncbi.nlm.nih.gov/25717071
681.Kum, F., et al. Hypertension and renal impairment in patients with cystinuria: findings from a specialist cystinuria centre. Urolithiasis, 2019. 47: 357.
https://pubmed.ncbi.nlm.nih.gov/30805669
682.Ferraro, P.M., et al. When to suspect a genetic disorder in a patient with renal stones, and why. Nephrol Dial Transplant, 2013. 28: 811.
https://pubmed.ncbi.nlm.nih.gov/23291371
683.Rogers, A., et al. Management of cystinuria. Urol Clin North Am, 2007. 34: 347.
https://pubmed.ncbi.nlm.nih.gov/17678985
684.Dello Strologo, L., et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol, 2002. 13: 2547.
https://pubmed.ncbi.nlm.nih.gov/12239244
685.Lee, W.S., et al. Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J Clin Invest, 1993. 91: 1959.
https://pubmed.ncbi.nlm.nih.gov/8486766
686.Daudon, M., et al. Cystine crystal volume determination: a useful tool in the management of cystinuric patients. Urol Res, 2003. 31: 207.
https://pubmed.ncbi.nlm.nih.gov/12748836
687.Malieckal, D.A., et al. Effect of increasing doses of cystine-binding thiol drugs on cystine capacity in patients with cystinuria. Urolithiasis, 2019. 47: 549.
https://pubmed.ncbi.nlm.nih.gov/30980122
688.Nakagawa, Y., et al. Clinical use of cystine supersaturation measurements. J Urol, 2000. 164: 1481.
https://pubmed.ncbi.nlm.nih.gov/11025687
689.Fjellstedt, E., et al. Cystine analyses of separate day and night urine as a basis for the management of patients with homozygous cystinuria. Urol Res, 2001. 29: 303.
https://pubmed.ncbi.nlm.nih.gov/11762791
690.Ng, C.S., et al. Contemporary management of cystinuria. J Endourol, 1999. 13: 647.
https://pubmed.ncbi.nlm.nih.gov/10608516
691.Knoll, T., et al. Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol, 2005. 20: 19.
https://pubmed.ncbi.nlm.nih.gov/15602663
692.Biyani, C.S., et al. Cystinuria—Diagnosis and Management. EAU-EBU Update Series, 2006. 4: 175.
https://www.sciencedirect.com/science/article/pii/S1871259206000384
693.Prot-Bertoye, C., et al. Adverse events associated with currently used medical treatments for cystinuria and treatment goals: results from a series of 442 patients in France. BJU Int, 2019. 124: 849.
https://pubmed.ncbi.nlm.nih.gov/30801923
694.Runolfsdottir, H.L., et al. Urinary 2,8-dihydroxyadenine excretion in patients with adenine phosphoribosyltransferase deficiency, carriers and healthy control subjects. Mol Genet Metab, 2019. 128: 144.
https://pubmed.ncbi.nlm.nih.gov/31378568
695.Edvardsson, V.O., et al. Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with Adenine phosphoribosyltransferase deficiency (APRTd): A clinical trial. Eur J Intern Med, 2018. 48: 75.
https://pubmed.ncbi.nlm.nih.gov/29241594
696.Matlaga, B.R., et al. Drug-induced urinary calculi. Rev Urol, 2003. 5: 227.
https://pubmed.ncbi.nlm.nih.gov/16985842
697.Beltrami, P., et al. The endourological treatment of renal matrix stones. Urol Int, 2014. 93: 394.
https://pubmed.ncbi.nlm.nih.gov/24969358
698.Finocchiaro, R., et al. Usefulness of cyanide-nitroprusside test in detecting incomplete recessive heterozygotes for cystinuria: a standardized dilution procedure. Urol Res, 1998. 26: 401.
https://pubmed.ncbi.nlm.nih.gov/9879820
699.Nakagawa, Y., et al. A modified cyanide-nitroprusside method for quantifying urinary cystine concentration that corrects for creatinine interference. Clin Chim Acta, 1999. 289: 57.
https://pubmed.ncbi.nlm.nih.gov/10556653
700.Li, S., et al. Effect of stone composition on surgical stone recurrence: single center longitudinal analysis. Can J Urol, 2021. 28: 10744.
https://pubmed.ncbi.nlm.nih.gov/34378509
701.Schwartz, B.F., et al. The vesical calculus. Urol Clin North Am, 2000. 27: 333.
https://pubmed.ncbi.nlm.nih.gov/10778475
702.Kum, F., et al. Do stones still kill? An analysis of death from stone disease 1999-2013 in England and Wales. BJU Int, 2016. 118: 140.
https://pubmed.ncbi.nlm.nih.gov/26765522
703.Ramello, A., et al. Epidemiology of nephrolithiasis. J Nephrol, 2000. 13 Suppl 3: S45.
https://pubmed.ncbi.nlm.nih.gov/11132032
704.Halstead, S.B. Epidemiology of bladder stone of children: precipitating events. Urolithiasis, 2016. 44: 101.
https://pubmed.ncbi.nlm.nih.gov/26559057
705.Takasaki, E., et al. Chemical compositions of 300 lower urinary tract calculi and associated disorders in the urinary tract. Urol Int, 1995. 54: 89.
https://pubmed.ncbi.nlm.nih.gov/7538235
706.Naqvi, S.A., et al. Bladder stone disease in children: clinical studies. J Pak Med Assoc, 1984. 34: 94.
https://pubmed.ncbi.nlm.nih.gov/6429380
707.Philippou, P., et al. The management of bladder lithiasis in the modern era of endourology. Urology, 2012. 79: 980.
https://pubmed.ncbi.nlm.nih.gov/22119259
708.Lal, B., et al. Childhood Bladder Stones-an Endemic Disease of Developing Countries. J Ayub Med Coll Abbottabad, 2015. 27: 17.
https://pubmed.ncbi.nlm.nih.gov/26182729
709.Douenias, R., et al. Predisposing factors in bladder calculi. Review of 100 cases. Urology, 1991. 37: 240.
https://pubmed.ncbi.nlm.nih.gov/2000681
710.Smith, J.M., et al. Vesical stone: The clinical features of 652 cases. Ir Med J, 1975. 68: 85.
https://pubmed.ncbi.nlm.nih.gov/1112692
711.Millan-Rodriguez, F., et al. Urodynamic findings before and after noninvasive management of bladder calculi. BJU Int, 2004. 93: 1267.
https://pubmed.ncbi.nlm.nih.gov/15180620
712.Yang, X., et al. The value of respective urodynamic parameters for evaluating the occurrence of complications linked to benign prostatic enlargement. Int Urol Nephrol, 2014. 46: 1761.
https://pubmed.ncbi.nlm.nih.gov/24811567
713.Childs, M.A., et al. Pathogenesis of bladder calculi in the presence of urinary stasis. J Urol, 2013. 189: 1347.
https://pubmed.ncbi.nlm.nih.gov/23159588
714.Krambeck, A.E., et al. Experience with more than 1,000 holmium laser prostate enucleations for benign prostatic hyperplasia. J Urol, 2010. 183: 1105.
https://pubmed.ncbi.nlm.nih.gov/20092844
715.Mebust, W.K., et al. Transurethral prostatectomy: immediate and postoperative complications. a cooperative study of 13 participating institutions evaluating 3,885 patients. 1989. J Urol, 2002. 167: 999.
https://pubmed.ncbi.nlm.nih.gov/11908420
716.Adegeest, C.Y., et al. Influence of severity and level of injury on the occurrence of complications during the subacute and chronic stage of traumatic spinal cord injury: a systematic review. J Neurosurg Spine, 2022. 36: 632.
https://pubmed.ncbi.nlm.nih.gov/34767527
717.Kohler-Ockmore, J., et al. Long-term catheterization of the bladder: prevalence and morbidity. Br J Urol, 1996. 77: 347.
https://pubmed.ncbi.nlm.nih.gov/8814836
718.Kim, J.W., et al. Intravesical prostatic protrusion is a risk factor for bladder stone in patients with benign prostatic hyperplasia. Urology, 2014. 84: 1026.
https://pubmed.ncbi.nlm.nih.gov/25214201
719.Huang, W., et al. Risk factors for bladder calculi in patients with benign prostatic hyperplasia. Medicine (Baltimore), 2017. 96: e7728.
https://pubmed.ncbi.nlm.nih.gov/28796057
720.Bansal, A., et al. Prospective randomized comparison of three endoscopic modalities used in treatment of bladder stones. Urologia, 2016. 83: 87.
https://pubmed.ncbi.nlm.nih.gov/27103095
721.Kawahara, T., et al. Correlation between the operation time using two different power settings of a Ho: YAG laser: laser power doesn’t influence lithotripsy time. BMC Res Notes, 2013. 6: 80.
https://pubmed.ncbi.nlm.nih.gov/23510531
722.Liu, G., et al. Minimally invasive percutaneous suprapubic cystolithotripsy: An effective treatment for bladder stones with urethral strictures. International Journal of Clinical and Experimental Medicine, 2016. 9: 19907.
http://www.ijcem.com/files/ijcem0023634.
723.Soliman, N.A., et al. Endemic bladder calculi in children. Pediatr Nephrol, 2017. 32: 1489.
https://pubmed.ncbi.nlm.nih.gov/27848095
724.Aurora, A.L., et al. Bladder stone disease of childhood. II. A clinico-pathological study. Acta Paediatr Scand, 1970. 59: 385.
https://pubmed.ncbi.nlm.nih.gov/5447682
725.Valyasevi, A., et al. Studies of bladder stone disease in Thailand. VI. Urinary studies in children, 2-10 years old, resident in a hypo- and hyperendemic area. Am J Clin Nutr, 1967. 20: 1362.
https://pubmed.ncbi.nlm.nih.gov/6074673
726.Al-Marhoon, M.S., et al. Comparison of endourological and open cystolithotomy in the management of bladder stones in children. J Urol, 2009. 181: 2684.
https://pubmed.ncbi.nlm.nih.gov/19375100
727.Linsenmeyer, M.A., et al. Accuracy of bladder stone detection using abdominal x-ray after spinal cord injury. J Spinal Cord Med, 2004. 27: 438.
https://pubmed.ncbi.nlm.nih.gov/15648797
728.Bakin, S., et al. Accuracy of ultrasound versus computed tomography urogram in detecting urinary tract calculi. Medical Journal of Malaysia, 2015. 70: 238.
https://pubmed.ncbi.nlm.nih.gov/26358021
729.Ahmed, F.O., et al. A comparison between transabdominal ultrasonographic and cystourethroscopy findings in adult Sudanese patients presenting with haematuria. Int Urol Nephrol, 2015. 47: 223.
https://pubmed.ncbi.nlm.nih.gov/25374263
730.Babjuk, M., et al., EAU Guidelines on Non-musle-invasive Bladder Cancer (TaT1 and CIS), in European Association of Urology Guidelines 2022 edition. 2022, The European Association of Urology: Arnhem, The Netherlands.
731.Johnson, E.K., et al. Are stone protocol computed tomography scans mandatory for children with suspected urinary calculi? Urology, 2011. 78: 662.
https://pubmed.ncbi.nlm.nih.gov/21722946
732.Protection, R. ICRP publication 103. Ann ICRP, 2007. 37: 2.
https://icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf
733.O’Connor, R.C., et al. Nonsurgical management of benign prostatic hyperplasia in men with bladder calculi. Urology, 2002. 60: 288.
https://pubmed.ncbi.nlm.nih.gov/12137828
734.Rodman, J.S., et al. Dissolution of uric acid calculi. J Urol, 1984. 131: 1039.
https://pubmed.ncbi.nlm.nih.gov/6726897
735.Lopez, J.R., et al. Irrigating solutions in bladder stone dissolution. Drug Intell Clin Pharm, 1987. 21: 872.
https://pubmed.ncbi.nlm.nih.gov/3678056
736.Donaldson, J.F., et al. Treatment of Bladder Stones in Adults and Children: A Systematic Review and Meta-analysis on Behalf of the European Association of Urology Urolithiasis Guideline Panel. Eur Urol, 2019. 76: 352.
https://pubmed.ncbi.nlm.nih.gov/31311676
737.Rattan, K.N., et al. Catheterless and drainless open suprapubic cystolithotomy in children: a safe procedure. Pediatr Surg Int, 2006. 22: 255.
https://pubmed.ncbi.nlm.nih.gov/16416282
738.Ullah, S., et al. Comparison of open vesicolithotomy and cystolitholapaxy. Pakistan Journal of Medical Sciences, 2007. 23: 47.
https://www.pjms.com.pk/issues/janmar07/article/article7.html
739.Gou, L., et al. Comparison of nephroscopy and cystoscopy used in the treatment of bladder stones: a systematic review and meta-analysis of randomized controlled trials. BMC Surg, 2021. 21: 448.
https://pubmed.ncbi.nlm.nih.gov/34972510
740.Wu, J.H., et al. Combined usage of Ho:YAG laser with monopolar resectoscope in the treatment of bladder stone and bladder outlet obstruction. Pak J Med Sci, 2014. 30: 908.
https://pubmed.ncbi.nlm.nih.gov/25097543
741.Halis, F., et al. The comparison of percutaneous and transurethral cystolithotripsy methods simultaneously performed with Transurethral Resection of Prostate in patients with BPH and bladder stone. KUWAIT MEDICAL JOURNAL, 2019. 51: 189.
https://acikerisim.sakarya.edu.tr/handle/20.500.12619/7152
742.Razvi, H.A., et al. Management of vesical calculi: comparison of lithotripsy devices. J Endourol, 1996. 10: 559.
https://pubmed.ncbi.nlm.nih.gov/8972793
743.Ercil, H., et al. Comparison of Ho:Yag laser and pneumatic lithotripsy combined with transurethral prostatectomy in high burden bladder stones with benign prostatic hyperplasia. Asian J Surg, 2016. 39: 238.
https://pubmed.ncbi.nlm.nih.gov/25937584
744.Lv, J., et al. A meta-analysis and systematic review of holmium laser treatment of bladder stones. Transl Androl Urol, 2021. 10: 3465.
https://pubmed.ncbi.nlm.nih.gov/34532271
745.Javanmard, B., et al. Surgical Management of Vesical Stones in Children: A Comparison Between Open Cystolithotomy, Percutaneous Cystolithotomy and Transurethral Cystolithotripsy With Holmium-YAG Laser. J Lasers Med Sci, 2018. 9: 183.
https://pubmed.ncbi.nlm.nih.gov/30809329
746.Gangkak, G., et al. Pneumatic cystolithotripsy versus holmium:yag laser cystolithotripsy in the treatment of pediatric bladder stones: a prospective randomized study. Pediatr Surg Int, 2016. 32: 609.
https://pubmed.ncbi.nlm.nih.gov/26879752
747.Abd, Z.H., et al. Comparison of the Safety and Efficacy of Laser Versus Pneumatic Intracorporeal Lithotripsy for Treatment of Bladder Stones in Children. J Clin Med, 2022. 11.
https://pubmed.ncbi.nlm.nih.gov/35159965
748.Davis, N.F., et al. Treatment outcomes of bladder stones in children with intact bladders in developing countries: A systematic review of >1000 cases on behalf of the European Association of Urology Bladder Stones Guideline panel. J Pediatr Urol, 2022. 18: 132.
https://pubmed.ncbi.nlm.nih.gov/35148953
749.Shahat, A.A., et al. A randomised trial comparing transurethral to percutaneous cystolithotripsy in boys. BJU Int, 2022. 130: 254.
https://pubmed.ncbi.nlm.nih.gov/35044035
750.Ali, M., et al. Shock wave lithotripsy versus endoscopic cystolitholapaxy in the management of patients presenting with calcular acute urinary retention: a randomised controlled trial. World J Urol, 2019. 37: 879.
https://pubmed.ncbi.nlm.nih.gov/30105456
751.Deswanto, I.A., et al. Management of bladder stones: the move towards non-invasive treatment. Medical Journal of Indonesia, 2017. 26: 128.
https://mji.ui.ac.id/journal/index.php/mji/article/view/1602/1680
752.Bhatia, V., et al. A comparative study of cystolithotripsy and extracorporeal shock wave therapy for bladder stones. Int Urol Nephrol, 1994. 26: 26.
https://pubmed.ncbi.nlm.nih.gov/8026920
753.Rizvi, S.A., et al. Management of pediatric urolithiasis in Pakistan: experience with 1,440 children. J Urol, 2003. 169: 634.
https://pubmed.ncbi.nlm.nih.gov/12544331
754.Autorino, R., et al. Perioperative Outcomes of Robotic and Laparoscopic Simple Prostatectomy: A European-American Multi-institutional Analysis. Eur Urol, 2015. 68: 86.
https://pubmed.ncbi.nlm.nih.gov/25484140
755.Matei, D.V., et al. Robot-assisted simple prostatectomy (RASP): does it make sense? BJU Int, 2012. 110: E972.
https://pubmed.ncbi.nlm.nih.gov/22607242
756.Philippou, P., et al. Prospective comparative study of endoscopic management of bladder lithiasis: is prostate surgery a necessary adjunct? Urology, 2011. 78: 43.
https://pubmed.ncbi.nlm.nih.gov/21296391
757.Hasan, A.M., et al. Synchronous transurethral cystolitholapaxy and TURP reveals better results than transurethral cystolitholapaxy plus medical therapy for BPH: a randomized prospective study on 100 patients with concomitant urinary bladder stone(s) and BPH. World J Urol, 2022. 40: 483.
https://pubmed.ncbi.nlm.nih.gov/34807286
758.Guo, R.Q., et al. Correlation of benign prostatic obstruction-related complications with clinical outcomes in patients after transurethral resection of the prostate. Kaohsiung J Med Sci, 2017. 33: 144.
https://pubmed.ncbi.nlm.nih.gov/28254117
759.Romero-Otero, J., et al. Analysis of Holmium Laser Enucleation of the Prostate in a High-Volume Center: The Impact of Concomitant Holmium Laser Cystolitholapaxy. J Endourol, 2019. 33: 564.
https://pubmed.ncbi.nlm.nih.gov/30773913
760.Tangpaitoon, T., et al. Does Cystolitholapaxy at the Time of Holmium Laser Enucleation of the Prostate Affect Outcomes? Urology, 2017. 99: 192.
https://pubmed.ncbi.nlm.nih.gov/27637344
761.Romero-Otero, J., et al. Critical analysis of a multicentric experience with holmium laser enucleation of the prostate for benign prostatic hyperplasia: outcomes and complications of 10 years of routine clinical practice. BJU Int, 2020. 126: 177.
https://pubmed.ncbi.nlm.nih.gov/32020749
762.Chen, Y., et al. Bladder stone incidence in persons with spinal cord injury: determinants and trends, 1973-1996. Urology, 2001. 58: 665.
https://pubmed.ncbi.nlm.nih.gov/11711333
763.Hall, M.K., et al. Renal calculi in spinal cord-injured patient: association with reflux, bladder stones, and foley catheter drainage. Urology, 1989. 34: 126.
https://pubmed.ncbi.nlm.nih.gov/2789449
764.DeVivo, M.J., et al. The risk of bladder calculi in patients with spinal cord injuries. Arch Intern Med, 1985. 145: 428.
https://pubmed.ncbi.nlm.nih.gov/3977510
765.Ord, J., et al. Bladder management and risk of bladder stone formation in spinal cord injured patients. J Urol, 2003. 170: 1734.
https://pubmed.ncbi.nlm.nih.gov/14532765
766.Bartel, P., et al. Bladder stones in patients with spinal cord injury: a long-term study. Spinal Cord, 2014. 52: 295.
https://pubmed.ncbi.nlm.nih.gov/24469146
767.Chen, H., et al. AB208. Can bladder irrigation reduce the morbidity of bladder stones in patients with spinal cord injury? Translational Andrology and Urology, 2016. 5: AB208.
768.Awad, S.A., et al. Long-term results and complications of augmentation ileocystoplasty for idiopathic urge incontinence in women. Br J Urol, 1998. 81: 569.
https://pubmed.ncbi.nlm.nih.gov/9598629
769.Blyth, B., et al. Lithogenic properties of enterocystoplasty. J Urol, 1992. 148: 575.
https://pubmed.ncbi.nlm.nih.gov/1640525
770.Flood, H.D., et al. Long-term results and complications using augmentation cystoplasty in reconstructive urology. Neurourol Urodyn, 1995. 14: 297.
https://pubmed.ncbi.nlm.nih.gov/7581466
771.Hayashi, Y., et al. Review of 86 patients with myelodysplasia and neurogenic bladder who underwent sigmoidocolocystoplasty and were followed more than 10 years. J Urol, 2006. 176: 1806.
https://pubmed.ncbi.nlm.nih.gov/16945655
772.Husmann, D.A. Long-term complications following bladder augmentations in patients with spina bifida: bladder calculi, perforation of the augmented bladder and upper tract deterioration. Transl Androl Urol, 2016. 5: 3.
https://pubmed.ncbi.nlm.nih.gov/26904407
773.Nurse, D.E., et al. Stones in enterocystoplasties. Br J Urol, 1996. 77: 684.
https://pubmed.ncbi.nlm.nih.gov/8689111
774.Shekarriz, B., et al. Surgical complications of bladder augmentation: Comparison between various enterocystoplasties in 133 patients. Urology, 2000. 55: 123.
https://pubmed.ncbi.nlm.nih.gov/10654908
775.Welk, B., et al. Population based assessment of enterocystoplasty complications in adults. J Urol, 2012. 188: 464.
https://pubmed.ncbi.nlm.nih.gov/22704106
776.Zhang, H., et al. Bladder stone formation after sigmoidocolocystoplasty: statistical analysis of risk factors. J Pediatr Surg, 2005. 40: 407.
https://pubmed.ncbi.nlm.nih.gov/15750938
777.Szymanski, K.M., et al. Additional Surgeries after Bladder Augmentation in Patients with Spina Bifida in the 21st Century. J Urol, 2020. 203: 1207.
https://pubmed.ncbi.nlm.nih.gov/31951496
778.DeFoor, W., et al. Bladder calculi after augmentation cystoplasty: risk factors and prevention strategies. J Urol, 2004. 172: 1964.
https://pubmed.ncbi.nlm.nih.gov/15540766
779.Hanna, M.K., et al. Challenges in salvaging urinary continence following failed bladder exstrophy repair in a developing country. J Pediatr Urol, 2017. 13: 270 e1.
https://pubmed.ncbi.nlm.nih.gov/28262536
780.Inouye, B.M., et al. Urologic complications of major genitourinary reconstruction in the exstrophy-epispadias complex. J Pediatr Urol, 2014. 10: 680.
https://pubmed.ncbi.nlm.nih.gov/25082713
781.Lima, S.V., et al. Nonsecretory intestinocystoplasty: a 15-year prospective study of 183 patients. J Urol, 2008. 179: 1113.
https://pubmed.ncbi.nlm.nih.gov/18206934
782.Metcalfe, P.D., et al. What is the need for additional bladder surgery after bladder augmentation in childhood? J Urol, 2006. 176: 1801.
https://pubmed.ncbi.nlm.nih.gov/16945653
783.Novak, T.E., et al. Complications of complex lower urinary tract reconstruction in patients with neurogenic versus nonneurogenic bladder--is there a difference? J Urol, 2008. 180: 2629.
https://pubmed.ncbi.nlm.nih.gov/18951557
784.Surer, I., et al. Continent urinary diversion and the exstrophy-epispadias complex. J Urol, 2003. 169: 1102.
https://pubmed.ncbi.nlm.nih.gov/12576862
785.Palmer, L.S., et al. Urolithiasis in children following augmentation cystoplasty. J Urol, 1993. 150: 726.
https://pubmed.ncbi.nlm.nih.gov/8326634
786.Kronner, K.M., et al. Bladder calculi in the pediatric augmented bladder. J Urol, 1998. 160: 1096.
https://pubmed.ncbi.nlm.nih.gov/9719284
787.Silver, R.I., et al. Urolithiasis in the exstrophy-epispadias complex. J Urol, 1997. 158: 1322.
https://pubmed.ncbi.nlm.nih.gov/9258206
788.Ross, J.P.J., et al. Pediatric bladder augmentation - Panacea or Pandora’s box? Can Urol Assoc J, 2020. 14: E251.
https://pubmed.ncbi.nlm.nih.gov/31977304
789.Kaefer, M., et al. Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. J Urol, 1998. 160: 2187.
https://pubmed.ncbi.nlm.nih.gov/9817364
790.Wang, K., et al. Complications after sigmoidocolocystoplasty: Review of 100 cases at one institution. Journal of Pediatric Surgery, 1999. 34: 1672.
https://pubmed.ncbi.nlm.nih.gov/10591568
791.Wagstaff, K.E., et al. Blood and urine analysis in patients with intestinal bladders. Br J Urol, 1991. 68: 311.
https://pubmed.ncbi.nlm.nih.gov/1913074
792.Breda, A., et al. Percutaneous cystolithotomy for calculi in reconstructed bladders: initial UCLA experience. J Urol, 2010. 183: 1989.
https://pubmed.ncbi.nlm.nih.gov/20303534
793.Kisku, S., et al. Bladder calculi in the augmented bladder: a follow-up study of 160 children and adolescents. J Pediatr Urol, 2015. 11: 66 e1.
https://pubmed.ncbi.nlm.nih.gov/25819600
794.Szymanski, K.M., et al. Cutting for stone in augmented bladders-what is the risk of recurrence and is it impacted by treatment modality? J Urol, 2014. 191: 1375.
https://pubmed.ncbi.nlm.nih.gov/24316089
795.Schlomer, B.J., et al. Cumulative incidence of outcomes and urologic procedures after augmentation cystoplasty. J Pediatr Urol, 2014. 10: 1043.
https://pubmed.ncbi.nlm.nih.gov/24766857
796.Turk, T.M., et al. Incidence of urolithiasis in cystectomy patients after intestinal conduit or continent urinary diversion. World J Urol, 1999. 17: 305.
https://pubmed.ncbi.nlm.nih.gov/10552149
797.Knap, M.M., et al. Early and late treatment-related morbidity following radical cystectomy. Scand J Urol Nephrol, 2004. 38: 153.
https://pubmed.ncbi.nlm.nih.gov/15204405
798.Arai, Y., et al. Orthotopic ileal neobladder in male patients: functional outcomes of 66 cases. Int J Urol, 1999. 6: 388.
https://pubmed.ncbi.nlm.nih.gov/10466450
799.Badawy, A.A., et al. Orthotopic diversion after cystectomy in women: A single-centre experience with a 10-year follow-up. Arab J Urol, 2011. 9: 267.
https://pubmed.ncbi.nlm.nih.gov/26579310
800.Ji, H., et al. Identification and management of emptying failure in male patients with orthotopic neobladders after radical cystectomy for bladder cancer. Urology, 2010. 76: 644.
https://pubmed.ncbi.nlm.nih.gov/20573379
801.Madbouly, K. Large orthotopic reservoir stone burden: Role of open surgery. Urol Ann, 2010. 2: 96.
https://pubmed.ncbi.nlm.nih.gov/20981195
802.Miyake, H., et al. Experience with various types of orthotopic neobladder in Japanese men: long-term follow-up. Urol Int, 2010. 84: 34.
https://pubmed.ncbi.nlm.nih.gov/20173366
803.Moeen, A.M., et al. Management of neobladder complications: endoscopy comes first. Scand J Urol, 2017. 51: 146.
https://pubmed.ncbi.nlm.nih.gov/28635567
804.Simon, J., et al. Neobladder emptying failure in males: incidence, etiology and therapeutic options. J Urol, 2006. 176: 1468.
https://pubmed.ncbi.nlm.nih.gov/16952662
805.Stein, J.P., et al. The orthotopic T pouch ileal neobladder: experience with 209 patients. J Urol, 2004. 172: 584.
https://pubmed.ncbi.nlm.nih.gov/15247737
806.Miyake, H., et al. Orthotopic sigmoid neobladder after radical cystectomy: assessment of complications, functional outcomes and quality of life in 82 Japanese patients. BJU Int, 2010. 106: 412.
https://pubmed.ncbi.nlm.nih.gov/19888974
807.Khalil, F., et al. Long-term follow-up after ileocaecal continent cutaneous urinary diversion (Mainz I pouch): A retrospective study of a monocentric experience. Arab J Urol, 2015. 13: 245.
https://pubmed.ncbi.nlm.nih.gov/26609442
808.Marien, T., et al. Characterization of Urolithiasis in Patients Following Lower Urinary Tract Reconstruction with Intestinal Segments. J Endourol, 2017. 31: 217.
https://pubmed.ncbi.nlm.nih.gov/27936931
809.Davis, W.B., et al. Percutaneous imaging-guided access for the treatment of calculi in continent urinary reservoirs. Cardiovasc Intervent Radiol, 2002. 25: 119.
https://pubmed.ncbi.nlm.nih.gov/11901429
810.Paez, E., et al. Percutaneous treatment of calculi in reconstructed bladder. J Endourol, 2007. 21: 334.
https://pubmed.ncbi.nlm.nih.gov/17444782
811.La Vecchia, C., et al. Genital and urinary tract diseases and bladder cancer. Cancer Res, 1991. 51: 629.
https://pubmed.ncbi.nlm.nih.gov/1985779
812.Chung, S.D., et al. A case-control study on the association between bladder cancer and prior bladder calculus. BMC Cancer, 2013. 13: 117.
https://pubmed.ncbi.nlm.nih.gov/23497224
813.Jhamb, M., et al. Urinary tract diseases and bladder cancer risk: a case-control study. Cancer Causes Control, 2007. 18: 839.