Guidelines

Urolithiasis

7. REFERENCES

1.Skolarikos, A., et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol, 2015. 67: 750.

https://pubmed.ncbi.nlm.nih.gov/25454613/

2.Turk, C., et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol, 2016. 69: 468.

https://pubmed.ncbi.nlm.nih.gov/26318710/

3.Turk, C., et al. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur Urol, 2016. 69: 475.

https://pubmed.ncbi.nlm.nih.gov/26344917/

4.Donaldson, J.F., et al. Treatment of Bladder Stones in Adults and Children: A Systematic Review and Meta-analysis on Behalf of the European Association of Urology Urolithiasis Guideline Panel. Eur Urol, 2019. 76: 352.

https://pubmed.ncbi.nlm.nih.gov/31311676/

5.Guyatt, G.H., et al. What is “quality of evidence” and why is it important to clinicians? BMJ, 2008. 336: 995.

https://pubmed.ncbi.nlm.nih.gov/18456631/

6.Guyatt, G.H., et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008. 336: 924.

https://pubmed.ncbi.nlm.nih.gov/18436948/

7.Phillips, B., et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick (March 2009). 2009.

https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

8.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.

https://pubmed.ncbi.nlm.nih.gov/18467413/

9.Trinchieri A. et al. Epidemiology, In: Stone Disease, K.S. C.P. Segura JW, Pak CY, Preminger GM, Tolley D., Editor. 2003, Health Publications: Paris.

10.Stamatelou, K.K., et al. Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int, 2003. 63: 1817.

https://pubmed.ncbi.nlm.nih.gov/12675858/

11.Hesse, A., et al. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol, 2003. 44: 709.

https://pubmed.ncbi.nlm.nih.gov/14644124/

12.Sanchez-Martin, F.M., et al. [Incidence and prevalence of published studies about urolithiasis in Spain. A review]. Actas Urol Esp, 2007. 31: 511.

https://pubmed.ncbi.nlm.nih.gov/17711170/

13.Zhe, M., et al. Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4,770,691 participants. Urolithiasis, 2017. 45: 441.

https://pubmed.ncbi.nlm.nih.gov/27837248/

14.Wang, L., et al. Association Study of Reported Significant Loci at 5q35.3, 7p14.3, 13q14.1 and 16p12.3 with Urolithiasis in Chinese Han Ethnicity. Sci Rep, 2017. 7: 45766.

https://pubmed.ncbi.nlm.nih.gov/28361944/

15.Leusmann, D.B. Whewellite, weddellite and company: where do all the strange names originate? BJU Int, 2000. 86: 411.

https://pubmed.ncbi.nlm.nih.gov/10971263/

16.Strohmaier, W.L. Course of calcium stone disease without treatment. What can we expect? Eur Urol, 2000. 37: 339.

https://pubmed.ncbi.nlm.nih.gov/10720863/

17.Ferraro, P.M., et al. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J Nephrol, 2017. 30: 227.

https://pubmed.ncbi.nlm.nih.gov/26969574/

18.Keoghane, S., et al. The natural history of untreated renal tract calculi. BJU Int, 2010. 105: 1627.

https://pubmed.ncbi.nlm.nih.gov/20438563/

19.Straub, M., et al. Diagnosis and metaphylaxis of stone disease. Consensus concept of the National Working Committee on Stone Disease for the upcoming German Urolithiasis Guideline. World J Urol, 2005. 23: 309.

https://pubmed.ncbi.nlm.nih.gov/16315051/

20.Pawar, A.S., et al. Incidence and characteristics of kidney stones in patients with horseshoe kidney: A systematic review and meta-analysis. Urol Ann, 2018. 10: 87.

https://pubmed.ncbi.nlm.nih.gov/29416282/

21.Dissayabutra, T., et al. Urinary stone risk factors in the descendants of patients with kidney stone disease. Pediatr Nephrol, 2018. 33: 1173.

https://pubmed.ncbi.nlm.nih.gov/29594505/

22.Hu, H., et al. Association between Circulating Vitamin D Level and Urolithiasis: A Systematic Review and Meta-Analysis. Nutrients, 2017. 9.

https://pubmed.ncbi.nlm.nih.gov/28335477/

23.Geraghty, R.M., et al. Worldwide Impact of Warmer Seasons on the Incidence of Renal Colic and Kidney Stone Disease: Evidence from a Systematic Review of Literature. J Endourol, 2017. 31: 729.

https://pubmed.ncbi.nlm.nih.gov/28338351/

24.Guo, Z.L., et al. Association between cadmium exposure and urolithiasis risk: A systematic review and meta-analysis. Medicine (Baltimore), 2018. 97: e9460.

https://pubmed.ncbi.nlm.nih.gov/29505519/

25.Hesse, A.T., et al. (Eds.), Urinary Stones, Diagnosis, Treatment and Prevention of Recurrence. 3rd edition. 2009, Basel.

26.Basiri, A., et al. Familial relations and recurrence pattern in nephrolithiasis: new words about old subjects. Urol J, 2010. 7: 81.

https://pubmed.ncbi.nlm.nih.gov/20535692/

27.Goldfarb, D.S., et al. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int, 2005. 67: 1053.

https://pubmed.ncbi.nlm.nih.gov/15698445/

28.Asplin, J.R., et al. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery.
J Urol, 2007. 177: 565.

https://pubmed.ncbi.nlm.nih.gov/17222634/

29.Gonzalez, R.D., et al. Kidney stone risk following modern bariatric surgery. Curr Urol Rep, 2014.
15: 401.

https://pubmed.ncbi.nlm.nih.gov/24658828/

30.Rendina, D., et al. Metabolic syndrome and nephrolithiasis: a systematic review and meta-analysis of the scientific evidence. J Nephrol, 2014. 27: 371.

https://pubmed.ncbi.nlm.nih.gov/24696310/

31.Dell’Orto, V.G., et al. Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review. Br J Clin Pharmacol, 2014. 77: 958.

https://pubmed.ncbi.nlm.nih.gov/24219102/

32.Mufti, U.B., et al. Nephrolithiasis in autosomal dominant polycystic kidney disease. J Endourol, 2010. 24: 1557.

https://pubmed.ncbi.nlm.nih.gov/20818989/

33.Chen, Y., et al. Current trend and risk factors for kidney stones in persons with spinal cord injury: a longitudinal study. Spinal Cord, 2000. 38: 346.

https://pubmed.ncbi.nlm.nih.gov/10889563/

34.Hara, A., et al. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. Environ Res, 2016. 145: 1.

https://pubmed.ncbi.nlm.nih.gov/26613344/

35.Gambaro, G., et al. The Risk of Chronic Kidney Disease Associated with Urolithiasis and its Urological Treatments: A Review. J Urol, 2017. 198: 268.

https://pubmed.ncbi.nlm.nih.gov/28286070/

36.Leusmann, D.B., et al. Results of 5,035 stone analyses: a contribution to epidemiology of urinary stone disease. Scand J Urol Nephrol, 1990. 24: 205.

https://pubmed.ncbi.nlm.nih.gov/2237297/

37.Kim, S.C., et al. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res, 2007. 35: 319.

https://pubmed.ncbi.nlm.nih.gov/17965956/

38.Wimpissinger, F., et al. The silence of the stones: asymptomatic ureteral calculi. J Urol, 2007.
178: 1341.

https://pubmed.ncbi.nlm.nih.gov/17706721/

39.Ray, A.A., et al. Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology, 2010. 76: 295.

https://pubmed.ncbi.nlm.nih.gov/20206970/

40.Smith-Bindman, R., et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med, 2014. 371: 1100.

https://pubmed.ncbi.nlm.nih.gov/25229916/

41.Heidenreich, A., et al. Modern approach of diagnosis and management of acute flank pain: review of all imaging modalities. Eur Urol, 2002. 41: 351.

https://pubmed.ncbi.nlm.nih.gov/12074804/

42.Kennish, S.J., et al. Is the KUB radiograph redundant for investigating acute ureteric colic in the non-contrast enhanced computed tomography era? Clin Radiol, 2008. 63: 1131.

https://pubmed.ncbi.nlm.nih.gov/18774360/

43.Worster, A., et al. The accuracy of noncontrast helical computed tomography versus intravenous pyelography in the diagnosis of suspected acute urolithiasis: a meta-analysis. Ann Emerg Med, 2002. 40: 280.

https://pubmed.ncbi.nlm.nih.gov/12192351/

44.Wu, D.S., et al. Indinavir urolithiasis. Curr Opin Urol, 2000. 10: 557.

https://pubmed.ncbi.nlm.nih.gov/11148725/

45.El-Nahas, A.R., et al. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol, 2007. 51: 1688.

https://pubmed.ncbi.nlm.nih.gov/17161522/

46.Patel, T., et al. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol, 2009. 23: 1383.

https://pubmed.ncbi.nlm.nih.gov/19694526/

47.Zarse, C.A., et al. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res, 2007. 35: 201.

https://pubmed.ncbi.nlm.nih.gov/17565491/

48.Kluner, C., et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr, 2006. 30: 44.

https://pubmed.ncbi.nlm.nih.gov/16365571/

49.Caoili, E.M., et al. Urinary tract abnormalities: initial experience with multi-detector row CT urography. Radiology, 2002. 222: 353.

https://pubmed.ncbi.nlm.nih.gov/11818599/

50.Van Der Molen, A.J., et al. CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol, 2008. 18: 4.

https://pubmed.ncbi.nlm.nih.gov/17973110/

51.Thomson, J.M., et al. Computed tomography versus intravenous urography in diagnosis of acute flank pain from urolithiasis: a randomized study comparing imaging costs and radiation dose. Australas Radiol, 2001. 45: 291.

https://pubmed.ncbi.nlm.nih.gov/11531751/

52.Smith-Bindman, R., et al. Computed Tomography Radiation Dose in Patients With Suspected Urolithiasis. JAMA Intern Med, 2015. 175: 1413.

https://pubmed.ncbi.nlm.nih.gov/26121191/

53.Rodger, F., et al. Diagnostic Accuracy of Low and Ultra-Low Dose CT for Identification of Urinary Tract Stones: A Systematic Review. Urol Int, 2018. 100: 375.

https://pubmed.ncbi.nlm.nih.gov/29649823/

54.Xiang, H., et al. Systematic review and meta-analysis of the diagnostic accuracy of low-dose computed tomography of the kidneys, ureters and bladder for urolithiasis. J Med Imaging Radiat Oncol, 2017. 61: 582.

https://pubmed.ncbi.nlm.nih.gov/28139077/

55.Saikiran, P. Effectiveness of Low Dose Over Standard dose CT for Detection of Urolithiasis: A Systematic Review. Indian J Forens Med & Toxicol, 2020. 14: 4447.

http://medicopublication.com/index.php/ijfmt/article/view/12341

56.Moore, C.L., et al. Imaging in Suspected Renal Colic: Systematic Review of the Literature and Multispecialty Consensus. J Urol, 2019. 202: 475.

https://pubmed.ncbi.nlm.nih.gov/31412438/

57.Poletti, P.A., et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol, 2007. 188: 927.

https://pubmed.ncbi.nlm.nih.gov/17377025/

58.Zheng, X., et al. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis. Eur J Radiol, 2016. 85: 1843.

https://pubmed.ncbi.nlm.nih.gov/27666626/

59.McGrath, T.A., et al. Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis. Eur Radiol, 2020. 30: 2791.

https://pubmed.ncbi.nlm.nih.gov/31980881/

60.Mandel, N., et al. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J Urol, 2003. 169: 2026.

https://pubmed.ncbi.nlm.nih.gov/12771710/

61.Kourambas, J., et al. Role of stone analysis in metabolic evaluation and medical treatment of nephrolithiasis. J Endourol, 2001. 15: 181.

https://pubmed.ncbi.nlm.nih.gov/11325090/

62.Hesse, A., et al. Quality control in urinary stone analysis: results of 44 ring trials (1980-2001). Clin Chem Lab Med, 2005. 43: 298.

https://pubmed.ncbi.nlm.nih.gov/15843235/

63.Sutor, D.J., et al. Identification standards for human urinary calculus components, using crystallographic methods. Br J Urol, 1968. 40: 22.

https://pubmed.ncbi.nlm.nih.gov/5642759/

64.Abdel-Halim, R.E., et al. A review of urinary stone analysis techniques. Saudi Med J, 2006. 27: 1462.

https://pubmed.ncbi.nlm.nih.gov/17013464/

65.Gilad, R., et al. Interpreting the results of chemical stone analysis in the era of modern stone analysis techniques. J Nephrol, 2017. 30: 135.

https://pubmed.ncbi.nlm.nih.gov/26956131/

66.Thiruchelvam, N., et al. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int, 2005. 95: 1280.

https://pubmed.ncbi.nlm.nih.gov/15892817/

67.Bonkat, G., et al., EAU Guidelines on Urological Infections, in EAU Guidelines, Edn. published as the 37th EAU Annual Meeting, Amsterdam, E.A.o.U.G. Office, Editor. 2022, European Association of Urology Guidelines Office: Arnhem, The Netherlands.

68.Somani, B.K., et al. Review on diagnosis and management of urolithiasis in pregnancy: an ESUT practical guide for urologists. World J Urol, 2017. 35: 1637.

https://pubmed.ncbi.nlm.nih.gov/28424869/

69.Asrat, T., et al. Ultrasonographic detection of ureteral jets in normal pregnancy. Am J Obstet Gynecol, 1998. 178: 1194.

https://pubmed.ncbi.nlm.nih.gov/9662301/

70.Swartz, M.A., et al. Admission for nephrolithiasis in pregnancy and risk of adverse birth outcomes. Obstet Gynecol, 2007. 109: 1099.

https://pubmed.ncbi.nlm.nih.gov/17470589/

71.Patel, S.J., et al. Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerations. Radiographics, 2007. 27: 1705.

https://pubmed.ncbi.nlm.nih.gov/18025513/

72.Roy, C., et al. Assessment of painful ureterohydronephrosis during pregnancy by MR urography. Eur Radiol, 1996. 6: 334.

https://pubmed.ncbi.nlm.nih.gov/8798002/

73.Juan, Y.S., et al. Management of symptomatic urolithiasis during pregnancy. Kaohsiung J Med Sci, 2007. 23: 241.

https://pubmed.ncbi.nlm.nih.gov/17525006/

74.Masselli, G., et al. Stone disease in pregnancy: imaging-guided therapy. Insights Imaging, 2014. 5: 691.

https://pubmed.ncbi.nlm.nih.gov/25249333/

75.MHRA, Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use, MHRA, Editor. 2015, MHRA.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/958486/MRI_guidance_2021-4-03c.pdf

76.ACOG Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet Gynecol, 2017. 130: e210.

https://pubmed.ncbi.nlm.nih.gov/28937575/

77.AIUM Practice parameter for the performance of obstetric ultrasound examinations 2013,

https://onlinelibrary.wiley.com/doi/abs/10.7863/jum.2013.32.6.1083

78.F.D.A. Avoid Fetal “Keepsake” Images, Heartbeat Monitors. 2014. 2018.

https://www.fda.gov/consumers/consumer-updates/avoid-fetal-keepsake-images-heartbeat-monitors

79.Sharp, C., et al., Diagnostic Medical Exposures: Advice on Exposure to Ionising Radiation during Pregnancy. 1998, Chilton, Didcot, Oxon, OX11 0RQ.

https://inis.iaea.org/search/search.aspx?orig_q=RN:31046372

80.Kanal, E., et al. ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol, 2007. 188: 1447.

https://pubmed.ncbi.nlm.nih.gov/17515363/

81.White, W.M., et al. Predictive value of current imaging modalities for the detection of urolithiasis during pregnancy: a multicenter, longitudinal study. J Urol, 2013. 189: 931.

https://pubmed.ncbi.nlm.nih.gov/23017526/

82.Sternberg, K., et al. Pediatric stone disease: an evolving experience. J Urol, 2005. 174: 1711.

https://pubmed.ncbi.nlm.nih.gov/16148688/

83.ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103, 2007. 37.

https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103

84.Passerotti, C., et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J Urol, 2009. 182: 1829.

https://pubmed.ncbi.nlm.nih.gov/19692054/

85.Tasian, G.E., et al. Evaluation and medical management of kidney stones in children. J Urol, 2014. 192: 1329.

https://pubmed.ncbi.nlm.nih.gov/24960469/

86.Palmer, L.S. Pediatric urologic imaging. Urol Clin North Am, 2006. 33: 409.

https://pubmed.ncbi.nlm.nih.gov/16829274/

87.Riccabona, M., et al. Imaging recommendations in paediatric uroradiology. Minutes of the ESPR uroradiology task force session on childhood obstructive uropathy, high-grade fetal hydronephrosis, childhood haematuria, and urolithiasis in childhood. ESPR Annual Congress, Edinburgh, UK, June 2008. Pediatr Radiol, 2009. 39: 891.

https://pubmed.ncbi.nlm.nih.gov/19565235/

88.Darge, K., et al. [Modern ultrasound technologies and their application in pediatric urinary tract imaging]. Radiologe, 2005. 45: 1101.

https://pubmed.ncbi.nlm.nih.gov/16086170/

89.Pepe, P., et al. Functional evaluation of the urinary tract by color-Doppler ultrasonography (CDU) in 100 patients with renal colic. Eur J Radiol, 2005. 53: 131.

https://pubmed.ncbi.nlm.nih.gov/15607864/

90.Oner, S., et al. Comparison of spiral CT and US in the evaluation of pediatric urolithiasis. Jbr-btr, 2004. 87: 219.

https://pubmed.ncbi.nlm.nih.gov/15587558/

91.Palmer, J.S., et al. Diagnosis of pediatric urolithiasis: role of ultrasound and computerized tomography. J Urol, 2005. 174: 1413.

https://pubmed.ncbi.nlm.nih.gov/16145452/

92.Riccabona, M., et al. Conventional imaging in paediatric uroradiology. Eur J Radiol, 2002. 43: 100.

https://pubmed.ncbi.nlm.nih.gov/12127207/

93.Chateil, J.F., et al. [Practical measurement of radiation dose in pediatric radiology: use of the dose surface product in digital fluoroscopy and for neonatal chest radiographs]. J Radiol, 2004. 85: 619.

https://pubmed.ncbi.nlm.nih.gov/15205653/

94.Stratton, K.L., et al. Implications of ionizing radiation in the pediatric urology patient. J Urol, 2010. 183: 2137.

https://pubmed.ncbi.nlm.nih.gov/20399463/

95.Rob, S., et al. Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: is there a difference? Results from a systematic review of the literature. Clin Radiol, 2017. 72: 11.

https://pubmed.ncbi.nlm.nih.gov/27810168/

96.Tamm, E.P., et al. Evaluation of the patient with flank pain and possible ureteral calculus. Radiology, 2003. 228: 319.

https://pubmed.ncbi.nlm.nih.gov/12819343/

97.Cody, D.D., et al. Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients. AJR Am J Roentgenol, 2004. 182: 849.

https://pubmed.ncbi.nlm.nih.gov/15039151/

98.Leppert, A., et al. Impact of magnetic resonance urography on preoperative diagnostic workup in children affected by hydronephrosis: should IVU be replaced? J Pediatr Surg, 2002. 37: 1441.

https://pubmed.ncbi.nlm.nih.gov/12378450/

99.Pathan, S.A., et al. Delivering safe and effective analgesia for management of renal colic in the emergency department: a double-blind, multigroup, randomised controlled trial. Lancet, 2016.
387: 1999.

https://pubmed.ncbi.nlm.nih.gov/26993881/

100.Pathan, S.A., et al. A Systematic Review and Meta-analysis Comparing the Efficacy of Nonsteroidal Anti-inflammatory Drugs, Opioids, and Paracetamol in the Treatment of Acute Renal Colic. Eur Urol, 2018. 73: 583.

https://pubmed.ncbi.nlm.nih.gov/29174580/

101.Forouzanfar, M.M., et al. Comparison of Intravenous Ibuprofen with Intravenous Ketorolac in Renal Colic Pain Management; A Clinical Trial. Anesth Pain Med, 2019. 9: e86963.

https://pubmed.ncbi.nlm.nih.gov/30881914/

102.Gu, H.-Y., et al. Increasing Nonsteroidal Anti-inflammatory Drugs and Reducing Opioids or Paracetamol in the Management of Acute Renal Colic: Based on Three-Stage Study Design of Network Meta-Analysis of Randomized Controlled Trials. Front Pharmacol, 2019. 10: 96.

https://pubmed.ncbi.nlm.nih.gov/30853910/

103.Krum, H., et al. Blood pressure and cardiovascular outcomes in patients taking nonsteroidal antiinflammatory drugs. Cardiovasc Ther, 2012. 30: 342.

https://pubmed.ncbi.nlm.nih.gov/21884017/

104.Bhala, N., et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 2013. 382: 769.

https://pubmed.ncbi.nlm.nih.gov/23726390/

105.Holdgate, A., et al. Nonsteroidal anti-inflammatory drugs (NSAIDs) versus opioids for acute renal colic. Cochrane Database Syst Rev, 2005: CD004137.

https://pubmed.ncbi.nlm.nih.gov/15846699/

106.Abbasi, S., et al. Can low-dose of ketamine reduce the need for morphine in renal colic? A double-blind randomized clinical trial. Am J Emerg Med, 2018. 36: 376.

https://pubmed.ncbi.nlm.nih.gov/28821365/

107.Hosseininejad, S.M., et al. Comparing the analgesic efficacy of morphine plus ketamine versus morphine plus placebo in patients with acute renal colic: A double-blinded randomized controlled trial. Am J Emerg Med, 2019. 37: 1118.

https://pubmed.ncbi.nlm.nih.gov/30201237/

108.Forouzan, A., et al. Comparison of the Analgesic Effect of Intravenous Ketamine versus Intravenous Morphine in Reducing Pain of Renal Colic Patients: Double-Blind Clinical Trial Study. Rev Recent Clin Trials, 2019. 14: 280.

https://pubmed.ncbi.nlm.nih.gov/31284871/

109.Metry, A.A., et al. Lornoxicam with Low-Dose Ketamine versus Pethidine to Control Pain of Acute Renal Colic. Pain Res Treat, 2019. 2019: 3976027.

https://pubmed.ncbi.nlm.nih.gov/31001434/

110.Sotoodehnia, M., et al. Low-dose intravenous ketamine versus intravenous ketorolac in pain control in patients with acute renal colic in an emergency setting: a double-blind randomized clinical trial. Korean J Pain, 2019. 32: 97.

https://pubmed.ncbi.nlm.nih.gov/31091508/

111.Beltaief, K., et al. Acupuncture versus titrated morphine in acute renal colic: a randomized controlled trial. J Pain Res, 2018. 11: 335.

https://pubmed.ncbi.nlm.nih.gov/29483783/

112.Kaynar, M., et al. Comparison of the efficacy of diclofenac, acupuncture, and acetaminophen in the treatment of renal colic. Am J Emerg Med, 2015. 33: 749.

https://pubmed.ncbi.nlm.nih.gov/25827597/

113.Holdgate, A., et al. Systematic review of the relative efficacy of non-steroidal anti-inflammatory drugs and opioids in the treatment of acute renal colic. BMJ, 2004. 328: 1401.

https://pubmed.ncbi.nlm.nih.gov/15178585/

114.Seitz, C., et al. Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol, 2009. 56: 455.

https://pubmed.ncbi.nlm.nih.gov/19560860/

115.Lee, A., et al. Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev, 2007: CD002765.

https://pubmed.ncbi.nlm.nih.gov/17443518/

116.Hollingsworth, J.M., et al. Alpha blockers for treatment of ureteric stones: systematic review and meta-analysis. BMJ, 2016. 355: i6112.

https://pubmed.ncbi.nlm.nih.gov/27908918/

117.Guercio, S., et al. Randomized prospective trial comparing immediate versus delayed ureteroscopy for patients with ureteral calculi and normal renal function who present to the emergency department. J Endourol, 2011. 25: 1137.

https://pubmed.ncbi.nlm.nih.gov/21682597/

118.European Medicines Agency. Metamizole containing medicinal products. European Medicines Agency (EMA), 2019. EMA/191666/2019

https://www.ema.europa.eu/en/medicines/human/referrals/metamizole-containing-medicinal-products

119.Ramsey, S., et al. Evidence-based drainage of infected hydronephrosis secondary to ureteric calculi. J Endourol, 2010. 24: 185.

https://pubmed.ncbi.nlm.nih.gov/20063999/

120.Lynch, M.F., et al. Percutaneous nephrostomy and ureteric stent insertion for acute renal deobstruction: Consensus based guidance. Brit J Med Surg Urol, 2008. 1: 120.

https://journals.sagepub.com/doi/abs/10.1016/j.bjmsu.2008.09.002

121.Pearle, M.S., et al. Optimal method of urgent decompression of the collecting system for obstruction and infection due to ureteral calculi. J Urol, 1998. 160: 1260.

https://pubmed.ncbi.nlm.nih.gov/9751331/

122.Wang, C.J., et al. Percutaneous nephrostomy versus ureteroscopic management of sepsis associated with ureteral stone impaction: a randomized controlled trial. Urolithiasis, 2016. 44: 415.

https://pubmed.ncbi.nlm.nih.gov/26662171/

123.Marien, T., et al. Antimicrobial resistance patterns in cases of obstructive pyelonephritis secondary to stones. Urology, 2015. 85: 64.

https://pubmed.ncbi.nlm.nih.gov/25530365/

124.Dellabella, M., et al. Randomized trial of the efficacy of tamsulosin, nifedipine and phloroglucinol in medical expulsive therapy for distal ureteral calculi. J Urol, 2005. 174: 167.

https://pubmed.ncbi.nlm.nih.gov/15947613/

125.Borghi, L., et al. Nifedipine and methylprednisolone in facilitating ureteral stone passage: a randomized, double-blind, placebo-controlled study. J Urol, 1994. 152: 1095.

https://pubmed.ncbi.nlm.nih.gov/8072071/

126.Porpiglia, F., et al. Effectiveness of nifedipine and deflazacort in the management of distal ureter stones. Urology, 2000. 56: 579.

https://pubmed.ncbi.nlm.nih.gov/11018608/

127.Dellabella, M., et al. Medical-expulsive therapy for distal ureterolithiasis: randomized prospective study on role of corticosteroids used in combination with tamsulosin-simplified treatment regimen and health-related quality of life. Urology, 2005. 66: 712.

https://pubmed.ncbi.nlm.nih.gov/16230122/

128.Yilmaz, E., et al. The comparison and efficacy of 3 different alpha1-adrenergic blockers for distal ureteral stones. J Urol, 2005. 173: 2010.

https://pubmed.ncbi.nlm.nih.gov/15879806/

129.Liu, X.J., et al. Role of silodosin as medical expulsive therapy in ureteral calculi: a meta-analysis of randomized controlled trials. Urolithiasis, 2017.

https://pubmed.ncbi.nlm.nih.gov/28365782/

130.Hsu, Y.P., et al. Silodosin versus tamsulosin for medical expulsive treatment of ureteral stones: A systematic review and meta-analysis. PLoS One, 2018. 13: e0203035.

https://pubmed.ncbi.nlm.nih.gov/30153301/

131.Pickard, R., et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet, 2015. 386: 341.

https://pubmed.ncbi.nlm.nih.gov/25998582/

132.Furyk, J.S., et al. Distal Ureteric Stones and Tamsulosin: A Double-Blind, Placebo-Controlled, Randomized, Multicenter Trial. Ann Emerg Med, 2016. 67: 86.

https://pubmed.ncbi.nlm.nih.gov/26194935/

133.Sur, R.L., et al. Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur Urol, 2015. 67: 959.

https://pubmed.ncbi.nlm.nih.gov/25465978/

134.Turk, C., et al. Medical Expulsive Therapy for Ureterolithiasis: The EAU Recommendations in 2016. Eur Urol, 2016.

https://pubmed.ncbi.nlm.nih.gov/27506951/

135.Ye, Z., et al. Efficacy and Safety of Tamsulosin in Medical Expulsive Therapy for Distal Ureteral Stones with Renal Colic: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial. Eur Urol, 2017.

https://pubmed.ncbi.nlm.nih.gov/29137830/

136.Bai, Y., et al. Tadalafil Facilitates the Distal Ureteral Stone Expulsion: A Meta-Analysis. J Endourol, 2017. 31: 557.

https://pubmed.ncbi.nlm.nih.gov/28384011/

137.Porpiglia, F., et al. Corticosteroids and tamsulosin in the medical expulsive therapy for symptomatic distal ureter stones: single drug or association? Eur Urol, 2006. 50: 339.

https://pubmed.ncbi.nlm.nih.gov/16574310/

138.Kachrilas, S., et al. The current role of percutaneous chemolysis in the management of urolithiasis: review and results. Urolithiasis, 2013. 41: 323.

https://pubmed.ncbi.nlm.nih.gov/23743991/

139.Bernardo, N.O., et al. Chemolysis of urinary calculi. Urol Clin North Am, 2000. 27: 355.

https://pubmed.ncbi.nlm.nih.gov/10778477/

140.Tiselius, H.G., et al. Minimally invasive treatment of infection staghorn stones with shock wave lithotripsy and chemolysis. Scand J Urol Nephrol, 1999. 33: 286.

https://pubmed.ncbi.nlm.nih.gov/10572989/

141.Rodman, J.S., et al. Dissolution of uric acid calculi. J Urol, 1984. 131: 1039.

https://pubmed.ncbi.nlm.nih.gov/6726897/

142.Becker, G. Uric acid stones. Nephrology, 2007. 12: S21.

https://pubmed.ncbi.nlm.nih.gov/17316272/

143.Elsawy Amr, A., et al. Can We Predict the Outcome of Oral Dissolution Therapy for Radiolucent Renal Calculi? A Prospective Study. J Urol, 2019. 201: 350.

https://pubmed.ncbi.nlm.nih.gov/30218763/

144.El-Gamal, O., et al. Role of combined use of potassium citrate and tamsulosin in the management of uric acid distal ureteral calculi. Urol Res, 2012. 40: 219.

https://pubmed.ncbi.nlm.nih.gov/21858663/

145.Elbaset, M.A., et al. Optimal non-invasive treatment of 1–2.5 cm radiolucent renal stones: oral dissolution therapy, shock wave lithotripsy or combined treatment—a randomized controlled trial. World J Urol, 2020. 38: 207.

https://pubmed.ncbi.nlm.nih.gov/30944968/

146.Musa, A.A. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial: results of a prospective randomized study. Int Urol Nephrol, 2008. 40: 19.

https://pubmed.ncbi.nlm.nih.gov/17394095/

147.Shen, P., et al. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: a systematic review and meta-analysis. J Urol, 2011. 186: 1328.

https://pubmed.ncbi.nlm.nih.gov/21855945/

148.Wang, H., et al. Meta-Analysis of Stenting versus Non-Stenting for the Treatment of Ureteral Stones. PLoS One, 2017. 12: e0167670.

https://pubmed.ncbi.nlm.nih.gov/28068364/

149.Ghoneim, I.A., et al. Extracorporeal shock wave lithotripsy in impacted upper ureteral stones: a prospective randomized comparison between stented and non-stented techniques. Urology, 2010. 75: 45.

https://pubmed.ncbi.nlm.nih.gov/19811806/

150.Platonov, M.A., et al. Pacemakers, implantable cardioverter/defibrillators, and extracorporeal shockwave lithotripsy: evidence-based guidelines for the modern era. J Endourol, 2008. 22: 243.

https://pubmed.ncbi.nlm.nih.gov/18294028/

151.Li, W.M., et al. Clinical predictors of stone fragmentation using slow-rate shock wave lithotripsy. Urol Int, 2007. 79: 124.

https://pubmed.ncbi.nlm.nih.gov/17851280/

152.Yilmaz, E., et al. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology, 2005. 66: 1160.

https://pubmed.ncbi.nlm.nih.gov/16360432/

153.Pace, K.T., et al. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol, 2005. 174: 595.

https://pubmed.ncbi.nlm.nih.gov/16006908/

154.Madbouly, K., et al. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol, 2005. 173: 127.

https://pubmed.ncbi.nlm.nih.gov/15592053/

155.Semins, M.J., et al. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol, 2008. 179: 194.

https://pubmed.ncbi.nlm.nih.gov/18001796/

156.Li, K., et al. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol, 2013. 190: 1260.

https://pubmed.ncbi.nlm.nih.gov/23538240/

157.Nguyen, D.P., et al. Optimization of Extracorporeal Shock Wave Lithotripsy Delivery Rates Achieves Excellent Outcomes for Ureteral Stones: Results of a Prospective Randomized Trial. J Urol, 2015. 194: 418.

https://pubmed.ncbi.nlm.nih.gov/25661296/

158.Pishchalnikov, Y.A., et al. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J Endourol, 2006. 20: 537.

https://pubmed.ncbi.nlm.nih.gov/16903810/

159.Kang, D.H., et al. Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis. PLoS One, 2016.
11: e0158661.

https://pubmed.ncbi.nlm.nih.gov/27387279/

160.Al-Dessoukey, A.A., et al. Ultraslow full-power shock wave lithotripsy versus slow power-ramping shock wave lithotripsy in stones with high attenuation value: A randomized comparative study. Int
J Urol, 2020. 27: 165.

https://pubmed.ncbi.nlm.nih.gov/31793084/

161.Connors, B.A., et al. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int, 2009. 104: 1004.

https://pubmed.ncbi.nlm.nih.gov/19338532/

162.Moon, K.B., et al. Optimal shock wave rate for shock wave lithotripsy in urolithiasis treatment: a prospective randomized study. Korean J Urol, 2012. 53: 790.

https://pubmed.ncbi.nlm.nih.gov/23185672/

163.Ng, C.F., et al. A prospective, randomized study of the clinical effects of shock wave delivery for unilateral kidney stones: 60 versus 120 shocks per minute. J Urol, 2012. 188: 837.

https://pubmed.ncbi.nlm.nih.gov/22819406/

164.Al-Dessoukey, A.A., et al. Ultraslow full-power shock wave lithotripsy protocol in the management of high attenuation value upper ureteric stones: A randomized comparative study. Int J Urol, 2021. 28: 33.

https://pubmed.ncbi.nlm.nih.gov/32985780/

165.Lopez-Acon, J.D., et al. Analysis of the Efficacy and Safety of Increasing the Energy Dose Applied Per Session by Increasing the Number of Shock Waves in Extracorporeal Lithotripsy: A Prospective and Comparative Study. J Endourol, 2017. 31: 1289.

https://pubmed.ncbi.nlm.nih.gov/29048206/

166.Connors, B.A., et al. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int, 2009. 103: 104.

https://pubmed.ncbi.nlm.nih.gov/18680494/

167.Handa, R.K., et al. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. BJU Int, 2012. 110: E1041.

https://pubmed.ncbi.nlm.nih.gov/22612388/

168.Skuginna, V., et al. Does Stepwise Voltage Ramping Protect the Kidney from Injury During Extracorporeal Shockwave Lithotripsy? Results of a Prospective Randomized Trial. Eur Urol, 2016. 69: 267.

https://pubmed.ncbi.nlm.nih.gov/26119561/

169.Maloney, M.E., et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J Endourol, 2006. 20: 603.

https://pubmed.ncbi.nlm.nih.gov/16999607/

170.Demirci, D., et al. Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J Endourol, 2007. 21: 1407.

https://pubmed.ncbi.nlm.nih.gov/18044996/

171.Honey, R.J., et al. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Urology, 2010. 75: 38.

https://pubmed.ncbi.nlm.nih.gov/19896176/

172.Ng, C.F., et al. Effect of Stepwise Voltage Escalation on Treatment Outcomes following Extracorporeal Shock Wave Lithotripsy of Renal Calculi: A Prospective Randomized Study. J Urol, 2019. 202: 986.

https://pubmed.ncbi.nlm.nih.gov/31112104/

173.Abdelbary, A.M., et al. Value of early second session shock wave lithotripsy in treatment of upper ureteric stones compared to laser ureteroscopy. World J Urol, 2021. 39: 3089.

https://pubmed.ncbi.nlm.nih.gov/33471164/

174.Pishchalnikov, Y.A., et al. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol, 2006. 176: 2706.

https://pubmed.ncbi.nlm.nih.gov/17085200/

175.Jain, A., et al. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol, 2007. 51: 1680.

https://pubmed.ncbi.nlm.nih.gov/17112655/

176.Van Besien, J., et al. Ultrasonography Is Not Inferior to Fluoroscopy to Guide Extracorporeal Shock Waves during Treatment of Renal and Upper Ureteric Calculi: A Randomized Prospective Study. Biomed Res Int, 2017. 2017: 7802672.

https://pubmed.ncbi.nlm.nih.gov/28589147/

177.Eichel, L., et al. Operator experience and adequate anesthesia improve treatment outcome with third-generation lithotripters. J Endourol, 2001. 15: 671.

https://pubmed.ncbi.nlm.nih.gov/11697394/

178.Sorensen, C., et al. Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. J Urol, 2002. 168: 35.

https://pubmed.ncbi.nlm.nih.gov/12050487/

179.Cleveland, R.O., et al. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J Endourol, 2004. 18: 629.

https://pubmed.ncbi.nlm.nih.gov/15597649/

180.Aboumarzouk, O.M., et al. Analgesia for patients undergoing shockwave lithotripsy for urinary stones - a systematic review and meta-analysis. Int Braz J Urol, 2017. 43: 394.

https://pubmed.ncbi.nlm.nih.gov/28338301/

181.Honey, R.J., et al. A prospective study examining the incidence of bacteriuria and urinary tract infection after shock wave lithotripsy with targeted antibiotic prophylaxis. J Urol, 2013. 189: 2112.

https://pubmed.ncbi.nlm.nih.gov/23276509/

182.Lu, Y., et al. Antibiotic prophylaxis for shock wave lithotripsy in patients with sterile urine before treatment may be unnecessary: a systematic review and meta-analysis. J Urol, 2012. 188: 441.

https://pubmed.ncbi.nlm.nih.gov/22704118/

183.Chen, K., et al. The Efficacy and Safety of Tamsulosin Combined with Extracorporeal Shockwave Lithotripsy for Urolithiasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Endourol, 2015. 29: 1166.

https://pubmed.ncbi.nlm.nih.gov/25915454/

184.Naja, V., et al. Tamsulosin facilitates earlier clearance of stone fragments and reduces pain after shockwave lithotripsy for renal calculi: results from an open-label randomized study. Urology, 2008. 72: 1006.

https://pubmed.ncbi.nlm.nih.gov/18799202/

185.Zhu, Y., et al. alpha-Blockers to assist stone clearance after extracorporeal shock wave lithotripsy: a meta-analysis. BJU Int, 2010. 106: 256.

https://pubmed.ncbi.nlm.nih.gov/19889063/

186.Zheng, S., et al. Tamsulosin as adjunctive treatment after shockwave lithotripsy in patients with upper urinary tract stones: a systematic review and meta-analysis. Scand J Urol Nephrol, 2010.
44: 425.

https://pubmed.ncbi.nlm.nih.gov/21080841/

187.Schuler, T.D., et al. Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol, 2009. 23: 387.

https://pubmed.ncbi.nlm.nih.gov/19245302/

188.Li, M., et al. Adjunctive medical therapy with alpha-blocker after extracorporeal shock wave lithotripsy of renal and ureteral stones: a meta-analysis. PLoS One, 2015. 10: e0122497.

https://pubmed.ncbi.nlm.nih.gov/25860144/

189.Skolarikos, A., et al. The Efficacy of Medical Expulsive Therapy (MET) in Improving Stone-free Rate and Stone Expulsion Time, After Extracorporeal Shock Wave Lithotripsy (SWL) for Upper Urinary Stones: A Systematic Review and Meta-analysis. Urology, 2015. 86: 1057.

https://pubmed.ncbi.nlm.nih.gov/26383613/

190.De Nunzio, C., et al. Tamsulosin or Silodosin Adjuvant Treatment Is Ineffective in Improving Shockwave Lithotripsy Outcome: A Short-Term Follow-Up Randomized, Placebo-Controlled Study. J Endourol, 2016. 30: 817.

https://pubmed.ncbi.nlm.nih.gov/27080916/

191.Aamir Ali, S., et al. Comparison of efficacy with & without Tamsulosin as medical adjuvant therapy after Extracorporeal shockwave lithotripsy in renal stone. RMJ, 2018. 43: 471.

https://www.bibliomed.org/?mno=276346

192.Zeng, T., et al. Effect of mechanical percussion combined with patient position change on the elimination of upper urinary stones/fragments: a systematic review and meta-analysis. Urolithiasis, 2020. 48: 95.

https://pubmed.ncbi.nlm.nih.gov/31062070/

193.Jing, S., et al. Modified Mechanical Percussion for Upper Urinary Tract Stone Fragments After Extracorporeal Shock Wave Lithotripsy: A Prospective Multicenter Randomized Controlled Trial. Urology, 2018. 116: 47.

https://pubmed.ncbi.nlm.nih.gov/29545046/

194.Liu, L.R., et al. Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones following shock wave lithotripsy. Cochrane Database Syst Rev, 2013: Cd008569.

https://pubmed.ncbi.nlm.nih.gov/24318643/

195.Tao, R.Z., et al. External physical vibration lithecbole facilitating the expulsion of upper ureteric stones 1.0-2.0 cm after extracorporeal shock wave lithotripsy: a prospective randomized trial. Urolithiasis, 2018.

https://pubmed.ncbi.nlm.nih.gov/30488093/

196.Yuan, C., et al. Efficacy and Safety of External Physical Vibration Lithecbole After Extracorporeal Shock Wave Lithotripsy or Retrograde Intrarenal Surgery for Urinary Stone: A Systematic Review and Meta-analysis. J Endourol, 2021. 35: 712.

https://pubmed.ncbi.nlm.nih.gov/32972194/

197.Pearle, M.S., et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol, 2005. 173: 2005.

https://pubmed.ncbi.nlm.nih.gov/15879805/

198.Lingeman, J.E., et al. Comparison of results and morbidity of percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy. J Urol, 1987. 138: 485.

https://pubmed.ncbi.nlm.nih.gov/3625845/

199.Preminger, G.M., et al. 2007 Guideline for the management of ureteral calculi. Eur Urol, 2007.
52: 1610.

https://pubmed.ncbi.nlm.nih.gov/18074433/

200.Lingeman, J.E., et al. Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA, 1990. 263: 1789.

https://pubmed.ncbi.nlm.nih.gov/2313851/

201.Krambeck, A.E., et al. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of followup. J Urol, 2006. 175: 1742.

https://pubmed.ncbi.nlm.nih.gov/16600747/

202.Eassa, W.A., et al. Prospective study of the long-term effects of shock wave lithotripsy on renal function and blood pressure. J Urol, 2008. 179: 964.

https://pubmed.ncbi.nlm.nih.gov/18207167/

203.Yu, C., et al. A systematic review and meta-analysis of new onset hypertension after extracorporeal shock wave lithotripsy. Int Urol Nephrol, 2014. 46: 719.

https://pubmed.ncbi.nlm.nih.gov/24162890/

204.Fankhauser, C.D., et al. Long-term Adverse Effects of Extracorporeal Shock-wave Lithotripsy for Nephrolithiasis and Ureterolithiasis: A Systematic Review. Urology, 2015. 85: 991.

https://pubmed.ncbi.nlm.nih.gov/25917723/

205.Fankhauser, C.D., et al. Prevalence of hypertension and diabetes after exposure to extracorporeal shock-wave lithotripsy in patients with renal calculi: a retrospective non-randomized data analysis. Int Urol Nephrol, 2018. 50: 1227.

https://pubmed.ncbi.nlm.nih.gov/29785660/

206.Chen, C.S., et al. Subcapsular hematoma of spleen--a complication following extracorporeal shock wave lithotripsy for ureteral calculus. Changgeng Yi Xue Za Zhi, 1992. 15: 215.

https://pubmed.ncbi.nlm.nih.gov/1295657/

207.Skolarikos, A., et al. Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol, 2006. 50: 981.

https://pubmed.ncbi.nlm.nih.gov/16481097/

208.Osman, M.M., et al. 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol, 2005. 47: 860.

https://pubmed.ncbi.nlm.nih.gov/15925084/

209.Tan, Y.M., et al. Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the Storz Modulith SL 20 lithotripter at the Singapore general hospital. Scand J Urol Nephrol, 2002.
36: 363.

https://pubmed.ncbi.nlm.nih.gov/12487741/

210.Muller-Mattheis, V.G., et al. Bacteremia during extracorporeal shock wave lithotripsy of renal calculi. J Urol, 1991. 146: 733.

https://pubmed.ncbi.nlm.nih.gov/1875482/

211.Dhar, N.B., et al. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J Urol, 2004. 172: 2271.

https://pubmed.ncbi.nlm.nih.gov/15538247/

212.Zanetti, G., et al. Cardiac dysrhythmias induced by extracorporeal shockwave lithotripsy.
J Endourol, 1999. 13: 409.

https://pubmed.ncbi.nlm.nih.gov/10479005/

213.Rodrigues Netto, N., Jr., et al. Small-bowel perforation after shockwave lithotripsy. J Endourol, 2003. 17: 719.

https://pubmed.ncbi.nlm.nih.gov/14642028/

214.Holmberg, G., et al. Perforation of the bowel during SWL in prone position. J Endourol, 1997. 11: 313.

https://pubmed.ncbi.nlm.nih.gov/9355944/

215.Maker, V., et al. Gastrointestinal injury secondary to extracorporeal shock wave lithotripsy: a review of the literature since its inception. J Am Coll Surg, 2004. 198: 128.

https://pubmed.ncbi.nlm.nih.gov/14698320/

216.Kim, T.B., et al. Life-threatening complication after extracorporeal shock wave lithotripsy for a renal stone: a hepatic subcapsular hematoma. Korean J Urol, 2010. 51: 212.

https://pubmed.ncbi.nlm.nih.gov/20414400/

217.Ng, C.F., et al. Hepatic haematoma after shockwave lithotripsy for renal stones. Urol Res, 2012. 40: 785.

https://pubmed.ncbi.nlm.nih.gov/22782117/

218.Ather, M.H., et al. Does ureteral stenting prior to shock wave lithotripsy influence the need for intervention in steinstrasse and related complications? Urol Int, 2009. 83: 222.

https://pubmed.ncbi.nlm.nih.gov/19752621/

219.Madbouly, K., et al. Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol, 2002. 167: 1239.

https://pubmed.ncbi.nlm.nih.gov/11832705/

220.Sayed, M.A., et al. Steinstrasse after extracorporeal shockwave lithotripsy: aetiology, prevention and management. BJU Int, 2001. 88: 675.

https://pubmed.ncbi.nlm.nih.gov/11890235/

221.Wendt-Nordahl, G., et al. Do new generation flexible ureterorenoscopes offer a higher treatment success than their predecessors? Urol Res, 2011. 39: 185.

https://pubmed.ncbi.nlm.nih.gov/21052986/

222.Wang, Q., et al. Rigid ureteroscopic lithotripsy versus percutaneous nephrolithotomy for large proximal ureteral stones: A meta-analysis. PLoS One, 2017. 12: e0171478.

https://pubmed.ncbi.nlm.nih.gov/28182718/

223.Wang, Y., et al. Comparison of the efficacy and safety of URSL, RPLU, and MPCNL for treatment of large upper impacted ureteral stones: a randomized controlled trial. BMC Urol, 2017. 17: 50.

https://pubmed.ncbi.nlm.nih.gov/28662708/

224.Sun, X., et al. Treatment of large impacted proximal ureteral stones: randomized comparison of percutaneous antegrade ureterolithotripsy versus retrograde ureterolithotripsy. J Endourol, 2008.
22: 913.

https://pubmed.ncbi.nlm.nih.gov/18429682/

225.el-Nahas, A.R., et al. Percutaneous treatment of large upper tract stones after urinary diversion. Urology, 2006. 68: 500.

https://pubmed.ncbi.nlm.nih.gov/16979745/

226.Moufid, K., et al. Large impacted upper ureteral calculi: A comparative study between retrograde ureterolithotripsy and percutaneous antegrade ureterolithotripsy in the modified lateral position. Urol Ann, 2013. 5: 140.

https://pubmed.ncbi.nlm.nih.gov/24049373/

227.El-Assmy, A., et al. Extracorporeal shock wave lithotripsy of upper urinary tract calculi in patients with cystectomy and urinary diversion. Urology, 2005. 66: 510.

https://pubmed.ncbi.nlm.nih.gov/16140067/

228.Deng, T., et al. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J Urol, 2019. 37: 1687.

https://pubmed.ncbi.nlm.nih.gov/30430253/

229.Binbay, M., et al. Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol, 2010. 24: 1929.

https://pubmed.ncbi.nlm.nih.gov/21043835/

230.Geraghty, R., et al. Evidence for Ureterorenoscopy and Laser Fragmentation (URSL) for Large Renal Stones in the Modern Era. Curr Urol Rep, 2015. 16: 54.

https://pubmed.ncbi.nlm.nih.gov/26077357/

231.Auge, B.K., et al. Ureteroscopic management of lower-pole renal calculi: technique of calculus displacement. J Endourol, 2001. 15: 835.

https://pubmed.ncbi.nlm.nih.gov/11724125/

232.Luo, Z., et al. Comparison of retrograde intrarenal surgery under regional versus general anaesthesia: A systematic review and meta-analysis. Int J Surg, 2020. 82: 36.

https://pubmed.ncbi.nlm.nih.gov/32858209/

233.Schembri, M., et al. Outcomes of loco-regional anaesthesia in ureteroscopy for stone disease: a systematic review. Curr Opin Urol, 2020. 30: 726.

https://pubmed.ncbi.nlm.nih.gov/32657841/

234.Wu, T., et al. Ureteroscopic Lithotripsy versus Laparoscopic Ureterolithotomy or Percutaneous Nephrolithotomy in the Management of Large Proximal Ureteral Stones: A Systematic Review and Meta-Analysis. Urol Int, 2017. 99: 308.

https://pubmed.ncbi.nlm.nih.gov/28586770/

235.Agrawal, S., et al. Initial experience with slimmest single-use flexible ureteroscope Uscope PU3033A (PUSEN™) in retrograde intrarenal surgery and its comparison with Uscope PU3022a: a single-center prospective study. World J Urol, 2021. 39: 3957.

https://pubmed.ncbi.nlm.nih.gov/33970313/

236.Van Compernolle, D., et al. Reusable, Single-Use, or Both: A Cost Efficiency Analysis of Flexible Ureterorenoscopes After 983 Cases. J Endourol, 2021. 35: 1454.

https://pubmed.ncbi.nlm.nih.gov/33775101/

237.Dragos, L.B., et al. Characteristics of current digital single-use flexible ureteroscopes versus their reusable counterparts: an in-vitro comparative analysis. Transl Androl Urol, 2019. 8: S359.

https://pubmed.ncbi.nlm.nih.gov/31656742/

238.Dickstein, R.J., et al. Is a safety wire necessary during routine flexible ureteroscopy? J Endourol, 2010. 24: 1589.

https://pubmed.ncbi.nlm.nih.gov/20836719/

239.Eandi, J.A., et al. Evaluation of the impact and need for use of a safety guidewire during ureteroscopy. J Endourol, 2008. 22: 1653.

https://pubmed.ncbi.nlm.nih.gov/18721045/

240.Ulvik, O., et al. Ureteroscopy with and without safety guide wire: should the safety wire still be mandatory? J Endourol, 2013. 27: 1197.

https://pubmed.ncbi.nlm.nih.gov/23795760/

241.Ambani, S.N., et al. Ureteral stents for impassable ureteroscopy. J Endourol, 2013. 27: 549.

https://pubmed.ncbi.nlm.nih.gov/23066997/

242.Pace, K.T., et al. Same Session Bilateral Ureteroscopy for Multiple Stones: Results from the CROES URS Global Study. J Urol, 2017. 198: 130.

https://pubmed.ncbi.nlm.nih.gov/28163031/

243.Ge, H., et al. Bilateral Same-Session Ureteroscopy for Treatment of Ureteral Calculi: A Systematic Review and Meta-Analysis. J Endourol, 2016. 30: 1169.

https://pubmed.ncbi.nlm.nih.gov/27626367/

244.Karim, S.S., et al. Role of pelvicalyceal anatomy in the outcomes of retrograde intrarenal surgery (RIRS) for lower pole stones: outcomes with a systematic review of literature. Urolithiasis, 2020. 48: 263.

https://pubmed.ncbi.nlm.nih.gov/31372691/

245.Lane, J., et al. Correlation of Operative Time with Outcomes of Ureteroscopy and Stone Treatment: a Systematic Review of Literature. Current Urol Rep, 2020. 21: 17.

https://pubmed.ncbi.nlm.nih.gov/32211985/

246.Stern, J.M., et al. Safety and efficacy of ureteral access sheaths. J Endourol, 2007. 21: 119.

https://pubmed.ncbi.nlm.nih.gov/17338606/

247.L’Esperance J, O., et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology, 2005. 66: 252.

https://pubmed.ncbi.nlm.nih.gov/16040093/

248.Traxer, O., et al. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol, 2013. 189: 580.

https://pubmed.ncbi.nlm.nih.gov/22982421/

249.Aboumarzouk, O.M., et al. Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol, 2012. 26: 1257.

https://pubmed.ncbi.nlm.nih.gov/22642568/

250.Traxer, O., et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: The Clinical Research Office of the Endourological Society Ureteroscopy Global Study. World J Urol, 2015. 33: 2137.

https://pubmed.ncbi.nlm.nih.gov/25971204/

251.Stern, K.L., et al. A Prospective Study Analyzing the Association Between High-grade Ureteral Access Sheath Injuries and the Formation of Ureteral Strictures. Urology, 2019. 128: 38.

https://pubmed.ncbi.nlm.nih.gov/30878681/

252.Lima, A., et al. Impact of ureteral access sheath on renal stone treatment: prospective comparative non-randomised outcomes over a 7-year period. World J Urol, 2020. 38: 1329.

https://pubmed.ncbi.nlm.nih.gov/31342247/

253.Santiago, J.E., et al. To Dust or Not To Dust: a Systematic Review of Ureteroscopic Laser Lithotripsy Techniques. Curr Urol Rep, 2017. 18: 32.

https://pubmed.ncbi.nlm.nih.gov/28271355/

254.Bach, T., et al. Working tools in flexible ureterorenoscopy--influence on flow and deflection: what does matter? J Endourol, 2008. 22: 1639.

https://pubmed.ncbi.nlm.nih.gov/18620506/

255.Leijte, J.A., et al. Holmium laser lithotripsy for ureteral calculi: predictive factors for complications and success. J Endourol, 2008. 22: 257.

https://pubmed.ncbi.nlm.nih.gov/18294030/

256.Pierre, S., et al. Holmium laser for stone management. World J Urol, 2007. 25: 235.

https://pubmed.ncbi.nlm.nih.gov/17340157/

257.Ventimiglia, E., et al. High- and Low-Power Laser Lithotripsy Achieves Similar Results: A Systematic Review and Meta-Analysis of Available Clinical Series. J Endourol, 2021. 35: 1146.

https://pubmed.ncbi.nlm.nih.gov/33677987/

258.Garg, S., et al. Ureteroscopic laser lithotripsy versus ballistic lithotripsy for treatment of ureteric stones: a prospective comparative study. Urol Int, 2009. 82: 341.

https://pubmed.ncbi.nlm.nih.gov/19440025/

259.Binbay, M., et al. Evaluation of pneumatic versus holmium:YAG laser lithotripsy for impacted ureteral stones. Int Urol Nephrol, 2011. 43: 989.

https://pubmed.ncbi.nlm.nih.gov/21479563/

260.Ahmed, M., et al. Systematic evaluation of ureteral occlusion devices: insertion, deployment, stone migration, and extraction. Urology, 2009. 73: 976.

https://pubmed.ncbi.nlm.nih.gov/19394493/

261.John, T.T., et al. Adjunctive tamsulosin improves stone free rate after ureteroscopic lithotripsy of large renal and ureteric calculi: a prospective randomized study. Urology, 2010. 75: 1040.

https://pubmed.ncbi.nlm.nih.gov/19819530/

262.Martov, A.G., et al. Clinical Comparison of Super Pulse Thulium Fiber Laser and High-Power Holmium Laser for Ureteral Stone Management. J Endourol, 2021. 35: 795.

https://pubmed.ncbi.nlm.nih.gov/33238763/

263.Kronenberg, P., et al. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol, 2021. 31: 80.

https://pubmed.ncbi.nlm.nih.gov/33470684/

264.Assimos, D., et al. Preoperative JJ stent placement in ureteric and renal stone treatment: results from the Clinical Research Office of Endourological Society (CROES) ureteroscopy (URS) Global Study. BJU Int, 2016. 117: 648.

https://pubmed.ncbi.nlm.nih.gov/26237735/

265.Jessen, J.P., et al. International Collaboration in Endourology: Multicenter Evaluation of Prestenting for Ureterorenoscopy. J Endourol, 2016. 30: 268.

https://pubmed.ncbi.nlm.nih.gov/26582170/

266.Song, T., et al. Meta-analysis of postoperatively stenting or not in patients underwent ureteroscopic lithotripsy. Urol Res, 2012. 40: 67.

https://pubmed.ncbi.nlm.nih.gov/21573923/

267.Haleblian, G., et al. Ureteral stenting and urinary stone management: a systematic review. J Urol, 2008. 179: 424.

https://pubmed.ncbi.nlm.nih.gov/18076928/

268.Nabi, G., et al. Outcomes of stenting after uncomplicated ureteroscopy: systematic review and meta-analysis. BMJ, 2007. 334: 572.

https://pubmed.ncbi.nlm.nih.gov/17311851/

269.Seklehner, S., et al. A cost analysis of stenting in uncomplicated semirigid ureteroscopic stone removal. Int Urol Nephrol, 2017. 49: 753.

https://pubmed.ncbi.nlm.nih.gov/28197765/

270.Moon, T.D. Ureteral stenting--an obsolete procedure? J Urol, 2002. 167: 1984.

https://pubmed.ncbi.nlm.nih.gov/11956423/

271.Wang, C.J., et al. Effects of specific alpha-1A/1D blocker on lower urinary tract symptoms due to double-J stent: a prospectively randomized study. Urol Res, 2009. 37: 147.

https://pubmed.ncbi.nlm.nih.gov/19277623/

272.Lamb, A.D., et al. Meta-analysis showing the beneficial effect of alpha-blockers on ureteric stent discomfort. BJU Int, 2011. 108: 1894.

https://pubmed.ncbi.nlm.nih.gov/21453351/

273.Kim, J.K., et al. Silodosin for Prevention of Ureteral Injuries Resulting from Insertion of a Ureteral Access Sheath: A Randomized Controlled Trial. Eur Urol Focus, 2021.

https://pubmed.ncbi.nlm.nih.gov/33741297/

274.Geavlete, P., et al. Complications of 2735 retrograde semirigid ureteroscopy procedures: a single-center experience. J Endourol, 2006. 20: 179.

https://pubmed.ncbi.nlm.nih.gov/16548724/

275.Perez Castro, E., et al. Differences in ureteroscopic stone treatment and outcomes for distal, mid-, proximal, or multiple ureteral locations: the Clinical Research Office of the Endourological Society ureteroscopy global study. Eur Urol, 2014. 66: 102.

https://pubmed.ncbi.nlm.nih.gov/24507782/

276.Bhojani, N., et al. Risk Factors for Urosepsis After Ureteroscopy for Stone Disease: A Systematic Review with Meta-Analysis. J Endourol, 2021. 35: 991.

https://pubmed.ncbi.nlm.nih.gov/33544019/

277.De Coninck, V., et al. Complications of ureteroscopy: a complete overview. World J Urol, 2020.
38: 2147.

https://pubmed.ncbi.nlm.nih.gov/31748953/

278.Bhanot, R., et al. Predictors and Strategies to Avoid Mortality Following Ureteroscopy for Stone Disease: A Systematic Review from European Association of Urologists Sections of Urolithiasis (EULIS) and Uro-technology (ESUT). Eur Urol Focus, 2021.

https://pubmed.ncbi.nlm.nih.gov/33674255/

279.Chugh, S., et al. Predictors of Urinary Infections and Urosepsis After Ureteroscopy for Stone Disease: a Systematic Review from EAU Section of Urolithiasis (EULIS). Curr Urol Rep, 2020. 21: 16.

https://pubmed.ncbi.nlm.nih.gov/32211969/

280.Tokas, T., et al. Role of Intrarenal Pressure in Modern Day Endourology (Mini-PCNL and Flexible URS): a Systematic Review of Literature. Curr Urol Rep, 2021. 22: 52.

https://pubmed.ncbi.nlm.nih.gov/34622341/

281.Zeng, G., et al. Mini Percutaneous Nephrolithotomy Is a Noninferior Modality to Standard Percutaneous Nephrolithotomy for the Management of 20–40mm Renal Calculi: A Multicenter Randomized Controlled Trial. Eur Urol, 2021. 79: 114.

https://pubmed.ncbi.nlm.nih.gov/32994063/

282.Ruhayel, Y., et al. Tract Sizes in Miniaturized Percutaneous Nephrolithotomy: A Systematic Review from the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol, 2017. 72: 220.

https://pubmed.ncbi.nlm.nih.gov/28237786/

283.Tikkinen, K.A.O., et al., EAU Guidelines on Thromboprophylaxis in Urological Surgery, in EAU Guidelines, Edn. published as the 32nd EAU Annual Meeting, London, 2017, Editor, European Association of Urology Guidelines Office: Arnhem, The Netherlands.

https://uroweb.org/guideline/thromboprophylaxis/?type=archive

284.Ganesamoni, R., et al. Prospective randomized controlled trial comparing laser lithotripsy with pneumatic lithotripsy in miniperc for renal calculi. J Endourol, 2013. 27: 1444.

https://pubmed.ncbi.nlm.nih.gov/24251428/

285.Mak, D.K., et al. What is better in percutaneous nephrolithotomy - Prone or supine? A systematic review. Arab J Urol, 2016. 14: 101.

https://pubmed.ncbi.nlm.nih.gov/27489736/

286.Li, J., et al. Supine versus prone position for percutaneous nephrolithotripsy: A meta-analysis of randomized controlled trials. Int J Surg, 2019. 66: 62.

https://pubmed.ncbi.nlm.nih.gov/31034987/

287.Cracco, C.M., et al. Endoscopic combined intrarenal surgery (ECIRS) - Tips and tricks to improve outcomes: A systematic review. Turk J Urol, 2020. 46: S46.

https://pubmed.ncbi.nlm.nih.gov/32877638/

288.Corrales, M., et al. Ultrasound or Fluoroscopy for Percutaneous Nephrolithotomy Access, Is There Really a Difference? A Review of Literature. J Endourol, 2021. 35: 241.

https://pubmed.ncbi.nlm.nih.gov/32762266/

289.Zhu, W., et al. A prospective and randomised trial comparing fluoroscopic, total ultrasonographic, and combined guidance for renal access in mini-percutaneous nephrolithotomy. BJU Int, 2017.
119: 612.

https://pubmed.ncbi.nlm.nih.gov/27862806/

290.El-Shaer, W., et al. Complete Ultrasound-guided Percutaneous Nephrolithotomy in Prone and Supine Positions: A Randomized Controlled Study. Urology, 2019. 128: 31.

https://pubmed.ncbi.nlm.nih.gov/30902696/

291.Isac, W., et al. Endoscopic-guided versus fluoroscopic-guided renal access for percutaneous nephrolithotomy: a comparative analysis. Urology, 2013. 81: 251.

https://pubmed.ncbi.nlm.nih.gov/23374772/

292.Falahatkar, S., et al. Complete supine PCNL: ultrasound vs. fluoroscopic guided: a randomized clinical trial. Int Braz J Urol, 2016. 42: 710.

https://pubmed.ncbi.nlm.nih.gov/27564281/

293.Srivastava, A., et al. A prospective randomized study comparing the four tract dilation methods of percutaneous nephrolithotomy. World J Urol, 2017. 35: 803.

https://pubmed.ncbi.nlm.nih.gov/27614706/

294.Armas-Phan, M., et al. Ultrasound guidance can be used safely for renal tract dilatation during percutaneous nephrolithotomy. BJU Int, 2020. 125: 284.

https://pubmed.ncbi.nlm.nih.gov/30811835/

295.Tzelves, L., et al. Suction Use During Endourological Procedures. Curr Urol Rep, 2020. 21: 46.

https://pubmed.ncbi.nlm.nih.gov/32915324/

296.Lu, Y., et al. Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J Urol, 2013. 31: 1303.

https://pubmed.ncbi.nlm.nih.gov/22903789/

297.Cormio, L., et al. Exit strategies following percutaneous nephrolithotomy (PCNL): a comparison of surgical outcomes in the Clinical Research Office of the Endourological Society (CROES) PCNL Global Study. World J Urol, 2013. 31: 1239.

https://pubmed.ncbi.nlm.nih.gov/22752586/

298.Lee, J.Y., et al. Intraoperative and postoperative feasibility and safety of total tubeless, tubeless, small-bore tube, and standard percutaneous nephrolithotomy: a systematic review and network meta-analysis of 16 randomized controlled trials. BMC Urol, 2017. 17: 48.

https://pubmed.ncbi.nlm.nih.gov/28655317/

299.Garofalo, M., et al. Tubeless procedure reduces hospitalization and pain after percutaneous nephrolithotomy: results of a multivariable analysis. Urolithiasis, 2013. 41: 347.

https://pubmed.ncbi.nlm.nih.gov/23632910/

300.Seitz, C., et al. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol, 2012. 61: 146.

https://pubmed.ncbi.nlm.nih.gov/21978422/

301.Yu, J., et al. Antibiotic prophylaxis in perioperative period of percutaneous nephrolithotomy: a systematic review and meta-analysis of comparative studies. World J Urol, 2020. 38: 1685.

https://pubmed.ncbi.nlm.nih.gov/31562533/

302.Yoshida, S., et al. The significance of intraoperative renal pelvic urine and stone cultures for patients at a high risk of post-ureteroscopy systemic inflammatory response syndrome. Urolithiasis, 2019. 47: 533.

https://pubmed.ncbi.nlm.nih.gov/30758524/

303.Wu, C., et al. Comparison of renal pelvic pressure and postoperative fever incidence between standard- and mini-tract percutaneous nephrolithotomy. Kaohsiung J Med Sci, 2017. 33: 36.

https://pubmed.ncbi.nlm.nih.gov/28088272/

304.Mariappan, P., et al. Stone and pelvic urine culture and sensitivity are better than bladder urine as predictors of urosepsis following percutaneous nephrolithotomy: a prospective clinical study. J Urol, 2005. 173: 1610.

https://pubmed.ncbi.nlm.nih.gov/15821509/

305.Lo, C.W., et al. Effectiveness of Prophylactic Antibiotics against Post-Ureteroscopic Lithotripsy Infections: Systematic Review and Meta-Analysis. Surg Infect (Larchmt), 2015. 16: 415.

https://pubmed.ncbi.nlm.nih.gov/26207401/

306.Gravas, S., et al. Postoperative infection rates in low risk patients undergoing percutaneous nephrolithotomy with and without antibiotic prophylaxis: a matched case control study. J Urol, 2012. 188: 843.

https://pubmed.ncbi.nlm.nih.gov/22819398/

307.Chew, B.H., et al. A Single Dose of Intraoperative Antibiotics Is Sufficient to Prevent Urinary Tract Infection During Ureteroscopy. J Endourol, 2016. 30: 63.

https://pubmed.ncbi.nlm.nih.gov/26413885/

308.Klingler, H.C., et al. Stone treatment and coagulopathy. Eur Urol, 2003. 43: 75.

https://pubmed.ncbi.nlm.nih.gov/12507547/

309.Kefer, J.C., et al. Safety and efficacy of percutaneous nephrostolithotomy in patients on anticoagulant therapy. J Urol, 2009. 181: 144.

https://pubmed.ncbi.nlm.nih.gov/19012931/

310.Baron, T.H., et al. Management of antithrombotic therapy in patients undergoing invasive procedures. N Engl J Med, 2013. 368: 2113.

https://pubmed.ncbi.nlm.nih.gov/23718166/

311.Naspro, R., et al. Antiplatelet therapy in patients with coronary stent undergoing urologic surgery: is it still no man’s land? Eur Urol, 2013. 64: 101.

https://pubmed.ncbi.nlm.nih.gov/23428067/

312.Eberli, D., et al. Urological surgery and antiplatelet drugs after cardiac and cerebrovascular accidents. J Urol, 2010. 183: 2128.

https://pubmed.ncbi.nlm.nih.gov/20399452/

313.Razvi, H., et al. Risk factors for perinephric hematoma formation after shockwave lithotripsy: a matched case-control analysis. J Endourol, 2012. 26: 1478.

https://pubmed.ncbi.nlm.nih.gov/22712655/

314.Rassweiler, J.J., et al. Treatment of renal stones by extracorporeal shockwave lithotripsy: an update. Eur Urol, 2001. 39: 187.

https://pubmed.ncbi.nlm.nih.gov/11223679/

315.Fischer, C., et al. [Extracorporeal shock-wave lithotripsy induced ultrastructural changes to the renal parenchyma under aspirin use. Electron microscopic findings in the rat kidney]. Urologe A, 2007.
46: 150.

https://pubmed.ncbi.nlm.nih.gov/17221245/

316.Becopoulos, T., et al. Extracorporeal lithotripsy in patients with hemophilia. Eur Urol, 1988. 14: 343.

https://pubmed.ncbi.nlm.nih.gov/3169076/

317.Ishikawa, J., et al. Extracorporeal shock wave lithotripsy in von Willebrand’s disease. Int J Urol, 1996. 3: 58.

https://pubmed.ncbi.nlm.nih.gov/8646601/

318.Zanetti, G., et al. Cardiac dysrhythmiastreated with antithrombotic agents. J Endourol, 2001. 15: 237.

https://pubmed.ncbi.nlm.nih.gov/11339387/

319.Schnabel, M.J., et al. Incidence and risk factors of renal hematoma: a prospective study of 1,300 SWL treatments. Urolithiasis, 2014. 42: 247.

https://pubmed.ncbi.nlm.nih.gov/24419328/

320.Schnabel, M.J., et al. Antiplatelet and anticoagulative medication during shockwave lithotripsy.
J Endourol, 2014. 28: 1034.

https://pubmed.ncbi.nlm.nih.gov/24851726/

321.Aboumarzouk, O.M., et al. Flexible ureteroscopy and holmium:YAG laser lithotripsy for stone disease in patients with bleeding diathesis: a systematic review of the literature. Int Braz J Urol, 2012. 38: 298.

https://pubmed.ncbi.nlm.nih.gov/22765861/

322.Elkoushy, M.A., et al. Ureteroscopy in patients with coagulopathies is associated with lower stone-free rate and increased risk of clinically significant hematuria. Int Braz J Urol, 2012. 38: 195.

https://pubmed.ncbi.nlm.nih.gov/22555043/

323.Sharaf, A., et al. Ureteroscopy in Patients with Bleeding Diatheses, Anticoagulated, and on Anti-Platelet Agents: A Systematic Review and Meta-Analysis of the Literature. J Endourol, 2017. 31: 1217.

https://pubmed.ncbi.nlm.nih.gov/29048211/

324.Sahin, C., et al. Transient cessation of antiplatelet medication before percutaneous stone surgery: does it have any safety concern on bleeding related problems? Urolithiasis, 2017. 45: 371.

https://pubmed.ncbi.nlm.nih.gov/27677484/

325.Kuo, R.L., et al. Use of ureteroscopy and holmium:YAG laser in patients with bleeding diatheses. Urology, 1998. 52: 609.

https://pubmed.ncbi.nlm.nih.gov/9763079/

326.Altay, B., et al. A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy. Lasers Med Sci, 2017. 32: 1615.

https://pubmed.ncbi.nlm.nih.gov/28733910/

327.Gupta, A.D., et al. Coronary stent management in elective genitourinary surgery. BJU Int, 2012.
110: 480.

https://pubmed.ncbi.nlm.nih.gov/22192977/

328.Delakas, D., et al. Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter. J Endourol, 2003. 17: 201.

https://pubmed.ncbi.nlm.nih.gov/12816580/

329.Lee, J.Y., et al. Stone heterogeneity index as the standard deviation of Hounsfield units: A novel predictor for shock-wave lithotripsy outcomes in ureter calculi. Sci Rep, 2016. 6: 23988.

https://pubmed.ncbi.nlm.nih.gov/27035621/

330.Ohmori, K., et al. Effects of shock waves on the mouse fetus. J Urol, 1994. 151: 255.

https://pubmed.ncbi.nlm.nih.gov/8254823/

331.Streem, S.B., et al. Extracorporeal shock wave lithotripsy in patients with bleeding diatheses. J Urol, 1990. 144: 1347.

https://pubmed.ncbi.nlm.nih.gov/2231922/

332.Carey, S.W., et al. Extracorporeal shock wave lithotripsy for patients with calcified ipsilateral renal arterial or abdominal aortic aneurysms. J Urol, 1992. 148: 18.

https://pubmed.ncbi.nlm.nih.gov/1613866/

333.Reeves, T., et al. Role of Endourological Procedures (PCNL and URS) on Renal Function: a Systematic Review. Curr Urol Rep, 2020. 21: 21.

https://pubmed.ncbi.nlm.nih.gov/32318942/

334.Skolarikos, A., et al. The role for active monitoring in urinary stones: a systematic review. J Endourol, 2010. 24: 923.

https://pubmed.ncbi.nlm.nih.gov/20482232/

335.Yallappa, S., et al. Natural History of Conservatively Managed Ureteral Stones: Analysis of 6600 Patients. J Endourol, 2018. 32: 371.

https://pubmed.ncbi.nlm.nih.gov/29482379/

336.Xu, B., et al. Meta-analysis of the efficacy of sexual intercourse for distal ureteric stones. J Int Med Res, 2019. 47: 497.

https://pubmed.ncbi.nlm.nih.gov/30621491/

337.Skolarikos, A., et al. Indications, prediction of success and methods to improve outcome of shock wave lithotripsy of renal and upper ureteral calculi. Arch Ital Urol Androl, 2010. 82: 56.

https://pubmed.ncbi.nlm.nih.gov/20593724/

338.Cui, X., et al. Comparison between extracorporeal shock wave lithotripsy and ureteroscopic lithotripsy for treating large proximal ureteral stones: a meta-analysis. Urology, 2015. 85: 748.

https://pubmed.ncbi.nlm.nih.gov/25681251/

339.Ishii, H., et al. Outcomes of Systematic Review of Ureteroscopy for Stone Disease in the Obese and Morbidly Obese Population. J Endourol, 2016. 30: 135.

https://pubmed.ncbi.nlm.nih.gov/26415049/

340.Drake, T., et al. What are the Benefits and Harms of Ureteroscopy Compared with Shock-wave Lithotripsy in the Treatment of Upper Ureteral Stones? A Systematic Review. Eur Urol, 2017.
72: 772.

https://pubmed.ncbi.nlm.nih.gov/28456350/

341.Han, D.S., et al. The Durability of Active Surveillance in Patients with Asymptomatic Kidney Stones: A Systematic Review. J Endourol, 2019. 33: 598.

https://pubmed.ncbi.nlm.nih.gov/31044612/

342.Inci, K., et al. Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J Urol, 2007. 177: 2189.

https://pubmed.ncbi.nlm.nih.gov/17509315/

343.Brandt, B., et al. Painful caliceal calculi. The treatment of small nonobstructing caliceal calculi in patients with symptoms. Scand J Urol Nephrol, 1993. 27: 75.

https://pubmed.ncbi.nlm.nih.gov/8493473/

344.Burgher, A., et al. Progression of nephrolithiasis: long-term outcomes with observation of asymptomatic calculi. J Endourol, 2004. 18: 534.

https://pubmed.ncbi.nlm.nih.gov/15333216/

345.Hubner, W., et al. Treatment of caliceal calculi. Br J Urol, 1990. 66: 9.

https://pubmed.ncbi.nlm.nih.gov/2393803/

346.Keeley, F.X., Jr., et al. Preliminary results of a randomized controlled trial of prophylactic shock wave lithotripsy for small asymptomatic renal calyceal stones. BJU Int, 2001. 87: 1.

https://pubmed.ncbi.nlm.nih.gov/11121982/

347.Glowacki, L.S., et al. The natural history of asymptomatic urolithiasis. J Urol, 1992. 147: 319.

https://pubmed.ncbi.nlm.nih.gov/1732583/

348.Collins, J.W., et al. Is there a role for prophylactic shock wave lithotripsy for asymptomatic calyceal stones? Curr Opin Urol, 2002. 12: 281.

https://pubmed.ncbi.nlm.nih.gov/12072647/

349.Rebuck, D.A., et al. The natural history of renal stone fragments following ureteroscopy. Urology, 2011. 77: 564.

https://pubmed.ncbi.nlm.nih.gov/21109293/

350.Andersson, L., et al. Small renal caliceal calculi as a cause of pain. J Urol, 1983. 130: 752.

https://pubmed.ncbi.nlm.nih.gov/6887409/

351.Mee, S.L., et al. Small caliceal stones: is extracorporeal shock wave lithotripsy justified? J Urol, 1988. 139: 908.

https://pubmed.ncbi.nlm.nih.gov/3361660/

352.Argyropoulos, A.N., et al. Evaluation of outcome following lithotripsy. Curr Opin Urol, 2010. 20: 154.

https://pubmed.ncbi.nlm.nih.gov/19898239/

353.Srisubat, A., et al. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev, 2014. 11: CD007044.

https://pubmed.ncbi.nlm.nih.gov/25418417/

354.Sahinkanat, T., et al. Evaluation of the effects of relationships between main spatial lower pole calyceal anatomic factors on the success of shock-wave lithotripsy in patients with lower pole kidney stones. Urology, 2008. 71: 801.

https://pubmed.ncbi.nlm.nih.gov/18279941/

355.Danuser, H., et al. Extracorporeal shock wave lithotripsy of lower calyx calculi: how much is treatment outcome influenced by the anatomy of the collecting system? Eur Urol, 2007. 52: 539.

https://pubmed.ncbi.nlm.nih.gov/17400366/

356.Preminger, G.M. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res, 2006. 34: 108.

https://pubmed.ncbi.nlm.nih.gov/16463145/

357.Zheng, C., et al. Extracorporeal shock wave lithotripsy versus retrograde intrarenal surgery for treatment for renal stones 1-2 cm: a meta-analysis. Urolithiasis, 2015. 43: 549.

https://pubmed.ncbi.nlm.nih.gov/26211003/

358.Zheng, C., et al. Retrograde intrarenal surgery versus percutaneous nephrolithotomy for treatment of renal stones >2 cm: a meta-analysis. Urol Int, 2014. 93: 417.

https://pubmed.ncbi.nlm.nih.gov/25170589/

359.Karakoyunlu, N., et al. A comparison of standard PCNL and staged retrograde FURS in pelvis stones over 2 cm in diameter: a prospective randomized study. Urolithiasis, 2015. 43: 283.

https://pubmed.ncbi.nlm.nih.gov/25838180/

360.Donaldson, J.F., et al. Systematic review and meta-analysis of the clinical effectiveness of shock wave lithotripsy, retrograde intrarenal surgery, and percutaneous nephrolithotomy for lower-pole renal stones. Eur Urol, 2015. 67: 612.

https://pubmed.ncbi.nlm.nih.gov/25449204/

361.Kumar, A., et al. A prospective, randomized comparison of shock wave lithotripsy, retrograde intrarenal surgery and miniperc for treatment of 1 to 2 cm radiolucent lower calyceal renal calculi: a single center experience. J Urol, 2015. 193: 160.

https://pubmed.ncbi.nlm.nih.gov/25066869/

362.Sener, N.C., et al. Prospective randomized trial comparing shock wave lithotripsy and flexible ureterorenoscopy for lower pole stones smaller than 1 cm. Urolithiasis, 2014. 42: 127.

https://pubmed.ncbi.nlm.nih.gov/24220692/

363.Manikandan, R., et al. Do anatomic factors pose a significant risk in the formation of lower pole stones? Urology, 2007. 69: 620.

https://pubmed.ncbi.nlm.nih.gov/17445636/

364.De, S., et al. Percutaneous nephrolithotomy versus retrograde intrarenal surgery: a systematic review and meta-analysis. Eur Urol, 2015. 67: 125.

https://pubmed.ncbi.nlm.nih.gov/25064687/

365.Sener, N.C., et al. Asymptomatic lower pole small renal stones: shock wave lithotripsy, flexible ureteroscopy, or observation? A prospective randomized trial. Urology, 2015. 85: 33.

https://pubmed.ncbi.nlm.nih.gov/25440816/

366.Kumar, A., et al. A Prospective Randomized Comparison Between Shock Wave Lithotripsy and Flexible Ureterorenoscopy for Lower Caliceal Stones </=2 cm: A Single-Center Experience.
J Endourol, 2015. 29: 575.

https://pubmed.ncbi.nlm.nih.gov/25203489/

367.Mi, Y., et al. Flexible ureterorenoscopy (F-URS) with holmium laser versus extracorporeal shock wave lithotripsy (ESWL) for treatment of renal stone <2 cm: a meta-analysis. Urolithiasis, 2016.
44: 353.

https://pubmed.ncbi.nlm.nih.gov/26530230/

368.Zhang, W., et al. Retrograde Intrarenal Surgery Versus Percutaneous Nephrolithotomy Versus Extracorporeal Shockwave Lithotripsy for Treatment of Lower Pole Renal Stones: A Meta-Analysis and Systematic Review. J Endourol, 2015. 29: 745.

https://pubmed.ncbi.nlm.nih.gov/25531986/

369.Junbo, L., et al. Retrograde Intrarenal Surgery vs. Percutaneous Nephrolithotomy vs. Extracorporeal Shock Wave Lithotripsy for Lower Pole Renal Stones 10-20 mm : A Meta-analysis and Systematic Review. Urol J, 2019. 16: 97.

https://pubmed.ncbi.nlm.nih.gov/30604405/

370.Tsai, S.H., et al. Comparison of the efficacy and safety of shockwave lithotripsy, retrograde intrarenal surgery, percutaneous nephrolithotomy, and minimally invasive percutaneous nephrolithotomy for lower-pole renal stones: A systematic review and network meta-analysis. Medicine (Baltimore), 2020. 99: e19403.

https://pubmed.ncbi.nlm.nih.gov/32150088/

371.Zhang, H., et al. Comparison of the Efficacy of Ultra-Mini PCNL, Flexible Ureteroscopy, and Shock Wave Lithotripsy on the Treatment of 1-2 cm Lower Pole Renal Calculi. Urol Int, 2019. 102: 153.

https://pubmed.ncbi.nlm.nih.gov/30352443/

372.Kallidonis, P., et al. Systematic Review and Meta-Analysis Comparing Percutaneous Nephrolithotomy, Retrograde Intrarenal Surgery and Shock Wave Lithotripsy for Lower Pole Renal Stones Less Than 2 cm in Maximum Diameter. J Urol, 2020. 204: 427.

https://pubmed.ncbi.nlm.nih.gov/32150506/

373.Barone, B., et al. Retrograde intra renal surgery versus percutaneous nephrolithotomy for renal stones >2 cm. A systematic review and meta-analysis. Minerva Urol Nefrol, 2020. 72: 441.

https://pubmed.ncbi.nlm.nih.gov/32083423/

374.Torricelli, F.C.M., et al. Renal Stone Features Are More Important Than Renal Anatomy to Predict Shock Wave Lithotripsy Outcomes: Results from a Prospective Study with CT Follow-Up.
J Endourol, 2020. 34: 63.

https://pubmed.ncbi.nlm.nih.gov/31595801/

375.Madbouly, K., et al. Impact of lower pole renal anatomy on stone clearance after shock wave lithotripsy: fact or fiction? J Urol, 2001. 165: 1415.

https://pubmed.ncbi.nlm.nih.gov/11342888/

376.Abdelhamid, M., et al. A Prospective Evaluation of High-Resolution CT Parameters in Predicting Extracorporeal Shockwave Lithotripsy Success for Upper Urinary Tract Calculi. J Endourol, 2016. 30: 1227.

https://pubmed.ncbi.nlm.nih.gov/27597174/

377.Gupta, N.P., et al. Infundibulopelvic anatomy and clearance of inferior caliceal calculi with shock wave lithotripsy. J Urol, 2000. 163: 24.

https://pubmed.ncbi.nlm.nih.gov/10604306/

378.Torricelli, F.C., et al. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography. J Urol, 2015. 193: 2002.

https://pubmed.ncbi.nlm.nih.gov/25524240/

379.Sumino, Y., et al. Predictors of lower pole renal stone clearance after extracorporeal shock wave lithotripsy. J Urol, 2002. 168: 1344.

https://pubmed.ncbi.nlm.nih.gov/12352389/

380.Chiong, E., et al. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology, 2005.
65: 1070.

https://pubmed.ncbi.nlm.nih.gov/15922429/

381.Chan, L.H., et al. Primary SWL Is an Efficient and Cost-Effective Treatment for Lower Pole Renal Stones Between 10 and 20 mm in Size: A Large Single Center Study. J Endourol, 2017. 31: 510.

https://pubmed.ncbi.nlm.nih.gov/28355100/

382.Hyams, E.S., et al. Flexible ureterorenoscopy and holmium laser lithotripsy for the management of renal stone burdens that measure 2 to 3 cm: a multi-institutional experience. J Endourol, 2010.
24: 1583.

https://pubmed.ncbi.nlm.nih.gov/20629566/

383.Riley, J.M., et al. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J Endourol, 2009.
23: 1395.

https://pubmed.ncbi.nlm.nih.gov/19694527/

384.Akman, T., et al. Comparison of percutaneous nephrolithotomy and retrograde flexible nephrolithotripsy for the management of 2-4 cm stones: a matched-pair analysis. BJU Int, 2012. 109: 1384.

https://pubmed.ncbi.nlm.nih.gov/22093679/

385.Assimos, D.G., et al. The role of open stone surgery since extracorporeal shock wave lithotripsy.
J Urol, 1989. 142: 263.

https://pubmed.ncbi.nlm.nih.gov/2746742/

386.Segura, J.W. Current surgical approaches to nephrolithiasis. Endocrinol Metab Clin North Am, 1990. 19: 919.

https://pubmed.ncbi.nlm.nih.gov/2081519/

387.Honeck, P., et al. Does open stone surgery still play a role in the treatment of urolithiasis? Data of a primary urolithiasis center. J Endourol, 2009. 23: 1209.

https://pubmed.ncbi.nlm.nih.gov/19538063/

388.Bichler, K.H., et al. Indications for open stone removal of urinary calculi. Urol Int, 1997. 59: 102.

https://pubmed.ncbi.nlm.nih.gov/9392057/

389.Paik, M.L., et al. Is there a role for open stone surgery? Urol Clin North Am, 2000. 27: 323.

https://pubmed.ncbi.nlm.nih.gov/10778474/

390.Alivizatos, G., et al. Is there still a role for open surgery in the management of renal stones? Curr Opin Urol, 2006. 16: 106.

https://pubmed.ncbi.nlm.nih.gov/16479213/

391.Basiri, A., et al. Comparison of safety and efficacy of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy in patients with renal pelvic stones: a randomized clinical trial. Urol J, 2014. 11: 1932.

https://pubmed.ncbi.nlm.nih.gov/25433470/

392.Prakash, J., et al. Retroperitoneoscopic versus open mini-incision ureterolithotomy for upper- and mid-ureteric stones: a prospective randomized study. Urolithiasis, 2014. 42: 133.

https://pubmed.ncbi.nlm.nih.gov/24272062/

393.Al-Hunayan, A., et al. Management of solitary renal pelvic stone: laparoscopic retroperitoneal pyelolithotomy versus percutaneous nephrolithotomy. J Endourol, 2011. 25: 975.

https://pubmed.ncbi.nlm.nih.gov/21612433/

394.Skolarikos, A., et al. Laparoscopic urinary stone surgery: an updated evidence-based review. Urol Res, 2010. 38: 337.

https://pubmed.ncbi.nlm.nih.gov/20396871/

395.Giedelman, C., et al. Laparoscopic anatrophic nephrolithotomy: developments of the technique in the era of minimally invasive surgery. J Endourol, 2012. 26: 444.

https://pubmed.ncbi.nlm.nih.gov/22142215/

396.Wang, X., et al. Laparoscopic pyelolithotomy compared to percutaneous nephrolithotomy as surgical management for large renal pelvic calculi: a meta-analysis. J Urol, 2013. 190: 888.

https://pubmed.ncbi.nlm.nih.gov/23454154/

397.Singh, V., et al. Prospective randomized comparison of retroperitoneoscopic pyelolithotomy versus percutaneous nephrolithotomy for solitary large pelvic kidney stones. Urol Int, 2014. 92: 392.

https://pubmed.ncbi.nlm.nih.gov/24135482/

398.Kumar, A., et al. A Prospective Randomized Comparison Between Laparoscopic Ureterolithotomy and Semirigid Ureteroscopy for Upper Ureteral Stones >2 cm: A Single-Center Experience.
J Endourol, 2015. 29: 1248.

https://pubmed.ncbi.nlm.nih.gov/25177768/

399.Torricelli, F.C., et al. Semi-rigid ureteroscopic lithotripsy versus laparoscopic ureterolithotomy for large upper ureteral stones: a meta - analysis of randomized controlled trials. Int Braz J Urol, 2016. 42: 645.

https://pubmed.ncbi.nlm.nih.gov/27564273/

400.Hossein, S.M., et al. Stented Versus Stentless Laparoscopic Ureterolithotomy: A Systematic Review and Meta-Analysis. J Laparoen Adv Surg Tech, 2017. 27: 1269.

https://pubmed.ncbi.nlm.nih.gov/28631946/

401.Mao, T., et al. Efficacy and safety of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for treatment of large renal stones: a meta-analysis. J Int Med Res, 2021.
49: 300060520983136.

https://pubmed.ncbi.nlm.nih.gov/33472474/

402.Xiao, Y., et al. Perioperative and long-term results of retroperitoneal laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for staghorn calculi: a single-center randomized controlled trial. World J Urol, 2019. 37: 1441.

https://pubmed.ncbi.nlm.nih.gov/30361956/

403.Muller, P.F., et al. Robotic stone surgery - Current state and future prospects: A systematic review. Arab J Urol, 2018. 16: 357.

https://pubmed.ncbi.nlm.nih.gov/30140470/

404.Coptcoat, M.J., et al. The steinstrasse: a legacy of extracorporeal lithotripsy? Eur Urol, 1988. 14: 93.

https://pubmed.ncbi.nlm.nih.gov/3360043/

405.Lucio, J., 2nd, et al. Steinstrasse predictive factors and outcomes after extracorporeal shockwave lithotripsy. Int Braz J Urol, 2011. 37: 477.

https://pubmed.ncbi.nlm.nih.gov/21888699/

406.Moursy, E., et al. Tamsulosin as an expulsive therapy for steinstrasse after extracorporeal shock wave lithotripsy: a randomized controlled study. Scand J Urol Nephrol, 2010. 44: 315.

https://pubmed.ncbi.nlm.nih.gov/20560802/

407.Resim, S., et al. Role of tamsulosin in treatment of patients with steinstrasse developing after extracorporeal shock wave lithotripsy. Urology, 2005. 66: 945.

https://pubmed.ncbi.nlm.nih.gov/16286100/

408.Rabbani, S.M. Treatment of steinstrasse by transureteral lithotripsy. Urol J, 2008. 5: 89.

https://pubmed.ncbi.nlm.nih.gov/18592460/

409.Chew, B.H., et al. Natural History, Complications and Re-Intervention Rates of Asymptomatic Residual Stone Fragments after Ureteroscopy: a Report from the EDGE Research Consortium.
J Urol, 2016. 195: 982.

https://pubmed.ncbi.nlm.nih.gov/26585680/

410.Candau, C., et al. Natural history of residual renal stone fragments after ESWL. Eur Urol, 2000. 37: 18.

https://pubmed.ncbi.nlm.nih.gov/10671779/

411.Olvera-Posada, D., et al. Natural History of Residual Fragments After Percutaneous Nephrolithotomy: Evaluation of Factors Related to Clinical Events and Intervention. Urology, 2016. 97: 46.

https://pubmed.ncbi.nlm.nih.gov/27421779/

412.Portis, A.J., et al. Confident intraoperative decision making during percutaneous nephrolithotomy: does this patient need a second look? Urology, 2008. 71: 218.

https://pubmed.ncbi.nlm.nih.gov/18308087/

413.Tokas, T., et al. Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature. World J Urol, 2017.
35: 897.

https://pubmed.ncbi.nlm.nih.gov/27738806/

414.Omar, M., et al. Contemporary Imaging Practice Patterns Following Ureteroscopy for Stone Disease. J Endourol, 2015. 29: 1122.

https://pubmed.ncbi.nlm.nih.gov/25963170/

415.Rippel, C.A., et al. Residual fragments following ureteroscopic lithotripsy: incidence and predictors on postoperative computerized tomography. J Urol, 2012. 188: 2246.

https://pubmed.ncbi.nlm.nih.gov/23083650/

416.Gokce, M.I., et al. Comparison of imaging modalities for detection of residual fragments and prediction of stone related events following percutaneous nephrolitotomy. Int Braz J Urol, 2015.
41: 86.

https://pubmed.ncbi.nlm.nih.gov/25928513/

417.Beck, E.M., et al. The fate of residual fragments after extracorporeal shock wave lithotripsy monotherapy of infection stones. J Urol, 1991. 145: 6.

https://pubmed.ncbi.nlm.nih.gov/1984100/

418.El-Nahas, A.R., et al. Predictors of clinical significance of residual fragments after extracorporeal shockwave lithotripsy for renal stones. J Endourol, 2006. 20: 870.

https://pubmed.ncbi.nlm.nih.gov/17144853/

419.Buchholz, N.P., et al. Minor residual fragments after extracorporeal shockwave lithotripsy: spontaneous clearance or risk factor for recurrent stone formation? J Endourol, 1997. 11: 227.

https://pubmed.ncbi.nlm.nih.gov/9376838/

420.McKnoulty, M., et al. Spontaneous renal fornix rupture in pregnancy and the post partum period: a systematic review of outcomes and management. BMC Urology, 2020. 20: 116.

https://pubmed.ncbi.nlm.nih.gov/32753038/

421.Tsai, Y.L., et al. Comparative study of conservative and surgical management for symptomatic moderate and severe hydronephrosis in pregnancy: a prospective randomized study. Acta Obstet Gynecol Scand, 2007. 86: 1047.

https://pubmed.ncbi.nlm.nih.gov/17712643/

422.Mokhmalji, H., et al. Percutaneous nephrostomy versus ureteral stents for diversion of hydronephrosis caused by stones: a prospective, randomized clinical trial. J Urol, 2001. 165: 1088.

https://pubmed.ncbi.nlm.nih.gov/11257644/

423.Dai, J.C., et al. Nephrolithiasis in Pregnancy: Treating for Two. Urology, 2021. 151: 44.

https://pubmed.ncbi.nlm.nih.gov/32866511/

424.Ngai, H.Y., et al. Double-J ureteric stenting in pregnancy: A single-centre experience from Iraq. Arab J Urol, 2013. 11: 148.

https://pubmed.ncbi.nlm.nih.gov/26558073/

425.Ishii, H., et al. Current status of ureteroscopy for stone disease in pregnancy. Urolithiasis, 2014. 42: 1.

https://pubmed.ncbi.nlm.nih.gov/24374899/

426.Teleb, M., et al. Definitive ureteroscopy and intracorporeal lithotripsy in treatment of ureteral calculi during pregnancy. Arab J Urol, 2014. 12: 299.

https://pubmed.ncbi.nlm.nih.gov/26019966/

427.Ramachandra, M., et al. Safety and feasibility of percutaneous nephrolithotomy (PCNL) during pregnancy: A review of literature. Turk J Urol, 2020. 46: 89.

https://pubmed.ncbi.nlm.nih.gov/32134719/

428.Holmes, D.G., et al. Long-term complications related to the modified Indiana pouch. Urology, 2002. 60: 603.

https://pubmed.ncbi.nlm.nih.gov/12385916/

429.Yang, W.J., et al. Long-term effects of ileal conduit urinary diversion on upper urinary tract in bladder cancer. Urology, 2006. 68: 324.

https://pubmed.ncbi.nlm.nih.gov/16904445/

430.Assimos, D.G. Nephrolithiasis in patients with urinary diversion. J Urol, 1996. 155: 69.

https://pubmed.ncbi.nlm.nih.gov/7490901/

431.Cohen, T.D., et al. Long-term incidence and risks for recurrent stones following contemporary management of upper tract calculi in patients with a urinary diversion. J Urol, 1996. 155: 62.

https://pubmed.ncbi.nlm.nih.gov/7490899/

432.Deliveliotis, C., et al. Shockwave lithotripsy for urinary stones in patients with urinary diversion after radical cystectomy. J Endourol, 2002. 16: 717.

https://pubmed.ncbi.nlm.nih.gov/12542873/

433.Ramachandra, M.N., et al. Challenges of Retrograde Ureteroscopy in Patients with Urinary Diversion: Outcomes and Lessons Learnt from a Systematic Review of Literature. Urol Int, 2018. 101: 249.

https://pubmed.ncbi.nlm.nih.gov/29614503/

434.Stein, J.P., et al. Complications of the afferent antireflux valve mechanism in the Kock ileal reservoir. J Urol, 1996. 155: 1579.

https://pubmed.ncbi.nlm.nih.gov/8627827/

435.Matlaga, B.R., et al. Computerized tomography guided access for percutaneous nephrostolithotomy. J Urol, 2003. 170: 45.

https://pubmed.ncbi.nlm.nih.gov/12796641/

436.Hensle, T.W., et al. Preventing reservoir calculi after augmentation cystoplasty and continent urinary diversion: the influence of an irrigation protocol. BJU Int, 2004. 93: 585.

https://pubmed.ncbi.nlm.nih.gov/15008735/

437.Raj, G.V., et al. The incidence of nephrolithiasis in patients with spinal neural tube defects. J Urol, 1999. 162: 1238.

https://pubmed.ncbi.nlm.nih.gov/10458475/

438.Gros, D.A., et al. Urolithiasis in spina bifida. Eur J Pediatr Surg, 1998. 8 Suppl 1: 68.

https://pubmed.ncbi.nlm.nih.gov/9926338/

439.Kondo, A., et al. [Urolithiasis in those patients with myelodysplasia]. Nihon Hinyokika Gakkai Zasshi, 2003. 94: 15.

https://pubmed.ncbi.nlm.nih.gov/12638200/

440.Rendeli, C., et al. Latex sensitisation and allergy in children with myelomeningocele. Childs Nerv Syst, 2006. 22: 28.

https://pubmed.ncbi.nlm.nih.gov/15703967/

441.Christman, M.S., et al. Morbidity and efficacy of ureteroscopic stone treatment in patients with neurogenic bladder. J Urol, 2013. 190: 1479.

https://pubmed.ncbi.nlm.nih.gov/23454151/

442.Klingler, H.C., et al. Urolithiasis in allograft kidneys. Urology, 2002. 59: 344.

https://pubmed.ncbi.nlm.nih.gov/11880067/

443.Cheungpasitporn, W., et al. Incidence of kidney stones in kidney transplant recipients: A systematic review and meta-analysis. World J Transplant, 2016. 6: 790.

https://pubmed.ncbi.nlm.nih.gov/28058231/

444.Harper, J.M., et al. Risk factors for calculus formation in patients with renal transplants. Br J Urol, 1994. 74: 147.

https://pubmed.ncbi.nlm.nih.gov/7921929/

445.Challacombe, B., et al. Multimodal management of urolithiasis in renal transplantation. BJU Int, 2005. 96: 385.

https://pubmed.ncbi.nlm.nih.gov/16042735/

446.Rifaioglu, M.M., et al. Percutaneous management of stones in transplanted kidneys. Urology, 2008. 72: 508.

https://pubmed.ncbi.nlm.nih.gov/18653217/

447.Gupta, M., et al. Treatment of stones associated with complex or anomalous renal anatomy. Urol Clin North Am, 2007. 34: 431.

https://pubmed.ncbi.nlm.nih.gov/17678992/

448.Minon Cifuentes, J., et al. Percutaneous nephrolithotomy in transplanted kidney. Urology, 1991.
38: 232.

https://pubmed.ncbi.nlm.nih.gov/1887537/

449.Wyatt, J., et al. Treatment outcomes for percutaneous nephrolithotomy in renal allografts.
J Endourol, 2009. 23: 1821.

https://pubmed.ncbi.nlm.nih.gov/19814697/

450.Lu, H.F., et al. Donor-gifted allograft urolithiasis: early percutaneous management. Urology, 2002. 59: 25.

https://pubmed.ncbi.nlm.nih.gov/11796274/

451.Del Pizzo, J.J., et al. Ureteroscopic evaluation in renal transplant recipients. J Endourol, 1998. 12: 135.

https://pubmed.ncbi.nlm.nih.gov/9607439/

452.Basiri, A., et al. Ureteroscopic management of urological complications after renal transplantation. Scand J Urol Nephrol, 2006. 40: 53.

https://pubmed.ncbi.nlm.nih.gov/16452057/

453.Reeves, T., et al. Donor and post-transplant ureteroscopy for stone disease in patients with renal transplant: evidence from a systematic review. Curr Opin Urol, 2019. 29: 548.

https://pubmed.ncbi.nlm.nih.gov/30855381/

454.Parkhomenko, E., et al. Percutaneous Management of Stone Containing Calyceal Diverticula: Associated Factors and Outcomes. J Urol, 2017. 198: 864.

https://pubmed.ncbi.nlm.nih.gov/28483573/

455.Bas, O., et al. Management of calyceal diverticular calculi: a comparison of percutaneous nephrolithotomy and flexible ureterorenoscopy. Urolithiasis, 2015. 43: 155.

https://pubmed.ncbi.nlm.nih.gov/25249328/

456.Gaur, D.D. Retroperitoneal endoscopic ureterolithotomy: our experience in 12 patients. J Endourol, 1993. 7: 501.

https://pubmed.ncbi.nlm.nih.gov/8124346/

457.Gaur, D.D., et al. Retroperitoneal laparoscopic pyelolithotomy. J Urol, 1994. 151: 927.

https://pubmed.ncbi.nlm.nih.gov/8126827/

458.Locke, D.R., et al. Extracorporeal shock-wave lithotripsy in horseshoe kidneys. Urology, 1990.
35: 407.

https://pubmed.ncbi.nlm.nih.gov/2336770/

459.Lavan, L., et al. Outcomes of ureteroscopy for stone disease in anomalous kidneys: a systematic review. World J Urol, 2020. 38: 1135.

https://pubmed.ncbi.nlm.nih.gov/31101967/

460.Chen, H., et al. No Wound for Stones <2 cm in Horseshoe Kidney: A Systematic Review of Comparative Studies. Urol Int, 2019. 103: 249.

https://pubmed.ncbi.nlm.nih.gov/31096234/

461.Salvi, M., et al. Active treatment of renal stones in pelvic ectopic kidney: systematic review of literature. Minerva Urol Nefrol, 2020. 72: 691.

https://pubmed.ncbi.nlm.nih.gov/32298068/

462.Gelet, A., et al. Endopyelotomy with the Acucise cutting balloon device. Early clinical experience. Eur Urol, 1997. 31: 389.

https://pubmed.ncbi.nlm.nih.gov/9187895/

463.Faerber, G.J., et al. Retrograde treatment of ureteropelvic junction obstruction using the ureteral cutting balloon catheter. J Urol, 1997. 157: 454.

https://pubmed.ncbi.nlm.nih.gov/8996330/

464.Berkman, D.S., et al. Treatment outcomes after endopyelotomy performed with or without simultaneous nephrolithotomy: 10-year experience. J Endourol, 2009. 23: 1409.

https://pubmed.ncbi.nlm.nih.gov/19694529/

465.Nakada, S.Y., et al. Retrospective analysis of the effect of crossing vessels on successful retrograde endopyelotomy outcomes using spiral computerized tomography angiography. J Urol, 1998. 159: 62.

https://pubmed.ncbi.nlm.nih.gov/9400437/

466.Skolarikos, A., et al. Ureteropelvic obstruction and renal stones: etiology and treatment. Urolithiasis, 2015. 43: 5.

https://pubmed.ncbi.nlm.nih.gov/25362543/

467.Ward, J.B., et al. Pediatric Urinary Stone Disease in the United States: The Urologic Diseases in America Project. Urology, 2019. 129: 180.

https://pubmed.ncbi.nlm.nih.gov/31005657/

468.Matlaga, B.R., et al. Epidemiologic insights into pediatric kidney stone disease. Urol Res, 2010.
38: 453.

https://pubmed.ncbi.nlm.nih.gov/20967433/

469.Alfandary, H., et al. Increasing Prevalence of Nephrolithiasis in Association with Increased Body Mass Index in Children: A Population Based Study. J Urol, 2018. 199: 1044.

https://pubmed.ncbi.nlm.nih.gov/29061537/

470.Novak, T.E., et al. Sex prevalence of pediatric kidney stone disease in the United States: an epidemiologic investigation. Urology, 2009. 74: 104.

https://pubmed.ncbi.nlm.nih.gov/19428065/

471.Bevill, M., et al. The Modern Metabolic Stone Evaluation in Children. Urology, 2017. 101: 15.

https://pubmed.ncbi.nlm.nih.gov/27838366/

472.Kovacevic, L., et al. From hypercalciuria to hypocitraturia--a shifting trend in pediatric urolithiasis?
J Urol, 2012. 188: 1623.

https://pubmed.ncbi.nlm.nih.gov/22910255/

473.Cambareri, G.M., et al. National multi-institutional cooperative on urolithiasis in children: Age is a significant predictor of urine abnormalities. J Pediatr Urol, 2015. 11: 218.

https://pubmed.ncbi.nlm.nih.gov/26119451/

474.Braun, D.A., et al. Prevalence of Monogenic Causes in Pediatric Patients with Nephrolithiasis or Nephrocalcinosis. Clin J Am Soc Nephrol, 2016. 11: 664.

https://pubmed.ncbi.nlm.nih.gov/26787776/

475.Kant, A.K., et al. Contributors of water intake in US children and adolescents: associations with dietary and meal characteristics--National Health and Nutrition Examination Survey 2005-2006. Am J Clin Nutr, 2010. 92: 887.

https://pubmed.ncbi.nlm.nih.gov/20685949/

476.Cogswell, M.E., et al. Vital signs: sodium intake among U.S. school-aged children - 2009-2010. MMWR Morb Mortal Wkly Rep, 2014. 63: 789.

https://pubmed.ncbi.nlm.nih.gov/25211544/

477.Clark, M.A., et al. Nutritional quality of the diets of US public school children and the role of the school meal programs. J Am Diet Assoc, 2009. 109: S44.

https://pubmed.ncbi.nlm.nih.gov/19166672/

478.Andrioli, V., et al. Infant nephrolithiasis and nephrocalcinosis: Natural history and predictors of surgical intervention. J Pediatr Urol, 2017. 13: 355 e1.

https://pubmed.ncbi.nlm.nih.gov/28729176/

479.Sas, D.J., et al. Clinical, demographic, and laboratory characteristics of children with nephrolithiasis. Urolithiasis, 2016. 44: 241.

https://pubmed.ncbi.nlm.nih.gov/26467033/

480.Telli, O., et al. What happens to asymptomatic lower pole kidney stones smaller than 10 mm in children during watchful waiting? Pediatr Nephrol, 2017. 32: 853.

https://pubmed.ncbi.nlm.nih.gov/28070668/

481.Dos Santos, J., et al. Outcome Analysis of Asymptomatic Lower Pole Stones in Children. J Urol, 2016. 195: 1289.

https://pubmed.ncbi.nlm.nih.gov/26926554/

482.Dincel, N., et al. Are small residual stone fragments really insignificant in children? J Pediatr Surg, 2013. 48: 840.

https://pubmed.ncbi.nlm.nih.gov/23583144/

483.Tian, D., et al. The efficacy and safety of adrenergic alpha-antagonists in treatment of distal ureteral stones in pediatric patients: A systematic review and meta-analysis. J Pediatr Surg, 2017. 52: 360.

https://pubmed.ncbi.nlm.nih.gov/27837990/

484.Barreto, L., et al. Medical and surgical interventions for the treatment of urinary stones in children. Cochrane Database Syst Rev, 2018. 6: CD010784.

https://pubmed.ncbi.nlm.nih.gov/29859007/

485.Lu, P., et al. The clinical efficacy of extracorporeal shock wave lithotripsy in pediatric urolithiasis: a systematic review and meta-analysis. Urolithiasis, 2015. 43: 199.

https://pubmed.ncbi.nlm.nih.gov/25721456/

486.Dogan, H.S., et al. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy.
J Pediatr Urol, 2015. 11: 84 e1.

https://pubmed.ncbi.nlm.nih.gov/25812469/

487.Alsagheer, G., et al. Extracorporeal shock wave lithotripsy (ESWL) monotherapy in children: Predictors of successful outcome. J Pediatr Urol, 2017. 13: 515 e1.

https://pubmed.ncbi.nlm.nih.gov/28457667/

488.Zeng, G., et al. Treatment of renal stones in infants: comparing extracorporeal shock wave lithotripsy and mini-percutaneous nephrolithotomy. Urol Res, 2012. 40: 599.

https://pubmed.ncbi.nlm.nih.gov/22580634/

489.Badawy, A.A., et al. Extracorporeal shock wave lithotripsy as first line treatment for urinary tract stones in children: outcome of 500 cases. Int Urol Nephrol, 2012. 44: 661.

https://pubmed.ncbi.nlm.nih.gov/22350835/

490.Jee, J.Y., et al. Efficacy of extracorporeal shock wave lithotripsy in pediatric and adolescent urolithiasis. Korean J Urol, 2013. 54: 865.

https://pubmed.ncbi.nlm.nih.gov/24363869/

491.Cevik, B., et al. Procedural sedation and analgesia for pediatric shock wave lithotripsy: a 10 year experience of single institution. Urolithiasis, 2018. 46: 363.

https://pubmed.ncbi.nlm.nih.gov/28642966/

492.Kumar, A., et al. A Single Center Experience Comparing Miniperc and Shockwave Lithotripsy for Treatment of Radiopaque 1-2 cm Lower Caliceal Renal Calculi in Children: A Prospective Randomized Study. J Endourol, 2015. 29: 805.

https://pubmed.ncbi.nlm.nih.gov/25633506/

493.Wang, H.H., et al. Shock wave lithotripsy vs ureteroscopy: variation in surgical management of kidney stones at freestanding children’s hospitals. J Urol, 2012. 187: 1402.

https://pubmed.ncbi.nlm.nih.gov/22341283/

494.Jurkiewicz, B., et al. Ureterolithotripsy in a paediatric population: a single institution’s experience. Urolithiasis, 2014. 42: 171.

https://pubmed.ncbi.nlm.nih.gov/24368682/

495.Elsheemy, M.S., et al. Holmium:YAG laser ureteroscopic lithotripsy for ureteric calculi in children: predictive factors for complications and success. World J Urol, 2014. 32: 985.

https://pubmed.ncbi.nlm.nih.gov/23979150/

496.Ishii, H., et al. Ureteroscopy for stone disease in the paediatric population: a systematic review. BJU Int, 2015. 115: 867.

https://pubmed.ncbi.nlm.nih.gov/25203925/

497.Tanriverdi, O., et al. Comparison of ureteroscopic procedures with rigid and semirigid ureteroscopes in pediatric population: does the caliber of instrument matter? Pediatr Surg Int, 2010. 26: 733.

https://pubmed.ncbi.nlm.nih.gov/20521057/

498.Dogan, H.S., et al. Factors affecting complication rates of ureteroscopic lithotripsy in children: results of multi-institutional retrospective analysis by Pediatric Stone Disease Study Group of Turk Pediatr Urol Soc. J Urol, 2011. 186: 1035.

https://pubmed.ncbi.nlm.nih.gov/21784482/

499.Gokce, M.I., et al. Effect of Prestenting on Success and Complication Rates of Ureterorenoscopy in Pediatric Population. J Endourol, 2016. 30: 850.

https://pubmed.ncbi.nlm.nih.gov/27189236/

500.Ellison, J.S., et al. Risk factors for repeat surgical intervention in pediatric nephrolithiasis: A Pediatric Health Information System database study. J Pediatr Urol, 2018. 14: 245 e1.

https://pubmed.ncbi.nlm.nih.gov/29580730/

501.Unsal, A., et al. Retrograde intrarenal surgery in infants and preschool-age children. J Pediatr Surg, 2011. 46: 2195.

https://pubmed.ncbi.nlm.nih.gov/22075358/

502.Erkurt, B., et al. Treatment of renal stones with flexible ureteroscopy in preschool age children. Urolithiasis, 2014. 42: 241.

https://pubmed.ncbi.nlm.nih.gov/24374900/

503.Suliman, A., et al. Flexible ureterorenoscopy to treat upper urinary tract stones in children. Urolithiasis, 2018.

https://pubmed.ncbi.nlm.nih.gov/30370467/

504.Xiao, J., et al. Treatment of upper urinary tract stones with flexible ureteroscopy in children. Can Urol Assoc J, 2018.

https://pubmed.ncbi.nlm.nih.gov/30169147/

505.Tiryaki, T., et al. Ureteroscopy for treatment of ureteral stones in children: factors influencing the outcome. Urology, 2013. 81: 1047.

https://pubmed.ncbi.nlm.nih.gov/23465154/

506.Mokhless, I.A., et al. Retrograde intrarenal surgery monotherapy versus shock wave lithotripsy for stones 10 to 20 mm in preschool children: a prospective, randomized study. J Urol, 2014. 191: 1496.

https://pubmed.ncbi.nlm.nih.gov/24679882/

507.Saad, K.S., et al. Percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Large Renal Stones in Pediatric Patients: A Randomized Controlled Trial. J Urol, 2015. 194: 1716.

https://pubmed.ncbi.nlm.nih.gov/26165587/

508.Pelit, E.S., et al. Comparison of Mini-percutaneous Nephrolithotomy and Retrograde Intrarenal Surgery in Preschool-aged Children. Urology, 2017. 101: 21.

https://pubmed.ncbi.nlm.nih.gov/27818164/

509.Bas, O., et al. Comparison of Retrograde Intrarenal Surgery and Micro-Percutaneous Nephrolithotomy in Moderately Sized Pediatric Kidney Stones. J Endourol, 2016. 30: 765.

https://pubmed.ncbi.nlm.nih.gov/26983791/

510.Chen, Y., et al. Percutaneous nephrolithotomy versus retrograde intrarenal surgery for pediatric patients with upper urinary stones: a systematic review and meta-analysis. Urolithiasis, 2018.

https://pubmed.ncbi.nlm.nih.gov/29368009/

511.Cicekbilek, I., et al. Effect of percutaneous nephrolithotomy on renal functions in children: assessment by quantitative SPECT of (99m)Tc-DMSA uptake by the kidneys. Ren Fail, 2015. 37: 1118.

https://pubmed.ncbi.nlm.nih.gov/26067745/

512.Celik, H., et al. Comparison of the results of pediatric percutaneous nephrolithotomy with different sized instruments. Urolithiasis, 2017. 45: 203.

https://pubmed.ncbi.nlm.nih.gov/27155829/

513.Dombrovskiy, V., et al. Percutaneous Nephrolithotomy in Children: Analysis of Nationwide Hospitalizations and Short-Term Outcomes for the United States, 2001-2014. J Endourol, 2018.
32: 912.

https://pubmed.ncbi.nlm.nih.gov/30113212/

514.Senocak, C., et al. Predictive factors of bleeding among pediatric patients undergoing percutaneous nephrolithotomy. Urolithiasis, 2018. 46: 383.

https://pubmed.ncbi.nlm.nih.gov/28702679/

515.Jones, P., et al. Role of Minimally Invasive Percutaneous Nephrolithotomy Techniques-Micro and Ultra-Mini PCNL (<15F) in the Pediatric Population: A Systematic Review. J Endourol, 2017. 31: 816.

https://pubmed.ncbi.nlm.nih.gov/28478724/

516.Guven, S., et al. Percutaneous nephrolithotomy in children in different age groups: data from the Clinical Research Office of the Endourological Society (CROES) Percutaneous Nephrolithotomy Global Study. BJU Int, 2013. 111: 148.

https://pubmed.ncbi.nlm.nih.gov/22578216/

517.Onal, B., et al. Factors affecting complication rates of percutaneous nephrolithotomy in children: results of a multi-institutional retrospective analysis by the Turkish pediatric urology society. J Urol, 2014. 191: 777.

https://pubmed.ncbi.nlm.nih.gov/24095906/

518.Aghamir, S.M., et al. Comparing Bleeding Complications of Double and Single Access Totally Tubeless PCNL: Is It Safe to Obtain More Accesses? Urol Int, 2016. 96: 73.

https://pubmed.ncbi.nlm.nih.gov/26021886/

519.Iqbal, N., et al. Comparison of outcomes of tubed versus tubeless percutaneous nephrolithotomy in children: A single center study. Turk J Urol, 2018. 44: 56.

https://pubmed.ncbi.nlm.nih.gov/29484229/

520.Samad, L., et al. Does percutaneous nephrolithotomy in children cause significant renal scarring?
J Pediatr Urol, 2007. 3: 36.

https://pubmed.ncbi.nlm.nih.gov/18947696/

521.Modi, P.K., et al. Pediatric hospitalizations for upper urinary tract calculi: Epidemiological and treatment trends in the United States, 2001-2014. J Pediatr Urol, 2018. 14: 13 e1.

https://pubmed.ncbi.nlm.nih.gov/28966022/

522.Agrawal, V., et al. Laparoscopic management of pediatric renal and ureteric stones. J Pediatr Urol, 2013. 9: 230.

https://pubmed.ncbi.nlm.nih.gov/22498008/

523.Srivastava, A., et al. Laparoscopic Ureterolithotomy in Children: With and Without Stent - Initial Tertiary Care Center Experience with More Than 1-Year Follow-Up. Eur J Pediatr Surg, 2017. 27: 150.

https://pubmed.ncbi.nlm.nih.gov/26878339/

524.Lee, R.S., et al. Early results of robot assisted laparoscopic lithotomy in adolescents. J Urol, 2007. 177: 2306.

https://pubmed.ncbi.nlm.nih.gov/17509345/

525.Dai, J.C., et al. National Trends in CT Utilization and Estimated CT-related Radiation Exposure in the Evaluation and Follow-up of Stone Patients. Urology, 2019. 133: 50.

https://pubmed.ncbi.nlm.nih.gov/31404583/

526.Vassileva, J., et al. Radiation exposure of patients during endourological procedures: IAEA-SEGUR study. J Radiol Prot, 2020.

https://pubmed.ncbi.nlm.nih.gov/33086202/

527.Yecies, T., et al. Identifying and managing the risks of medical ionizing radiation in endourology. Can J Urol, 2018. 25: 9154.

https://pubmed.ncbi.nlm.nih.gov/29524969/

528.Jindal, T. The risk of radiation exposure to assisting staff in urological procedures: a literature review. Urol Nurs, 2013. 33: 136.

https://pubmed.ncbi.nlm.nih.gov/23930446/

529.Vassileva, J., et al. Radiation Exposure of Surgical Team During Endourological Procedures: International Atomic Energy Agency-South-Eastern European Group for Urolithiasis Research Study. J Endourol, 2021. 35: 574.

https://pubmed.ncbi.nlm.nih.gov/32791856/

530.Pierce, D.A., et al. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res, 2000. 154: 178.

https://pubmed.ncbi.nlm.nih.gov/10931690/

531.Preston, D.L., et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res, 2007. 168: 1.

https://pubmed.ncbi.nlm.nih.gov/17722996/

532.Pearce, M.S., et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 2012. 380: 499.

https://pubmed.ncbi.nlm.nih.gov/22681860/

533.Mathews, J.D., et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 2013. 346: f2360.

https://pubmed.ncbi.nlm.nih.gov/23694687/

534.Berrington de González, A., et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med, 2009. 169: 2071.

https://pubmed.ncbi.nlm.nih.gov/20008689/

535.Brenner, D.J., et al. Computed tomography--an increasing source of radiation exposure. N Engl
J Med, 2007. 357: 2277.

https://pubmed.ncbi.nlm.nih.gov/18046031/

536.Wrixon, A.D. New ICRP recommendations. J Radiol Prot, 2008. 28: 161.

https://pubmed.ncbi.nlm.nih.gov/18495983/

537.Kim, C.H., et al. Are Urologists Performing Semi-rigid Ureteroscopic Lithotripsy Safe From Radiation Exposure? A Guidance to Reduce the Radiation Dose. Urology, 2016. 95: 54.

https://pubmed.ncbi.nlm.nih.gov/27289024/

538.Singh, V., et al. Prospective randomized comparison between fluoroscopy-guided ureteroscopy versus ureteroscopy with real-time ultrasonography for the management of ureteral stones. Urol Ann, 2016. 8: 418.

https://pubmed.ncbi.nlm.nih.gov/28057984/

539.Mohey, A., et al. Fluoroless-ureteroscopy for definitive management of distal ureteral calculi: randomized controlled trial. Can J Urol, 2018. 25: 9205.

https://pubmed.ncbi.nlm.nih.gov/29524976/

540.Subiela, J.D., et al. Systematic Review and Meta-Analysis Comparing Fluoroless Ureteroscopy and Conventional Ureteroscopy in the Management of Ureteral and Renal Stones. J Endourol, 2021.
35: 417.

https://pubmed.ncbi.nlm.nih.gov/33076706/

541.Peng, L., et al. Fluoroless versus conventional ureteroscopy for urinary stones: a systematic review and meta-analysis. Minerva Urol Nephrol, 2021. 73: 299.

https://pubmed.ncbi.nlm.nih.gov/33016033/

542.Parks, J.H., et al. A single 24-hour urine collection is inadequate for the medical evaluation of nephrolithiasis. J Urol, 2002. 167: 1607.

https://pubmed.ncbi.nlm.nih.gov/11912373/

543.Nayan, M., et al. Variations between two 24-hour urine collections in patients presenting to a tertiary stone clinic. Can Urol Assoc J, 2012. 6: 30.

https://pubmed.ncbi.nlm.nih.gov/22396364/

544.Williams, J.C., Jr., et al. Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis, 2021. 49: 1.

https://pubmed.ncbi.nlm.nih.gov/33048172/

545.Ferraz, R.R., et al. Preservation of urine samples for metabolic evaluation of stone-forming patients. Urol Res, 2006. 34: 329.

https://pubmed.ncbi.nlm.nih.gov/16896690/

546.Porowski, T., et al. Assessment of Lithogenic Risk in Children Based on a Morning Spot Urine Sample. J Urol, 2010. 184: 2103.

https://pubmed.ncbi.nlm.nih.gov/20850811/

547.Coe, F.L., et al. Kidney stone disease. J Clin Invest, 2005. 115: 2598.

https://pubmed.ncbi.nlm.nih.gov/16200192/

548.Norman, R.W., et al. When should patients with symptomatic urinary stone disease be evaluated metabolically? J Urol, 1984. 132: 1137.

https://pubmed.ncbi.nlm.nih.gov/6502804/

549.Urine evaluation (in: Evaluation of the stone former), In: 2ND International Consultation on Stone Disease, H.M. Assimos D. Chew B, Hautmann R, Holmes R, Williams J, Wolf JS, Editor. 2007, Health Publications.

https://www.researchgate.net/publication/260000334

550.Hesse A, et al. Urinary Stones: Diagnosis, Treatment and Prevention of Recurrence., In: Uric acid stones. 2002, S Karger AG,: Basel.

https://www.karger.com/Article/Pdf/232951

551.Tiselius, H.G. Standardized estimate of the ion activity product of calcium oxalate in urine from renal stone formers. Eur Urol, 1989. 16: 48.

https://pubmed.ncbi.nlm.nih.gov/2714318/

552.Ackermann, D., et al. Use of the computer program EQUIL to estimate pH in model solutions and human urine. Urol Res, 1989. 17: 157.

https://pubmed.ncbi.nlm.nih.gov/2749945/

553.Kavanagh, J.P., et al. Why does the Bonn Risk Index discriminate between calcium oxalate stone formers and healthy controls? J Urol, 2006. 175: 766.

https://pubmed.ncbi.nlm.nih.gov/16407047/

554.Rodgers A.L., et al. JESS: What can it teach us?, In: Proceedings of Renal Stone Disease 1st Annual International Urolithiasis Research Symposium, 2-3 November 2006., A.P. Evan, Jr, Editor. 2007, American Institute of Physics: Melville, New York

https://ui.adsabs.harvard.edu/abs/2007AIPC..900..183R/abstract

555.Hoppe, B., et al. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol, 2010. 25: 403.

https://pubmed.ncbi.nlm.nih.gov/19104842/

556.Sarica, K., et al. The effect of calcium channel blockers on stone regrowth and recurrence after shock wave lithotripsy. Urol Res, 2006. 34: 184.

https://pubmed.ncbi.nlm.nih.gov/16463053/

557.Fink, H.A., et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med, 2013. 158: 535.

https://pubmed.ncbi.nlm.nih.gov/23546565/

558.Borghi, L., et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol, 1996. 155: 839.

https://pubmed.ncbi.nlm.nih.gov/8583588/

559.Bao, Y., et al. Water for preventing urinary stones. Cochrane Database Syst Rev, 2012: Cd004292.

https://pubmed.ncbi.nlm.nih.gov/22696340/

560.Siener, R., et al. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int, 2003. 63: 1037.

https://pubmed.ncbi.nlm.nih.gov/12631085/

561.Wabner, C.L., et al. Effect of orange juice consumption on urinary stone risk factors. J Urol, 1993. 149: 1405.

https://pubmed.ncbi.nlm.nih.gov/8501777/

562.Gettman, M.T., et al. Effect of cranberry juice consumption on urinary stone risk factors. J Urol, 2005. 174: 590.

https://pubmed.ncbi.nlm.nih.gov/16006907/

563.Shuster, J., et al. Soft drink consumption and urinary stone recurrence: a randomized prevention trial. J Clin Epidemiol, 1992. 45: 911.

https://pubmed.ncbi.nlm.nih.gov/1624973/

564.Ferraro, P.M., et al. Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol, 2013. 8: 1389.

https://pubmed.ncbi.nlm.nih.gov/23676355/

565.Kocvara, R., et al. A prospective study of nonmedical prophylaxis after a first kidney stone. BJU Int, 1999. 84: 393.

https://pubmed.ncbi.nlm.nih.gov/10468751/

566.Hess, B., et al. Effects of a ‘common sense diet’ on urinary composition and supersaturation in patients with idiopathic calcium urolithiasis. Eur Urol, 1999. 36: 136.

https://pubmed.ncbi.nlm.nih.gov/10420035/

567.Ebisuno, S., et al. Results of long-term rice bran treatment on stone recurrence in hypercalciuric patients. Br J Urol, 1991. 67: 237.

https://pubmed.ncbi.nlm.nih.gov/1902388/

568.Hiatt, R.A., et al. Randomized controlled trial of a low animal protein, high fiber diet in the prevention of recurrent calcium oxalate kidney stones. Am J Epidemiol, 1996. 144: 25.

https://pubmed.ncbi.nlm.nih.gov/8659482/

569.Dussol, B., et al. A randomized trial of low-animal-protein or high-fiber diets for secondary prevention of calcium nephrolithiasis. Nephron Clin Pract, 2008. 110: c185.

https://pubmed.ncbi.nlm.nih.gov/18957869/

570.Turney, B.W., et al. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol, 2014. 29: 363.

https://pubmed.ncbi.nlm.nih.gov/24752465/

571.Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis, 2016. 44: 33.

https://pubmed.ncbi.nlm.nih.gov/26645872/

572.Ferraro, P.M., et al. Total, Dietary, and Supplemental Vitamin C Intake and Risk of Incident Kidney Stones. Am J Kidney Dis, 2016. 67: 400.

https://pubmed.ncbi.nlm.nih.gov/26463139/

573.Fink, H.A., et al. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur Urol, 2009. 56: 72.

https://pubmed.ncbi.nlm.nih.gov/19321253/

574.Borghi, L., et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med, 2002. 346: 77.

https://pubmed.ncbi.nlm.nih.gov/11784873/

575.Curhan, G.C., et al. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med, 1997. 126: 497.

https://pubmed.ncbi.nlm.nih.gov/9092314/

576.von Unruh, G.E., et al. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol, 2004. 15: 1567.

https://pubmed.ncbi.nlm.nih.gov/15153567/

577.Harris, S.S., et al. Effects of Hydration and Calcium Supplementation on Urine Calcium Concentration in Healthy Postmenopausal Women. J Am Coll Nutr, 2015. 34: 340.

https://pubmed.ncbi.nlm.nih.gov/25856469/

578.Coe F.M., et al. Hyperuricosuric calcium stone disease, In: Kidney Stones: Medical and Surgical Management, F.M. Coe FL, Pak CYC, Parks JH, Preminger GM, Editor. 1996, Lippincott-Raven: Philadelphia.

https://www.geneeskundeboek.nl/kidney-stones-9789351529422

579.Coe, F.L. Hyperuricosuric calcium oxalate nephrolithiasis. Adv Exp Med Biol, 1980. 128: 439.

https://pubmed.ncbi.nlm.nih.gov/7424690/

580.Siener, R., et al. The role of overweight and obesity in calcium oxalate stone formation. Obes Res, 2004. 12: 106.

https://pubmed.ncbi.nlm.nih.gov/14742848/

581.Madore, F., et al. Nephrolithiasis and risk of hypertension. Am J Hypertens, 1998. 11: 46.

https://pubmed.ncbi.nlm.nih.gov/9504449/

582.Madore, F., et al. Nephrolithiasis and risk of hypertension in women. Am J Kidney Dis, 1998. 32: 802.

https://pubmed.ncbi.nlm.nih.gov/9820450/

583.Pearle, M.S., et al., Medical management of urolithiasis. In: 2ND International Consultation on Stone Disease, ed. K.S. Denstedt J. 2008.

https://www.researchgate.net/publication/260000334

584.Barcelo, P., et al. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J Urol, 1993. 150: 1761.

https://pubmed.ncbi.nlm.nih.gov/8230497/

585.Hofbauer, J., et al. Alkali citrate prophylaxis in idiopathic recurrent calcium oxalate urolithiasis--a prospective randomized study. Br J Urol, 1994. 73: 362.

https://pubmed.ncbi.nlm.nih.gov/8199822/

586.Ettinger, B., et al. Potassium-magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J Urol, 1997. 158: 2069.

https://pubmed.ncbi.nlm.nih.gov/9366314/

587.Lojanapiwat, B., et al. Alkaline citrate reduces stone recurrence and regrowth after shockwave lithotripsy and percutaneous nephrolithotomy. Int Braz J Urol, 2011. 37: 611.

https://pubmed.ncbi.nlm.nih.gov/22099273/

588.Phillips, R., et al. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev, 2015: CD010057.

https://pubmed.ncbi.nlm.nih.gov/26439475/

589.Favus, M.J., et al. The effects of allopurinol treatment on stone formation on hyperuricosuric calcium oxalate stone-formers. Scand J Urol Nephrol Suppl, 1980. 53: 265.

https://pubmed.ncbi.nlm.nih.gov/6938003/

590.Ettinger, B., et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med, 1986. 315: 1386.

https://pubmed.ncbi.nlm.nih.gov/3534570/

591.Smith, M.J. Placebo versus allopurinol for renal calculi. J Urol, 1977. 117: 690.

https://pubmed.ncbi.nlm.nih.gov/875139/

592.Pearle, M.S., et al. Meta-analysis of randomized trials for medical prevention of calcium oxalate nephrolithiasis. J Endourol, 1999. 13: 679.

https://pubmed.ncbi.nlm.nih.gov/10608521/

593.Cohen, T.D., et al. Clinical effect of captopril on the formation and growth of cystine calculi. J Urol, 1995. 154: 164.

https://pubmed.ncbi.nlm.nih.gov/7776415/

594.Coulthard, M.G., et al. The treatment of cystinuria with captopril. Am J Kidney Dis, 1995. 25: 661.

https://pubmed.ncbi.nlm.nih.gov/7702068/

595.Goldfarb, D.S., et al. Randomized controlled trial of febuxostat versus allopurinol or placebo in individuals with higher urinary uric acid excretion and calcium stones. Clin J Am Soc Nephrol, 2013. 8: 1960.

https://pubmed.ncbi.nlm.nih.gov/23929928/

596.Nouvenne, A., et al. New pharmacologic approach to patients with idiopathic calcium nephrolithiasis and high uricosuria: Febuxostat vs allopurinol. A pilot study. Eur J Intern Med, 2013. 24: e64.

https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01024479/full

597.Jarrar, K., Boedeker, R. H. and Weidner, W. Struvite stones: long term follow up under metaphylaxis. Ann Urol (Paris), 1996. 30: 112.

https://pubmed.ncbi.nlm.nih.gov/8766146/

598.Ettinger, B., et al. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J Urol, 1988. 139: 679.

https://pubmed.ncbi.nlm.nih.gov/3280829/

599.Prien, E.L., Sr., et al. Magnesium oxide-pyridoxine therapy for recurrent calcium oxalate calculi.
J Urol, 1974. 112: 509.

https://pubmed.ncbi.nlm.nih.gov/4414543/

600.Pinheiro, V.B., et al. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology, 2013. 82: 33.

https://pubmed.ncbi.nlm.nih.gov/23602798/

601.Hoppe, B., et al. The primary hyperoxalurias. Kidney Int, 2009. 75: 1264.

https://pubmed.ncbi.nlm.nih.gov/19225556/

602.Borghi, L., et al. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing calcium stone recurrences. J Cardiovasc Pharmacol, 1993. 22 Suppl 6: S78.

https://pubmed.ncbi.nlm.nih.gov/7508066/

603.Brocks, P., et al. Do thiazides prevent recurrent idiopathic renal calcium stones? Lancet, 1981. 2: 124.

https://pubmed.ncbi.nlm.nih.gov/6113485/

604.Mortensen, J.T., et al. Thiazides in the prophylactic treatment of recurrent idiopathic kidney stones. Int Urol Nephrol, 1986. 18: 265.

https://pubmed.ncbi.nlm.nih.gov/3533825/

605.Laerum, E., et al. Thiazide prophylaxis of urolithiasis. A double-blind study in general practice. Acta Med Scand, 1984. 215: 383.

https://pubmed.ncbi.nlm.nih.gov/6375276/

606.Ohkawa, M., et al. Thiazide treatment for calcium urolithiasis in patients with idiopathic hypercalciuria. Br J Urol, 1992. 69: 571.

https://pubmed.ncbi.nlm.nih.gov/1638340/

607.Scholz, D., et al. Double-blind study with thiazide in recurrent calcium lithiasis. J Urol, 1982. 128: 903.

https://pubmed.ncbi.nlm.nih.gov/7176047/

608.Nicar, M.J., et al. Use of potassium citrate as potassium supplement during thiazide therapy of calcium nephrolithiasis. J Urol, 1984. 131: 430.

https://pubmed.ncbi.nlm.nih.gov/6699979/

609.Fernandez-Rodriguez, A., et al. [The role of thiazides in the prophylaxis of recurrent calcium lithiasis]. Actas Urol Esp, 2006. 30: 305.

https://pubmed.ncbi.nlm.nih.gov/16749588/

610.Dolin, D.J., et al. Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol, 2005. 19: 429.

https://pubmed.ncbi.nlm.nih.gov/15865542/

611.Chow, G.K., et al. Medical treatment of cystinuria: results of contemporary clinical practice. J Urol, 1996. 156: 1576.

https://pubmed.ncbi.nlm.nih.gov/8863541/

612.Pak, C.Y., et al. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol, 1986. 136: 1003.

https://pubmed.ncbi.nlm.nih.gov/3534301/

613.Tekin, A., et al. Cystine calculi in children: the results of a metabolic evaluation and response to medical therapy. J Urol, 2001. 165: 2328.

https://pubmed.ncbi.nlm.nih.gov/11371943/

614.Pedersen, S.A., et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: A nationwide case-control study from Denmark. J Am Acad Dermatol, 2018. 78: 673.

https://pubmed.ncbi.nlm.nih.gov/29217346/

615.Pottegård, A., et al. Hydrochlorothiazide use is strongly associated with risk of lip cancer. J Intern Med, 2017. 282: 322.

https://pubmed.ncbi.nlm.nih.gov/28480532/

616.Worcester, E.M., et al. New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol, 2008. 28: 120.

https://pubmed.ncbi.nlm.nih.gov/18359393/

617.Curhan, G.C., et al. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med, 1993. 328: 833.

https://pubmed.ncbi.nlm.nih.gov/8441427/

618.Wolf, H., et al. Do thiazides prevent recurrent idiopathic renal calcium oxalate stones? Proc Eur Dial Transplant Assoc, 1983. 20: 477.

https://pubmed.ncbi.nlm.nih.gov/6361755/

619.Johansson, G., et al. Effects of magnesium hydroxide in renal stone disease. J Am Coll Nutr, 1982. 1: 179.

https://pubmed.ncbi.nlm.nih.gov/6764473/

620.Khan, S.R., et al. Magnesium oxide administration and prevention of calcium oxalate nephrolithiasis. J Urol, 1993. 149: 412.

https://pubmed.ncbi.nlm.nih.gov/8426432/

621.Hesse, A., et al. Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol, 1999. 17: 308.

https://pubmed.ncbi.nlm.nih.gov/10552150/

622.Silverberg, S.J., et al. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med, 1999. 341: 1249.

https://pubmed.ncbi.nlm.nih.gov/10528034/

623.Mollerup, C.L., et al. Risk of renal stone events in primary hyperparathyroidism before and after parathyroid surgery: controlled retrospective follow up study. BMJ, 2002. 325: 807.

https://pubmed.ncbi.nlm.nih.gov/12376441/

624.Evan, A.E., et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int, 2008. 74: 223.

https://pubmed.ncbi.nlm.nih.gov/18449170/

625.Rizzato, G., et al. Nephrolithiasis as a presenting feature of chronic sarcoidosis: a prospective study. Sarcoidosis Vasc Diffuse Lung Dis, 1996. 13: 167.

https://pubmed.ncbi.nlm.nih.gov/8893387/

626.Garrelfs, S.F., et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl
J Med, 2021. 384: 1216.

https://pubmed.ncbi.nlm.nih.gov/33789010/

627.Takei, K., et al. Oral calcium supplement decreases urinary oxalate excretion in patients with enteric hyperoxaluria. Urol Int, 1998. 61: 192.

https://pubmed.ncbi.nlm.nih.gov/9933846/

628.Hoppe, B., et al. Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci, 2003. 8: e437.

https://pubmed.ncbi.nlm.nih.gov/12957811/

629.Prezioso, D., et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl, 2015. 87: 105.

https://pubmed.ncbi.nlm.nih.gov/26150027/

630.Domrongkitchaiporn, S., et al. Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis, 2002. 39: 383.

https://pubmed.ncbi.nlm.nih.gov/11840381/

631.Maxwell A.P. Genetic renal abnormalities. Medicine, 2007. 35: 386.

https://www.medicinejournal.co.uk/article/S1357-3039(07)00109-0/fulltext

632.Dhayat, N.A., et al. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers. Clin J Am Soc Nephrol, 2017. 12: 1507.

https://pubmed.ncbi.nlm.nih.gov/28775126/

633.Oliveira, B., et al. Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am
J Physiol Renal Physiol, 2016. 311: F1243.

https://pubmed.ncbi.nlm.nih.gov/27605580/

634.Gambaro, G., et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol, 2016. 29: 715.

https://pubmed.ncbi.nlm.nih.gov/27456839/

635.Mandel, N.S., et al. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J Urol, 1989. 142: 1516.

https://pubmed.ncbi.nlm.nih.gov/2585627/

636.Cameron, M.A., et al. Uric acid nephrolithiasis. Urol Clin North Am, 2007. 34: 335.

https://pubmed.ncbi.nlm.nih.gov/17678984/

637.Kim, S., et al. Development of Nephrolithiasis in Asymptomatic Hyperuricemia: A Cohort Study. Am J Kidney Dis, 2017. 70: 173.

https://pubmed.ncbi.nlm.nih.gov/28410765/

638.Millman, S., et al. Pathogenesis and clinical course of mixed calcium oxalate and uric acid nephrolithiasis. Kidney Int, 1982. 22: 366.

https://pubmed.ncbi.nlm.nih.gov/7176335/

639.Pak, C.Y., et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. Urology, 2002. 60: 789.

https://pubmed.ncbi.nlm.nih.gov/12429297/

640.Chou, Y.H., et al. Clinical study of ammonium acid urate urolithiasis. Kaohsiung J Med Sci, 2012.
28: 259.

https://pubmed.ncbi.nlm.nih.gov/22531304/

641.Wagner, C.A., et al. Urinary pH and stone formation. J Nephrol, 2010. 23 Suppl 16: S165.

https://pubmed.ncbi.nlm.nih.gov/21170875/

642.Miano, R., et al. Stones and urinary tract infections. Urol Int, 2007. 79 Suppl 1: 32.

https://pubmed.ncbi.nlm.nih.gov/17726350/

643.Rodman J.S., et al. Diagnosis and treatment of uric acid calculi., In: Kidney Stones. Medical and Surgical Management, F.M. Coe FL, Pak CYC, Parks JH, Preminger GM., Editor. 1996, Lippincott-Raven: Philadelphia.

https://www.geneeskundeboek.nl/kidney-stones-9789351529422

644.Low, R.K., et al. Uric acid-related nephrolithiasis. Urol Clin North Am, 1997. 24: 135.

https://pubmed.ncbi.nlm.nih.gov/9048857/

645.Shekarriz, B., et al. Uric acid nephrolithiasis: current concepts and controversies. J Urol, 2002.
168: 1307.

https://pubmed.ncbi.nlm.nih.gov/12352383/

646.Wilcox, W.R., et al. Solubility of uric acid and monosodium urate. Med Biol Eng, 1972. 10: 522.

https://pubmed.ncbi.nlm.nih.gov/5074854/

647.Mattle, D., et al. Preventive treatment of nephrolithiasis with alkali citrate--a critical review. Urol Res, 2005. 33: 73.

https://pubmed.ncbi.nlm.nih.gov/15875173/

648.Marchini, G.S., et al. Gout, stone composition and urinary stone risk: a matched case comparative study. J Urol, 2013. 189: 1334.

https://pubmed.ncbi.nlm.nih.gov/23022002/

649.Kramer, G., et al. Role of bacteria in the development of kidney stones. Curr Opin Urol, 2000. 10: 35.

https://pubmed.ncbi.nlm.nih.gov/10650513/

650.Gettman, M.T., et al. Struvite stones: diagnosis and current treatment concepts. J Endourol, 1999. 13: 653.

https://pubmed.ncbi.nlm.nih.gov/10608517/

651.Bichler, K.H., et al. Urinary infection stones. Int J Antimicrob Agents, 2002. 19: 488.

https://pubmed.ncbi.nlm.nih.gov/12135839/

652.Carpentier, X., et al. Relationships between carbonation rate of carbapatite and morphologic characteristics of calcium phosphate stones and etiology. Urology, 2009. 73: 968.

https://pubmed.ncbi.nlm.nih.gov/19394492/

653.Thompson, R.B., et al. Bacteriology of infected stones. Urology, 1973. 2: 627.

https://pubmed.ncbi.nlm.nih.gov/4587909/

654.McLean, R.J., et al. The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol, 1988. 16: 37.

https://pubmed.ncbi.nlm.nih.gov/3053050/

655.Wong H.Y., et al. Medical management and prevention of struvite stones, in Kidney Stones: Medical and Surgical Management, Coe F.M., Pak C.Y.C., Parks J.H., Preminger G.M., Editors. 1996, Lippincott-Raven: Philadelphia.

https://www.geneeskundeboek.nl/kidney-stones-9789351529422

656.Wall, I., et al. Long-term acidification of urine in patients treated for infected renal stones. Urol Int, 1990. 45: 336.

https://pubmed.ncbi.nlm.nih.gov/2288050/

657.Griffith, D.P., et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur Urol, 1991. 20: 243.

https://pubmed.ncbi.nlm.nih.gov/1726639/

658.Williams, J.J., et al. A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis. N Engl J Med, 1984. 311: 760.

https://pubmed.ncbi.nlm.nih.gov/6472365/

659.Milliner, D.S., et al. Urolithiasis in pediatric patients. Mayo Clin Proc, 1993. 68: 241.

https://pubmed.ncbi.nlm.nih.gov/8474265/

660.Prot-Bertoye, C., et al. CKD and Its Risk Factors among Patients with Cystinuria. Clin J Am Soc Nephrol : CJASN, 2015. 10: 842.

https://pubmed.ncbi.nlm.nih.gov/25717071/

661.Kum, F., et al. Hypertension and renal impairment in patients with cystinuria: findings from a specialist cystinuria centre. Urolithiasis, 2019. 47: 357.

https://pubmed.ncbi.nlm.nih.gov/30805669/

662.Rogers, A., et al. Management of cystinuria. Urol Clin North Am, 2007. 34: 347.

https://pubmed.ncbi.nlm.nih.gov/17678985/

663.Dello Strologo, L., et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol, 2002. 13: 2547.

https://pubmed.ncbi.nlm.nih.gov/12239244/

664.Lee, W.S., et al. Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J Clin Invest, 1993. 91: 1959.

https://pubmed.ncbi.nlm.nih.gov/8486766/

665.Knoll, T., et al. Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol, 2005. 20: 19.

https://pubmed.ncbi.nlm.nih.gov/15602663/

666.Finocchiaro, R., et al. Usefulness of cyanide-nitroprusside test in detecting incomplete recessive heterozygotes for cystinuria: a standardized dilution procedure. Urol Res, 1998. 26: 401.

https://pubmed.ncbi.nlm.nih.gov/9879820/

667.Nakagawa, Y., et al. Clinical use of cystine supersaturation measurements. J Urol, 2000. 164: 1481.

https://pubmed.ncbi.nlm.nih.gov/11025687/

668.Fjellstedt, E., et al. Cystine analyses of separate day and night urine as a basis for the management of patients with homozygous cystinuria. Urol Res, 2001. 29: 303.

https://pubmed.ncbi.nlm.nih.gov/11762791/

669.Ng, C.S., et al. Contemporary management of cystinuria. J Endourol, 1999. 13: 647.

https://pubmed.ncbi.nlm.nih.gov/10608516/

670.Biyani, C.S., et al. Cystinuria—diagnosis and management. EAU-EBU Update Series 2006. 4: 175.

https://www.sciencedirect.com/science/article/abs/pii/S1871259206000384

671.Runolfsdottir, H.L., et al. Urinary 2,8-dihydroxyadenine excretion in patients with adenine phosphoribosyltransferase deficiency, carriers and healthy control subjects. Mol Genet Metab, 2019. 128: 144.

https://pubmed.ncbi.nlm.nih.gov/31378568/

672.Edvardsson, V.O., et al. Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with Adenine phosphoribosyltransferase deficiency (APRTd): A clinical trial. Eur J Intern Med, 2018. 48: 75.

https://pubmed.ncbi.nlm.nih.gov/29241594/

673.Matlaga, B.R., et al. Drug-induced urinary calculi. Rev Urol, 2003. 5: 227.

https://pubmed.ncbi.nlm.nih.gov/16985842/

674.Beltrami, P., et al. The endourological treatment of renal matrix stones. Urol Int, 2014. 93: 394.

https://pubmed.ncbi.nlm.nih.gov/24969358/

675.Nakagawa, Y., et al. A modified cyanide-nitroprusside method for quantifying urinary cystine concentration that corrects for creatinine interference. Clin Chim Acta, 1999. 289: 57.

https://pubmed.ncbi.nlm.nih.gov/10556653/

676.Lombardo, R., et al. What are the benefits and harms of scheduled follow-up for patients who undergo definitive treatment of upper urinary tract stone disease? PROSPERO, 2020.

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=205739

677.Schwartz, B.F., et al. The vesical calculus. Urol Clin North Am, 2000. 27: 333.

https://pubmed.ncbi.nlm.nih.gov/10778475/

678.Kum, F., et al. Do stones still kill? An analysis of death from stone disease 1999-2013 in England and Wales. BJU Int, 2016. 118: 140.

https://pubmed.ncbi.nlm.nih.gov/26765522/

679.Ramello, A., et al. Epidemiology of nephrolithiasis. J Nephrol, 2000. 13 Suppl 3: S45.

https://pubmed.ncbi.nlm.nih.gov/11132032/

680.Halstead, S.B. Epidemiology of bladder stone of children: precipitating events. Urolithiasis, 2016. 44: 101.

https://pubmed.ncbi.nlm.nih.gov/26559057/

681.Takasaki, E., et al. Chemical compositions of 300 lower urinary tract calculi and associated disorders in the urinary tract. Urol Int, 1995. 54: 89.

https://pubmed.ncbi.nlm.nih.gov/7538235/

682.Naqvi, S.A., et al. Bladder stone disease in children: clinical studies. J Pak Med Assoc, 1984. 34: 94.

https://pubmed.ncbi.nlm.nih.gov/6429380/

683.Philippou, P., et al. The management of bladder lithiasis in the modern era of endourology. Urology, 2012. 79: 980.

https://pubmed.ncbi.nlm.nih.gov/22119259/

684.Lal, B., et al. Childhood bladder stones-an endemic disease of developing countries. J Ayub Med Coll Abbottabad, 2015. 27: 17.

https://pubmed.ncbi.nlm.nih.gov/26182729/

685.Douenias, R., et al. Predisposing factors in bladder calculi: Review of 100 cases. Urology, 1991. 37: 240.

https://pubmed.ncbi.nlm.nih.gov/2000681/

686.Smith, J.M., et al. Vesical stone: the clinical features of 652 cases. Irish Med J, 1975. 68: 85.

https://pubmed.ncbi.nlm.nih.gov/1112692/

687.Millan-Rodriguez, F., et al. Urodynamic findings before and after noninvasive management of bladder calculi. BJU International, 2004. 93: 1267.

https://pubmed.ncbi.nlm.nih.gov/15180620/

688.Yang, X., et al. The value of respective urodynamic parameters for evaluating the occurrence of complications linked to benign prostatic enlargement. Int Urol Nephrol, 2014. 46: 1761.

https://pubmed.ncbi.nlm.nih.gov/24811567/

689.Childs, M.A., et al. Pathogenesis of bladder calculi in the presence of urinary stasis. J Urol, 2013. 189: 1347.

https://pubmed.ncbi.nlm.nih.gov/23159588/

690.Krambeck, A.E., et al. Experience with more than 1,000 holmium laser prostate enucleations for benign prostatic hyperplasia. J Urol, 2010. 183: 1105.

https://pubmed.ncbi.nlm.nih.gov/20092844/

691.Mebust, W.K., et al. Transurethral prostatectomy: immediate and postoperative complications. a cooperative study of 13 participating institutions evaluating 3,885 patients. 1989. J Urol, 2002. 167: 999.

https://pubmed.ncbi.nlm.nih.gov/11908420/

692.Chen, Y., et al. Bladder stone incidence in persons with spinal cord injury: Determinants and trends, 1973-1996. Urology, 2001. 58: 665.

https://pubmed.ncbi.nlm.nih.gov/11711333/

693.Hall, M.K., et al. Renal calculi in spinal cord-injured patient: association with reflux, bladder stones, and foley catheter drainage. Urology, 1989. 34: 126.

https://pubmed.ncbi.nlm.nih.gov/2789449/

694.DeVivo, M.J., et al. The risk of bladder calculi in patients with spinal cord injuries. Archives of Internal Medicine, 1985. 145: 428.

https://pubmed.ncbi.nlm.nih.gov/3977510/

695.Kohler-Ockmore, J., et al. Long-term catheterization of the bladder: prevalence and morbidity.
Br J Urol, 1996. 77: 347.

https://pubmed.ncbi.nlm.nih.gov/8814836/

696.Bansal, A., et al. Prospective randomized comparison of three endoscopic modalities used in treatment of bladder stones. Urologia, 2016. 83: 87.

https://pubmed.ncbi.nlm.nih.gov/27103095/

697.Kawahara, T., et al. Correlation between the operation time using two different power settings of a Ho: YAG laser: laser power doesn’t influence lithotripsy time. BMC Res Notes, 2013. 6: 80.

https://pubmed.ncbi.nlm.nih.gov/23510531/

698.Liu, G., et al. Minimally invasive percutaneous suprapubic cystolithotripsy: An effective treatment for bladder stones with urethral strictures. Int J Clin Exp Med, 2016. 9: 19907.

https://www.researchgate.net/publication/310511853

699.Soliman, N.A., et al. Endemic bladder calculi in children. Pediatr Nephrol, 2017. 32: 1489.

https://pubmed.ncbi.nlm.nih.gov/27848095/

700.Aurora, A.L., et al. Bladder stone disease of childhood. II. A clinico-pathological study. Acta Paediatr Scand, 1970. 59: 385.

https://pubmed.ncbi.nlm.nih.gov/5447682/

701.Valyasevi, A., et al. Studies of bladder stone disease in Thailand. VI. Urinary studies in children, 2-10 years old, resident in a hypo- and hyperendemic area. Am J Clin Nutr, 1967. 20: 1362.

https://pubmed.ncbi.nlm.nih.gov/6074673/

702.Al-Marhoon, M.S., et al. Comparison of Endourological and Open Cystolithotomy in the Management of Bladder Stones in Children. J Urol, 2009. 181: 2684.

https://pubmed.ncbi.nlm.nih.gov/19375100/

703.Linsenmeyer, M.A., et al. Accuracy of bladder stone detection using abdominal x-ray after spinal cord injury. J Spinal Cord Med , 2004. 27: 438.

https://pubmed.ncbi.nlm.nih.gov/15648797/

704.Bakin, S., et al. Accuracy of ultrasound versus computed tomography urogram in detecting urinary tract calculi. Med J Malaysia, 2015. 70: 238.

https://pubmed.ncbi.nlm.nih.gov/26358021/

705.Ahmed, F.O., et al. A comparison between transabdominal ultrasonographic and cystourethroscopy findings in adult Sudanese patients presenting with haematuria. Int Urol Nephrol, 2014. 47: 223.

https://pubmed.ncbi.nlm.nih.gov/25374263/

706.Babjuk, M., et al., EAU Guidelines on Non-musle-invasive Bladder Cancer (TaT1 and CIS), in European Association of Urology Guidelines 2022 edition. 2022, The European Association of Urology: Arnhem, The Netherlands.

https://uroweb.org/guideline/non-muscle-invasive-bladder-cancer/

707.Johnson, E.K., et al. Are stone protocol computed tomography scans mandatory for children with suspected urinary calculi? Urology, 2011. 78: 662.

https://pubmed.ncbi.nlm.nih.gov/21722946/

708.ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. Publication 103, 2007. 37: 2.

https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103

709.O’Connor, R.C., et al. Nonsurgical management of benign prostatic hyperplasia in men with bladder calculi. Urology, 2002. 60: 288.

https://pubmed.ncbi.nlm.nih.gov/12137828/

710.Lopez, J.R., et al. Irrigating solutions in bladder stone dissolution. Drug Intell Clin Pharm, 1987.
21: 872.

https://pubmed.ncbi.nlm.nih.gov/3678056/

711.Rattan, K.N., et al. Catheterless and drainless open suprapubic cystolithotomy in children: A safe procedure. Pediatric Surgery International, 2006. 22: 255.

https://pubmed.ncbi.nlm.nih.gov/16416282/

712.Ullah, S., et al. Comparison of open vesicolithotomy and cystolitholapaxy. Pak J Med Sci, 2007.
23: 47.

https://www.researchgate.net/publication/286561704

713.Singh, K.J., et al. Comparison of three different endoscopic techniques in management of bladder calculi. Indian J Urol, 2011. 27: 10.

https://pubmed.ncbi.nlm.nih.gov/21716932/

714.Ozdemir A.T, et al. Randomized comparison of the transurethral use of nephroscope via amplatz sheath with cystoscope in transurethral cystolithotripsy of bladder stones in male patients.
J Endourol, 2012. 26: A142. [No abstract available].

715.Ener, K., et al. The randomized comparison of two different endoscopic techniques in the management of large bladder stones: Transurethral use of nephroscope or cystoscope? J Endourol, 2009. 23: 1151.

https://pubmed.ncbi.nlm.nih.gov/19530944/

716.Wu, J.H., et al. Combined usage of Ho:YAG laser with monopolar resectoscope in the treatment of bladder stone and bladder outlet obstruction. Pak J Med Sci, 2014. 30: 908.

https://pubmed.ncbi.nlm.nih.gov/25097543/

717.Halis, F., et al. The comparison of percutaneous and transurethral cystolithotripsy methods simultaneously performed with Transurethral Resection of Prostate in patients with BPH and bladder stone. Kuwait Med J, 2019. 51: 189.

https://acikerisim.sakarya.edu.tr/handle/20.500.12619/7152

718.Razvi, H.A., et al. Management of Vesical Calculi: Comparison of Lithotripsy Devices. J Endourol, 1996. 10: 559.

https://pubmed.ncbi.nlm.nih.gov/8972793/

719.Ercil, H., et al. Comparison of Ho:Yag laser and pneumatic lithotripsy combined with transurethral prostatectomy in high burden bladder stones with benign prostatic hyperplasia. Asian J Surg, 2016. 39: 238.

https://pubmed.ncbi.nlm.nih.gov/25937584/

720.Javanmard, B., et al. Surgical Management of Vesical Stones in Children: A Comparison Between Open Cystolithotomy, Percutaneous Cystolithotomy and Transurethral Cystolithotripsy With Holmium-YAG Laser. J Lasers Med Sci, 2018. 9: 183.

https://pubmed.ncbi.nlm.nih.gov/30809329/

721.Gangkak, G., et al. Pneumatic cystolithotripsy versus holmium:yag laser cystolithotripsy in the treatment of pediatric bladder stones: a prospective randomized study. Pediatric Surgery International, 2016. 32: 609.

https://pubmed.ncbi.nlm.nih.gov/26879752/

722.Ali, M., et al. Shock wave lithotripsy versus endoscopic cystolitholapaxy in the management of patients presenting with calcular acute urinary retention: a randomised controlled trial. World J Urol, 2019. 37: 879.

https://pubmed.ncbi.nlm.nih.gov/30105456/

723.Deswanto, I.A., et al. Management of bladder stones: The move towards non-invasive treatment. Med J Indonesia, 2017. 26: 128.

https://mji.ui.ac.id/journal/index.php/mji/article/view/1602

724.Bhatia, V., et al. A comparative study of cystolithotripsy and extracorporeal shock wave therapy for bladder stones. Int Urol Nephrol, 1994. 26: 27.

https://pubmed.ncbi.nlm.nih.gov/8026920/

725.Rizvi, S.A., et al. Management of pediatric urolithiasis in Pakistan: experience with 1,440 children.
J Urol, 2003. 169: 634.

https://pubmed.ncbi.nlm.nih.gov/12544331/

726.Autorino, R., et al. Perioperative Outcomes of Robotic and Laparoscopic Simple Prostatectomy: A European-American Multi-institutional Analysis. Eur Urol, 2015. 68: 86.

https://pubmed.ncbi.nlm.nih.gov/25484140/

727.Matei, D.V., et al. Robot-assisted simple prostatectomy (RASP): does it make sense? BJU Int, 2012. 110: E972.

https://pubmed.ncbi.nlm.nih.gov/22607242/

728.Philippou, P., et al. Prospective comparative study of endoscopic management of bladder lithiasis: Is prostate surgery a necessary adjunct? Urology, 2011. 78: 43.

https://pubmed.ncbi.nlm.nih.gov/21296391/

729.Guo, R.Q., et al. Correlation of benign prostatic obstruction-related complications with clinical outcomes in patients after transurethral resection of the prostate. Kaohsiung J Med Sci, 2017. 33: 144.

https://pubmed.ncbi.nlm.nih.gov/28254117/

730.Romero-Otero, J., et al. Analysis of Holmium Laser Enucleation of the Prostate in a High-Volume Center: The Impact of Concomitant Holmium Laser Cystolitholapaxy. J Endourol, 2019. 33: 564.

https://pubmed.ncbi.nlm.nih.gov/30773913/

731.Tangpaitoon, T., et al. Does Cystolitholapaxy at the Time of Holmium Laser Enucleation of the Prostate Affect Outcomes? Urology, 2017. 99: 192.

https://pubmed.ncbi.nlm.nih.gov/27637344/

732.Romero-Otero, J., et al. Critical analysis of a multicentric experience with holmium laser enucleation of the prostate for benign prostatic hyperplasia: outcomes and complications of 10 years of routine clinical practice. BJU Int, 2020. 126: 177.

https://pubmed.ncbi.nlm.nih.gov/32020749/

733.Ord, J., et al. Bladder management and risk of bladder stone formation in spinal cord injured patients. J Urol, 2003. 170: 1734.

https://pubmed.ncbi.nlm.nih.gov/14532765/

734.Bartel, P., et al. Bladder stones in patients with spinal cord injury: a long-term study. Spinal Cord, 2014. 52: 295.

https://pubmed.ncbi.nlm.nih.gov/24469146/

735.Chen, H., et al. Can bladder irrigation reduce the morbidity of bladder stones in patients with spinal cord injury? Open J Urol, 2015. 5: 42.

https://www.researchgate.net/publication/276500148

736.Awad, S.A., et al. Long-term results and complications of augmentation ileocystoplasty for idiopathic urge incontinence in women. British J Urol, 1998. 81: 569.

https://pubmed.ncbi.nlm.nih.gov/9598629/

737.Blyth, B., et al. Lithogenic properties of enterocystoplasty. J Urol, 1992. 148: 575.

https://pubmed.ncbi.nlm.nih.gov/1640525/

738.Flood, H.D., et al. Long-term results and complications using augmentation cystoplasty in reconstructive urology. Neurourol Urodyn, 1995. 14: 297.

https://pubmed.ncbi.nlm.nih.gov/7581466/

739.Hayashi, Y., et al. Review of 86 Patients With Myelodysplasia and Neurogenic Bladder Who Underwent Sigmoidocolocystoplasty and Were Followed More Than 10 Years. J Urol, 2006.
176: 1806.

https://pubmed.ncbi.nlm.nih.gov/16945655/

740.Husmann, D.A. Long-term complications following bladder augmentations in patients with spina bifida: Bladder calculi, perforation of the augmented bladder and upper tract deterioration. Transl Androl Urol, 2016. 5: 3.

https://pubmed.ncbi.nlm.nih.gov/26904407/

741.Nurse, D.E., et al. Stones in enterocystoplasties. British J Urol, 1996. 77: 684.

https://pubmed.ncbi.nlm.nih.gov/8689111/

742.Shekarriz, B., et al. Surgical complications of bladder augmentation: Comparison between various enterocystoplasties in 133 patients. Urology, 2000. 55: 123.

https://pubmed.ncbi.nlm.nih.gov/10654908/

743.Welk, B., et al. Population based assessment of enterocystoplasty complications in adults. J Urol, 2012. 188: 464.

https://pubmed.ncbi.nlm.nih.gov/22704106/

744.Zhang, H., et al. Bladder stone formation after sigmoidocolocystoplasty: Statistical analysis of risk factors. J Pediatr Surg, 2005. 40: 407.

https://pubmed.ncbi.nlm.nih.gov/15750938/

745.Szymanski K.M., et al. Additional Surgeries after Bladder Augmentation in Patients with Spina Bifida in the 21st Century. J Urol, 2020. 203: 1207.

https://pubmed.ncbi.nlm.nih.gov/31951496/

746.DeFoor, W., et al. Bladder calculi after augmentation cystoplasty: Risk factors and prevention strategies. J Urol, 2004. 172: 1964.

https://pubmed.ncbi.nlm.nih.gov/15540766/

747.Hanna, M.K., et al. Challenges in salvaging urinary continence following failed bladder exstrophy repair in a developing country. J Pediatr Urol, 2017. 13: 270.

https://pubmed.ncbi.nlm.nih.gov/28262536/

748.Inouye, B.M., et al. Urologic complications of major genitourinary reconstruction in the exstrophy-epispadias complex. J Pediatr Urol, 2014. 10: 680.

https://pubmed.ncbi.nlm.nih.gov/25082713/

749.Lima, S.V.C., et al. Nonsecretory Intestinocystoplasty: A 15-Year Prospective Study of 183 Patients. J Urol, 2008. 179: 1113.

https://pubmed.ncbi.nlm.nih.gov/18206934/

750.Metcalfe, P.D., et al. What is the Need for Additional Bladder Surgery After Bladder Augmentation in Childhood? J Urol, 2006. 176: 1801.

https://pubmed.ncbi.nlm.nih.gov/16945653/

751.Novak, T.E., et al. Complications of Complex Lower Urinary Tract Reconstruction in Patients With Neurogenic Versus Nonneurogenic Bladder-Is There a Difference? J Urol, 2008. 180: 2629.

https://pubmed.ncbi.nlm.nih.gov/18951557/

752.Surer, I., et al. Continent urinary diversion and the exstrophy-epispadias complex. J Urol, 2003.
169: 1102.

https://pubmed.ncbi.nlm.nih.gov/12576862/

753.Palmer, L.S., et al. Urolithiasis in children following augmentation cystoplasty. J Urol, 1993. 150: 726.

https://pubmed.ncbi.nlm.nih.gov/8326634/

754.Kronner, K.M., et al. Bladder calculi in the pediatric augmented bladder. J Urol, 1998. 160: 1096.

https://pubmed.ncbi.nlm.nih.gov/9719284/

755.Silver, R.I., et al. Urolithiasis in the exstrophy-epispadias complex. The J Urol, 1997. 158: 1322.

https://pubmed.ncbi.nlm.nih.gov/9258206/

756.Ross, J.P.J., et al. Pediatric bladder augmentation - Panacea or Pandora’s box? Can Urol Assoc J, 2020. 14: E251.

https://pubmed.ncbi.nlm.nih.gov/31977304/

757.Kaefer, M., et al. Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. The J Urol, 1998. 160: 2187.

https://pubmed.ncbi.nlm.nih.gov/9817364/

758.Wang, K., et al. Complications after sigmoidocolocystoplasty: Review of 100 cases at one institution. J Pediatr Surg, 1999. 34: 1672.

https://pubmed.ncbi.nlm.nih.gov/10591568/

759.Wagstaff, K.E., et al. Blood and urine analysis in patients with intestinal bladders. British J Urol, 1991. 68: 311.

https://pubmed.ncbi.nlm.nih.gov/1913074/

760.Breda, A., et al. Percutaneous Cystolithotomy for Calculi in Reconstructed Bladders: Initial UCLA Experience. J Urol, 2010. 183: 1989.

https://pubmed.ncbi.nlm.nih.gov/20303534/

761.Kisku, S., et al. Bladder calculi in the augmented bladder: A follow-up study of 160 children and adolescents. J Pediatr Urol, 2015. 11: 66.

https://pubmed.ncbi.nlm.nih.gov/25819600/

762.Szymanski, K.M., et al. Cutting for stone in augmented bladders - What is the risk of recurrence and is it impacted by treatment modality? J Urol, 2014. 191: 1375.

https://pubmed.ncbi.nlm.nih.gov/24316089/

763.Schlomer, B.J., et al. Cumulative incidence of outcomes and urologic procedures after augmentation cystoplasty. J Pediatr Urol, 2014. 10: 1043.

https://pubmed.ncbi.nlm.nih.gov/24766857/

764.Turk, T.M., et al. Incidence of urolithiasis in cystectomy patients after intestinal conduit or continent urinary diversion. World J Urol, 1999. 17: 305.

https://pubmed.ncbi.nlm.nih.gov/10552149/

765.Knap, M.M., et al. Early and late treatment-related morbidity following radical cystectomy. Scandinavian J Urol and Nephrology, 2004. 38: 153.

https://pubmed.ncbi.nlm.nih.gov/15204405/

766.Arai, Y., et al. Orthotopic ileal neobladder in male patients: Functional outcomes of 66 cases. Int
J Urol, 1999. 6: 388.

https://pubmed.ncbi.nlm.nih.gov/10466450/

767.Badawy, A.A., et al. Orthotopic diversion after cystectomy in women: A single-centre experience with a 10-year follow-up. Arab J Urol, 2011. 9: 267.

https://pubmed.ncbi.nlm.nih.gov/26579310/

768.Ji, H., et al. Identification and management of emptying failure in male patients with orthotopic neobladders after radical cystectomy for bladder cancer. Urology, 2010. 76: 644.

https://pubmed.ncbi.nlm.nih.gov/20573379/

769.Madbouly, K. Large orthotopic reservoir stone burden: Role of open surgery. Urol Ann, 2010. 2: 96.

https://pubmed.ncbi.nlm.nih.gov/20981195/

770.Miyake, H., et al. Experience with various types of orthotopic neobladder in Japanese men: Long-term follow-up. Urol Int, 2010. 84: 34.

https://pubmed.ncbi.nlm.nih.gov/20173366/

771.Moeen, A.M., et al. Management of neobladder complications: endoscopy comes first. Scandinavian J Urol, 2017. 51: 146.

https://pubmed.ncbi.nlm.nih.gov/28635567/

772.Simon, J., et al. Neobladder emptying failure in males: incidence, etiology and therapeutic options.
J Urol, 2006. 176: 1468.

https://pubmed.ncbi.nlm.nih.gov/16952662/

773.Stein, J.P., et al. The orthotopic T pouch ileal neobladder: Experience with 209 patients. J Urol, 2004. 172: 584.

https://pubmed.ncbi.nlm.nih.gov/15247737/

774.Miyake, H., et al. Orthotopic sigmoid neobladder after radical cystectomy: Assessment of complications, functional outcomes and quality of life in 82 Japanese patients. BJU International, 2010. 106: 412.

https://pubmed.ncbi.nlm.nih.gov/19888974/

775.Khalil, F., et al. Long-term follow-up after ileocaecal continent cutaneous urinary diversion (Mainz
i pouch): A retrospective study of a monocentric experience. Arab J Urol, 2015. 13: 245.

https://pubmed.ncbi.nlm.nih.gov/26609442/

776.Marien, T., et al. Characterization of Urolithiasis in Patients Following Lower Urinary Tract Reconstruction with Intestinal Segments. J Endourol, 2017. 31: 217.

https://pubmed.ncbi.nlm.nih.gov/27936931/

777.Davis, W.B., et al. Percutaneous imaging-guided access for the treatment of calculi in continent urinary reservoirs. CardioVasc Intervent Radiol, 2002. 25: 119.

https://pubmed.ncbi.nlm.nih.gov/11901429/

778.Paez, E., et al. Percutaneous treatment of calculi in reconstructed bladder. J Endourol, 2007. 21: 334.

https://pubmed.ncbi.nlm.nih.gov/17444782/

779.La Vecchia, C., et al. Genital and urinary tract diseases and bladder cancer. Cancer Res, 1991. 51: 629.

https://pubmed.ncbi.nlm.nih.gov/1985779/

780.Chung, S.-D., et al. A case-control study on the association between bladder cancer and prior bladder calculus. BMC cancer, 2013. 13: 117.

https://pubmed.ncbi.nlm.nih.gov/23497224/

781.Jhamb, M., et al. Urinary tract diseases and bladder cancer risk: a case-control study. Cancer Causes Contr, 2007. 18: 839.

https://pubmed.ncbi.nlm.nih.gov/17593531/