TABLE OF CONTENTS

1. INTRODUCTION
 1.1 Aim and objectives
 1.2 Panel composition
 1.3 Available publications
 1.4 Publication history

2. METHODS
 2.1 Introduction
 2.2 Review

3. THE GUIDELINE
 3.1 Classification
 3.2 Antimicrobial stewardship
 3.3 Asymptomatic bacteriuria in adults
 3.3.1 Evidence question
 3.3.2 Background
 3.3.3 Epidemiology, aetiology and pathophysiology
 3.3.4 Diagnostic evaluation
 3.3.5 Evidence summary
 3.3.6 Disease management
 3.3.6.1 Patients without identified risk factors
 3.3.6.2 Patients with ABU and recurrent UTI, otherwise healthy
 3.3.6.3 Pregnant women
 3.3.6.3.1 Is treatment of ABU beneficial in pregnant women?
 3.3.6.3.2 Which treatment duration should be applied to treat ABU in pregnancy?
 3.3.6.3.2 Single dose vs. short course treatment
 3.3.6.4 Patients with identified risk-factors
 3.3.6.4.1 Diabetes mellitus
 3.3.6.4.2 ABU in post-menopausal women
 3.3.6.4.3 Elderly institutionalised patients
 3.3.6.4.4 Patients with renal transplants
 3.3.6.4.5 Patients with dysfunctional and/or reconstructed lower urinary tracts
 3.3.6.4.6 Patients with catheters in the urinary tract
 3.3.6.4.7 Patients with ABU subjected to catheter placements/exchanges
 3.3.6.4.8 Immuno-compromised and severely diseased patients, patients with candiduria
 3.3.6.5 Prior to urological surgery
 3.3.6.6 Prior to orthopaedic surgery
 3.3.6.7 Pharmacological management
 3.3.7 Follow-up
 3.3.8 Summary of evidence and recommendations for the management of ABU

3.4 Uncomplicated cystitis
 3.4.1 Introduction
 3.4.2 Epidemiology, aetiology and pathophysiology
 3.4.3 Diagnostic evaluation
 3.4.3.1 Clinical diagnosis
 3.4.3.2 Differential diagnosis
 3.4.3.3 Laboratory diagnosis
 3.4.3.4 Summary of evidence and recommendations for the diagnostic evaluation of uncomplicated cystitis
 3.4.4 Disease management
 3.4.4.1 Cystitis in pregnancy
 3.4.4.2 Cystitis in men
 3.4.4.3 Renal insufficiency
 3.4.4.4 Summary of evidence and recommendations for antimicrobial therapy for uncomplicated cystitis
3.4.5 Follow-up

3.5 Recurrent UTIs
3.5.1 Introduction
3.5.2 Diagnostic evaluation
3.5.3 Disease management and follow-up
 3.5.3.1 Behavioural modifications
 3.5.3.2 Non-antimicrobial prophylaxis
 3.5.3.2.1 Hormonal replacement
 3.5.3.2.2 Immunoactive prophylaxis
 3.5.3.2.3 Prophylaxis with probiotics (Lactobacillus spp.)
 3.5.3.2.4 Prophylaxis with cranberry
 3.5.3.2.5 Prophylaxis with D-mannose
 3.5.3.2.6 Endovesical instillation
 3.5.3.3 Antimicrobials for preventing rUTI
 3.5.3.3.1 Continuous low-dose antimicrobial prophylaxis and post-coital prophylaxis
 3.5.3.3.2 Self-diagnosis and self-treatment
 3.5.3.4 Summary of evidence and recommendations for the diagnostic evaluation and treatment of rUTIs

3.6 Uncomplicated pyelonephritis
3.6.1 Diagnostic evaluation
 3.6.1.1 Clinical diagnosis
 3.6.1.2 Differential diagnosis
 3.6.1.3 Laboratory diagnosis
 3.6.1.4 Imaging diagnosis
 3.6.2 Summary of evidence and recommendations for the diagnostic evaluation of uncomplicated pyelonephritis
 3.6.3 Disease management
 3.6.3.1 Outpatient treatment
 3.6.3.2 Inpatient treatment
 3.6.3.2.1 Summary of evidence and recommendations for the treatment of uncomplicated pyelonephritis.
 3.6.4 Follow-up

3.7 Complicated UTIs
3.7.1 Introduction
3.7.2 Diagnostic evaluation
 3.7.2.1 Clinical presentation
 3.7.2.2 Urine culture
 3.7.3 Microbiology (spectrum and antimicrobial resistance)
 3.7.4 General principles of cUTI treatment
 3.7.4.1 Choice of antimicrobials
 3.7.4.2 Duration of antimicrobial therapy
 3.7.5 Summary of evidence and recommendations for the treatment of complicated UTIs.

3.8 Catheter-associated UTIs
3.8.1 Introduction
3.8.2 Epidemiology, aetiology and pathophysiology
3.8.3 Diagnostic evaluation
 3.8.3.1 Clinical diagnosis
 3.8.3.2 Laboratory diagnosis
 3.8.3.3 Summary of evidence table and recommendations for diagnostic evaluation of CA-UTI
 3.8.4 Disease management
 3.8.4.1 Recommendations for disease management and prevention of CA-UTI
 3.8.5 Removal of indwelling bladder catheter
 3.8.5.1 Evidence question
 3.8.5.2 Review of evidence
 3.8.5.3 Summary of evidence and recommendations for removal of indwelling bladder catheter
3.9 Urosepsis
3.9.1 Introduction 24
3.9.2 Epidemiology, aetiology and pathophysiology 25
3.9.3 Diagnostic evaluation 25
3.9.4 Physiology and biochemical markers 25
3.9.4.1 Cytokines as markers of the septic response 25
3.9.4.2 Biochemical markers 26
3.9.5 Disease management 26
3.9.5.1 Prevention 26
3.9.5.1.1 Preventive measures of proven or probable efficacy 26
3.9.5.1.2 Appropriate peri-operative antimicrobial prophylaxis 26
3.9.5.2 Treatment 26
3.9.5.2.1 Antimicrobial therapy 27
3.9.5.2.2 Source control 27
3.9.5.2.3 Adjunctive measures 27
3.9.5.3 Summary of evidence and recommendations for the treatment of urosepsis 27

3.10 Urethritis
3.10.1 Introduction 28
3.10.2 Epidemiology, aetiology and pathogenesis 28
3.10.3 Diagnostic evaluation 28
3.10.4 Disease management 28
3.10.4.1 Summary of evidence and recommendations for the treatment of urosepsis 29

3.11 Bacterial Prostatitis
3.11.1 Introduction 29
3.11.2 Evidence Question 30
3.11.3 Evidence Summary 30
3.11.4 Epidemiology, aetiology and pathogenesis 30
3.11.5 Diagnostic evaluation 30
3.11.5.1 History and symptoms 30
3.11.5.2 Symptom questionnaires 31
3.11.5.3 Clinical findings 31
3.11.5.4 Urine cultures and expressed prostatic secretion 31
3.11.5.5 Prostate biopsy 31
3.11.5.6 Other tests 31
3.11.5.7 Additional investigations 31
3.11.5.7.1 Ejaculate analysis 31
3.11.5.7.2 First-void urine sample 31
3.11.5.7.3 Prostate specific antigen (PSA) 31
3.11.5.8 Summary of evidence and recommendations for the diagnosis of bacterial prostatitis 32
3.11.6 Disease management 32
3.11.6.1 Antimicrobials 32
3.11.6.2 Intraprostatic injection of antimicrobials 32
3.11.6.3 Combined treatments 32
3.11.6.4 Drainage and surgery 33
3.11.6.5 Summary of evidence and recommendations for the disease management of bacterial prostatitis 33

3.11.7 Follow-up 33

3.12 Acute Infective Epididymitis
3.12.1 Evidence question 34
3.12.2 Epidemiology, Aetiology and Pathophysiology 34
3.12.3 Diagnostic Evaluation 34
3.12.4 Disease Management 34
3.12.5 Evidence Summary 34
3.12.6 Screening 35
3.12.7 Summary of evidence and recommendations for the diagnosis and treatment of acute infective epididymitis 35
3.13 Fournier’s Gangrene (Necrotizing fasciitis of the perineum and external genitalia) 36
3.13.1 Evidence questions 36
3.13.2 Epidemiology, Aetiology and Pathophysiology 36
3.13.3 Diagnostic Evaluation 36
3.13.4 Disease Management 36
3.13.5 Evidence Summary 37
3.13.6 Summary of evidence and recommendations for the disease management of Fournier’s Gangrene 37
3.14 Detection of bacteriuria prior to urological procedures 38
3.14.1 Evidence question 38
3.14.2 Background 38
3.14.3 Evidence summary 38
3.14.3.1 Reagents strip (dipstick) urinalysis 38
3.14.3.2 Automated microscopy 38
3.14.3.3 Dipslide culture 38
3.14.3.4 Flow cytometry 38
3.15 Peri-Procedural Antibiotic Prophylaxis 39
3.15.1 General Principles 39
3.15.1.1 Definition of infectious complications 39
3.15.1.2 Non-antibiotic measures for asepsis 39
3.15.1.3 Choice of agent 39
3.15.2 Specific procedures and evidence question 39
3.15.2.1 Urodynamics 39
3.15.2.2 Cystoscopy 40
3.15.2.3 Interventions for urinary stone treatment 40
3.15.2.3.1 Extracorporeal shockwave lithotripsy 40
3.15.2.3.2 Ureteroscopy 40
3.15.2.3.3 Per-cutaneous nephrolithotomy 40
3.15.2.4 Transurethral resection of prostate 40
3.15.2.5 Transurethral resection bladder tumour 41
3.15.3 Summary of evidence and recommendations for peri-procedural antibiotic prophylaxis 41
3.16 Prostate biopsy 41
3.16.1 Evidence question 41
3.16.2 Epidemiology, Aetiology and Pathophysiology 41
3.16.3 Diagnostic Evaluation 42
3.16.4 Disease Management 42
3.16.5 Evidence summary 42
3.16.6 Non-antimicrobial interventions 42
3.16.6.1 Number of biopsy cores 42
3.16.6.2 Peri-prostatic injection of local anaesthetic 42
3.16.6.3 Route of biopsy 42
3.16.6.4 Rectal preparation 42
3.16.6.5 Other interventions 42
3.16.7 Antimicrobial prophylaxis 43
4. REFERENCES 43
5. CONFLICT OF INTEREST 66
6. CITATION INFORMATION 66
1. INTRODUCTION

1.1 Aim and objectives
The European Association of Urology (EAU) Urological Infections Guidelines Panel has compiled these clinical guidelines to provide medical professionals with evidence-based information and recommendations for the prevention and treatment of urinary tract infections (UTIs) and male accessory gland infections. These guidelines also aim to address the important public health aspects of infection control and antimicrobial stewardship. Separate EAU guidelines documents are available addressing paediatric urological infections [1] and infections in patients with neurological urinary tract dysfunction [2].

It must be emphasised that clinical guidelines present the best evidence available to the experts. However, following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients, but rather help to focus decisions - also taking personal values and preferences/individual circumstances of patients into account. Guidelines are not mandates and do not purport to be a legal standard of care.

1.2 Panel composition
The EAU Urological Infections Guidelines Panel consists of a multi-disciplinary group of urologists, with particular expertise in this area, and an infectious disease specialist. All experts involved in the production of this document have submitted potential conflict of interest statements, which can be viewed on the EAU website Uroweb: http://uroweb.org/guideline/urological-infections/.

1.3 Available publications
A quick reference document, the Pocket Guidelines, is available in print and as an app for iOS and Android devices. These are abridged versions, which may require consultation together with the full text version. All documents are accessible through the EAU website Uroweb: http://uroweb.org/guideline/urological-infections/.

1.4 Publication history
The Urological Infections Guidelines were first published in 2001. This 2018 document presents a limited update of the 2017 publication.

2. METHODS

2.1 Introduction
For the 2018 Urological Infections Guidelines, new and relevant evidence has been identified, collated and appraised through a structured assessment of the literature for the following sections:
- 3.11 Bacterial Prostatitis
- 3.13 Fournier’s Gangrene
- 3.15 Peri-Procedural Antibiotic Prophylaxis

Broad and comprehensive literature searches, covering sections 3.11, 3.13 and 3.15 were performed. Databases searched included Medline, EMBASE, and the Cochrane Libraries, covering a time frame between 1980 and February 1st 2017. A total of 1,661, 640 and 2,657 unique records were identified, retrieved and screened for relevance for sections 3.11, 3.13 and 3.15, respectively. Detailed search strategies are available online: http://uroweb.org/guideline/urological-infections/?type=appendices-publications.

Specific chapters were updated based on systematic reviews of topics or questions prioritised by the Guideline Panel. These reviews were performed using standard Cochrane systematic review methodology, http://www.cochranelibrary.com/about/about-cochrane-systematicreviews.html. The systematic review results for the following evidence question are included in the 2018 Urological Infections Guidelines:
1. What is the best antimicrobial prophylaxis strategy to reduce risk of infectious complication of prostate biopsy [3]?

For the 2018 edition of the EAU Guidelines the Guidelines Office have transitioned to a modified GRADE methodology across all 20 guidelines [4, 5]. For each recommendation within the guidelines there is an accompanying online strength rating form which addresses a number of key elements namely:
1. the overall quality of the evidence which exists for the recommendation, references used in this text are graded according to a classification system modified from the Oxford Centre for Evidence-Based Medicine Levels of Evidence [6];
2. the magnitude of the effect (individual or combined effects);
3. the certainty of the results (precision, consistency, heterogeneity and other statistical or study related factors);
4. the balance between desirable and undesirable outcomes;
5. the impact of patient values and preferences on the intervention;
6. the certainty of those patient values and preferences.

These key elements are the basis which panels use to define the strength rating of each recommendation. The strength of each recommendation is represented by the words ‘strong’ or ‘weak’ [7]. The strength of each recommendation is determined by the balance between desirable and undesirable consequences of alternative management strategies, the quality of the evidence (including certainty of estimates), and nature and variability of patient values and preferences. The strength rating forms will be available online.

Additional information can be found in the general Methodology section of this print, and online at the EAU website: http://www.uroweb.org/guideline/. A list of associations endorsing the EAU Guidelines can also be viewed online at the above address.

2.2 Review
This document was subject to independent peer review prior to publication in 2015.

3. THE GUIDELINE

3.1 Classification
Different classification systems of UTI exist. Most widely used are those developed by the Centres for Disease Control and Prevention (CDC) [8], Infectious Diseases Society of America (IDSA) [9], European Society of Clinical Microbiology and Infectious Diseases (ESCMID) [10] as well as the U.S. Food and Drug Administration (FDA) [11, 12]. Current UTI guidelines frequently use the concept of uncomplicated and complicated UTI with a number of modifications (Figure 1). In 2011 the EAU Section of Infections in Urology proposed the ORENUC classification system based on the clinical presentation of the UTI, the anatomical level of the UTI, the grade of severity of the infection, the categorisation of risk factors and availability of appropriate antimicrobial therapy [13].

Figure 1: Concept of uncomplicated and complicated UTI
The following classification of UTIs is adopted in the EAU Urological Infections Guidelines:

<table>
<thead>
<tr>
<th>Classification of UTI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplicated UTIs</td>
<td>Acute, sporadic or recurrent lower (uncomplicated cystitis) and/or upper (uncomplicated pyelonephritis) UTI, limited to non-pregnant, pre-menopausal women with no known relevant anatomical and functional abnormalities within the urinary tract or comorbidities.</td>
</tr>
<tr>
<td>Complicated UTIs</td>
<td>All UTIs which are not defined as uncomplicated. Meaning in a narrower sense UTIs in a patient with an increased chance of a complicated course: i.e., all men, pregnant women, patients with relevant anatomical or functional abnormalities of the urinary tract, indwelling urinary catheters, renal diseases, and/or with other concomitant immunocompromising diseases for example, diabetes.</td>
</tr>
<tr>
<td>Recurrent UTIs</td>
<td>Recurrences of uncomplicated and/or complicated UTIs, with a frequency of at least three UTIs/year or two UTIs in the last six months.</td>
</tr>
<tr>
<td>Catheter-associated UTIs</td>
<td>Catheter-associated urinary tract infection (CA-UTI) refers to UTIs occurring in a person whose urinary tract is currently catheterised or has had a catheter in place within the past 48 hours.</td>
</tr>
<tr>
<td>Urosepsis</td>
<td>Urosepsis is defined as life threatening organ dysfunction caused by a disregulated host response to infection originating from the urinary tract and/or male genital organs [14].</td>
</tr>
</tbody>
</table>

3.2 Antimicrobial stewardship

Although the benefits to patients of antibiotic use are clear, overuse and misuse have contributed to the growing problem of resistance amongst uropathogenic bacteria, which is a serious threat to public health [15, 16]. In acute care hospitals, 20-50% of prescribed antibiotics are either unnecessary or inappropriate [17]. In response, a worldwide initiative seeks to incorporate Antimicrobial Stewardship programs in healthcare [18]. Antimicrobial Stewardship aims to optimise clinical outcomes and ensure cost-effective therapy whilst minimising unintended consequences of antimicrobial use such as healthcare associated infections including *Clostridium difficile*, toxicity, selection of virulent organisms and emergence of resistant bacterial strains [19].

Stewardship programs have two main sets of actions. The first set mandates use of recommended care at the patient level conforming to guidelines. The second set describes strategies to achieve adherence to the mandated guidance. These include persuasive actions such as education and feedback together with restricting availability linked to local formularies. A Cochrane review of effectiveness of interventions to improve antibiotic prescribing practices for hospital inpatients, updated in 2017, found high-certainty evidence that such interventions are effective in increasing adherence with antibiotic policy leading to reduced antibiotic treatment duration and may also reduce hospital stay. The review found no evidence that reduced antibiotic usage increased mortality [20].

The important components of antimicrobial stewardship programs are [21]:
- regular training of staff in best use of antimicrobial agents;
- adherence to local, national or international guidelines;
- regular ward visits and consultation with infectious diseases physicians and clinical microbiologists;
- audit of adherence and treatment outcomes;
- regular monitoring and feedback to prescribers of their performance and local pathogen resistance profiles.

A 2016 systematic review of evidence for effectiveness of various Antimicrobial Stewardship interventions in healthcare institutions identified 145 studies of nine Stewardship objectives. Guideline-driven empirical therapy using a restricted choice of antibiotics and including de-escalation, intravenous to oral switch, Therapeutic Drug Monitoring, and bedside consultation resulted in a 35% (95% CI 20-46%) relative risk reduction (RRR) in mortality. Use of de-escalation (tailoring to a more narrow spectrum agent), showed a RRR of 56% (95% CI 34 – 70%) for mortality [22].

To facilitate local initiatives and audit, a set of valid, reliable, and applicable indicators of the quality of antibiotic use in the treatment of hospitalised patients with complicated UTI was developed [23]. Its use in the Netherlands appeared to result in shortened hospital stay [24]. A literature search of Pubmed from April 2014 [22], to February 2017 identified no further randomised controlled trials (RCTs) relating to stewardship
programmes for UTIs. Studies to provide high quality evidence of effectiveness of stewardship programmes in urology patients are urgently needed.

3.3 Asymptomatic bacteriuria in adults

3.3.1 Evidence question
What is the most effective management for people with asymptomatic bacteriuria?

3.3.2 Background
Urinary growth of bacteria in an asymptomatic individual (asymptomatic bacteriuria - ABU) is common, and corresponds to a commensal colonisation [25]. Clinical studies have shown that ABU may protect against superinfecting symptomatic UTI, thus treatment of ABU should be performed only in cases of proven benefit for the patient to avoid the risk of selecting antimicrobial resistance and eradicating a potentially protective ABU strain [26, 27]. The aim of this section is to support the clinician in deciding when ABU should or should not be treated.

3.3.3 Epidemiology, aetiology and pathophysiology
Asymptomatic bacteriuria occurs in an estimated 1-5% of healthy pre-menopausal females. Increasing to 4-19% in otherwise healthy elderly females and men, 0.7-27% in patients with diabetes, 2-10% in pregnant women, 15-50% in institutionalised elderly populations, and in 23-89% in patients with spinal cord injuries [28]. Asymptomatic bacteriuria in younger men is uncommon but, when detected, chronic bacterial prostatitis must be considered. The spectrum of bacteria in ABU is similar to species found in uncomplicated or complicated UTIs, depending on the presence of risk factors (see sections 3.4 and 3.7).

3.3.4 Diagnostic evaluation
Asymptomatic bacteriuria in an individual without urinary tract symptoms is defined by a mid-stream sample of urine showing bacterial growth ≥ 10^5 cfu/mL in two consecutive samples in women [29] and in one single sample in men [30]. In a single catheterised sample bacterial growth may be as low as 10^2 cfu/mL to be considered representing true bacteriuria in both men and women [28, 31]. Diagnostic work-up should include measurement of residual urine while cystoscopy and/or imaging of the upper urinary tract is not mandatory if the medical history is otherwise without remark. If persistent growth of urease producing bacteria, i.e. Proteus mirabilis is detected, stone formation in the urinary tract must be excluded [32]. In men, a digital rectal examination (DRE) has to be performed to investigate the possibility of prostate diseases (see section 3.11).

3.3.5 Evidence summary
A systematic search of the literature from January 2000 to November 2016 identified 3,582 titles of which 224 titles were selected for full text review and 50 were included [33]. For the subgroups of pregnancy, prior to urologic surgeries, postmenopausal women and institutionalised elderly patients only data from randomised-controlled trials (RCT) were included, on which a meta-analysis was performed [33]. For the other subgroups non-RCTs were also included in the narrative analysis [33]. The following patient populations were not covered by the systematic review: immuno-compromised patients; patients with candiduria; patients with dysfunctional and/or reconstructed lower urinary tracts; patients with indwelling catheters. For these groups the guideline was updated using a structured PubMed search.

3.3.6 Disease management

3.3.6.1 Patients without identified risk factors
Asymptomatic bacteriuria does not cause renal disease or damage [34]. Only one prospective, non-randomised study investigated the effect of treatment of ABU in adult, non-diabetic, non-pregnant women [35], and found no difference in the rate of symptomatic UTIs. Furthermore, as the treatment of ABU has been proven to be unnecessary in most high-risk patient subgroups, there is panel consensus that the results of these subgroups can also be applied to patients without identified risk factors. Therefore, screening and treatment of ABU is not recommended in patients without risk factors.

3.3.6.2 Patients with ABU and recurrent UTI, otherwise healthy
One RCT investigated the effect of ABU treatment in female patients with recurrent symptomatic UTI and without identified risk factors [27] and demonstrated that treatment of ABU increases the risk for a subsequent symptomatic UTI episode, as compared to non-treated patients (RR 0.28, 95% CI 0.21 to 0.38; 673 patients). This protective effect of spontaneously developed ABU can be used as part of prevention in female patients with recurrent symptomatic UTI. Therefore, treatment of ABU is not recommended. However, occasionally the eradication of a strain considered the causative agent of recurrent episodes of UTI, may be justified.
3.3.6.3 Pregnant women

3.3.6.3.1 Is treatment of ABU beneficial in pregnant women?

Twelve RCTs comparing antibiotic treatments of ABU with placebo controls or no treatment [36-47], with different antibiotic doses and regimens were identified, ten published before 1988 and one in 2015. Eleven RCTs (n=2,002) reported on the rate of symptomatic UTIs [36, 38-46, 48]. Antibiotic treatment significantly reduced the number of symptomatic UTIs compared to placebo or no treatment (average RR 0.22, 95% CI 0.12 to 0.40).

Six RCTs reported on the resolution of bacteriuria [36-38, 40, 43, 45]. Antibiotic treatment was effective in the resolution of bacteriuria compared to placebo (average RR 2.99, 95% CI 1.65 to 5.39; n=716). Eight RCTs reported on the rate of low birthweights [36, 38-41, 44, 47, 48]. Antibiotic treatment was associated with lower rates of low birthweight compared to placebo or no treatment (average RR 0.58, 95% CI 0.36 to 0.94; n=1689). Four RCTs reported on the rate of preterm deliveries [44, 45, 47, 48]. Antibiotic treatment was associated with lower rates of preterm delivery compared to placebo or no treatment (average RR 0.34, 95% CI 0.18 to 0.66; n=854).

Based on the beneficial maternal and foetal effects of antibiotic treatment pregnant women should be screened and treated for ABU. However, the panel would like to emphasise that most available studies have low methodological quality and are from the 60s to 80s. Diagnostic and treatment protocols and accessibility to medical services has dramatically changed since then; therefore, the quality of evidence for this recommendation is low. In a newer study of higher methodological quality the beneficial effects of antibiotic treatment are not as evident [48]. Therefore, it is advisable to consult national recommendations for pregnant women.

3.3.6.3.2 Which treatment duration should be applied to treat ABU in pregnancy?

Sixteen RCTs comparing the efficacy of different antibiotic treatments in pregnant women with ABU were identified [49-64]. There was significant heterogeneity amongst the studies. Studies compared different antibiotic regimens or the same antibiotic regimens with different durations. The duration of treatment ranged from single dose to continuous treatment (until delivery). For practical purposes the grouping strategy used by the previously published Cochrane Review by Widmer et al. was adopted with some modifications [65]. The following treatment groups were used for comparison:

1. single dose (single day);
2. short course (2-7 days);
3. long course (8-14 days);
4. continuous (until delivery).

Nine studies compared single dose to short course treatment [50, 54, 55, 59-64], one study compared single dose to long course treatment [58] and one study compared long course to continuous treatment [51]. As long term and continuous antibiotic treatment is not used in current practice, only studies comparing single dose to standard short course treatment are presented.

3.3.6.3.2.1 Single dose vs. short course treatment

Three RCTs reported on the rate of symptomatic UTIs [54, 63, 64], with no significant difference between the two durations (average RR 1.07, 95% CI 0.47 to 2.47; n=891). Nine RCTs reported on the rate of ABU resolution [50, 54, 55, 59-64], with no significant difference between the two durations (average RR 0.97, 95% CI 0.89 to 1.07; n=1,268). Six RCTs reported on the rate of side effects [50, 54, 59, 60, 62, 63]. Single dose treatment was associated with significantly less side effects compared to short course treatment (average RR 0.40, 95% CI 0.22 to 0.72; n=458). Three RCTs reported on the rate of preterm deliveries [54, 56, 64], with no significant difference between the two durations (average RR 1.16, 95% CI 0.75 to 1.78; n=814). One RCT reported on the rate of low birthweights [64]. There were significantly more babies with low birthweight in the single dose duration compared to short course treatment (average RR 1.65, 95% CI 1.06 to 2.57; n=714).

According to the data analysis, single dose treatment was associated with a significantly lower rate of side effects but a significantly higher rate of low birthweight. Therefore, standard short course treatment should be applied to treat ABU in pregnancy, however it should be emphasised that the overall quality of the scientific evidence backing this recommendation is low.

3.3.6.4 Patients with identified risk-factors

3.3.6.4.1 Diabetes mellitus

Diabetes mellitus, even when well regulated, is reported to correlate to a higher frequency of ABU [66]. One RCT demonstrated that eradicating ABU did not reduce the risk of symptomatic UTI and infectious complications in patients with diabetes mellitus. The time to first symptomatic episode was also similar in both
groups. Furthermore, untreated ABU did not correlate to diabetic nephropathy [67]. Screening and treatment of ABU in well-controlled diabetes mellitus is therefore not recommended. However, poorly regulated diabetes is a risk factor for symptomatic UTI and infectious complications.

3.3.6.4.2 ABU in post-menopausal women
Elderly women have an increased incidence of ABU [68]. Four RCTs compared antibiotic treatment of ABU with placebo controls or no treatment, in a post-menopausal female population, with different antibiotic doses and regimens [69-72]. Women in these studies were mostly nursing home residents, which may bias the results of this analysis. Three RCTs reported on the rate of symptomatic UTIs (average RR 0.71, 95% CI 0.49 to 1.05; 208 women) and the resolution of bacteriuria (average RR 1.28, 95% CI 0.50 to 3.24; 203 women) [54, 63, 64], with no significant benefit of antibiotic treatment. Therefore, ABU in post-menopausal women does not require treatment, and should be managed as for pre-menopausal women.

3.3.6.4.3 Elderly institutionalised patients
The rate of ABU is 15-50% in elderly institutionalised patients [73]. Differential diagnosis of ABU from symptomatic UTI is difficult in the multi-diseased and mentally deteriorated patient, and is probably a cause of unnecessary antibiotic treatment [74, 75]. Seven RCTs compared antibiotic treatment of ABU with placebo controls or no treatment in elderly patients, with different antibiotic doses and regimens [69-72, 76-78].

Three RCTs reported on the rate of symptomatic UTIs [69, 71, 76]. Antibiotic treatment was not significantly beneficial in reducing the rate of symptomatic UTIs compared to placebo or no treatment (average RR 0.68, 95% CI 0.46 to 1.00; n=210). Six RCTs reported on the resolution of bacteriuria [69, 71, 72, 76-78]. There was no benefit of antibiotic treatment compared to placebo in the resolution of ABU (average RR 1.33, 95% CI 0.63 to 2.79; n=328). One RCT compared the rates of incontinence in this patient group before and after the eradication of ABU, and found no effect of antibiotic treatment [79]. Therefore, screening and treatment of ABU is not recommended in this patient group.

3.3.6.4.4 Patients with renal transplants
Two RCTs and two retrospective studies compared the effect of antibiotic treatment to no treatment in renal transplant patients [80-83]. Meta-analysis of the two RCTs did not find antibiotic treatment beneficial in terms of reducing symptomatic UTIs (RR=0.86, 95% CI 0.51 to 1.45; n=200). The two retrospective studies reached the same conclusion. Furthermore, there were no significant differences in the rate of ABU clearance, graft loss or change in renal function during long-term follow-up up to 24 months [80-83]. Therefore, treatment of ABU is not recommended in renal transplant recipients.

3.3.6.4.5 Patients with dysfunctional and/or reconstructed lower urinary tracts
Patients with lower urinary tract dysfunction (LUTD) (e.g. neurogenic bladder patients secondary to multiple sclerosis, spinal cord injury patients, patients with incomplete bladder emptying, patients with neo-bladder and ileo-cystoplasty, patients using clean intermittent catheterisation (CIC), and patients with ileal conduits, orthotopic bladder replacement and continent reservoirs) frequently become colonised [84, 85]. Studies have shown no benefit in ABU treatment in these patient groups [84, 85]. Furthermore, in LUTD patients who do not spontaneously develop ABU, deliberate colonisation with an ABU strain (Escherichia. coli 83972) has shown a protective effect against symptomatic recurrences [86, 87]. Screening and treatment of ABU in these patient groups is therefore, not recommended. If these patient groups develop recurrent symptomatic UTI (see section 3.5) the potential protective effect of a spontaneously developed ABU against lower UTI must be considered before any treatment.

3.3.6.4.6 Patients with catheters in the urinary tract
Patients with indwelling or suprapubic catheters, and nephrostomy tubes, invariably become carriers of ABU, with antibiotic treatment showing no benefit. This is also applicable for patients with ABU and indwelling ureteral stents [88]. Routine treatment of catheter associated bacteriuria is not recommended. For detailed recommendations see section 3.8.

3.3.6.4.7 Patients with ABU subjected to catheter placements/exchanges
In patients subjected to uncomplicated placement/exchanges of indwelling catheters ABU is not considered a risk factor and should not be screened or treated [89]. In patients subjected to placement/exchanges of nephrostomy tubes and indwelling ureteral stents, ABU is considered a risk factor for infectious complications [90]. Therefore, screening and treatment prior to the procedure is recommended.
3.3.6.4.8 Immuno-compromised and severely diseased patients, patients with candiduria
These patient groups have to be considered individually and the benefit of screening and treatment of ABU should be reviewed in each case. Patients with asymptomatic candiduria may, although not necessarily, have an underlying disorder or defect. Treatment of asymptomatic candiduria is not recommended in patients with an otherwise uncomplicated medical history [91].

3.3.6.5 Prior to urological surgery
In diagnostic and therapeutic procedures not entering the urinary tract, ABU is generally not considered as a risk factor, and screening and treatment are not considered necessary. On the other hand, in procedures entering the urinary tract and breaching the mucosa, particularly in endoscopic urological surgery, bacteriuria is a definite risk factor.

Two RCTs [92, 93] and two prospective non-randomised studies [94, 95] compared the effect of antibiotic treatment to no treatment before transurethral prostate or bladder tumour resections. Antibiotic treatment significantly reduced the number of post-operative symptomatic UTIs compared to no treatment in the meta-analysis of the two RCTs (average RR 0.20, 95% CI 0.05 to 0.86; n=167). The rates of post-operative fever and septicemia were also significantly lower in case of antibiotic treatment compared to no treatment in the two RCTs. One RCT including patients with spinal cord injury undergoing elective endoscopic urological surgeries found no significant difference in the rate of post-operative UTIs between single-dose or 3-5 days short term pre-operative antibiotic treatment of ABU [96].

A urine culture must therefore be taken prior to such interventions and in case of ABU, pre-operative treatment is recommended. The recommendations for antibiotic prophylaxis in different urological procedures are given in section 3.15.

3.3.6.6 Prior to orthopaedic surgery
One RCT (471 patients) and one multicentre cohort study (303 patients) comparing the treatment of ABU with no treatment prior to orthopaedic surgery (hip arthroplasty/hemiarthroplasty or total knee arthroplasty) were identified [97, 98]. Neither of the studies showed a beneficial effect of antibiotic treatment in terms of prosthetic joint infection (3.8% vs. 0% and 3.9% vs. 4.7%, respectively) The cohort study reported no significant difference in the rate of postoperative symptomatic UTI (0.65% vs. 2.7%) [98]. Therefore, treatment of bacteriuria is not recommended prior to arthroplasty surgery.

3.3.6.7 Pharmacological management
If the decision is taken to eradicate ABU, the same choice of antibiotics and treatment duration as in symptomatic uncomplicated (section 3.4.4.4) or complicated (section 3.7.5) UTI could be given, depending on gender, medical background and presence of complicating factors. Treatment should be tailored and not empirical. Based on clinical experience, if ABU patients complain of odour and mild dysuria, methenamine hippurate 1 g two to three times daily, and/or increased water intake, may be considered.

3.3.7 Follow-up
There are no studies focusing on follow-up after treatment of ABU. However, if the resolution of ABU has a clinical significance (e.g. in pregnancy), follow-up with subsequent urine culture is needed to secure the treatment effect.

3.3.8 Summary of evidence and recommendations for the management of ABU

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of asymptomatic bacteriuria is not beneficial in the following conditions:</td>
<td></td>
</tr>
<tr>
<td>• women without risk factors;</td>
<td>2a</td>
</tr>
<tr>
<td>• patients with well-regulated diabetes mellitus;</td>
<td>1b</td>
</tr>
<tr>
<td>• post-menopausal women;</td>
<td>1a</td>
</tr>
<tr>
<td>• elderly institutionalised patients;</td>
<td>1a</td>
</tr>
<tr>
<td>• patients with dysfunctional and/or reconstructed lower urinary tracts;</td>
<td>2b</td>
</tr>
<tr>
<td>• patients with renal transplants;</td>
<td>1a</td>
</tr>
<tr>
<td>• patients prior to arthroplasty surgeries.</td>
<td>1b</td>
</tr>
<tr>
<td>Treatment of asymptomatic bacteriuria is harmful in patients with recurrent urinary tract infections.</td>
<td>1b</td>
</tr>
<tr>
<td>Treatment of asymptomatic bacteriuria is beneficial prior to urological procedures breaching the mucosa.</td>
<td>1a</td>
</tr>
<tr>
<td>Treatment of asymptomatic bacteriuria in pregnant women was found to be beneficial by meta-analysis of the available evidence. However, evidence for an improved outcome is low and not supported by a single recent study.</td>
<td>1a</td>
</tr>
</tbody>
</table>
Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not screen or treat asymptomatic bacteriuria in the following conditions:</td>
<td>Strong</td>
</tr>
<tr>
<td>• women without risk factors;</td>
<td>Strong</td>
</tr>
<tr>
<td>• patients with well-regulated diabetes mellitus;</td>
<td>Strong</td>
</tr>
<tr>
<td>• post-menopausal women;</td>
<td>Strong</td>
</tr>
<tr>
<td>• elderly institutionalised patients;</td>
<td>Strong</td>
</tr>
<tr>
<td>• patients with dysfunctional and/or reconstructed lower urinary tracts;</td>
<td>Strong</td>
</tr>
<tr>
<td>• patients with renal transplants;</td>
<td>Strong</td>
</tr>
<tr>
<td>• patients prior to arthroplasty surgeries;</td>
<td>Strong</td>
</tr>
<tr>
<td>• patients with recurrent urinary tract infections.</td>
<td>Strong</td>
</tr>
<tr>
<td>Screen for and treat asymptomatic bacteriuria prior to urological procedures breaching the mucosa.</td>
<td>Strong</td>
</tr>
<tr>
<td>Screen for and treat asymptomatic bacteriuria in pregnant women with standard short course treatment.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

3.4 Uncomplicated cystitis

3.4.1 Introduction
Uncomplicated cystitis is defined as acute, sporadic or recurrent cystitis limited to non-pregnant, pre-menopausal women with no known relevant anatomical and functional abnormalities within the urinary tract or comorbidities.

3.4.2 Epidemiology, aetiology and pathophysiology
Almost half of all women will experience at least one episode of cystitis during their lifetime. Nearly one in three women will have had at least one episode of cystitis by the age of 24 years [99]. Risk factors include sexual intercourse, use of spermicide, a new sexual partner, a mother with a history of UTI and a history of UTI during childhood. The most common causative agent of uncomplicated UTIs is *E. coli*, followed by *Staphylococcus saprophyticus*, *Klebsiella pneumoniae* and *P. mirabilis* [100].

3.4.3 Diagnostic evaluation

3.4.3.1 Clinical diagnosis
The diagnosis of uncomplicated cystitis can be made with a high probability based on a focused history of lower urinary tract symptoms (dysuria, frequency and urgency) and the absence of vaginal discharge or irritation [101, 102]. In elderly women genitourinary symptoms are not necessarily related to cystitis [103].

3.4.3.2 Differential diagnosis
Uncomplicated cystitis should be differentiated from ABU, which is considered not to be infection but rather a commensal colonisation, which should not be treated and therefore not screened for, except if it is considered a risk factor in clearly defined situations (see section 3.3).

3.4.3.3 Laboratory diagnosis
In patients presenting with typical symptoms of an uncomplicated cystitis urine analysis (i.e. urine culture, dip stick testing, etc.) leads only to a minimal increase in diagnostic accuracy [104]. However, if the diagnosis is unclear dipstick analysis can increase the likelihood of a uncomplicated cystitis diagnosis if leukocytes and nitrite are positive, only nitrite or nitrite and blood are positive or leukocytes and blood are positive [105, 106]. Taking a urine culture is recommended in patients with atypical symptoms, as well as those who fail to respond to appropriate antimicrobial therapy [107, 108]. In patients presenting with symptoms of uncomplicated cystitis a colony count of 10^3 cfu/mL of uropathogens confirms microbiologically the diagnosis [109].
3.4.3.4 Summary of evidence and recommendations for the diagnostic evaluation of uncomplicated cystitis

Summary of Evidence

<table>
<thead>
<tr>
<th>Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>An accurate diagnosis of uncomplicated cystitis can be based on a focused history of lower urinary tract symptoms and the absence of vaginal discharge or irritation.</td>
<td>2b</td>
</tr>
<tr>
<td>A colony count of ≥ 10³ cfu/mL of uropathogens is microbiologically diagnostic in women who present with symptoms of uncomplicated cystitis.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose uncomplicated cystitis in women who have no other risk factors for complicated urinary tract infections based on:</td>
<td>Strong</td>
</tr>
<tr>
<td>• a focused history of lower urinary tract symptoms (dysuria, frequency and urgency);</td>
<td></td>
</tr>
<tr>
<td>• the absence of vaginal discharge or irritation.</td>
<td></td>
</tr>
<tr>
<td>Use urine dipstick testing for diagnosis of acute uncomplicated cystitis.</td>
<td>Weak</td>
</tr>
<tr>
<td>Urine cultures should be done in the following situations:</td>
<td>Strong</td>
</tr>
<tr>
<td>• suspected acute pyelonephritis;</td>
<td></td>
</tr>
<tr>
<td>• symptoms that do not resolve or recur within four weeks after the completion of treatment;</td>
<td></td>
</tr>
<tr>
<td>• women who present with atypical symptoms;</td>
<td></td>
</tr>
<tr>
<td>• pregnant women.</td>
<td></td>
</tr>
</tbody>
</table>

Disease management

Antimicrobial therapy is recommended because clinical success is significantly more likely in women treated with antimicrobials compared with placebo [110]. The choice of antimicrobial therapy should be guided by [101]:

- spectrum and susceptibility patterns of the aetiological pathogens;
- efficacy for the particular indication in clinical studies;
- tolerability and adverse reactions;
- adverse ecological effects;
- costs;
- availability.

According to these principles and the available susceptibility patterns in Europe, fosfomycin trometamol 3 g single dose, pivmecillinam 200 mg three times a day for three to five days, and nitrofurantoin (e.g. nitrofurantoin monohydrate/macrocrystals 100 mg twice daily for 5 days), are considered as drugs of first choice, when available [111-114].

Alternative antimicrobials include trimethoprim alone or combined with a sulphonamide. Co-trimoxazole (160/800 mg twice daily for three days) or trimethoprim (200 mg twice daily for five days) should only be considered as drugs of first choice in areas with known resistance rates for *E. coli* of < 20% [115, 116]. Despite lower resistance rates in certain countries, fluoroquinolones are not considered first choice because of adverse effects including negative ecological effects and selection for resistance.

Aminopenicillins are no longer suitable for empirical therapy because of worldwide high *E. coli* resistance. Aminopenicillins in combination with a beta-lactamase inhibitor such as ampicillin/sulbactam or amoxicillin/clavulanic acid and oral cephalosporins are, in general, not effective as short-term therapy and are not recommended for empirical therapy due to ecological collateral damage, but may be used in selected cases [117, 118].

3.4.4.1 Cystitis in pregnancy

Short courses of antimicrobial therapy can also be considered for treatment of cystitis in pregnancy [119], but not all antimicrobials are suitable during pregnancy. In general, penicillins, cephalosporins, fosfomycin, nitrofurantoin (not in case of glucose-6-phosphate dehydrogenase deficiency and during the end of pregnancy), trimethoprim (not in the first trimenon) and sulphonamides (not in the last trimenon), can be considered.

3.4.4.2 Cystitis in men

Uncomplicated cystitis without involvement of the prostate is uncommon, and therefore treatment with antimicrobials penetrating into the prostate tissue is needed in males with symptoms of UTI. A treatment duration of at least seven days is recommended, preferably with trimethoprim sulphamethoxazole or a fluoroquinolone if in accordance with susceptibility testing (see section 3.4.4.4) [120].
3.4.4.3 Renal insufficiency

In patients with renal insufficiency the choice of antimicrobials may be influenced by decreased renal excretion. However, most antimicrobials, have a wide therapeutic index. No adjustment of dose is necessary until glomerular filtration rate (GFR) is < 20 mL/min, except for antimicrobials with nephrotoxic potential, e.g. aminoglycosides. Combination of loop diuretics (e.g. furosemide) and a cephalosporin is nephrotoxic. Nitrofurantoin and tetracyclines are contraindicated, with the exception of doxycycline [120].

3.4.4.4 Summary of evidence and recommendations for antimicrobial therapy for uncomplicated cystitis

Summary of Evidence

Clinical success for the treatment of uncomplicated cystitis is significantly more likely in women treated with antimicrobials than placebo. 1b

Aminopenicillins and fluoroquinolones are no longer suitable for antimicrobial therapy in uncomplicated cystitis because of negative ecological effects and worldwide high resistance rates. 3

Recommendations

Prescribe fosfomycin trometamol, pivmecillinam or nitrofurantoin as first-line treatment for uncomplicated cystitis in women. Strong

Do not use aminopenicillins or fluoroquinolones to treat uncomplicated cystitis. Strong

Table 1: Suggested regimens for antimicrobial therapy in uncomplicated cystitis

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Daily dose</th>
<th>Duration of therapy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-line women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosfomycin trometamol</td>
<td>3 g SD</td>
<td>1 day</td>
<td>Recommended only in women with uncomplicated cystitis.</td>
</tr>
<tr>
<td>Nitrofurantoin macrocrystal</td>
<td>50-100 mg four times a day</td>
<td>5 days</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin monohydrate/macrocryystals</td>
<td>100 mg b.i.d</td>
<td>5 days</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin macrocrystal prolonged release</td>
<td>100 mg b.i.d</td>
<td>5 days</td>
<td></td>
</tr>
<tr>
<td>Pivmecillinam</td>
<td>200 mg t.i.d</td>
<td>3-5 days</td>
<td></td>
</tr>
<tr>
<td>Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins (e.g. cefadroxil)</td>
<td>500 mg b.i.d</td>
<td>3 days</td>
<td>Or comparable</td>
</tr>
<tr>
<td>If the local resistance pattern for E. coli is < 20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>200 mg b.i.d</td>
<td>5 days</td>
<td>Not in the first trimester of pregnancy</td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole</td>
<td>160/800 mg b.i.d</td>
<td>3 days</td>
<td>Not in the last trimester of pregnancy</td>
</tr>
<tr>
<td>Treatment in men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim-sulphamethoxazole</td>
<td>160/800 mg b.i.d</td>
<td>7 days</td>
<td>Restricted to men, fluoroquinolones can also be prescribed in accordance with local susceptibility testing.</td>
</tr>
</tbody>
</table>

SD = single dose; b.i.d = twice daily; t.i.d = three times daily.

3.4.5 Follow-up

Routine post-treatment urinalysis or urine cultures in asymptomatic patients are not indicated [28]. In women whose symptoms do not resolve by end of treatment, and in those whose symptoms resolve but recur within two weeks, urine culture and antimicrobial susceptibility testing should be performed [121]. For therapy in this situation, one should assume that the infecting organism is not susceptible to the agent originally used. Retreatment with a seven day regimen using another agent should be considered [121].

UROLOGICAL INFECTIONS - LIMITED UPDATE MARCH 2018
3.5 Recurrent UTIs

3.5.1 Introduction

Recurrent UTIs (rUTIs) are recurrences of uncomplicated and/or complicated UTIs, with a frequency of at least three UTIs/year or two UTIs in the last six months. Although rUTIs include both lower tract infection (cystitis) and upper tract infection (pyelonephritis), repeated pyelonephritis should prompt consideration of a complicated aetiology.

3.5.2 Diagnostic evaluation

Recurrent UTIs are common. Risk factors are outlined in Table 2. Diagnosis of rUTI should be confirmed by urine culture. An extensive routine workup including cystoscopy, imaging, etc. is not routinely recommended as the diagnostic yield is low [122]. However, it should be performed without delay in atypical cases, for example, if renal calculi, outflow obstruction, interstitial cystitis or urothelial cancer is suspected.

Table 2: Age-related risk factors for rUTI in women [73, 103, 123]

<table>
<thead>
<tr>
<th>Young and pre-menopausal women</th>
<th>Post-menopausal and elderly women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual intercourse</td>
<td>History of UTI before menopause</td>
</tr>
<tr>
<td>Use of spermicide</td>
<td>Urinary incontinence</td>
</tr>
<tr>
<td>A new sexual partner</td>
<td>Urinary incontinence</td>
</tr>
<tr>
<td>A mother with a history of UTI</td>
<td>Atrophic vaginitis due to oestrogen deficiency</td>
</tr>
<tr>
<td>History of UTI during childhood</td>
<td>Cystocele</td>
</tr>
<tr>
<td>Blood group antigen secretory status</td>
<td>Increased post-void urine volume</td>
</tr>
<tr>
<td></td>
<td>Blood group antigen secretory status</td>
</tr>
<tr>
<td></td>
<td>Urine catheterisation and functional status</td>
</tr>
<tr>
<td></td>
<td>Deterioration in elderly institutionalised women</td>
</tr>
</tbody>
</table>

3.5.3 Disease management and follow-up

Prevention of rUTIs includes counselling regarding avoidance of risk factors, non-antimicrobial measures and antimicrobial prophylaxis [121]. These interventions should be attempted in this order. Any urological risk factors must be identified and treated. Significant residual urine should be treated optimally, including by CIC when judged to be appropriate.

3.5.3.1 Behavioural modifications

A number of behavioural and personal hygiene measures (e.g. reduced fluid intake, habitual and post-coital delayed urination, wiping from front to back after defecation, douching and wearing occlusive underwear) have been suggested to increase the risk of rUTI. However, studies that have explored these risk factors have consistently documented the lack of association with rUTI [121].

3.5.3.2 Non-antimicrobial prophylaxis

There are many non-antimicrobial measures recommended for rUTIs but only a few are supported by well-designed studies [124, 125].

3.5.3.2.1 Hormonal replacement

In post-menopausal women vaginal oestrogen replacement, but not oral oestrogen, showed a trend towards preventing rUTI [124, 126].

3.5.3.2.2 Immunoactive prophylaxis

OM-89 is sufficiently well documented and has been shown to be more effective than placebo in several randomised trials with a good safety profile. Therefore, it can be recommended for immunoprophylaxis in female patients with rUTIs [124, 127-129]. Efficacy in other groups of patients relative to antimicrobial prophylaxis remains to be established.

3.5.3.2.3 Prophylaxis with probiotics (Lactobacillus spp.)

Pooled data from a recent meta-analysis shows no convincing benefit of lactobacillus products as prophylaxis for rUTI [130]. However, differences in effectiveness between available preparations suggest further trials are needed before any definitive recommendation for or against their use can be made.

3.5.3.2.4 Prophylaxis with cranberry

Limited studies have suggested that cranberry is useful in reducing the rate of lower UTIs in women [131, 132]. However, a meta-analysis including 24 studies and comprising 4,473 participants showed that cranberry
products did not significantly reduce the occurrence of symptomatic UTI for women with rUTI [133]. Due to these contradictory results, no recommendation on the daily consumption of cranberry products can be made.

3.5.3.2.5 Prophylaxis with D-mannose
In a randomised placebo-controlled non-blinded clinical trial, it was shown that a daily dose of 2 g D-mannose was significantly superior to placebo and as effective as 50 mg nitrofurantoin in preventing rUTI [134]. This is indicative but not sufficient for a recommendation; therefore, D-mannose should at present only be used within the context of clinical investigations.

3.5.3.2.6 Endovesical instillation
Endovesical instillation of hyaluronic acid and chondroitin sulphate have been used for glycosaminoglycan (GAG) layer replenishment in the therapy of interstitial cystitis, overactive bladder, radiation cystitis, and for prevention of rUTI [135]. A recent review of 27 clinical studies concluded that large-scale trials are urgently needed to assess the benefit of this type of therapy [136]. Therefore, no general recommendation is possible at this stage.

3.5.3.3 Antimicrobials for preventing rUTI

3.5.3.3.1 Continuous low-dose antimicrobial prophylaxis and post-coital prophylaxis
Antimicrobials may be given as continuous low-dose prophylaxis for longer periods (three to six months), or as post-coital prophylaxis, as both regimens reduce the rate of rUTI [137]. It is mandatory to offer both options after counselling, and when behavioural modifications and non-antimicrobial measures have been unsuccessful. Regimens include nitrofurantoin 50 mg or 100 mg once daily, fosfomycin trometamol 3 g every ten days, and during pregnancy cephalexin 125 mg or 250 mg or cefaclor 250 mg once daily [121]. Post-coital prophylaxis should be considered in pregnant women with a history of frequent UTIs before onset of pregnancy, to reduce their risk of UTI [138].

3.5.3.3.2 Self-diagnosis and self-treatment
In patients with good compliance, self-diagnosis and self-treatment with a short course regimen of an antimicrobial agent should be considered [139]. The choice of antimicrobials is the same as for sporadic acute uncomplicated UTI (section 3.4.4.4).

3.5.4 Summary of evidence and recommendations for the diagnostic evaluation and treatment of rUTIs

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensive routine workup including cystoscopy, imaging, etc. has a low diagnostic yield for the diagnosis of rUTI.</td>
<td>3</td>
</tr>
<tr>
<td>Studies that have investigated behavioural risk factors in the development of rUTIs have consistently documented the lack of association with rUTI.</td>
<td>3</td>
</tr>
<tr>
<td>Vaginal oestrogen replacement has shown a trend towards preventing rUTI in post-menopausal women.</td>
<td>1b</td>
</tr>
<tr>
<td>OM-89 has been shown to be more effective than placebo for immunophrophylaxis in female patients with rUTIs in several randomised trials with a good safety profile.</td>
<td>1a</td>
</tr>
<tr>
<td>Both continuous low-dose antimicrobial prophylaxis and post-coital antimicrobial prophylaxis, have been shown to reduce the rate of rUTI.</td>
<td>1b</td>
</tr>
<tr>
<td>A prospective cohort study showed that intermittent self-start therapy is effective, safe and economical in women with rUTIs.</td>
<td>2b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose recurrent UTI by urine culture.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not perform an extensive routine workup (e.g cystoscopy, full abdominal ultrasound) in women younger than 40 years of age with recurrent UTI and no risk factors.</td>
<td>Weak</td>
</tr>
<tr>
<td>Advise patients on behavioural modifications which might reduce the risk of recurrent UTI.</td>
<td>Weak</td>
</tr>
<tr>
<td>Use vaginal oestrogen replacement in post-menopausal women to prevent recurrent UTI.</td>
<td>Weak</td>
</tr>
<tr>
<td>Use immunoactive prophylaxis to reduce recurrent UTI in all age groups.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use continuous or post-coital antimicrobial prophylaxis to prevent recurrent UTI when non-antimicrobial interventions have failed. Counsel patients regarding possible side effects.</td>
<td>Strong</td>
</tr>
<tr>
<td>For patients with good compliance self-administered short term antimicrobial therapy should be considered.</td>
<td>Strong</td>
</tr>
</tbody>
</table>
3.6 Uncomplicated pyelonephritis
Uncomplicated pyelonephritis is defined as pyelonephritis limited to non-pregnant, pre-menopausal women with no known relevant urological abnormalities or comorbidities.

3.6.1 Diagnostic evaluation
3.6.1.1 Clinical diagnosis
Pyelonephritis is suggested by fever (> 38°C), chills, flank pain, nausea, vomiting, or costovertebral angle tenderness, with or without the typical symptoms of cystitis [140]. Pregnant women with acute pyelonephritis need special attention, as this kind of infection may not only have an adverse effect on the mother with anaemia, renal and respiratory insufficiency, but also on the unborn child with more frequent pre-term labour and birth [141].

3.6.1.2 Differential diagnosis
It is vital to differentiate as soon as possible between uncomplicated and complicated mostly obstructive pyelonephritis, as the latter can rapidly lead to urosepsis. This differential diagnosis should be made by the appropriate imaging technique (see section 3.6.1.4).

3.6.1.3 Laboratory diagnosis
Urinalysis including the assessment of white and red blood cells and nitrite, is recommended for routine diagnosis [142]. In addition, urine culture and antimicrobial susceptibility testing should be performed in all cases of pyelonephritis.

3.6.1.4 Imaging diagnosis
Evaluation of the upper urinary tract with ultrasound (US) should be performed to rule out urinary obstruction or renal stone disease [143]. Additional investigations, such as an unenhanced helical computed tomography (CT), or excretory urography should be considered if the patient remains febrile after 72 hours of treatment [143]. For diagnosis of complicating factors in pregnant women, US or magnetic resonance imaging (MRI) should be used preferentially to avoid radiation risk to the foetus [143].

3.6.2 Summary of evidence and recommendations for the diagnostic evaluation of uncomplicated pyelonephritis

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine culture and antimicrobial susceptibility testing should be performed in all cases of pyelonephritis in addition to urinalysis.</td>
<td>4</td>
</tr>
<tr>
<td>A prospective observational cohort study found that radiologic imaging can selectively be applied in adults with febrile UTI without loss of clinically relevant information by using a simple clinical prediction rule.</td>
<td>2b</td>
</tr>
<tr>
<td>Additional imaging investigations, such as an unenhanced helical computed tomography should be done if the patient remains febrile after 72 hours of treatment or in patients with suspected complications e.g. sepsis.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform urinalysis (e.g. using a dipstick method), including the assessment of white and red blood cells and nitrite, for routine diagnosis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform urine culture and antimicrobial susceptibility testing in patients with pyelonephritis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform imaging of the urinary tract to exclude urgent urological disorders.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

3.6.3 Disease management
3.6.3.1 Outpatient treatment
Fluoroquinolones and cephalosporines are the only antimicrobial agents that can be recommended for oral empirical treatment of uncomplicated pyelonephritis. However, oral cephalosporines achieve significantly lower concentrations than intravenous cephalosporines. Local fluoroquinolone resistance should be < 10%. Other agents such as nitrofurantoin, fosfomycin, and pivmecillinam should be avoided because these agents do not achieve adequate renal tissue levels [144]. In the setting of fluoroquinolone hypersensitivity or known resistance, other acceptable choices include trimethoprim-sulfamethoxazole (160/800 mg) or an oral beta-lactam, if the uropathogen is known to be susceptible. If such agents are used in the absence of antimicrobial susceptibility results, an initial intravenous dose of a long-acting parenteral antimicrobial (e.g. ceftriaxone) should be administered.
3.6.3.2 **Inpatient treatment**

Patients with uncomplicated pyelonephritis requiring hospitalisation should be treated initially with an intravenous antimicrobial regimen e.g. a fluoroquinolone, an aminoglycoside (with or without ampicillin), or an extended-spectrum cephalosporin or penicillin [145]. Consider carbapenems only in patients with early culture results indicating the presence of multi-drug resistance organisms. The choice between these agents should be based on local resistance patterns and optimised on the basis of drug susceptibility results. In patients presenting with signs of urosepsis empiric antimicrobial coverage for extended-spectrum beta-lactamases (ESBL)-producing organisms is warranted [146]. Patients initially treated with parenteral therapy who improve clinically and can tolerate oral fluids may transition to oral antimicrobial therapy [147].

3.6.3.2.1 **Summary of evidence and recommendations for the treatment of uncomplicated pyelonephritis**

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroquinolones and cephalosporines are the only microbial agents that can be recommended for oral empirical treatment of uncomplicated pyelonephritis.</td>
<td>1b</td>
</tr>
<tr>
<td>Intravenous antimicrobial regimens for uncomplicated pyelonephritis may include a fluoroquinolone, an aminoglycoside (with or without ampicillin), or an extended-spectrum cephalosporin or penicillin.</td>
<td>1b</td>
</tr>
<tr>
<td>Carbapenems should only be considered in patients with early culture results indicating the presence of multi-drug resistance organisms.</td>
<td>4</td>
</tr>
<tr>
<td>The appropriate antimicrobial should be chosen based on local resistance patterns and optimised on the basis of drug susceptibility results.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat patients with uncomplicated pyelonephritis not requiring hospitalisation with short course fluoroquinolones as first-line treatment.</td>
<td>Strong</td>
</tr>
<tr>
<td>Treat patients with uncomplicated pyelonephritis requiring hospitalisation with an intravenous antimicrobial regimen initially.</td>
<td>Strong</td>
</tr>
<tr>
<td>Switch patients initially treated with parenteral therapy, who improve clinically and can tolerate oral fluids, to oral antimicrobial therapy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use nitrofurantoin, fosfomycin, and pivmecillinam to treat uncomplicated pyelonephritis.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Table 3: Suggested regimens for empirical oral antimicrobial therapy in uncomplicated pyelonephritis

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Daily dose</th>
<th>Duration of therapy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>500-750 mg b.i.d</td>
<td>7 days</td>
<td>Fluoroquinolone resistance should be less than 10%.</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>750 mg q.d</td>
<td>5 days</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim sulphamethoxazol</td>
<td>160/800 mg b.i.d</td>
<td>14 days</td>
<td>If such agents are used empirically, an initial intravenous dose of a long-acting parenteral antimicrobial (e.g. ceftriaxone) should be administered.</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>200 mg b.i.d</td>
<td>10 days</td>
<td></td>
</tr>
<tr>
<td>Cefibuten</td>
<td>400 mg q.d</td>
<td>10 days</td>
<td></td>
</tr>
</tbody>
</table>

ISTRY hall = twice daily; q.d = every day.
Table 4: Suggested regimens for empirical parenteral antimicrobial therapy in uncomplicated pyelonephritis

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Daily dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-line treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>400 mg b.i.d</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>750 mg q.d</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>2 g t.i.d</td>
<td>Not studied as monotherapy in acute uncomplicated pyelonephritis.</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1-2 g q.d</td>
<td>Lower dose studied, but higher dose recommended.</td>
</tr>
<tr>
<td>Second-line treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>1-2 g b.i.d</td>
<td>Lower dose studied, but higher dose recommended.</td>
</tr>
<tr>
<td>Piperacillin/tazobactam</td>
<td>2.5-4.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Ceftolozane/tazobactam</td>
<td>1.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Ceftazidime/avibactam</td>
<td>2.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>5 mg/kg q.d</td>
<td>Not studied as monotherapy in acute uncomplicated pyelonephritis.</td>
</tr>
<tr>
<td>Amikacin</td>
<td>15 mg/kg q.d</td>
<td></td>
</tr>
<tr>
<td>Alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem/cilastatin</td>
<td>0.5 g t.i.d</td>
<td>Consider carbapenems only in patients with early culture results indicating the presence of multi-drug resistance organisms.</td>
</tr>
<tr>
<td>Meropenem</td>
<td>1 g t.i.d</td>
<td></td>
</tr>
</tbody>
</table>

b.i.d = twice daily; t.i.d = three times daily; q.d = every day.

In pregnant women with pyelonephritis, outpatient management with appropriate antimicrobials may also be considered, provided symptoms are mild and close follow-up is feasible [148, 149]. In more severe cases of pyelonephritis, hospitalisation and supportive care are usually required. After clinical improvement parenteral therapy can also be switched to oral therapy for a total treatment duration of seven to ten days. In men with febrile UTI, pyelonephritis, or recurrent infection, or whenever a complicating factor is suspected a minimum treatment duration of two weeks is recommended, preferably with a fluoroquinolone since prostatic involvement is frequent [150].

3.6.4 Follow-up

Routine post-treatment urinalysis or urine cultures in asymptomatic patients are not indicated, except in pregnant women, if asymptomatic bacteriuria is an issue (see section 3.3.6.3).

3.7 Complicated UTIs

3.7.1 Introduction

A complicated UTI (cUTI) occurs in an individual in whom factors related to the host (e.g. underlying diabetes or immunosuppression) or specific anatomical or functional abnormalities related to the urinary tract (e.g. obstruction, incomplete voiding due to detrusor muscle dysfunction) are believed to result in an infection that will be more difficult to eradicate than an uncomplicated infection [151-153]. The underlying factors that are generally accepted to result in a cUTI are outlined in Table 5. The designation of cUTI encompasses a wide variety of underlying conditions that result in a remarkably heterogeneous patient population. Therefore, it is readily apparent that a universal approach to the evaluation and treatment of cUTIs is not sufficient, although there are general principles of management that can be applied to the majority of patients with cUTIs. The following recommendations are based on the Stichting Werkgroep Antibioticabeleid (SWAB) Guidelines from the Dutch Working Party on Antibiotic Policy [154].

Table 5: Common factors associated with complicated UTIs [154-156]

<table>
<thead>
<tr>
<th>Obstruction at any site in the urinary tract</th>
<th>UTI in males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign body</td>
<td>Pregnancy</td>
</tr>
<tr>
<td>Incomplete voiding</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Vesicoureteral reflux</td>
<td>Immunosuppression</td>
</tr>
<tr>
<td>Recent history of instrumentation</td>
<td>Healthcare-associated infections</td>
</tr>
</tbody>
</table>
3.7.2 **Diagnostic evaluation**

3.7.2.1 **Clinical presentation**

A cUTI is associated with clinical symptoms (e.g. dysuria, urgency, frequency, flank pain, costovertebral angle tenderness, suprapubic pain and fever), although in some clinical situations the symptoms may be atypical for example, in neuropathic bladder disturbances or catheter-associated UTI (CA-UTI). Clinical presentation can vary from severe obstructive acute pyelonephritis with imminent urosepsis to a post-operative CA-UTI, which might disappear spontaneously as soon as the catheter is removed. Clinicians must also recognise that symptoms, especially lower urinary tract symptoms (LUTS), are not only caused by UTIs but also by other urological disorders, such as, for example, benign prostatic hyperplasia and autonomic dysfunction in patients with spinal lesions and neurogenic bladders. Concomitant medical conditions, such as diabetes mellitus and renal failure, which can be related to urological abnormalities, are often also present in a cUTI.

3.7.2.2 **Urine culture**

Laboratory urine culture is the recommended method to determine the presence or absence of clinically significant bacteriuria in patients suspected of having a cUTI.

3.7.3 **Microbiology (spectrum and antimicrobial resistance)**

A broad range of micro-organisms cause cUTIs. The spectrum is much larger than in uncomplicated UTIs and the bacteria are more likely to be resistant (especially in treatment-related cUTI) than those isolated in uncomplicated UTIs [155, 156]. *E. coli*, *Proteus spp.*, *Klebsiella spp.*, *Pseudomonas spp.*, *Serratia spp.* and *Enterococcus spp.* are the most common species found in cultures. Enterobacteriaceae predominate (60-75%), with *E. coli* as the most common pathogen; particularly if the UTI is a first infection. Otherwise, the bacterial spectrum may vary over time and from one hospital to another [157].

3.7.4 **General principles of cUTI treatment**

Appropriate management of the urological abnormality or the underlying complicating factor is mandatory. Optimal antimicrobial therapy for cUTI depends on the severity of illness at presentation, as well as local resistance patterns and specific host factors (such as allergies). In addition, urine culture and susceptibility testing should be performed, and initial empirical therapy should be tailored and followed by (oral) administration of an appropriate antimicrobial agent on the basis of the isolated uropathogen.

3.7.4.1 **Choice of antimicrobials**

In the IDSA guidelines for the treatment of uncomplicated UTI, it is recommended that the resistance percentages of causative micro-organisms must be < 20% to consider an agent suitable for empirical treatment of a lower UTI and must be < 10% for treatment of an upper UTI. Considering the current resistance percentages of amoxicillin, co-amoxiclav, trimethoprim and trimethoprim-sulphamethoxazole, it can be concluded that these agents are not suitable for the empirical treatment of pyelonephritis in a normal host and, therefore, also not for treatment of all cUTIs [158]. The same applies to ciprofloxacin and other fluoroquinolones in urological patients [158].

Patients with a UTI with systemic symptoms requiring hospitalisation should be initially treated with an intravenous antimicrobial regimen, such as an aminoglycoside with or without amoxicillin or a second or third generation cephalosporin or an extended-spectrum penicillin with or without an aminoglycoside [154]. The choice between these agents should be based on local resistance data, and the regimen should be tailored on the basis of susceptibility results [144]. These recommendations are not only suitable for pyelonephritis but for all other cUTIs.

In view of the high degree of resistance, particularly among patients admitted to the department of urology, fluoroquinolones are not automatically suitable as empirical antimicrobial therapy, especially when the patient has used ciprofloxacin in the last six months [159]. Fluoroquinolones can only be recommended as empirical treatment when the patient is not seriously ill and it is considered safe to start initial oral treatment or if the patient has had an anaphylactic reaction to beta-lactam antimicrobials.

3.7.4.2 **Duration of antimicrobial therapy**

Treatment for seven to fourteen days is generally recommended, but the duration should be closely related to the treatment of the underlying abnormality [9].
3.7.5 Summary of evidence and recommendations for the treatment of complicated UTIs.

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with a UTI with systemic symptoms requiring hospitalisation should be initially treated with an intravenous antimicrobial regimen chosen based on local resistance data, and the regimen should be tailored on the basis of susceptibility result.</td>
<td>1b</td>
</tr>
<tr>
<td>If the prevalence of fluoroquinolone resistance is thought to be > 10% and the patient has contraindications for third generation cephalosporins or an aminoglycoside, ciprofloxacin can be prescribed as an empirical treatment in women with uncomplicated pyelonephritis.</td>
<td>2</td>
</tr>
<tr>
<td>In the event of hypersensitivity to penicillin, a third generation cephalosporin can still be prescribed, with the exception of systemic anaphylaxis in the past.</td>
<td>2</td>
</tr>
<tr>
<td>In patients with a UTI with systemic symptoms empirical treatment should cover ESBL in the initial treatment only in patients who are colonised with ESBL-producing micro-organisms.</td>
<td>2</td>
</tr>
</tbody>
</table>

ESBL = Extended-spectrum beta-lactamase.

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the combination of:</td>
<td>Strong</td>
</tr>
<tr>
<td>• amoxicillin plus an aminoglycoside;</td>
<td></td>
</tr>
<tr>
<td>• a second generation cephalosporin plus an aminoglycoside;</td>
<td></td>
</tr>
<tr>
<td>• a third generation cephalosporin intravenously as empirical treatment of complicated UTI with systemic symptoms.</td>
<td></td>
</tr>
<tr>
<td>Only use ciprofloxacin provided that the local resistance percentages are < 10% when;</td>
<td>Strong</td>
</tr>
<tr>
<td>• the entire treatment is given orally;</td>
<td></td>
</tr>
<tr>
<td>• patients do not require hospitalisation;</td>
<td></td>
</tr>
<tr>
<td>• patient has an anaphylaxis for beta-lactam antimicrobials.</td>
<td></td>
</tr>
<tr>
<td>Do not use ciprofloxacin and other fluoroquinolones for the empirical treatment of complicated UTI in patients from the urology department or when patients have used fluoroquinolones in the last six months.</td>
<td>Strong</td>
</tr>
<tr>
<td>Manage any urological abnormality and/or underlying complicating factors.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

3.8 Catheter-associated UTIs

3.8.1 Introduction
Catheter-associated UTI refers to UTIs occurring in a person whose urinary tract is currently catheterised or has been catheterised within the past 48 hours. The urinary catheter literature is problematic as many published studies use the term CA-bacteriuria without providing information on what proportion are CA-ABU and CA-UTI, and some studies use the term CA-UTI when referring to CA-ABU or CA-bacteriuria [155]. The following recommendations are based on the Stichting Werkgroep Antibioticabeleid (SWAB) Guidelines from the Dutch Working Party on Antibiotic Policy [154] as well as the IDSA Guidelines [155].

3.8.2 Epidemiology, aetiology and pathophysiology
Catheter-associated UTIs are the leading cause of secondary health care-associated bacteraemia. Approximately 20% of hospital-acquired bacteraemias arise from the urinary tract, and the mortality associated with this condition is approximately 10% [160]. The incidence of bacteriuria associated with indwelling catheterisation is 3-8% per day [161-165]. The duration of catheterisation is the most important risk factor for the development of a CA-UTI [166, 167]. Urinary catheterisation perturbs host defence mechanisms and provides easier access of uropathogens to the bladder. Indwelling urinary catheters facilitate colonisation with uropathogens by providing a surface for the attachment of host cell binding receptors recognised by bacterial adhesins, thus enhancing microbial adhesion. In addition, the uroepithelial mucosa is disrupted, exposing new binding sites for bacterial adhesins, and residual urine in the bladder is increased through pooling below the catheter bulb [168]. Catheter-associated UTIs are often polymicrobial and caused by multiple-drug resistant uropathogens.

3.8.3 Diagnostic evaluation
3.8.3.1 Clinical diagnosis
Signs and symptoms compatible with CA-UTI include new onset or worsening of fever, rigors, altered mental status, malaise, or lethargy with no other identified cause, flank pain, costovertebral angle tenderness, acute haematuria, pelvic discomfort and in those whose catheters have been removed dysuria, urgent or frequent urination and suprapubic pain or tenderness [154]. In the catheterised patient, the presence or absence of odorous or cloudy urine alone should not be used to differentiate CA-ABU from CA-UTI [154, 155].
3.8.3.2 **Laboratory diagnosis**
Microbiologically CA-UTI is defined by microbial growth of $\geq 10^3$ cfu/mL of one or more bacterial species in a single catheter urine specimen or in a mid-stream voided urine specimen from a patient whose urethral, suprapubic, or condom catheter has been removed within the previous 48 hours. In catheterised patients, pyuria is not diagnostic for CA-UTI. The presence, absence, or degree of pyuria should not be used to differentiate CA-ABU from CA-UTI. Pyuria accompanying CA-ABU should not be interpreted as an indication for antimicrobial treatment. The absence of pyuria in a symptomatic patient suggests a diagnosis other than CA-UTI [155].

3.8.3.3 **Summary of evidence table and recommendations for diagnostic evaluation of CA-UTI**

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with indwelling or suprapubic catheters become carriers of ABU, with antibiotic treatment showing no benefit.</td>
<td>1a</td>
</tr>
<tr>
<td>In the catheterised patient, the presence or absence of odorous or cloudy urine alone should not be used to differentiate CA-ABU from CA-UTI</td>
<td>2</td>
</tr>
<tr>
<td>Microbiologically CA-UTI is defined by microbial growth of $\geq 10^3$ cfu/mL of one or more bacterial species in a single catheter urine specimen or in a midstream voided urine specimen from a patient whose catheter has been removed within the previous 48 hours.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not carry out routine urine culture in an asymptomatic catheterised patients.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use pyuria as an indicator for catheter-associated UTI.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use the presence or absence of odorous or cloudy urine alone to differentiate catheter-associated asymptomatic bacteriuria from catheter-associated UTI.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

3.8.4 **Disease management**
A urine specimen for culture should be obtained prior to initiating antimicrobial therapy for presumed CA-UTI due to the wide spectrum of potential infecting organisms and the increased likelihood of antimicrobial resistance. The urine culture should be obtained from the freshly placed catheter prior to the initiation of antimicrobial therapy [155]. Based on the global prevalence on infections in urology (GPIU) study, the causative micro-organisms in CA-UTI are comparable with the causative micro-organisms in other complicated UTIs; therefore, symptomatic CA-UTIs should be treated according to the recommendations for complicated UTI (see section 3.7.5) [169].

Seven days is the recommended duration of antimicrobial treatment for patients with CA-UTI who have prompt resolution of symptoms, and two to fourteen days of treatment is recommended for those with a delayed response, regardless of whether the patient remains catheterised or not [155]. A five-day regimen of levofloxacin may be considered in patients with CA-UTI who are not severely ill. Data are insufficient to make such a recommendation about other fluoroquinolones.

A three-day antimicrobial regimen may be considered for women aged ≤ 65 years who develop CA-UTI without upper urinary tract symptoms after an indwelling catheter has been removed. If an indwelling catheter has been in place for two weeks at the onset of CA-UTI and is still indicated, the catheter should be replaced to hasten resolution of symptoms and to reduce the risk of subsequent CA-bacteriuria and CA-UTI. If use of the catheter can be discontinued, a culture of a voided mid-stream urine specimen should be obtained prior to the initiation of antimicrobial therapy to help guide treatment [155]. Long-term indwelling catheters should be changed at intervals adapted to the individual patient [170, 171].
3.8.4.1 Recommendations for disease management and prevention of CA-UTI

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat symptomatic CA-UTI according to the recommendations for complicated UTI (see section 3.7.5).</td>
<td>Strong</td>
</tr>
<tr>
<td>Take a urine culture prior to initiating antimicrobial therapy in catheterised patients in whom the catheter has been removed.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not treat catheter-associated asymptomatic bacteriuria in general.</td>
<td>Strong</td>
</tr>
<tr>
<td>Treat catheter-associated asymptomatic bacteriuria prior to traumatic urinary tract interventions (e.g. transurethral resection of the prostate).</td>
<td>Strong</td>
</tr>
<tr>
<td>Replace or remove the indwelling catheter before starting antimicrobial therapy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not apply topical antiseptics or antimicrobials to the catheter, urethra or meatus.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use prophylactic antimicrobials to prevent catheter-associated UTIs.</td>
<td>Strong</td>
</tr>
<tr>
<td>The duration of catheterisation should be minimal.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

3.8.5 Removal of indwelling bladder catheter

3.8.5.1 Evidence question

1. Does antibiotic prophylaxis reduce the rate of symptomatic UTI in adults following indwelling bladder catheter removal?

3.8.5.2 Review of evidence

The structured literature search identified one systematic review and meta-analysis [172] with a search date of November 2012 and one subsequent RCT [173]. Marschall et al., identified seven RCTs with 1,520 participants. Meta-analysis showed overall benefit for use of prophylaxis RR (95%CI) = 0.45 (0.28-0.72); ARR 5.8% (from 10.5% to 4.7%) with a number needed to treat (NNT) of 17. Results for individual trials were inconsistent with five trials including the possibility of no benefit [172]. The trial reported by Fang et al., recruited 172 participants undergoing laparoscopic radical prostatectomy randomised to seven days of ciprofloxacin (n=80) or no treatment (n=80) at the time of catheter removal which occurred at a mean of nine days post-operatively. There was no difference in infective complications recorded at up to four weeks after catheter removal. More isolates obtained from the prophylaxis group (11) were resistant to ciprofloxacin compared to the no treatment group (3) [173].

3.8.5.3 Summary of evidence and recommendations for removal of indwelling bladder catheter

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A meta-analysis showed overall benefit for use of prophylaxis for reduction of infective complications after catheter removal; however, results from individual trials were inconsistent with five out of seven trials including the possibility of no benefit.</td>
<td>1a</td>
</tr>
<tr>
<td>A subsequent RCT found no benefit of antibiotic prophylaxis for reduction of infective complications at up to four weeks after catheter removal.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not routinely use antibiotic prophylaxis to prevent clinical UTI after urethral catheter removal.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

3.9 Urosepsis

3.9.1 Introduction

Patients with urosepsis should be diagnosed at an early stage, especially in the case of a cUTI. Systemic inflammatory response syndrome (SIRS), characterised by fever or hypothermia, leukocytosis or leukopenia, tachycardia and tachypnoea, has been recognised as a set of alerting symptoms [174, 175], however, SIRS is no longer included in the recent terminology of sepsis (Table 6), [14]. Mortality is considerably increased the more severe the sepsis is.

The treatment of urosepsis involves adequate life-supporting care, appropriate and prompt antimicrobial therapy, adjunctive measures and the optimal management of urinary tract disorders [176]. The decompression of any obstruction and drainage of larger infectious abscesses in the urinary tract is essential as first-line focus control [176]. Urologists are recommended to treat patients in collaboration with intensive care and infectious diseases specialists.
Urosepsis is seen in both community-acquired and healthcare associated infections. Nosocomial urosepsis may be reduced by measures used to prevent nosocomial infection, e.g. reduction of hospital stay, early removal of indwelling urinary catheters, avoidance of unnecessary urethral catheterisation, correct use of closed catheter systems, and attention to simple daily aseptic techniques to avoid cross-infection.

Sepsis is diagnosed when clinical evidence of infection is accompanied by signs of systemic inflammation, presence of symptoms of organ dysfunction and persistent hypotension associated with tissue anoxia (Table 6).

3.9.2 Epidemiology, aetiology and pathophysiology
Urinary tract infections can manifest from bacteriuria with limited clinical symptoms to sepsis or severe sepsis, depending on localised and potential systemic extension. It is important to note that a patient can move from an almost harmless state to severe sepsis in a very short time.

Mortality rates associated with severe sepsis vary depending on the organ source [177] with urinary tract sepsis generally having a lower mortality than that from other sources [178]. Sepsis is more common in men than in women [179]. In recent years, the overall incidence of sepsis arising from all sources has increased by 8.7% per year [177], but the associated mortality has decreased, which suggests improved management of patients (total in-hospital mortality rate fell from 27.8% to 17.9% from 1995 to 2000) [180]. Although the rate of sepsis due to fungal organisms has increased, Gram-positive bacteria have become the predominant pathogen overall. Gram-negative bacteria remain predominant in urosepsis [169, 181].

In urosepsis, as in other types of sepsis, the severity depends mostly upon the host response. Patients who are more likely to develop urosepsis include elderly patients, diabetics, immunosuppressed patients, such as transplant recipients and patients receiving cancer chemotherapy or corticosteroids. Urosepsis also depends on local factors, such as urinary tract calculi, obstruction at any level in the urinary tract, congenital uropathy, neurogenic bladder disorders, or endoscopic manoeuvres. However, all patients can be affected by bacterial species that are capable of inducing inflammation within the urinary tract.

3.9.3 Diagnostic evaluation
For diagnosis of systemic symptoms in sepsis either the full Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, or the quickSOFA score should be applied (Table 6). Microbiology sampling should be applied to urine, two sets of blood cultures [182], and if appropriate drainage fluids. Imaging investigations, such as sonography and CT-scan should be performed early [183].

Table 6. Definition and criteria of sepsis and septic shock [14, 174, 175]

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis</td>
<td>Life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical application, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more. For rapid identification a quickSOFA (qSOFA) score was developed: respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mmHg or less.</td>
</tr>
<tr>
<td>Septic shock</td>
<td>Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia.</td>
</tr>
</tbody>
</table>

3.9.4 Physiology and biochemical markers
E. coli remains the most prevalent micro-organism. In several countries, bacterial strains can be resistant or multi-resistant and therefore difficult to treat [181]. Most commonly, the condition develops in compromised patients (e.g. those with diabetes or immunosuppression), with typical signs of generalised sepsis associated with local signs of infection.

3.9.4.1 Cytokines as markers of the septic response
Cytokines are involved in the pathogenesis of sepsis syndrome [178]. They are molecules that regulate the amplitude and duration of the host inflammatory response. They are released from various cells including monocytes, macrophages and endothelial cells, in response to various infectious stimuli. The complex balance between pro- and anti-inflammatory responses is modified in severe sepsis. An immunosuppressive phase follows the initial pro-inflammatory mechanism. Sepsis may indicate an immune system that is severely
compromised and unable to eradicate pathogens or a non-regulated and excessive activation of inflammation, or both. Genetic predisposition is a probable explanation of sepsis in several patients. Mechanisms of organ failure and death in patients with sepsis remain only partially understood [178].

3.9.4.2 Biochemical markers
Procalcitonin is the inactive pro-peptide of calcitonin. Normally, levels are undetectable in healthy humans. During severe generalised infections (bacterial, parasitic and fungal) with systemic manifestations, procalcitonin levels rise [184]. In contrast, during severe viral infections or inflammatory reactions of non-infectious origin, procalcitonin levels show only a moderate or no increase. Mid-regional proadrenomedulline is another sepsis marker. Mid-regional proadrenomedullin has been shown to play a decisive role in the induction of hyperdynamic circulation during the early stages of sepsis and progression to septic shock [185]. Procalcitonin monitoring may be useful in patients likely to develop sepsis and to differentiate from a severe inflammatory status not due to bacterial infection [184, 186]. In addition, serum lactate is a marker of organ dysfunction and is associated with mortality in sepsis [187]. Serum lactate should therefore also be monitored in patients with severe infections.

3.9.5 Disease management
3.9.5.1 Prevention
Septic shock is the most frequent cause of death for patients hospitalised for community-acquired and nosocomial infection (20-40%). Urosepsis treatment requires a combination of treatment including treatment of the cause (obstruction of the urinary tract), adequate life-support care, and appropriate antimicrobial therapy [178, 183]. In such a situation, it is recommended that urologists collaborate with intensive care and infectious disease specialists for the best management of the patient.

3.9.5.1.1 Preventive measures of proven or probable efficacy
The most effective methods to prevent nosocomial urosepsis are the same as those used to prevent other nosocomial infections [188, 189] they include:

- Isolation of all patients infected with multi-resistant organisms to avoid cross-infection.
- Prudent use of antimicrobial agents for prophylaxis and treatment of established infections, to avoid selection of resistant strains. Antibiotic agents should be chosen according to the predominant pathogens at a given site of infection in the hospital environment.
- Reduction in hospital stay. Long inpatient periods before surgery lead to a greater incidence of nosocomial infections.
- Early removal of indwelling urethral catheters, as soon as allowed by the patient’s condition. Nosocomial UTIs are promoted by bladder catheterisation as well as by ureteral stenting [190]. Antibiotic prophylaxis does not prevent stent colonisation, which appears in 100% of patients with a permanent ureteral stent and in 70% of those temporarily stented.
- Use of closed catheter drainage and minimisation of breaks in the integrity of the system, e.g. for urine sampling or bladder wash-out.
- Use of least-invasive methods to release urinary tract obstruction until the patient is stabilised.
- Attention to simple everyday techniques to assure asepsis, including the routine use of protective disposable gloves, frequent hand disinfection, and using infectious disease control measures to prevent cross-infectious.

3.9.5.1.2 Appropriate peri-operative antimicrobial prophylaxis
For appropriate peri-operative antimicrobial prophylaxis see section 3.15. The potential side-effects of antibiotics must be considered before their administration in a prophylactic regimen.

3.9.5.2 Treatment
Early goal-directed resuscitation was initially shown to improve survival for emergency department patients presenting with septic shock in a randomised, controlled, single-centre study [191]. However, follow up studies in an improved emergency medicine background have not achieved positive effects with this strategy [192-194]. An individual patient data meta-analysis of the later three multicentre trials concluded that early goal-directed therapy did not result in better outcomes than usual care and was associated with higher hospitalisation costs [195].
3.9.5.2.1 Antimicrobial therapy
Initial empiric antimicrobial therapy should provide broad antimicrobial coverage against all likely causative pathogens and should be adapted on the basis of culture results, once available [176, 183]. The dosage of the antimicrobial substances is of paramount importance in patients with sepsis syndrome and should generally be high, with the exception of patients in renal failure [176]. Antimicrobials must be administered no later than one hour after clinical assumption of sepsis [176].

3.9.5.2.2 Source control
Obstruction in the urinary tract is the most frequent urological source of urosepsis. Drainage of obstruction and removal of foreign bodies, such as urinary catheters or stones is therefore the most important source control strategy. These are key components of the strategy. This condition is an absolute emergency.

3.9.5.2.3 Adjunctive measures
The most important adjunctive measures in the management of sepsis are the following [176, 183]:
- fluid therapy with crystalloids, or albumin, if crystalloids are not adequately increasing blood pressure, passive leg raising-induced changes in cardiac output and in arterial pulse pressure are predictors of fluid responsiveness in adults [196];
- as vasopressors norepinephrine should be used primarily, dobutamine in myocardial dysfunction;
- hydrocortisone should be given only if fluid and vasopressors do not achieve a mean arterial pressure of ≥ 65 mmHg;
- blood products should be given to target a haemoglobin level of 7-9 g/dL;
- mechanical ventilation should be applied with a tidal volume 6 ml/kg and plateau pressure ≤ 30 cm H₂O and a high positive end-expiratory pressure;
- sedation should be given minimally, neuromuscular blocking agents should be avoided;
- glucose levels should be target at ≤ 180 mg/dL;
- deep vein thrombosis prevention should be given with low-molecular weight heparin subcutaneously;
- stress ulcer prophylaxis should be applied in patients at risk, using protone pump inhibitors;
- enteral nutrition should be started early (< 48 hours).

In conclusion, sepsis syndrome in urology remains a severe situation with an considerable mortality rate. A recent campaign, ‘Surviving Sepsis Guidelines’, aims to reduce mortality by 25% in the next years [176, 183, 197]. Early recognition of the symptoms may decrease the mortality by timely treatment of urinary tract disorders, e.g. obstruction, or urolithiasis. Adequate life-support measures and appropriate antimicrobial treatment provide the best conditions for improving patient survival. The prevention of sepsis syndrome is dependent on good practice to avoid nosocomial infections and using antimicrobial prophylaxis and therapy in a prudent and well-accepted manner.

3.9.5.3 Summary of evidence and recommendations for the treatment of urosepsis

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial high dose empiric antimicrobial therapy, administered within the first hour, should provide broad antimicrobial coverage against all likely causative pathogens and should be adapted on the basis of culture results, once available.</td>
<td>2b</td>
</tr>
<tr>
<td>Source control interventions should be implemented as soon as possible to control or eliminate diagnosed and/or suspected infectious foci.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform the quickSOFA score to identify patients with potential sepsis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Take a urine culture and two sets of blood cultures before starting antimicrobial treatment.</td>
<td>Strong</td>
</tr>
<tr>
<td>Administer parenteral high dose broad spectrum antimicrobials within the first hour after clinical assumption of sepsis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Adapt initial empiric antimicrobial therapy on the basis of culture results.</td>
<td>Strong</td>
</tr>
<tr>
<td>Remove foreign bodies from and obstruction of the urinary tract.</td>
<td>Strong</td>
</tr>
<tr>
<td>Provide immediate adequate life-support measures.</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Table 7: Suggested regimens for antimicrobial therapy for urosepsis

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Daily dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefotaxime</td>
<td>2 g t.i.d</td>
<td>7-10 days; Longer courses are appropriate in patients who have a slow clinical response</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1-2 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>2 g b.i.d</td>
<td></td>
</tr>
<tr>
<td>Piperacillin/tazobactam</td>
<td>4.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1-2 g q.d</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Cefazidime</td>
<td>2.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Gentamicin*</td>
<td>5 mg/kg q.d</td>
<td></td>
</tr>
<tr>
<td>Amikacin*</td>
<td>15 mg/kg q.d</td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>1 g q.d</td>
<td></td>
</tr>
<tr>
<td>Imipenem/cilastatin</td>
<td>0.5 g t.i.d</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>1 g t.i.d</td>
<td></td>
</tr>
</tbody>
</table>

* Not studied as monotherapy in urosepsis

b.i.d = twice daily; t.i.d = three times daily; q.d = every day.

3.10 Urethritis

3.10.1 Introduction

Inflammation of the urethra presents usually with LUTS and must be distinguished from other infections of the lower urinary tract. The following recommendations are based on a review of several European national guidelines and are aligned with the CDC's guidelines on sexual transmitted diseases (STDs) [198-202].

3.10.2 Epidemiology, aetiology and pathogenesis

From a therapeutic and clinical point of view, gonorrhoeal urethritis (GU) must be differentiated from non-gonococcal urethritis (NGU). Infection is spread by sexual contact. Causative pathogens include Neisseria gonorrhoeae (NG), Chlamydia trachomatis (CT), Mycoplasma genitalium (MG), Trichomonas vaginalis (TV), and Ureaplasma urealyticum (UU) [203-208]. In a study of 367 patients with NGU, isolated causative pathogens were: CT in 22.3%, MG in 12.5%, TV in 2.5%, and UU in 24.0%, with multiple pathogens detected in 9.5% and no aetiology in 29.2% [203]. There is limited evidence to support the role of Mycoplasma hominis in urethritis [209, 210].

Causative agents either remain extracellularly on the epithelial layer or penetrate into the epithelium (N. gonorrhoeae and C. trachomatis) and cause pyogenic infection. Although arising from urethritis, chlamydiae and gonococci can spread further through the urogenital tract to cause epididymitis in men or cervicitis, endometritis and salpingitis in women [211-213].

Mucopurulent or purulent discharge, alguria, dysuria and urethral pruritus are symptoms of urethritis. However, many infections of the urethra are asymptomatic.

3.10.3 Diagnostic evaluation

A Gram stain of urethral discharge or a urethral smear that shows more than five leukocytes per high power field (> 1,000) and eventually, gonococci located intracellularly as Gram-negative diplococci, indicate pyogenic urethritis [214]. Laboratories should use validated nucleic acid amplification tests (NAATs) to detect chlamydia and gonorrhoea, in first void urine samples, as they are better than any of the other tests available for the diagnosis of chlamydial and gonococcal infections [215]. N. gonorrhoeae and chlamydia cultures are mainly to evaluate treatment failures and monitor developing resistance to current treatment.

In all patients with urethritis, and when sexual transmission is suspected, the aim should be to identify the pathogenic organisms. Trichomonas spp. can usually be identified microscopically [213].

3.10.4 Disease management

Broad spectrum empirical antibiotic therapy may be started on presentation followed by antibiotic treatment refinement according to the results of microbiological investigations [216, 217].
3.10.4.1 Summary of evidence and recommendations for the treatment of urosepsis

Summary of Evidence

<table>
<thead>
<tr>
<th>Summary</th>
<th>Evidence LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validated NAATs of first void urine samples are better than any of the other tests available for the diagnosis of chlamydial and gonococcal infections.</td>
<td>2a</td>
</tr>
<tr>
<td>A Gram stain of urethral discharge or a urethral smear that shows more than five leukocytes per high power field (× 1,000) and gonococci located intracellularly as Gram-negative diplococci, indicate pyogenic urethritis.</td>
<td>3b</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform a gram stain of urethral discharge or a urethral smear to preliminarily diagnose pyogenic urethritis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform a validated nucleic acid amplification tests on a mid-stream urine sample or urethral smear to diagnosis chlamydial and gonococcal infections.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use a pathogen directed treatment based on local resistance data.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Table 8: Suggested regimens for antimicrobial therapy for urethritis

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Antimicrobial</th>
<th>Dosage & Duration of therapy</th>
<th>Alternative regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonococcal Infection</td>
<td>Ceftriaxone 1 g i.m., SD</td>
<td>Cefixime 400 mg p.o., SD Or Azithromycin 1-1.5 g p.o., SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Azithromycin 1-1.5 g p.o., SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cefixime 800 mg p.o., SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Gonococcal infection (non-identified pathogen)</td>
<td>Doxycycline 100 mg b.i.d, p.o., 7-10 days</td>
<td>Azithromycin 0.5 g p.o., day 1, 250 mg p.o., days 2-5</td>
<td></td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>Azithromycin 1.0-1.5 g p.o., SD</td>
<td>Doxycycline 100 mg b.i.d, p.o., for 7 days</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma genitalium</td>
<td>Azithromycin 0.5 g p.o., day 1, 250 mg p.o., day 2-5</td>
<td>Moxifloxacin 400 mg q.d., 5 days however, because of reported failures, some experts recommend 10-14 days</td>
<td></td>
</tr>
<tr>
<td>Ureaplasma urealyticum</td>
<td>Doxycycline 100 mg b.i.d, p.o., 7 days</td>
<td>Azithromycin 1.0-1.5 g p.o., single dose Or Clarithromycin 500 mg b.i.d, 7 days (resistance against macrolides is possible)</td>
<td></td>
</tr>
<tr>
<td>Trichomonas vaginalis</td>
<td>Metronidazole 2 g p.o., SD</td>
<td>In case of persistence 4 g daily for 3-5 days</td>
<td></td>
</tr>
</tbody>
</table>

SD = single dose; b.i.d = twice daily; q.d = everyday; p.o. = orally; i.m. = intramuscular.

3.10.5 Follow-up

Patients should be followed-up for control of eradication or if symptoms persist or recur after completion of therapy. Patients should be instructed to abstain from sexual intercourse for seven days after therapy is initiated, provided their symptoms have resolved and their sexual partners have been adequately treated. Reporting and source tracing should be done in accordance with national guidelines and in co-operation with specialists in venereology, whenever required. Persons who have been diagnosed with a new STD should receive testing for other STDs, including syphilis and HIV.

3.11 Bacterial Prostatitis

3.11.1 Introduction

Bacterial prostatitis is a clinical condition caused by bacterial pathogens. It is recommended that urologists use the classification suggested by the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH), in which bacterial prostatitis, with confirmed or suspected infection, is distinguished from chronic pelvic pain syndrome (CPPS) (Table 9) [218-220].
Table 9: Classification of prostatitis and CPPS according to NIDDK/NIH [218-220]

<table>
<thead>
<tr>
<th>Type</th>
<th>Name and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Acute bacterial prostatitis</td>
</tr>
<tr>
<td>II</td>
<td>Chronic bacterial prostatitis</td>
</tr>
<tr>
<td>III</td>
<td>Chronic non-bacterial prostatitis – CPPS</td>
</tr>
<tr>
<td>IIIA</td>
<td>Inflammatory CPPS (white cells in semen/EPS/VB3)</td>
</tr>
<tr>
<td>IIIB</td>
<td>Non-inflammatory CPPS (no white cells in semen/EPS/VB3)</td>
</tr>
<tr>
<td>IV</td>
<td>Asymptomatic inflammatory prostatitis (histological prostatitis)</td>
</tr>
</tbody>
</table>

CPPS = chronic pelvic pain syndrome; EPS = expressed prostatic secretion; VB3 = voided bladder urine specimen 3 (urine following prostatic massage).

3.11.2 Evidence Question
In men with NIDDK/NIH Category I or II prostatitis what is the best antimicrobial treatment strategy for clinical resolution and eradication of the causative pathogen?

3.11.3 Evidence Summary
A systematic literature search from 1980 till June 2017 was performed. One systematic review [221], six RCTs [222-227], two narrative reviews [228, 229], one prospective cohort study [230], two prospective cross-sectional studies [231, 232], and one retrospective cohort study [224], were selected from 856 references.

A retrospective study from Croatia [233], investigated the potential role of unusual pathogens in prostatitis syndrome in 1,442 patients over a 4 year period. An infectious aetiology was determined in 74.2% of patients; C. trachomatis, T. vaginalis and Ureaplasma urealyticum infections were found in 37.2%, 10.5% and 5% of patients respectively whilst E.coli infection was found in only 6.6% of cases. Cross sectional studies confirmed the validity of the Meares and Stamey test to determine the bacterial strain and targeted antibiotic therapies [231, 232]. The evidences level was very good, in particular those regarding information on atypical strains, epidemiology and the antibiotic treatments.

A systematic review on antimicrobial therapy for CBP [221] compared multiple antibiotic regimens from 18 selected studies enrolling a total of 2,196 patients. The role of fluoroquinolones as first line agents was confirmed with no significant differences between levofloxacin, ciprofloxacin and prulifloxacin in terms of microbiological eradication, clinical efficacy and adverse events. The efficacy of macrolides and tetracyclines on atypical pathogens was confirmed.

Randomised controlled trials on combined treatments [226, 227] indicated that the combination of plants/herbal extracts or PDE5Is with antibiotics may improve quality of life and symptoms in patients with CBP; however, the number of enrolled patients was inadequate to obtain definitive conclusions.

A review of treatment of bacterial prostatitis [228] indicated that the treatment of CBP is hampered by the lack of an active antibiotic transport mechanism into infected prostate tissue and fluids and underlined the potential effect of different compounds in the treatment of ABP and CBP on the basis of over 40 studies on the topic.

One RCT compared the effects of two different metronidazole regimens for the treatment of CBP caused by Trichomonas vaginalis [225]. Metronidazole 500 mg t.i.d. dosage for 14 days was found to be efficient for micro-organism eradication in 93.3% of patients with clinical failure in 3.33% of cases.

3.11.4 Epidemiology, aetiology and pathogenesis
Prostatitis is a common diagnosis but less than 10% of cases have proven bacterial infection [228]. The Enterobacteriaceae, especially E. coli, are the predominant pathogens in acute bacterial prostatitis (ABP) [234]. In chronic bacterial prostatitis (CBP), the spectrum of species is wider and may include atypical microorganisms [228]. In patients with immune deficiency or HIV infection, prostatitis may be caused by fastidious pathogens, such as M. tuberculosis, Candida sp. and other rare pathogens, such as Coccioidoides immitis, Blastomyces dermatitidis, and Histoplasma capsulatum [235]. The significance of identified intracellular bacteria, such as C. trachomatis, is uncertain [236], however, two studies have highlighted its possible role as a causative pathogen in CBP [237, 238].

3.11.5 Diagnostic evaluation
3.11.5.1 History and symptoms
Acute bacterial prostatitis usually presents abruptly with voiding symptoms and distressing but poorly localised pain. It is often associated with malaise and fever. Transrectal prostate biopsy increases the risk of ABP despite adequate antibiotic prophylaxis and antiseptic prevention procedures [222]. Chronic bacterial prostatitis is
defined by symptoms that persist for at least three months [239-241]. The predominant symptoms are pain at various locations including the perineum, scrotum, penis and inner part of the leg as well as LUTS [218-220].

3.11.5.2 Symptom questionnaires
In CBP symptoms appear to have a strong basis for use as a classification parameter [242]. Prostatitis symptom questionnaires have therefore been developed to assess severity and response to therapy [242, 243]. They include the validated Chronic Prostatitis Symptom Index (CPSI) however, its usefulness in clinical practice is uncertain [230].

3.11.5.3 Clinical findings
In ABP, the prostate may be swollen and tender on DRE. Prostatic massage should be avoided as it can induce bacteraemia and sepsis. Urine dipstick testing for nitrite and leukocytes has a positive predictive value of 95% and a negative predictive value of 70% [244]. Blood culture and complete blood count are useful in ABP. Various imaging studies can detect a suspected prostatic abscess [228]. In case of longer lasting symptoms CPPS as well as other urogenital and ano-rectal disorders must be taken into consideration. Symptoms of CBP or CPPS can mask prostate tuberculosis. Pyospermia and hematospermia in men in endemic regions or with a history of tuberculosis should be investigated for urogenital tuberculosis.

3.11.5.4 Urine cultures and expressed prostatic secretion
The most important investigation in the evaluation of a patient with ABP is mid-stream urine culture [228]. In CBP, quantitative bacteriological localisation cultures and microscopy of the segmented urine and expressed prostatic secretion (EPS), as described by Meares and Stamey [245] are still important investigations to categorise clinical prostatitis [231, 232]. Accurate microbiological analysis of samples from the Meares and Stamey test may also provide useful information on the presence of atypical pathogens such as C. trachomatis, Trichomonas vaginalis and Ureaplasma urealiticum [233]. The two-glass test has been shown to offer similar diagnostic sensitivity to the four-glass test [246].

3.11.5.5 Prostate biopsy
Prostate biopsies cannot be recommended as routine work-up and are not advisable in patients with untreated bacterial prostatitis due to the increased risk of sepsis.

3.11.5.6 Other tests
Transrectal ultrasound may reveal intraprostatic abscesses, calcification in the prostate, and dilatation of the seminal vesicles but is unreliable and cannot be used as a diagnostic tool in prostatitis [247].

3.11.5.7 Additional investigations
3.11.5.7.1 Ejaculate analysis
Performing an ejaculated semen culture improves the diagnostic utility of the 4-glass test [231], however, semen cultures are positive more often than EPS cultures in men with non-bacterial prostatitis [232]. Bladder outflow and urethral obstruction should always be considered and ruled out by uroflowmetry, retrograde urethrography, or endoscopy.

3.11.5.7.2 First-void urine sample
First-void urine (FVU) is the preferred specimen for the diagnosis of urogenital C. trachomatis infection in men by NAATs, since it is non-invasive and yet allows the detection of infected epithelial cells and associated C. trachomatis particles [21].

3.11.5.7.3 Prostate specific antigen (PSA)
Prostate specific antigen is increased in about 60% and 20% of men with acute and chronic bacterial prostatitis, respectively [229]. The PSA level decrease after antibiotic therapy (which occurs in approximately 40% of patients) correlates with clinical and microbiological improvement [223]. Measurement of free and total PSA adds no practical diagnostic information in prostatitis [248].
3.11.5.8 Summary of evidence and recommendations for the diagnosis of bacterial prostatitis

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine dipstick testing for nitrite and leukocytes has a positive predictive value of 95% and a negative predictive value of 70% in patients with ABP.</td>
<td>3</td>
</tr>
<tr>
<td>The four-glass Meares and Stamey test is the optimum test for diagnosis of CBP. The two-glass test has been shown to offer similar diagnostic sensitivity in a comparison study.</td>
<td>2b</td>
</tr>
<tr>
<td>First-void urine is the preferred specimen for the diagnosis of urogenital C. trachomatis infection in men by NAATs.</td>
<td>2b</td>
</tr>
<tr>
<td>Transrectal ultrasound is unreliable and cannot be used as a diagnostic tool in prostatitis.</td>
<td>3</td>
</tr>
<tr>
<td>Semen culture sensitivity is reported to be approximately 50%; therefore, it is not routinely part of the diagnostic assessment of CBP.</td>
<td>3</td>
</tr>
<tr>
<td>Prostate specific antigen levels may be elevated during active prostatitis; therefore, PSA testing should be avoided as it offers no practical diagnostic information for prostatitis.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform a gentle digital rectal examination to assess the condition of the prostate.</td>
<td>Weak</td>
</tr>
<tr>
<td>Take a mid-stream urine dipstick to check nitrite and leukocytes in patients with clinical suspicion of acute bacterial prostatitis.</td>
<td>Weak</td>
</tr>
<tr>
<td>Take a blood culture and a total blood count in case of prostatitis-related symptoms with malaise and fever.</td>
<td>Weak</td>
</tr>
<tr>
<td>Take a mid-stream urine culture in patients with acute prostatitis-related symptoms to guide diagnosis and plan adequate targeted antibiotic treatment.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform accurate microbiological evaluation for atypical pathogens such as Chlamydia trachomatis or Mycoplasmata in patients with chronic bacterial prostatitis (CBP).</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform the Meares and Stamey 2- or 4-glass test in patients with CBP.</td>
<td>Strong</td>
</tr>
<tr>
<td>Preform transrectal ultrasound in selected cases to rule out the presence of prostatic abscess, calcification in the prostate and dilatation of the seminal vesicles.</td>
<td>Weak</td>
</tr>
<tr>
<td>Do not routinely perform microbiological analysis of the ejaculate alone to diagnosis CBP.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

3.11.6 Disease management

3.11.6.1 Antimicrobials
Antimicrobials are life-saving in ABP and recommended in CBP. Culture-guided antibiotic treatments are the optimum standard, however, empirical therapies should be considered in all patients with ABP.

In ABP parenteral administration of high doses of bactericidal antimicrobials, such as broad-spectrum penicillins, a third-generation cephalosporin or fluoroquinolones, is recommended [249]. For initial therapy, any of these antimicrobials may be combined with an aminoglycoside [234-243, 249-253]. Ancillary measures include adequate fluid intake and urine drainage [228]. After normalisation of infection parameters, oral therapy can be substituted and continued for a total of two to four weeks [254].

Fluoroquinolones, despite the high resistance rates of uropathogens, are recommended as first-line agents in the empirical treatment of CBP because of their favourable pharmacokinetic properties [255], their generally good safety profile, and antibacterial activity against Gram-negative pathogens, including P. aeruginosa and C. trachomatis infections [221, 256]. However, increasing bacterial resistance is a concern. Azithromycin and doxycycline are active against atypical pathogens such as C. trachomatis and genital mycoplasmas [224, 233]. Levofloxacin did not demonstrate significant clearance of C. trachomatis in patients with CBP [257]. Metronidazole treatment is indicated in patients with T. vaginalis infections [225].

Duration of fluoroquinolone treatment must be at least fourteen days while azithromycin and doxycycline treatments should be extended to at least three to four weeks [222, 233]. In CBP antimicrobials should be given for four to six weeks after initial diagnosis [228]. If intracellular bacteria have been detected or are suspected, macrolides or tetracyclines should be given [221, 255, 258].

3.11.6.2 Intraprostatic injection of antimicrobials
This treatment has not been evaluated in controlled trials and should not be considered [259, 260].

3.11.6.3 Combined treatments
A combination of fluoroquinolones with various herbal extracts may attenuate clinical symptoms without increasing the adverse events rate [226]. A combination of fluoroquinolones with vardenafil neither improves microbiological eradication rates nor attenuates pain or voiding symptoms in comparison with fluoroquinolone treatment alone [227].
3.11.6.4 Drainage and surgery

Approximately 10% of men with ABP will experience urinary retention [261] which can be managed by urethral or suprapubic catheterisation. However, recent evidence suggests that suprapubic catheterisation can reduce the risk of development of CBP [262].

In case of prostatic abscess, both drainage and conservative treatment strategies appear feasible [263], however, the abscess size may matter. In one study, conservative treatment was successful if the abscess cavities were < 1 cm in diameter, while larger abscesses were better treated by single aspiration or continuous drainage [264].

3.11.6.5 Summary of evidence and recommendations for the disease management of bacterial prostatitis

Summary of Evidence

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The treatment regimen for ABP is based on clinical experience and a number of uncontrolled clinical studies. For systemically ill patients with ABP, parenteral antibiotic therapy is preferable. After normalisation of infection parameters, oral therapy can be substituted and continued for a total of two to four weeks.</td>
<td>3</td>
</tr>
<tr>
<td>The role of fluoroquinolones as first-line agents for antimicrobial therapy for CBP was confirmed in a systematic review, with no significant differences between levofloxacin, ciprofloxacin and prulifloxacin in terms of microbiological eradication, clinical efficacy and adverse events.</td>
<td>1a</td>
</tr>
<tr>
<td>Metronidazole 500 mg t.i.d. dosage for 14 days was found to be efficient for micro-organism eradication in 93.3% of patients with T. vaginalis CBP.</td>
<td>1b</td>
</tr>
<tr>
<td>In patients with CBP caused by obligate intracellular pathogens, macrolides showed higher microbiological and clinical cure rates compared to fluoroquinolones.</td>
<td>1a</td>
</tr>
<tr>
<td>Clinicians should consider local drug-resistance patterns when choosing antibiotics.</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Antibacterial Prostatitis</th>
<th>Strength Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat acute bacterial prostatitis according to the recommendations for complicated UTI (see section 3.7.5).</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Chronic bacterial prostatitis (CBP)

- Prescribe a fluoroquinolone (e.g. ciprofloxacin, levofloxacin) as first-line treatment for CBP. **Strong**
- Prescribe a macrolide (e.g. azithromycin) or a tetracycline (e.g. doxycycline) if intracellular bacteria have been identified as the causative agent of CBP. **Strong**
- Prescribe metronidazole in patients with *T. vaginalis* CBP. **Strong**

Table 10: Suggested regimens for antimicrobial therapy for chronic bacterial prostatitis

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Daily Dose</th>
<th>Duration of Therapy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floxquinolone</td>
<td>Optimal oral daily dose</td>
<td>4-6 weeks</td>
<td></td>
</tr>
<tr>
<td>Doxycycline</td>
<td>100 mg b.i.d</td>
<td>10 days</td>
<td>Only for C. trachomatis or mycoplasma infections</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>500 mg 3x weekly</td>
<td>3 weeks</td>
<td>Only for C. trachomatis infections</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>500 mg t.i.d.</td>
<td>14 days</td>
<td>Only for T. vaginalis infections</td>
</tr>
</tbody>
</table>

b.i.d = twice daily; t.i.d = three times daily; q.d = every day.

3.11.7 Follow-up

In asymptomatic post-treatment patients routine urinalysis and/or urine culture is not mandatory as there are no validated tests of cure for bacterial prostatitis except for cessation of symptoms [228]. In patients with persistent symptoms and repeated positive microbiological results for sexually transmitted infectious pathogens, microbiological screening of the patient's partner/s is recommended. Antibiotic treatments may be repeated with a more prolonged course, higher dosage and/or different compounds [228].
3.12 Acute Infective Epididymitis

3.12.1 Evidence question
In men with acute epididymitis what is the best antimicrobial treatment strategy for clinical resolution and eradication of the causative pathogen in:

1. men at low risk of gonorrhoea infection;
2. men at high risk of gonorrhoea infection?

3.12.2 Epidemiology, Aetiology and Pathophysiology
Epididymitis is a common condition with incidence ranging from 25 to 65 cases per 10,000 adult males per year and can be acute, chronic or recurrent [265]. Acute epididymitis is clinically characterised by pain, swelling and increased temperature of the epididymis, which may involve the testis and scrotal skin. It is generally caused by migration of pathogens from the urethra or bladder. Torsion of the spermatic cord (testicular torsion) is the most important differential diagnosis in boys and young men.

The predominant pathogens isolated are *C. trachomatis*, Enterobacteriaceae (typically *E. coli*) and *N. gonorrhoeae* [266]. Men who have anal intercourse and those with abnormalities of the urinary tract resulting in bacteriuria are at higher risk of epididymitis caused by Enterobacteriaceae. The mumps virus should be considered if there are viral prodromal symptoms and salivary gland enlargement. Tuberculous epididymitis may occur in high-risk groups such as men with immunodeficiency and those from high prevalence countries, it frequently results in a discharging scrotal sinus. *Brucella* or *Candida* species are rare possible pathogens.

3.12.3 Diagnostic Evaluation
Culture of a mid-stream specimen of urine should be performed and any previous urine culture results should be checked. Sexually transmitted infection with *C. trachomatis* or *N. gonorrhoeae* should be detected by NAAT on first voided urine. A urethral swab or smear should be performed for Gram staining and culture if *N. gonorrhoeae* is likely [267]. Detection of these pathogens should be reported according to local arrangements. All patients with probable sexually transmitted infections (STIs) should be advised to attend an appropriate clinic to be screened for other STIs. Men with Enterobacteriaceae may require investigation for lower urinary tract abnormalities. If tuberculous epididymitis is suspected, three sequential early morning urine samples should be cultured for acid-fast bacilli (AFB) and sent for screening by NAAT for *M. tuberculosis* DNA [268]. If appropriate prostate secretion, ejaculate, discharge from a draining scrotal fistula, as well as fine needle aspiration and biopsy specimens should be investigated using microscopy, AFB culture and NAAT.

3.12.4 Disease Management
Men with suspected STI should be informed of the risks to others and advised not to have sex until free of infection. Empirical antimicrobial therapy has to be chosen by consideration of the most probable pathogen and degree of penetration into the inflamed epididymis and may need to be varied according to local pathogen sensitivities and guidance. Generally, both *C. trachomatis* and Enterobacteriaceae should be covered initially and the regimen modified according to pathogen identification. Doxycycline and some specific fluoroquinolones have good clinical and microbiological cure rates in patients with suspected *C. trachomatis* or *M. genitalium* and both achieve adequate levels in inflamed male genital tissues with oral dosing. Macrolide antibiotics such as azithromycin are effective against *C. trachomatis* but not tested in epididymitis. Fluoroquinolones remain effective for oral treatment of Enterobacteriaceae although resistance is increasing and local advice should be sought. Fluoroquinolones should not be considered for gonorrhoea. Single high parenteral dose of a third generation cephalosporin is effective against *N. gonorrhoeae*; current resistance patterns and local public health recommendations should guide choice of agent.

Clinical response to antibiotics in men with severe epididymitis should be assessed after about three days and men with likely or proven STI should be assessed at fourteen days to check cure and ensure tracing and treatment of contacts according to local public health recommendations.

3.12.5 Evidence Summary
Relating to this chapter, three guidelines based on systematic reviews were identified [267, 269, 270] with search dates of December 2009, March 2012 and April 2013 respectively. No evidence quality assessments were detailed. A structured search of the literature from January 2010 to May 2017 identified 1,108 titles of which 46 were selected for full text review and six were included [271-276]. In addition, a high quality RCT outside the search dates was identified which demonstrated that 10-day course of ciprofloxacin was superior to pivampicillin for clinical cure (80% versus 60%) in men aged > 40 years [277]. Data from a large comparative case series suggested that young age and history of sexual activity are not sufficiently predictive of a sexually transmitted pathogen to guide antibiotic treatment in acute epididymitis [275].
Empiric antibiotic regimens from existing guidelines [267, 269, 270] and panel consensus:

1. For men with acute epididymitis at low risk of gonorrhoea (e.g. no discharge) a single agent or combination of two agents of sufficient dose and duration to eradicate *C. trachomatis* and Enterobacteriaceae should be used. Appropriate options are:

 A. A fluoroquinolone active against *C. trachomatis* orally once daily for ten to fourteen days*
 OR
 B. Doxycycline 200 mg initial dose by mouth and then 100 mg twice daily for ten to fourteen days* plus an antibiotic active against Enterobacteriaceae** for ten to fourteen days*

2. For men with likely gonorrhoeal acute epididymitis a combination regimen active against *Gonococcus* and *C. trachomatis* must be used such as:

 A. Ceftriaxone 500 mg intramuscularly single dose plus
 Doxycycline 200 mg initial dose by mouth and then 100 mg twice daily for ten to fourteen days*

3. For non-sexually active men with acute epididymitis a single agent of sufficient dose and duration to eradicate Enterobacteriaceae should be used. Appropriate option is a fluoroquinolone by mouth once daily for ten to fourteen days**

Depending upon pathogen identification and clinical response.

**A parenteral option will be required for men with severe infection requiring hospitalisation.*

Surgical exploration may be required to drain abscesses or debride tissue. A comparative cohort study found that lack of separation of epididymis and testis on palpation and the presence of abscess on US may predict requirement for surgery following initial antibiotic treatment [271].

A cohort study found semen parameters may be impaired during epididymitis but recovered following successful treatment [274]. Comparative clinician cohort studies suggest adherence to guidelines for assessment and treatment of epididymitis is low, particularly by urologists compared to sexual health specialists [272] and by primary care physicians [273].

3.12.6 Screening

A large cohort screening study for carriage of *C. trachomatis* including a randomly selected group of 5,000 men of whom 1,033 were tested showed no benefit in terms of reduction in risk of epididymitis over 9 years of observation [276].

3.12.7 Summary of evidence and recommendations for the diagnosis and treatment of acute infective epididymitis

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In young sexually active patients both STIs and Enterobacteriacea have to be considered as aetiological agents.</td>
<td>3</td>
</tr>
<tr>
<td>In patients > 40 years antibiotic therapy with ciprofloxacin is superior to pivmecillinam.</td>
<td>1b</td>
</tr>
<tr>
<td>A negative sexual risk history does not exclude STIs in sexually active men.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain a mid-stream urine and a first voided urine for pathogen identification by culture and nucleic acid amplification test.</td>
<td>Strong</td>
</tr>
<tr>
<td>Initially prescribe a single antibiotic or a combination of two antibiotics active against Chlamydia trachomatis and Enterobacteriacea in young sexually active men; in older men without sexual risk factors only Enterobacteriacea have to be considered.</td>
<td>Strong</td>
</tr>
<tr>
<td>If gonorrhoeal infection is likely give single dose ceftriaxone 500 mg intramuscularly in addition to a course of an antibiotic active against Chlamydia trachomatis.</td>
<td>Strong</td>
</tr>
<tr>
<td>Adjust antibiotic agent when pathogen has been identified and adjust duration according to clinical response.</td>
<td>Weak</td>
</tr>
<tr>
<td>Follow national policies on reporting and tracing/treatment of contacts for sexually transmitted infections.</td>
<td>Strong</td>
</tr>
</tbody>
</table>
3.13 Fournier’s Gangrene (Necrotizing fasciitis of the perineum and external genitalia)

3.13.1 Evidence questions
1. What is the best antimicrobial treatment strategy to reduce mortality?
2. What is the best debridement and reconstruction strategy to reduce mortality and aid recovery?
3. Are there any effective adjuvant treatments that improve outcome?

3.13.2 Epidemiology, Aetiology and Pathophysiology
Fournier’s gangrene is an aggressive and frequently fatal polymicrobial soft tissue infection of the perineum, peri-anal region, and external genitalia [278]. It is an anatomical sub-category of necrotising fasciitis with which it shares a common aetiology and management pathway.

3.13.3 Diagnostic Evaluation
Typically there is painful swelling of the scrotum or perineum with sepsis [278]. Examination shows small necrotic areas of skin with surrounding erythema and oedema. Crepitis on palpation and a foul-smelling exudate occurs with more advanced disease. Patient risk factors for occurrence and mortality include immunocompromise, most commonly diabetes or malnutrition, recent urethral or perineal surgery, and high body mass index (BMI). In up to 40% of cases, the onset is more insidious with undiagnosed pain often resulting in delayed treatment [279]. A high index of suspicion and careful examination, particularly of obese patients, is required. Computed tomography or MRI can help define para-rectal involvement, suggesting the need for bowel diversion [278].

3.13.4 Disease Management
The degree of internal necrosis is usually vastly greater than suggested by external signs, and consequently, adequate, repeated surgical debridement with urinary diversion by suprapubic catheter is necessary to reduce mortality [278]. Consensus from case series suggests that surgical debridement should be early (< 24 hours) and complete, as delayed and/or inadequate surgery may result in higher mortality [278]. Immediate empiric

Figure 2: Diagnostic and treatment algorithm for adult men with acute epididymitis

- **Acute scrotal pain, and swelling in adult male**
 - Torsion suspected
 - Suspected epididymitis
 - Urgent surgical exploration
 - Failure to respond or abscess present
 - Mid-stream urine for culture
 - Urethral swab/smear
 - First voided urine for nucleic acid amplification test (NAAT)

- **Gonorrhoea unlikely**
 - Single antibiotic or a combination of two antibiotics active against Chlamydia trachomatis and Enterobacteriaceae
 - Consider parenteral therapy if severe infection

- **Gonorrhoea likely**
 - Ceftriaxone 500mg IM plus a course of an antibiotic active against Chlamydia trachomatis

- **Proven sexually transmitted infection**
 - Reporting
 - Check cure
 - Trace and treat contacts

parenteral antibiotic treatment should be given that covers all probable causative organisms and can penetrate inflammatory tissue. A suggested regime would comprise a broad-spectrum penicillin or third-generation cephalosporin, gentamicin and metronidazole or clindamycin [278]. This can then be refined, guided by microbiological culture.

3.13.5 Evidence Summary
A systematic literature search from 1980 to July 2017 was performed. From 640 references one RCT [280], two systematic reviews [281, 282], one narrative review [278], three registry studies [283-285], one prospective cohort study [286] and two retrospective comparative cohort studies with at least 25 patients [287, 288] were selected. The three registry studies from the United States [283-285], found mortality rates of 10%, 7.5% and 5% from 650, 1,641 and 9,249 cases, respectively. Older age, diabetes and high BMI were associated with higher risk. A prospective cohort study showed that disease-specific severity scores did predict outcome but were not superior to generic scoring systems for critical care [286]. Concerning the evidence questions:

1. A low quality retrospective case series [287] with 168 patients found no significant difference in mortality between patients given ≤ 10 days of parenteral antibiotics (80 patients) and those given > 10 days (88 patients).
2. A systematic review of wound closure techniques [282] found low quality evidence from 16 case series involving 425 male patients. They recommended primary or secondary wound closure for scrotal defects ≤ 50% with the use of flaps or skin grafts for defects involving > 50% of the scrotum or with extension outside the scrotum.
3. A systematic review on the use of hyperbaric oxygen therapy [281] included three comparative case series and four other case series. All were retrospective and published prior to 2000. No consistent evidence of benefit was found; an RCT was advised. A more recent comparative case series [288] suggested benefit for use of hyperbaric oxygen therapy in 16 patients compared to 12 cases without use of such therapy in terms of reduced mortality and fewer debridements (low quality evidence). A low quality RCT [280] with 30 patients found that use of honey soaked dressings resulted in a shorter hospital stay (28 vs. 32 days) than dressing soaked with Edinburgh solution of lime (EUSOL). We found no evidence of benefit for use of negative-pressure (vacuum) wound therapy in Fournier's gangrene.

3.13.6 Summary of evidence and recommendations for the disease management of Fournier's Gangrene

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate empiric parenteral antibiotic treatment should be given that covers all probable causative organisms and can penetrate inflammatory tissue.</td>
<td>3</td>
</tr>
<tr>
<td>A systematic review of wound closure techniques recommended primary or secondary wound closure for scrotal defects ≤ 50% with the use of flaps or skin grafts for defects involving > 50% of the scrotum or with extension outside the scrotum.</td>
<td>3</td>
</tr>
<tr>
<td>No consistent evidence of benefit for hyperbaric oxygen therapy was found.</td>
<td>3</td>
</tr>
<tr>
<td>A low quality RCT found that dressings soaked in honey resulted in a shorter hospital stay than dressing soaked with EUSOL.</td>
<td>3</td>
</tr>
<tr>
<td>No evidence of benefit for use of negative-pressure (vacuum) wound therapy in Fournier's gangrene was found.</td>
<td>4</td>
</tr>
</tbody>
</table>

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start treatment for Fournier's gangrene with broad-spectrum antibiotics on presentation, with subsequent refinement according to culture and clinical response.</td>
<td>Strong</td>
</tr>
<tr>
<td>Commence repeated surgical debridement for Fournier's gangrene within 24 hours of presentation.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not use adjunctive treatments for Fournier's gangrene except in the context of clinical trials.</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Table 11: Suggested regimens for antimicrobial therapy for Fournier’s Gangrene of mixed microbiological aetiology [289].

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-tazobactam plus vancomycin</td>
<td>3.37 g every 6-8 h IV</td>
</tr>
<tr>
<td></td>
<td>15 mg/kg every 12 h</td>
</tr>
<tr>
<td>Imipenem-cilastatin</td>
<td>1 g every 6-8 h IV</td>
</tr>
<tr>
<td>Meropenem</td>
<td>1 g every 8 h IV</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>1 g once daily</td>
</tr>
<tr>
<td>Cefotaxime plus metronidazole or clindamycin</td>
<td>2 g every 6 h IV</td>
</tr>
<tr>
<td></td>
<td>500 mg every 6 h IV</td>
</tr>
<tr>
<td></td>
<td>600-900 mg every 8 h IV</td>
</tr>
</tbody>
</table>

IV = intravenous

3.14 Detection of bacteriuria prior to urological procedures

3.14.1 Evidence question
What is the diagnostic accuracy of alternative urinary investigations compared with urine culture for the diagnosis of bacteriuria in adult patients prior to urological interventions?

3.14.2 Background
Identifying bacteriuria prior to diagnostic and therapeutic procedures aims to reduce the risk of infectious complications by controlling any pre-operative detected bacteriuria and to optimise antimicrobial coverage in conjunction with the procedure. However, the absence of bacteriuria by itself is not an assurance against infectious complications and antimicrobial prophylaxis according to section 3.15 is recommended. The standard method, laboratory culture of an appropriate urine sample, is time consuming and logistically difficult. Alternative rapid near-patient methods such as reagent strip (dipstick) urinalysis, automated microscopy, flow cytometry, and dipslide culture have been developed but their diagnostic accuracy is uncertain.

3.14.3 Evidence summary
A systematic search of the literature to February 2015 identified 3,033 titles of which 210 were selected for full text review and 18 studies investigating diagnostic accuracy of different index tests with urine culture as the reference standard were included [290-307]. None of the studies focused on a urology patient population.

3.14.3.1 Reagents strip (dipstick) urinalysis
Sixteen studies assessed dipstick urine analysis using a variety of criteria for a positive test [290-298, 301-303]. The criterion that resulted in the best overall diagnostic accuracy was when a positive test was defined as at least one of nitrite and leucocyte esterase being detected however, low sensitivity (0.8) limits clinical usefulness, in the setting of assessment of bacteriuria, prior to urological surgery.

3.14.3.2 Automated microscopy
Two studies used automated microscopy of urine sediment following centrifugation [299, 303]. Although sensitivity was high (0.98), specificity was too low for effective use in this setting (0.59) and optimum diagnostic thresholds were not determined.

3.14.3.3 Dipslide culture
Two studies on dipslide technology using different culture media were identified [300, 307]. In one study diagnostic accuracy was high (0.98) although contaminated samples were excluded [308]. The other study showed lower accuracy, below the level required in this setting [300]. Overall, dipslide technology is currently unsuited for routine use in this setting with further studies required to determine the best combination of culture media.

3.14.3.4 Flow cytometry
No studies on this technology met the inclusion criteria. The poor quality of available studies was confirmed in a meta-analysis [309]. In summary, laboratory urine culture remains the standard investigation to detect both the presence and absence of clinically relevant concentrations of bacteria in urine.

Summary of Evidence LE
None of the alternative urinary investigations for the diagnosis of bacteriuria in adult patients prior to urological interventions can currently be recommended as an alternative to urine culture. 1b
3.15 Peri-Procedural Antibiotic Prophylaxis

3.15.1 General Principles

3.15.1.1 Definition of infectious complications

The European Centre for Disease Prevention and Control (ECDC) and the CDC have both presented similar definitions that are recommended for the evaluation of infectious complications [310, 311].

3.15.1.2 Non-antibiotic measures for asepsis

There are a number of non-antibiotic measures designed to reduce the risk of surgical site infection (SSI), many are historically part of the routine of surgery. The effectiveness of measures tested by RCTs are summarised in systematic reviews conducted by the Cochrane Wounds Group (http://wounds.cochrane.org/news/reviews). Urological surgeons and the institutions in which they work should consider and monitor maintenance of an aseptic environment to reduce risk of infection from pathogens within patients (microbiome) and from outside the patient (nosocomial/healthcare associated). This should include use of correct methods of instrument cleaning and sterilisation, frequent and thorough cleaning of operating rooms and recovery areas and thorough disinfection of any contamination. The surgical team should prepare to perform surgery by effective hand washing [312], donning of appropriate protective clothing and maintenance of asepsis. These measures should continue as required in recovery and ward areas.

Patients should be encouraged to shower pre-operatively but use of chlorhexidine soap does not appear to be beneficial [313]. Although evidence quality is low, any required hair removal appears best done by clipping, rather than shaving, just prior to incision [314]. Mechanical bowel preparation should not be used as evidence review suggests harm not benefit [315, 316]. There is some weak evidence that skin preparation using alcoholic solutions of chlorhexidine results in a lower rate of SSI than iodine solutions [317]. Studies of use of plastic adherent drapes showed no evidence of benefit in reducing SSI [318].

3.15.1.3 Choice of agent

Urologists should have knowledge of local pathogen prevalence for each type of procedure, their antibiotic susceptibility profiles and virulence in order to establish written local guidelines. These guidelines should cover the five modalities identified by the ECDC following a systematic review of the literature [319]. The agent should ideally not be one that may be required for treatment of infection. When risk of skin wound infection is low or absent, an aminoglycoside (gentamicin) should provide cover against likely uropathogens provided eGFR > 20 ml/min; second generation cephalosporins are an alternative [320]. Recent urine culture results including presence of any multi-resistant organisms, drug allergy, history of C. difficile associated diarrhoea, recent antibiotic exposure, evidence of symptomatic infection pre-procedure and serum creatinine should be checked. The panel have decided not to make recommendations for specific agents for particular procedures as there is considerable variation in Europe and worldwide regarding bacterial pathogens, their susceptibility and availability of antibiotic agents.

3.15.2 Specific procedures and evidence question

A literature search from 1980 to February 2017 identified RCTs, systematic reviews and meta-analyses that investigated the benefits and harms of using antibiotic prophylaxis prior to specific urological procedures. The available evidence enabled the panel to make recommendations concerning urodynamics, cystoscopy, stone procedures (extracorporeal shockwave lithotripsy [ESWL], ureteroscopy and per-cutaneous nephrolithotomy [PCNL]), transurethral resection of the prostate (TURP) and transurethral resection of the bladder (TURB). For nephrectomy and prostatectomy the scientific evidence was too weak to allow the panel to make recommendations either for or against antibiotic prophylaxis. The general evidence question was: Does antibiotic prophylaxis reduce the rate of post-operative symptomatic urinary tract infection in patients undergoing each named procedure?

3.15.2.1 Urodynamics

The literature search identified one Cochrane review with search date of December 2009 [321] and two later RCTs [322, 323]. Foon et al., identified nine RCTs enrolling 973 patients with overall low quality and high or unclear risks of bias. The outcome of clinical UTI was reported in four trials with no benefit found for antibiotic prophylaxis versus placebo [RR (95%CI) 0.73 (0.52-1.03)]. A meta-analysis of nine trials showed that use of antibiotics reduced the rate of post-procedural bacteriuria [RR (95%CI) 0.35 (0.22-0.56)] [321]. Neither Hirakauva et al., or Gurbuz et al., reported a clinical UTI outcome and had conflicting findings for reduction in risk of bacteriuria [322, 323].
3.15.2.2 Cystoscopy
The literature search identified two systematic reviews and meta-analyses with search dates of April 2014 and December 2013 respectively [324, 325]. No additional RCTs subsequent to these dates were found. Garcia-Perdomo et al., included seven RCTS with a total of 3,038 participants. The outcome of symptomatic UTI was measured by five trials of moderate quality overall and meta-analysis showed a benefit for using antibiotic prophylaxis (RR (95%CI) = 0.53 (0.31 – 0.90); ARR 1.3% (from 2.8% to 1.5%) with a NNT of 74 [325]. This benefit was not seen if only the two trials with low risk of bias were used in the meta-analysis. Carey et al., included seven RCTs with 5,107 participants. Six trials were included in meta-analysis of the outcome of symptomatic bacteriuria which found benefit for use of antibiotic prophylaxis RR (95%CI) = 0.34 (0.27 – 0.47); ARR 3.4% (from 6% to 2.6%) with NNT = 28 [324]. Given the low absolute risk of post-procedural UTI in well-resourced countries, the high number of procedures being performed, and the high risk of contributing to increasing antimicrobial resistance the panel consensus was to strongly recommend not to use antibiotic prophylaxis in patients undergoing urethrocystoscopy (flexible or rigid).

3.15.2.3 Interventions for urinary stone treatment
3.15.2.3.1 Extracorporeal shockwave lithotripsy
For patients without bacteriuria undergoing ESWL two systematic reviews and meta-analyses were identified with latest search dates of November 2011 and October 2012, respectively [326, 327]. The literature search to February 2017 identified one further trial [328]. Lu et al., included nine RCTs with a total of 1,364 patients and found no evidence of benefit in terms of reducing the rate of post-procedural fever or bacteriuria [326]. Mrkobrada et al., included eight RCTs with a total of 940 participants and found no evidence of benefit for antibiotic prophylaxis to reduce rate of fever or trial-defined infection [327]. The RCT reported by Hsieh et al., with 274 patients had a severe risk of bias. It found no reduction in fever at up to one week post-procedure using a single dose of levofloxacin 500 mg and no difference in the rate of bacteriuria [328].

For patients with bacteriuria or deemed at high risk of complications one RCT comparing the use of ofloxacin or trimethoprim-sulphamethoxazole for three days prior and four days subsequent to ESWL in 56 patients with ureteric stents was identified [329]. They found no difference in rate of clinical UTI at seven days (no events) and no difference in post-ESWL bacteriuria.

3.15.2.3.2 Ureteroscopy
A single systematic review [330] and two meta-analyses [331, 332] with latest search date of December 2013 were identified. Bootsma et al., and Dahm et al., included two low quality RCTs with a total of 233 participants and showed low grade evidence that antibiotic prophylaxis reduced risk of bacteriuria but not of clinical UTI [330, 331]. Lo et al., included four RCTs with a total of 386 patients and found no evidence of benefit in reducing rate of clinical UTI [332]. The rate of bacteriuria was reduced using antibiotic prophylaxis. Panel discussion considered that despite low quality evidence suggesting no benefit in reducing risk of clinical UTI, clinicians and patients would prefer to use prophylaxis to prevent kidney infection or sepsis. Ideally this should be examined in a robustly designed clinical study.

3.15.2.3.3 Per-cutaneous neprolithotomy
A single systematic review and meta-analysis with latest search date of October 2012 was identified which addressed whether or not antibiotic prophylaxis reduce the rate of clinical urinary infection following PNL [327]. The update search to February 2017 identified no further trials. Mrkobrada et al., included five RCTs with 448 participants and pooled patients undergoing PNL or ureteroscopy. They showed a moderate level of evidence that antibiotic prophylaxis was associated with a statistically significant reduction in the risk of post-procedural UTI.

Two RCTs with overall low risk of bias comparing different antibiotic regimes in PNL were identified [333, 334]. Seyrek et al., compared the rate of SIRS following PNL in 191 patients receiving either a combination of sulbactam/ampicillin or cefuroxime. There was no difference in SIRS or urosepsis rates [333]. Tuzel et al., investigated single dose ceftriaxone versus ceftriaxone plus a third-generation cephalosporin until after nephrostomy catheter withdrawal at mean (SD) of 3 (1) days in 73 participants undergoing PNL. They found no difference in rate of infectious complications between the two antibiotic regimens [334]. These two studies give moderate evidence that a single dose of a suitable agent was adequate for prophylaxis against clinical infection after PNL.

3.15.2.4 Transurethral resection of prostate
A systematic review of 39 RCTs with search date up to 2009 was identified [331]. The update search to February 2017 did not reveal any further relevant studies. Of the 39 RCTs reviewed by Dahm et al., six trials involving 1,666 men addressed the risk of septic episodes, 17 trials reported procedure related fever and 39 investigated bacteriuria. Use of prophylactic antibiotics compared to placebo showed a relative risk reduction
(95% CI) for septic episode of 0.51 (0.27-0.96) with ARR of 2% from 3.4% to 1.4% NNT = 50. The risk reduction (95% CI) for fever was 0.64 (0.55-0.75) and 0.37 (0.32-0.41) for bacteriuria.

3.15.2.5 Transurethral resection bladder tumour
A literature search to February 2017 found one systematic review [330] which included two trials with a total of 152 participants. No more recent RCTs were identified. The two reviewed trials found no difference in rate of bacteriuria and either had no clinical UTI events, or did not report clinical UTI. The review did not attempt sub-group analysis according to presence of risk factors for post-operative infection such as tumour size. Panel discussion concluded that a weak recommendation to use antibiotic prophylaxis for patients undergoing TURBT who had a high risk of suffering post-operative sepsis would be appropriate.

3.15.3 Summary of evidence and recommendations for peri-procedural antibiotic prophylaxis

<table>
<thead>
<tr>
<th>Summary of Evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The outcome of clinical UTI was reported in four out of eleven RCTs with no benefit found for antibiotic prophylaxis versus placebo in patients following filling and voiding cystometry.</td>
<td>1b</td>
</tr>
<tr>
<td>A meta-analysis of five trials of moderate quality showed a benefit for using antibiotic prophylaxis for the reduction of symptomatic UTI in patients undergoing cystoscopy. However, this benefit was not seen if only the two trials with low risk of bias were used in the meta-analysis.</td>
<td>1a</td>
</tr>
<tr>
<td>Two meta-analyses found no benefit for antibiotic prophylaxis following ESWL in terms of reducing the rate of post-procedural fever and bacteriuria or trial-defined infection in patients without bacteriuria.</td>
<td>1a</td>
</tr>
<tr>
<td>Two meta-analyses found no evidence of benefit for antibiotic prophylaxis prior to ureteroscopy in reducing the rate of clinical UTI however, the rate of bacteriuria was reduced.</td>
<td>1a</td>
</tr>
<tr>
<td>A meta-analysis of five RCTs demonstrated a moderate level of evidence that antibiotic prophylaxis was associated with a statistically significant reduction in the risk of post-procedural UTI following PNL.</td>
<td>1a</td>
</tr>
<tr>
<td>Two RCTs concluded that a single dose of a suitable agent was adequate for prophylaxis against clinical infection after PNL.</td>
<td>1b</td>
</tr>
<tr>
<td>A systematic review of 39 RCTs concluded that antibiotic prophylaxis reduced the rate of infectious complications in men undergoing TURP.</td>
<td>1b</td>
</tr>
<tr>
<td>A systematic review of two RCTs found no benefit for antibiotic prophylaxis in patients undergoing TURB.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use antibiotic prophylaxis to reduce the rate of symptomatic urinary infection following:</td>
<td>Strong</td>
</tr>
<tr>
<td>• urodynamics;</td>
<td></td>
</tr>
<tr>
<td>• cystoscopy;</td>
<td></td>
</tr>
<tr>
<td>• extracorporeal shockwave lithotripsy.</td>
<td></td>
</tr>
<tr>
<td>Use antibiotic prophylaxis to reduce the rate of symptomatic urinary infection following ureteroscopy.</td>
<td>Weak</td>
</tr>
<tr>
<td>Use single dose antibiotic prophylaxis to reduce the rate of clinical urinary infection following percutaneous nephrolithotomy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use antibiotic prophylaxis to reduce infectious complications in men undergoing transurethral resection of the prostate.</td>
<td>Strong</td>
</tr>
<tr>
<td>Use antibiotic prophylaxis to reduce infectious complications in high-risk patients undergoing transurethral resection of the bladder.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

3.16 Prostate biopsy

3.16.1 Evidence question
Which strategies are effective for reducing the risk of infective complications in men undergoing prostate biopsy?

3.16.2 Epidemiology, Aetiology and Pathophysiology
Histological examination of needle biopsies of the prostate is the principle method for prostate cancer diagnosis. Prostate biopsy is a common procedure in high-resource countries with, for example, about 32,000 procedures performed in England during 2013 [335] giving a rate of 2.6/1,000 men at risk per year. Transrectal ultrasound-guided biopsy (TRUS) is the current standard technique although the transperineal route is also
used [336]. Infection is the most clinically significant harm experienced by men following prostate biopsy. There is some evidence that the risk is increasing [337]. Infection generally occurs by implantation of rectal commensal organisms into the prostate, urethra or bloodstream during needle insertion. Severity of infection will depend on bacterial inoculum, virulence and status of host defence.

3.16.3 Diagnostic Evaluation
Urine culture prior to prostate biopsy has an uncertain predictive value [338].

3.16.4 Disease Management
The focus is on prevention of infectious complications. Possible strategies include antimicrobial prophylaxis and non-antimicrobial strategies, the effectiveness of which will be described in this section. Established infection is treated according to standard pathways [335].

3.16.5 Evidence summary
A systematic search of the literature to September 2016 identified 1,834 titles of which 189 were selected for full text review and 100 RCTs were included [339-438].

3.16.6 Non-antimicrobial interventions
3.16.6.1 Number of biopsy cores
Meta-analysis of seven trials involving 1,290 men found no evidence that extended biopsy (> 6-24 cores) templates resulted in more infectious complications than standard templates (6-12 cores) [(95% CIs) = 1.71 (0.70 – 4.16)] [355, 363, 400, 402, 403, 405, 418].

3.16.6.2 Peri-prostatic injection of local anaesthetic
A meta-analysis of 28 RCTs with 3,912 participants found no evidence that use of peri-prostatic injection of local anaesthesia resulted in a higher rate of infectious complications compared to no injection [339, 344, 345, 350, 361, 364, 366, 369-371, 373-375, 377, 384, 390, 393, 395-398, 404, 406, 408, 411, 412, 416, 417]. Four other RCTs with 497 patients compared different numbers of injections performed for peri-prostatic injection of local anaesthetic. Here, no difference was found in infective complications [RR (95% CIs) = 1.51 (0.26 – 8.97)] [359, 380, 391, 439].

3.16.6.3 Route of biopsy
Three RCTs involving 646 men compared transrectal and transperineal routes of biopsy. Overall two men (0.4%) suffered infectious complications after transperineal biopsy, compared to five (1.1%) after transrectal biopsy [RR (95% CIs) = 0.45 (0.10 – 1.97)]. The studies were heterogeneous in design, did not state how infectious outcomes were assessed and used differing antimicrobial prophylaxis between arms.

3.16.6.4 Rectal preparation
A meta-analysis of three studies including 209 men evaluated the use of rectal preparation by enema before transrectal biopsy. No significant advantage was found regarding infectious complications [RR (95% CIs) =0.76 (0.40 to 1.46)] [389, 399, 419].

Meta-analysis of six trials including 1,373 men showed that use of a rectal povidone-iodine preparation before biopsy in addition to antimicrobial prophylaxis resulted in a lower rate of infectious complications [RR (95% CIs) = 0.58 (0.43 to 0.76)] [356, 360, 376, 430, 434, 436]. Single RCTs showed no evidence of benefit for perineal skin disinfection [351] but reported an advantage for rectal povidone-iodine preparation before biopsy compared to after biopsy [349].

3.16.6.5 Other interventions
Combining data from two RCTs with 253 participants showed that biopsy using disposable needle guides resulted in nine infectious complications compared to 22 with reusable biopsy needle guides. The difference was not significant [RR (95% CIs) = 0.51 (0.24 to 1.06)] [365, 382]. A single RCT found no evidence that disinfection of a single patient use needle between cores resulted in fewer infectious complications [404]. Another single study evaluated the needle size and did not find significant differences between a 16 G and an 18 G needle size [394].

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rectal cleansing with povidone-iodine in men prior to transrectal prostate biopsy.</td>
<td>Strong</td>
</tr>
</tbody>
</table>
3.16.7 **Antimicrobial prophylaxis**

The meta-analysis on eleven studies with 1,753 patients showed significantly reduced infections after biopsy when using antimicrobial prophylaxis as compared to placebo/control [RR (95% CIs) = 0.56 (0.40 to 0.77)] [389, 415, 420, 421, 423, 430, 431, 433, 436, 437]. Thus, antimicrobial prophylaxis is strongly recommended. However, the choice of regimens and duration of prophylaxis remains debatable. Most commonly fluoroquinolones are applied [352, 372, 381, 414, 421, 438]. Due to the increase in fluoroquinolone resistance recent studies have investigated alternatives like fosfomycin trometamol [352], or suggest targeted antimicrobial prophylaxis based on rectal swab [348]. While the available Cochrane review of 2011 suggests a one-day prophylaxis with a single agent [440], a recent systematic analysis has pointed towards an augmented antimicrobial therapy [441]. A meta-analysis on this issue by the guideline panel is ongoing and will be finalised next year.

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use antimicrobial prophylaxis in men prior to transrectal prostate biopsy.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

4. **REFERENCES**

https://www.ncbi.nlm.nih.gov/pubmed/11295405

https://clsi.org/media/1448/m47a_sample.pdf

https://www.cdc.gov/mmwr/volumes/65/ss/ss6507a1.htm

http://biomedpharmajournal.org/vol9no2/acute-prostatitis/

https://www.researchgate.net/publication/280867653

https://www.ncbi.nlm.nih.gov/pubmed/24825805

http://www.jurology.com/article/S0022-5347(15)01996-5/abstract

http://www.jurology.com/article/S0022-5347(12)02756-5/abstract

5. CONFLICT OF INTEREST

All members of the EAU Urological Infections Guidelines Panel have provided disclosure statements on all relationships that they have that might be perceived to be a potential source of a conflict of interest. This information is publically accessible through the EAU website: http://www.uroweb.org/guidelines/. These Guidelines were developed with the financial support of the EAU. No external sources of funding and support have been involved. The EAU is a non-profit organisation, and funding is limited to administrative assistance, travel and meeting expenses. No honoraria or other reimbursements have been provided.

6. CITATION INFORMATION

The format in which to cite the EAU Guidelines will vary depending on the style guide of the journal in which the citation appears. Accordingly, the number of authors or whether, for instance, to include the publisher, location, or an ISBN number may vary.

The compilation of the complete Guidelines should be referenced as:

If a publisher and/or location is required, include:

References to individual guidelines should be structured in the following way:

Contributors’ names. Title of resource. Publication type. ISBN. Publisher and publisher location, year.