EAU Guidelines on Testicular Cancer

M.P. Laguna (Chair), P. Albers, W. Albrecht, F. Algaba, C. Bokemeyer, J.L. Boormans, G. Cohn-Cedermark, K. Fizazi, H. Gremmels (Patient advocate), A. Horwich, D. Nicol, N. Nicolai, J. Oldenburg

Guidelines Associates: J. Mayor de Castro, Ch. Fankhauser
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Aim and objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Panel composition</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Available publications</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Publication history and summary of changes</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1 Publication history</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2 Summary of changes</td>
<td>5</td>
</tr>
<tr>
<td>2. METHODS</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Review</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Future goals</td>
<td>6</td>
</tr>
<tr>
<td>3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Epidemiology</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Pathological classification</td>
<td>7</td>
</tr>
<tr>
<td>4. STAGING AND CLASSIFICATION SYSTEMS</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Diagnostic tools</td>
<td>8</td>
</tr>
<tr>
<td>4.2 Serum tumour markers: post-orchiectomy half-life kinetics</td>
<td>8</td>
</tr>
<tr>
<td>4.3 Retroperitoneal, mediastinal and supraclavicular lymph nodes and viscera</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Staging and prognostic classifications</td>
<td>9</td>
</tr>
<tr>
<td>5. DIAGNOSTIC EVALUATION</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Clinical examination</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Imaging of the testis</td>
<td>13</td>
</tr>
<tr>
<td>5.3 Serum tumour markers at diagnosis</td>
<td>13</td>
</tr>
<tr>
<td>5.4 Inguinal exploration and orchiectomy</td>
<td>13</td>
</tr>
<tr>
<td>5.5 Organ-sparing surgery</td>
<td>13</td>
</tr>
<tr>
<td>5.6 Pathological examination of the testis</td>
<td>13</td>
</tr>
<tr>
<td>5.7 Germ cell tumours histological markers</td>
<td>14</td>
</tr>
<tr>
<td>5.8 Diagnosis and treatment of germ cell neoplasia in situ (GCNIS)</td>
<td>15</td>
</tr>
<tr>
<td>5.9 Screening</td>
<td>15</td>
</tr>
<tr>
<td>5.10 Guidelines for the diagnosis and staging of testicular cancer</td>
<td>15</td>
</tr>
<tr>
<td>6. PROGNOSIS</td>
<td>16</td>
</tr>
<tr>
<td>6.1 Risk factors for metastatic relapse in clinical stage I</td>
<td>16</td>
</tr>
<tr>
<td>7. DISEASE MANAGEMENT</td>
<td>16</td>
</tr>
<tr>
<td>7.1 Impact on fertility and fertility-associated issues</td>
<td>16</td>
</tr>
<tr>
<td>7.2 Stage I Germ cell tumours</td>
<td>16</td>
</tr>
<tr>
<td>7.2.1 Seminoma Stage I</td>
<td>16</td>
</tr>
<tr>
<td>7.2.1.1 Surveillance</td>
<td>17</td>
</tr>
<tr>
<td>7.2.1.2 Adjuvant chemotherapy</td>
<td>17</td>
</tr>
<tr>
<td>7.2.1.3 Adjuvant radiotherapy and risk-adapted treatment</td>
<td>17</td>
</tr>
<tr>
<td>7.2.1.4 Risk-adapted treatment</td>
<td>17</td>
</tr>
<tr>
<td>7.2.1.5 Guidelines for the treatment of stage I seminoma</td>
<td>18</td>
</tr>
<tr>
<td>7.2.2 NSGCT clinical stage I</td>
<td>18</td>
</tr>
<tr>
<td>7.2.2.1 Surveillance</td>
<td>18</td>
</tr>
<tr>
<td>7.2.2.2 Adjuvant chemotherapy</td>
<td>18</td>
</tr>
<tr>
<td>7.2.2.3 Risk-adapted treatment</td>
<td>19</td>
</tr>
<tr>
<td>7.2.2.4 Retroperitoneal lymph node dissection</td>
<td>19</td>
</tr>
<tr>
<td>7.2.2.5 Guidelines for the treatment of stage I non-seminomatous germ cell tumour</td>
<td>20</td>
</tr>
<tr>
<td>7.2.2.6 Risk-adapted treatment for clinical stage I based on vascular invasion</td>
<td>20</td>
</tr>
<tr>
<td>7.3 Metastatic germ cell tumours</td>
<td>21</td>
</tr>
<tr>
<td>7.3.1 CS1S with (persistently) elevated serum tumour markers</td>
<td>22</td>
</tr>
<tr>
<td>7.3.2 Metastatic disease (stage II A/B)</td>
<td>22</td>
</tr>
</tbody>
</table>
7.3.2.1 Stage IIA/B seminoma 22
7.3.2.2 Stage IIA/B non-seminoma 23
7.3.3 Metastatic disease (stage IIc and III) 24
 7.3.3.1 Primary chemotherapy 24
 7.3.3.1.1 Good prognosis risk group - seminomatous germ cell tumour 24
 7.3.3.1.2 Intermediate prognosis risk group - seminomatous germ cell tumour 24
 7.3.3.1.3 Good prognosis risk group - non-seminomatous germ cell tumour 24
 7.3.3.1.4 Intermediate prognosis risk group - non-seminomatous germ cell tumour 25
 7.3.3.1.5 Poor prognosis risk group - non-seminomatous germ cell tumour 25
7.4 Restaging and further treatment 26
 7.4.1 Restaging 26
 7.4.2 Residual tumour resection 26
 7.4.2.1 Seminoma 26
 7.4.2.2 Non-seminoma 26
 7.4.3 Timing of surgery in the case of multiple sites 27
 7.4.3.1 Quality and intensity of surgery 27
 7.4.3.2 Salvage and desperation surgery 27
 7.4.3.3 Consolidation chemotherapy after secondary surgery 27
 7.4.4 Systemic salvage treatment for relapse or refractory disease 28
 7.4.5 Second relapse 29
 7.4.5.1 Late relapse (> two years after end of first-line treatment) 29
 7.4.5.2 Treatment of brain metastases 30
 7.4.6 Guidelines for the treatment of metastatic germ cell tumours 30
8. FOLLOW UP AFTER CURATIVE THERAPY 30
 8.1 Rationale for follow-up 30
 8.2 Quality of life and long-term toxicities after cure of testicular cancer 32
 8.2.1 Second malignant neoplasms 32
 8.2.2 Leukaemia 33
 8.2.3 Infections 33
 8.2.4 Pulmonary complications 33
 8.2.5 Cardiovascular toxicity 33
 8.2.6 Raynaud-like phenomena 34
 8.2.7 Neurotoxicity 34
 8.2.8 Cognitive function 34
 8.2.9 Ototoxicity 34
 8.2.10 Nephrotoxicity 34
 8.2.11 Hypogonadism 34
 8.2.12 Fatigue 35
 8.2.13 Quality of life 35
9. TESTICULAR STROMAL TUMOURS 35
 9.1 Classification 35
 9.1.1 Epidemiology and prognosis 35
 9.2 Leydig cell tumours 36
 9.2.1 Epidemiology 36
 9.2.2 Pathology of Leydig cell tumours 36
 9.2.3 Diagnosis 36
 9.3 Sertoli cell tumours 37
 9.3.1 Epidemiology 37
 9.3.2 Pathology of Sertoli cell tumours 37
 9.3.2.1 Classification 37
 9.3.3 Diagnosis 37
 9.4 Treatment of Leydig- and Sertoli cell tumours 37
 9.5 Granulosa cell tumour 38
9.6 Thecoma/fibroma group of tumours 38
9.7 Other sex cord/gonadal stromal tumours 38
9.8 Tumours containing germ cell and sex cord/gonadal stroma (gonadoblastoma) 38
9.9 Miscellaneous tumours of the testis 38
 9.9.1 Tumours of ovarian epithelial types 38
 9.9.2 Tumours of the collecting ducts and rete testis 38
 9.9.3 Tumours (benign and malignant) of non-specific stroma 38

10. REFERENCES 38

11. CONFLICT OF INTEREST 60

12. CITATION INFORMATION 60
1. INTRODUCTION

1.1 Aim and objectives
The aim of these guidelines is to present the current evidence for the diagnosis and treatment of patients with cancer of the testis. Testicular cancer (TC) represents 5% of urological tumours affecting mostly younger males. This document addresses germ-cell tumours (GCTs) and sex cord/gonadal stromal tumours.

It must be emphasised that clinical guidelines present the best evidence available to the experts but following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients, but rather help to focus decisions - also taking personal values and preferences/individual circumstances of patients into account. Guidelines are not mandates and do not purport to be a legal standard of care.

1.2 Panel composition
The EAU Guidelines Panel on Testicular Cancer consists of a multidisciplinary group of clinicians including, urologists, oncologists, radiotherapists and a pathologist. Members of this Panel have been selected, based on their expertise, to represent the professionals treating patients suspected of having testis cancer. All experts involved in the production of this document have submitted potential conflict of interest statements which can be viewed on the EAU website: http://www.uroweb.org/guideline/testicular-cancer/.

1.3 Available publications
A quick reference document (Pocket guidelines) is available, in print and as an app for iOS and Android devices. These are abridged versions which may require consultation together with the full text version. Several scientific publications are available, as are a number of translations of all versions of the EAU Testicular Cancer Guidelines. All documents are accessible through the EAU website: http://www.uroweb.org/guideline/testicular-cancer/.

1.4 Publication history and summary of changes
1.4.1 Publication history
The European Association of Urology (EAU) published the first guidelines on Testicular Cancer in 2001. Since 2008, the Testicular Cancer Guidelines contains a separate chapter on testicular stromal tumours. This document presents a limited update of the 2018 publication. Review papers have been published in the society's scientific journal European Urology, the latest version dating to 2015 [1].

1.4.2 Summary of changes
For the 2019 Testicular Cancer Guidelines, new references have been added throughout the document. Key changes in this publication include:

- Additional remarks on pathology examination and description have been added to the text for the 2019 print. This relates, in particular, to the definition and morphological description of Rete Testis Invasion and Vascular Invasion;
- Citations relating to a number of low quality papers (SEER [The Surveillance, Epidemiology and End Results programme of the National Cancer Institute] database on stromal tumours incidence and retrospective biased FDG-PET [fluorodeoxyglucose-positron emission tomography] scan) have been removed from the text. However, a decision has been made to include some small phase II studies in the relevant text section on second relapse since there are few publications addressing this rare clinical scenario;
- A number of minor semantic modifications have been corrected in the text and the tables for 2019.

2. METHODS
For the Germ Cell Tumour section, new and relevant evidence has been identified, collated and appraised through a structured assessment of the literature. The search was limited to studies representing high levels of evidence (i.e. systematic reviews with meta-analysis, randomised controlled trials (RCTs), and prospective non-randomised comparative studies) published in the English language. The search was restricted to articles published between November 8th 2017 and June 13th 2018. Databases covered by the search included Pubmed, Ovid, EMBASE and the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews. After deduplication, a total of 1,230 unique records were identified, retrieved and
screened for relevance. Thirty new papers have been included in the 2019 print. A detailed search strategy is available online: http://uroweb.org/guideline/testicular-cancer/?type=appendices-publications.

For testicular stromal tumours additional literature has been added. Two scoping searches covering the time frame between Jan 1st, 2014 and Aug 26th, 2018 were performed. After deduplication, a total of 159 unique records were identified, retrieved and screened for relevance. Conference abstracts, editorials, letter to the editor and case reports were excluded from the searches.

For each recommendation within the guidelines there is an accompanying online strength rating form, the basis of which is a modified GRADE methodology [2, 3]. Each strength rating form addresses a number of key elements namely:

1. the overall quality of the evidence which exists for the recommendation, references used in this text are graded according to a classification system modified from the Oxford Centre for Evidence-Based Medicine Levels of Evidence [4];
2. the magnitude of the effect (individual or combined effects);
3. the certainty of the results (precision, consistency, heterogeneity and other statistical or study related factors);
4. the balance between desirable and undesirable outcomes;
5. the impact of patient values and preferences on the intervention;
6. the certainty of those patient values and preferences.

These key elements are the basis which panels use to define the strength rating of each recommendation. The strength of each recommendation is represented by the words ‘strong’ or ‘weak’ [5]. The strength of each recommendation is determined by the balance between desirable and undesirable consequences of alternative management strategies, the quality of the evidence (including certainty of estimates), and nature and variability of patient values and preferences. The strength rating forms will be available online.

Additional information can be found in the general Methodology section of this print, and online at the EAU website; http://www.uroweb.org/guideline/. A list of associations endorsing the EAU Guidelines can also be viewed online at the above address.

2.1 Review
This document was subjected to peer review prior to publication in 2015.

2.2 Future goals
• A new chapter on “Incidentally diagnosed testicular masses” will be included in the 2020 major revision of the Guidelines.
• Chapter 8. Follow-up after curative therapy will be revisited, including the engagement of patients in the update of this topic.
• Chapter 9. Testicular stromal tumours will be updated, to include recommendations.
• A systematic review on the topic of “Quality of care of testicular cancer” will be undertaken by the panel. The main research question will investigate the quality of care for patients undergoing post-chemotherapy retroperitoneal lymph node dissection.
• The panel aim to produce an Individual Patient Data (IPD) prognostic factor study on the value of pathological factors in clinical stage I seminoma testis patients under active surveillance.

3. EPIDEMIOLOGY, AETIOLOGY AND PATHOLOGY

3.1 Epidemiology
Testicular cancer represents 1% of male neoplasms and 5% of urological tumours, with three to ten new cases occurring per 100,000 males/per year in Western societies [6]. Its incidence has been increasing during the last decades especially in industrialised countries [7, 8]. Data from the Surveillance Epidemiology and End Results programme (1992 to 2012) show a continuing increased risk among Caucasian and Hispanic men in the USA with further increasing incidence forecast for the next decade [9, 10].
At diagnosis, 1-2% of cases are bilateral and the predominant histology is GCT (90-95% of cases) [6]. Peak incidence is in the third decade of life for non-seminoma, and in the fourth decade for pure seminoma.

Testicular cancers show excellent cure rates based on their chemosensitivity, especially to cisplatin based chemotherapy [11], careful staging at diagnosis, adequate early treatment based on a multidisciplinary approach, and strict follow-up and salvage therapies. A decrease in the meantime of delay to diagnosis and treatment has been observed. Although early stages can be successfully treated in a non-reference centre, the relapse rate is higher than in reference centres [12, 13]. In poor prognosis non-seminomatous germ cell tumours (NSGCT), overall survival (OS) within a clinical trial depends on the number of patients treated at the participating centre (worse if < five patients enrolled) [14]. In the same context, the frequency of post-chemotherapy residual tumour resection is associated with peri-operative mortality and OS [15, 16]. Establishment of second-opinion clinics for TC patients may prevent over- and under-treatment [17].

Genetic changes have been described in patients with TC. A specific genetic marker – an isochromosome of the short arm of chromosome 12 (12p) has been described in all histological types of GCTs [18] and in germ cell neoplasia in situ (GCNIS). Alterations in the p53 locus have been identified in 66% of cases of GCNIS [19] and an association between genetic polymorphism in the PTEN tumour suppressor gene and the risk of testicular germ cell tumours (TGCT) has been recently described [20]. A deregulation in the pluripotent programme of foetal germ cells (identified by specific markers, M2A, C-KIT and OCT4/NANOG) is likely responsible for the development of GCNIS and germ cell neoplasia. In line with this, genome-wide association studies (GWAS) have revealed several single nucleotide polymorphisms (SNPs) associated with an increased risk of developing TGCT, in particular at 15q21.3 [21]. That said, current genomic studies do not find evidence for a major single high-penetrance TGCT susceptibility gene [22]. There is overlap in the development to seminoma and embryonal carcinoma, as shown by genome-wide expression analysis and detection of alpha-fetoprotein (AFP) mRNA in some atypical seminomas [23, 24].

Epidemiological risk factors for the development of testicular tumours are components of testicular dysgenesis syndrome (i.e. cryptorchidism, hypospadias, decreased spermatogenesis evidenced by sub- or infertility) [25, 26], familial history of testicular tumours among first-grade relatives and the presence of a contralateral tumour or GCNIS [18, 25, 27-31]. A recent systematic review confirmed the association between body height and TGCT with an odds ratio (OR) of 1.13 per 5 cm increase in body height [32].

3.2 Pathological classification

The recommended pathological classification shown below is based on the 2016 update of the World Health Organization (WHO) pathological classification [33]:

1. **Germ cell tumours**
 - Germ cell neoplasia in situ (GCNIS)
2. **Derived from germ cell neoplasia in situ**
 - Seminoma
 - Embryonal carcinoma
 - Yolk sac tumour, post-pubertal type
 - Trophoblastic tumours
 - Teratoma, post-pubertal type
 - Teratoma with somatic-type malignancies
 - Mixed germ cell tumours
3. **Germ cell tumours unrelated to GCNIS**
 - Spermatocytic tumour
 - Yolk sac tumour, pre-pubertal type
 - Mixed germ cell tumour, pre-pubertal type
4. **Sex cord/stromal tumours**
 - Leydig cell tumour
 - Malignant Leydig cell tumour
 - Sertoli cell tumour
 - Malignant Sertoli cell tumour
 - Large cell calcifying Sertoli cell tumour
 - Intratubular large cell hyalinising Sertoli cell neoplasia
 - Granulosa cell tumour
 - Adult type
 - Juvenile type
• Thecoma/fibroma group of tumours
• Other sex cord/gonadal stromal tumours
 - Mixed
 - Unclassified
• Tumours containing both germ cell and sex cord/gonadal stromal
 - Gonadoblastoma

5. Miscellaneous non-specific stromal tumours
• Ovarian epithelial tumours
• Tumours of the collecting ducts and rete testis
 - Adenoma
 - Carcinoma
• Tumours of paratesticular structures
 - Adenomatoid tumour
 - Mesothelioma (epithelioid, biphasic)
 - Epididymal tumours
• Cystadenoma of the epididymis
• Papillary cystadenoma
• Adenocarcinoma of the epididymis
• Mesenchymal tumours of the spermatic cord and testicular adnexae

4. STAGING AND CLASSIFICATION SYSTEMS

4.1 Diagnostic tools
To determine the presence of macroscopic or occult metastatic disease the half-life kinetics of serum tumour markers, as well as the presence of nodal or visceral metastases, need to be assessed. Consequently, it is mandatory to assess:
• the pre- and post-orchiectomy half-life kinetics of serum tumour markers;
• the status of retroperitoneal and supraclavicular lymph nodes, bone and liver;
• the presence or absence of mediastinal nodal involvement and lung metastases;
• the status of brain and bone in cases of suspicious symptoms or high-risk disease, e.g. poor International Germ Cell Cancer Collaborative Group (IGCCCG) risk group, high human chorionic gonadotropin (hCG) and/or multiple pulmonary metastases.

The minimum mandatory tests are:
• serial blood sampling;
• abdominopelvic and chest computed tomography (CT).

4.2 Serum tumour markers: post-orchiectomy half-life kinetics
The mean serum half-life of AFP and hCG is five to seven days and two to three days, respectively [34]. Tumour markers need to be re-evaluated after orchiectomy to determine half-life kinetics. Marker decline in patients with clinical stage (CS) I disease should be assessed until normalisation has occurred. Markers before the start of chemotherapy are important to classify the patient according to the IGCCCG risk classification [35]. The persistence of elevated serum tumour markers after orchiectomy might indicate the presence of metastatic disease (macro- or microscopically), while the normalisation of marker levels after orchiectomy does not rule out the presence of tumour metastases. During chemotherapy, the markers should decline; persistence has an adverse prognostic value [36, 37]. Slow marker decline in patients with poor prognosis during the first cycle of standard bleomycin, etoposide and cisplatin (BEP) chemotherapy can be used as an indication for early chemotherapy dose intensification [38].

4.3 Retroperitoneal, mediastinal and supraclavicular lymph nodes and viscera
Retroperitoneal and mediastinal lymph nodes are best assessed by CT. The supraclavicular nodes are best assessed by physical examination followed by CT in cases of suspicion.

Abdominopelvic CT offers a sensitivity of 70-80% in determining the state of the retroperitoneal nodes. Its accuracy depends on the size and shape of the nodes; sensitivity and the negative predictive value (NPV) increase using a 3 mm threshold to define metastatic nodes in the landing zones [39]. Those figures decrease slightly in stages I and II [40, 41], with a rate of understaging of 25-30% [42]. Magnetic resonance imaging (MRI) produces similar results to CT in the detection of retroperitoneal
nodal enlargement [43, 44]. Again, the main objections to its routine use are its high cost and limited availability. Nevertheless, MRI can be helpful when abdominopelvic CT or ultrasound (US) are inconclusive [43], when CT is contraindicated because of allergy to contrast media containing iodine, or when the physician or the patient are concerned about radiation dose. Magnetic resonance imaging is an optional test, and there are currently no indications for its systematic use in the staging of TC.

A chest CT is the most sensitive way to evaluate the thorax and mediastinal nodes. This exploration is recommended in all patients with TC as up to 10% of cases can present with small subpleural nodes that are not visible on an X-ray [45]. A CT has high sensitivity, but low specificity [45].

There is no evidence to support the use of FDG-PET in the staging of testis cancer [46, 47]. It is recommended in the follow-up of patients with seminoma with a residual mass larger than 3 cm but should not be performed until eight weeks after completion of the last cycle of chemotherapy, in order to decide on watchful waiting or active treatment [48, 49]. Fluorodeoxyglucose-PET is not recommended in the re-staging of patients with NSGCT after chemotherapy [50].

Other examinations, such as brain or spinal CT, bone scan or liver US, should be performed if there is suspicion of metastases to these organs. A CT or MRI of the brain is advisable in patients with NSGCT, multiple lung metastases and poor-prognosis IGCCG risk group (e.g. high \(\beta \)-hCG values). Table 4.1 shows the recommended tests at staging.

Table 4.1: Recommended tests for staging at diagnosis

<table>
<thead>
<tr>
<th>Test</th>
<th>Recommendation</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum tumour markers</td>
<td>Alpha-fetoprotein</td>
<td>Strong</td>
</tr>
<tr>
<td></td>
<td>Human chorionic gonadotrophin (hCG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactate dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>Abdominopelvic computed tomography (CT)</td>
<td>All patients</td>
<td>Strong</td>
</tr>
<tr>
<td>Chest CT</td>
<td>All patients</td>
<td>Strong</td>
</tr>
<tr>
<td>Testis ultrasound (bilateral)</td>
<td>All patients</td>
<td>Strong</td>
</tr>
<tr>
<td>Bone scan or magnetic resonance imaging</td>
<td>In case of symptoms</td>
<td>Strong</td>
</tr>
<tr>
<td>(MRI) columna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain scan (CT/MRI)</td>
<td>In case of symptoms and patients with metastatic disease with multiple lung</td>
<td>Strong</td>
</tr>
<tr>
<td></td>
<td>metastases or high (\beta)-hCG values.</td>
<td></td>
</tr>
</tbody>
</table>

Further investigations

- Total testosterone
- Luteinising hormone
- Follicle-stimulating hormone
- Semen analysis

Weak

4.4 Staging and prognostic classifications

The staging system recommended in these guidelines is the 2016 Tumour, Node, Metastasis (TNM) of the International Union Against Cancer (UICC) (Table 4.2) [33]. This includes:

- determination of the anatomical extent of disease;
- assessment of serum tumour markers, including nadir values of hCG, AFP and lactate dehydrogenase (LDH) after orchiectomy (S category);
- definition of regional nodes;
- N-category modifications related to node size.
Table 4.2: TNM classification for testicular cancer (UICC, 2016, 8th edn. [33])

<table>
<thead>
<tr>
<th>pT - Primary Tumour†</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pTX</td>
<td>Primary tumour cannot be assessed (see note 1)</td>
</tr>
<tr>
<td>pT0</td>
<td>No evidence of primary tumour (e.g. histological scar in testis)</td>
</tr>
<tr>
<td>pTis</td>
<td>Intratubular germ cell neoplasia (carcinoma in situ)</td>
</tr>
<tr>
<td>pT1</td>
<td>Tumour limited to testis and epididymis without vascular/lymphatic invasion; tumour may invade tunica albuginea but not tunica vaginalis*</td>
</tr>
<tr>
<td>pT2</td>
<td>Tumour limited to testis and epididymis with vascular/lymphatic invasion, or tumour extending through tunica albuginea with involvement of tunica vaginalis**</td>
</tr>
<tr>
<td>pT3</td>
<td>Tumour invades spermatic cord with or without vascular/lymphatic invasion**</td>
</tr>
<tr>
<td>pT4</td>
<td>Tumour invades scrotum with or without vascular/lymphatic invasion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N - Regional Lymph Nodes – Clinical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis with a lymph node mass 2 cm or less in greatest dimension or multiple lymph nodes, none more than 2 cm in greatest dimension</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence of extranodal extension of tumour</td>
</tr>
<tr>
<td>N3</td>
<td>Metastasis with a lymph node mass more than 5 cm in greatest dimension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pN - Regional Lymph Nodes – Pathological</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pNX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>pN0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>pN1</td>
<td>Metastasis with a lymph node mass 2 cm or less in greatest dimension and 5 or fewer positive nodes, none more than 2 cm in greatest dimension</td>
</tr>
<tr>
<td>pN2</td>
<td>Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or greatest dimension; or more than 5 nodes positive, none more than 5 cm; or extension of tumour evidence or extranodal extension of tumour</td>
</tr>
<tr>
<td>pN3</td>
<td>Metastasis with a lymph node mass more than 5 cm in greatest dimension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M - Distant Metastasis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis **</td>
</tr>
<tr>
<td>M1a</td>
<td>Non-regional lymph node(s) or lung metastasis</td>
</tr>
<tr>
<td>M1b</td>
<td>Distant metastasis other than non-regional lymph nodes and lung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S - Serum Tumour Markers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td>Serum marker studies not available or not performed</td>
</tr>
<tr>
<td>S0</td>
<td>Serum marker study levels within normal limits</td>
</tr>
<tr>
<td>LDH (U/l)</td>
<td>hCG (mIU/mL)</td>
</tr>
<tr>
<td>S1</td>
<td>< 1.5 x N and</td>
</tr>
<tr>
<td>S2</td>
<td>1.5-10 x N or</td>
</tr>
<tr>
<td>S3</td>
<td>> 10 x N or</td>
</tr>
</tbody>
</table>

N indicates the upper limit of normal for the LDH assay:
LDH = lactate dehydrogenase; hCG = human chorionic gonadotrophin; AFP = alpha-fetoprotein.

*AJCC eighth edition subdivides T1 Pure Seminoma by T1a and T1b depending on size no greater than 3 cm or greater than 3 cm in greatest dimension [51].
** AJCC eighth edition considers the hilar soft tissue invasion as pT2, while the discontinuous tumour in spermatic cord as pM1 [51].

† Except for pTis and pT4, where radical orchidectomy is not always necessary for classification purposes, the extent of the primary tumour is classified after radical orchidectomy; see pT. In other circumstances, TX is used if no radical orchidectomy has been performed.
According to the 2009 TNM classification, stage I TC includes the following substages:

<table>
<thead>
<tr>
<th>Stage grouping</th>
<th>pT</th>
<th>N</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>pTis</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage I</td>
<td>pT1-T4</td>
<td>N0</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td>Stage IA</td>
<td>pT1</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>pT2 - pT4</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage IS</td>
<td>Any patient/TX</td>
<td>N0</td>
<td>M0</td>
<td>S1-3</td>
</tr>
<tr>
<td>Stage II</td>
<td>Any patient/TX</td>
<td>N1-N3</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>Any patient/TX</td>
<td>N1</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>Any patient/TX</td>
<td>N2</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage III</td>
<td>Any patient/TX</td>
<td>N3</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>Any patient/TX</td>
<td>Any N</td>
<td>M1a</td>
<td>SX</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>Any patient/TX</td>
<td>N1-N3</td>
<td>M0</td>
<td>S2</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>Any patient/TX</td>
<td>N1-N3</td>
<td>M0</td>
<td>S3</td>
</tr>
</tbody>
</table>

Stage IA: patients have primary tumours limited to the testis and epididymis, with no evidence of microscopic vascular or lymphatic invasion by tumour cells on microscopy, no sign of metastases on clinical examination or imaging, and post-orchiectomy serum tumour marker levels within normal limits. Marker decline in patients with CS I disease should be assessed until normalisation.

Stage IB: patients have a more locally invasive primary tumour, but no sign of metastatic disease.

Stage IS: patients have persistently elevated (and usually increasing) serum tumour marker levels after orchiectomy, indicating subclinical metastatic disease (or possibly a second germ cell tumour in the remaining testis).

In large population-based patient series, 75-80% of seminoma patients, and about 55% of patients with NSGCT cancer have stage I disease at diagnosis [52]. True stage IS (persistently elevated or increasing serum marker levels after orchiectomy) is found in about 5% of non-seminoma patients.

In 1997, the IGCCCG defined a prognostic factor-based staging system for metastatic testis tumours based on identification of clinically independent adverse factors. This staging system has been incorporated into the TNM Classification and uses histology, location of the primary tumour, location of metastases and pre-chemotherapy marker levels in serum as prognostic factors to categorise patients into 'good', 'intermediate' or 'poor' prognosis (Table 4.3) [35].
Table 4.3: Prognostic-based staging system for metastatic germ cell cancer
(International Germ Cell Cancer Collaborative Group [35])*

<table>
<thead>
<tr>
<th>Good-prognosis group</th>
<th>5-year PFS 89%</th>
<th>5-year survival 92%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of the following criteria:</td>
<td>• Testis/retro-peritoneal primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No non-pulmonary visceral metastases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AFP < 1,000 ng/mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hCG < 5,000 IU/L (1,000 ng/mL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LDH < 1.5 x ULN</td>
<td></td>
</tr>
<tr>
<td>122x770 Non-seminoma (56% of cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122x758 Seminoma (90% of cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122x732 All of the following criteria:</td>
<td>• Any primary site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Normal AFP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any hCG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any LDH</td>
<td></td>
</tr>
<tr>
<td>Intermediate-prognosis group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any of the following criteria:</td>
<td>• Testis/retro-peritoneal primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No non-pulmonary visceral metastases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AFP 1,000 - 10,000 ng/mL or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hCG 5,000 - 50,000 IU/L or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LDH 1.5 - 10 x ULN</td>
<td></td>
</tr>
<tr>
<td>122x562 Non-seminoma (28% of cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122x549 Seminoma (10% of cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122x536 All of the following criteria:</td>
<td>• Any primary site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-pulmonary visceral metastases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Normal AFP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any hCG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any LDH</td>
<td></td>
</tr>
<tr>
<td>Poor-prognosis group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any of the following criteria:</td>
<td>• Mediastinal primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-pulmonary visceral metastases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AFP > 10,000 ng/mL or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hCG > 50,000 IU/L (10,000 ng/mL) or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LDH > 10 x ULN</td>
<td></td>
</tr>
<tr>
<td>122x403 Non-seminoma (16% of cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122x391 Seminoma No patients classified as poor prognosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Pre-chemotherapy serum tumour markers should be assessed immediately prior to the administration of chemotherapy (same day).
PFS = progression-free survival; AFP = alpha-fetoprotein; hCG = human chorionic gonadotrophin; LDH = lactate dehydrogenase.

5. Diagnóstic Evaluation

5.1 Clinical examination
Testicular cancer usually presents as a painless, unilateral testicular scrotal mass, as a casual US finding, or is revealed by a scrotal trauma [53]. Scrotal pain may be the first symptom in 20% of cases and it is present in up to 27% of patients with TC [53, 54]. Gynaecomastia appears in 7% of cases (more common in non-seminomatus tumours). Back and flank pain due to metastasis is present in about 11% of cases [54].

Diagnosis is delayed in around 10% of cases of TC that mimic orchioepididymitis [54], physical examination reveals the features of the mass and must always be carried out together with a general examination to find possible (supraclavicular) distant metastases, a palpable abdominal mass or gynaecomastia. Ultrasound must be performed in any doubtful case. A correct diagnosis must be established in all patients with an intrascrotal mass [55].
5.2 Imaging of the testis
Currently, US is used to confirm the presence of a testicular mass and explore the contralateral testis. Ultrasound sensitivity is almost 100%, and US has an important role in determining whether a mass is intra- or extra-testicular [55]. Ultrasound is an inexpensive test and should be performed even in the presence of clinically evident TC [56].

Ultrasound of the testis should be performed in young men with retroperitoneal or visceral masses and/or elevated serum hCG or AFP, and/or consulting for fertility problems and without a palpable testicular mass [57, 58].

Magnetic resonance imaging of the scrotum offers higher sensitivity and specificity than US in the diagnosis of TC, but its high cost does not justify its routine use for diagnosis [59, 60].

5.3 Serum tumour markers at diagnosis
Serum tumour markers are prognostic factors and contribute to diagnosis and staging [61]. The following markers should be determined before, and five to seven days after, orchiectomy:

- alpha-fetoprotein (produced by yolk sac cells);
- hCG (expression of trophoblasts);
- LDH.

Tumour markers are of value for diagnosis (before orchiectomy) as well as for prognosis (after orchiectomy). They are increased in approximately every second patient with TC [53, 62]. Alpha-fetoprotein and hCG are increased in 50-70% and in 40-60% of patients with NSGCT, respectively. About 90% of NSGCT present with a rise in one or both of the markers. Up to 30% of seminomas can present or develop an elevated hCG level during the course of the disease [34].

Lactase dehydrogenase is a less specific marker, its concentration being proportional to tumour volume. Its level may be elevated in 80% of patients with advanced TC [34]. Of note, negative marker levels do not exclude the diagnosis of a GCT. Placental alkaline phosphatase (PLAP), is an optional marker in monitoring patients with pure seminoma, but is not recommended in smokers [63].

Cytogenetic and molecular markers are available in specific centres, but at present only contribute to research. There is preliminary evidence that micro-RNAs from two clusters (miR-371-373 and miR-302-367), or a composite panel display, offer higher accuracy in the diagnosis of residual and recurrent GCT than conventional markers. They may be useful in diagnostic, monitoring and prognostication in the future [64, 65].

5.4 Inguinal exploration and orchiectomy
Every patient with a suspected testicular mass must undergo inguinal exploration with exteriorisation of the testis within its tunics. Orchiectomy with division of the spermatic cord at the internal inguinal ring must be performed if a malignant tumour is found. If the diagnosis is not clear, a testicular biopsy (and enucleation of the intraparenchymal tumour) is taken for frozen (fresh tissue) section histological examination. Even though only limited data are available, it has been shown that during orchiectomy, a testicular prosthesis can be inserted without increased infectious complications or rejection rates [66].

In cases of life-threatening disseminated disease, life-saving chemotherapy should be given up-front, especially when the clinical picture is very likely TC, and/or tumour markers are increased. Orchiectomy may be delayed until clinical stabilisation occurs or in combination with resection of residual lesions.

5.5 Organ-sparing surgery
Although organ-sparing surgery is not indicated in the presence of non-tumoural contralateral testis, it can be attempted in special cases with all the necessary precautions. In synchronous bilateral TCs, metachronous contralateral tumours, or in a tumour in a solitary testis with normal pre-operative testosterone levels, organ preserving surgery can be performed when tumour volume is less than approximately 30% of the testicular volume and surgical rules are respected. In those cases, the rate of associated GCNIS is high (at least up to 82%) (see Section 5.7).

In cases of undetermined testicular masses (< 1 cm, non-palpable, multiple or of unusual presentation), frozen section examination (FSE) has proven reliable and highly concordant with final histopathology. Frozen section examination may be considered as a selection tool for organ-sparing surgery [67].

5.6 Pathological examination of the testis
Mandatory pathological requirements:
- macroscopic features: side, testis size, maximum tumour size, and macroscopic features of the epididymis, spermatic cord, and tunica vaginalis;
• sampling: a 1 cm² section for every centimetre of maximum tumour diameter, including normal macroscopic parenchyma (if present), albuginea and epididymis, with selection of suspected areas;
• at least one proximal and one distal section of spermatic cord plus any suspected area;
• microscopic features and diagnosis: histological type (specify individual components and estimate amount as percentage) according to WHO 2016 [68]:
 - presence or absence of peri-tumoural venous and/or lymphatic invasion;
 - presence or absence of albuginea, tunica vaginalis, rete testis, epididymis or spermatic cord invasion; presence or absence of GCNIS in non-tumour parenchyma;
 - in cases of rete testis invasion (RTI), attention should be paid to distinguishing between pagetoid involvement and stromal invasion [69];
• pT category according to TNM 2016 [33];
• Immunohistochemical studies: in seminoma and mixed GCT, AFP and hCG.

Advisable immunohistochemical markers, in cases of doubt, are:
• in seminoma: cytokeratins (CAM 5.2), PLAP, c-kit;
• in ITGCN: PLAP, c-kit;
• other advisable markers: chromogranin A (Cg A), Ki-67 (MIB-1).

5.7 Germ cell tumours histological markers

<table>
<thead>
<tr>
<th>Marker</th>
<th>GCNIS</th>
<th>Seminoma</th>
<th>Post-puberal yolk sac tumour</th>
<th>Embryonal Carcinoma</th>
<th>Trophoblastic Cyto</th>
<th>Trophoblastic Syncytio</th>
<th>Spermatocytic tumour</th>
<th>Pre-puberal yolk sac tumour</th>
<th>Sex cord gonadal stromal tumours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT3/4</td>
<td>100%</td>
<td>100%</td>
<td>-</td>
<td>90%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SALL 4</td>
<td>90%</td>
<td>100%</td>
<td>90%</td>
<td>90%</td>
<td>+</td>
<td>-</td>
<td>50-90% (weak)</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>Glypican3</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>8%</td>
<td>100% (irregular)</td>
<td>100% (irregular)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD30</td>
<td>-</td>
<td><10%</td>
<td><10%</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AFP</td>
<td>-</td>
<td>80%</td>
<td>33%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-hCG</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD117</td>
<td>100%</td>
<td>90/100%</td>
<td>60% (focal)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+/- (Weak)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PLAP</td>
<td>100%</td>
<td>86/95%</td>
<td>53%</td>
<td>86%</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-inhibin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>Sertoli; 30-50%; Leydig; 100%</td>
</tr>
<tr>
<td>Calretinin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>AE1/AE3</td>
<td>-</td>
<td>20/36%</td>
<td>+ (focal)</td>
<td>95% (weak)</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>Sertoli; 64%; Leydig; 42%</td>
</tr>
<tr>
<td>EMA</td>
<td>-</td>
<td>2%</td>
<td>5%</td>
<td>2%</td>
<td>46%</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>CEA</td>
<td>-</td>
<td>-</td>
<td>11%</td>
<td>-</td>
<td>-</td>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GATA 3</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>40% (focal)</td>
<td>+</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hPL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CgA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sertoli; 82%; Leydig; 92%</td>
</tr>
<tr>
<td>Synapto</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sertoli; 45%; Leydig; 70%</td>
</tr>
<tr>
<td>p63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

OCT3/4 = homeodomain transcription factor of the POU family; SALL 4 = transcription factor encoded by a member of the Spalt-like (SALL) gene family; Glypican 3 (GPC3) = a membrane-bound heparin sulphate proteoglycan; CD30 = immunohistochemical marker; AFP = alpha-fetoprotein; hCG = human chorionic
gonadotrophin; CD117(c-KIT) = immunohistochemical marker; PLAP = placental alkaline phosphatase; α-inhibin = peptide hormone; Calretinin = 29 kD calcium-binding protein; AE1/AE3 = cytokeratins; EMA = epithelial membrane antigen; CEA = carcinoembryonic antigen; GATA 3 = transcription factor; hPL = human placenta lactogen; CgA = Chromogranin A; Synapt = neuroendocrine markers; p63 = transformation-related protein 63.

5.8 Diagnosis and treatment of germ cell neoplasia in situ (GCNIS)

Contralateral biopsy has been advocated to rule out the presence of GCNIS [70]. Although routine policy in some countries [71], the low incidence of GCNIS and contralateral metachronous testicular tumours (up to 9% and approximately 2.5%, respectively) [72, 73], the morbidity of GCNIS treatment, and the fact that most metachronous tumours are at a low stage at presentation, make it controversial to recommend a systematic contralateral biopsy in all patients [74, 75].

It is still difficult to reach a consensus on whether the existence of contralateral GCNIS must be identified in all cases. However, biopsy of the contralateral testis should be offered to patients at high risk for contralateral GCNIS, i.e. testicular volume < 12 mL, a history of cryptorchidism or poor spermatogenesis (Johnson Score 1-3). A contralateral biopsy is not necessary in patients older than 40 years without risk factors [39, 76-79]. A double biopsy increases sensitivity [78]. Patients should be informed that a testicular tumour may arise in spite of a negative biopsy [80].

Once GCNIS is diagnosed, local radiotherapy (RT) (16-20 Gy in fractions of 2 Gy) is the treatment of choice in the case of a solitary testis. Testicular RT in a solitary testis will result in infertility and increased long-term risk of Leydig cell insufficiency [74, 81, 82]. Fertile patients who wish to father children may delay radiation therapy and be followed by regular testicular US [78]. Chemotherapy is significantly less effective and the cure rates are dose-dependent [83].

If GCNIS is diagnosed and the contralateral testis is healthy, the options for management are orchiectomy or close observation (with a five-year risk of developing TC of 50%) [84].

5.9 Screening

There are no high level evidence studies proving the advantages of screening programmes [85], but it has been demonstrated that stage and prognosis are directly related to early diagnosis. In the presence of clinical risk factors, and especially in patients with a family history of testis cancer, family members and the patient should be informed about the importance of physical self-examination [86].

5.10 Recommendations for the diagnosis and staging of testicular cancer

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss sperm banking with all men prior to starting treatment for testicular cancer (See chapter 7.1.).</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform testicular ultrasound in all patients with suspicion of testicular cancer.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer biopsy of the contralateral testis and discuss its consequences with patients at high risk for contralateral germ cell neoplasia in situ.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform orchiectomy and pathological examination of the testis to confirm the diagnosis and to define the local extension (pT category). In a life-threatening situation due to extensive metastasis, start chemotherapy before orchiectomy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform serum determination of tumour markers (alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase), before, five to seven days after orchiectomy, and until normalised, for staging and prognostic reasons.</td>
<td>Strong</td>
</tr>
<tr>
<td>Assess the state of the retroperitoneal, mediastinal and supraclavicular nodes and viscera in testicular cancer.</td>
<td>Strong</td>
</tr>
<tr>
<td>Advise patients with a familiar history of testis cancer, as well as their family members, to perform regular testicular self-examination.</td>
<td>Strong</td>
</tr>
</tbody>
</table>
6. PROGNOSIS

6.1 Risk factors for metastatic relapse in clinical stage I
Retrospectively, for seminoma stage I, tumour size (> 4 cm) and stromal invasion of the rete testis have been identified as predictors for relapse in a pooled analysis [87]. The absence of both factors indicated a low recurrence rate (6%) [88]. Although the original model was not found to apply in a further retrospective report [89], some prospective series [90-92] sustain the prognostic importance of tumour size and stromal invasion of the rete testis. Two systematic reviews assessed the prognostic value of these risk factors [93, 94]. While tumour size (continuous or dichotomised) and rete testis invasion are associated with a higher risk of relapse, both systematic reviews stress the low quality of the studies included and that the level of evidence is too low to advocate the use of these pathological risk factors to drive the choice of treatment [93, 94]. With modern imaging, CS I patients with seminoma face a risk of occult metastasis, independent of risk factors, of < 15% in all recently published series.

For non-seminoma stage I, vascular invasion of the primary tumour in blood or lymphatic vessels is the most important predictor of occult metastatic disease. The proliferation rate and the percentage of embryonal carcinoma are additional predictors that improve upon the positive- and negative predictive value of vascular invasion [95]. Whether the absence of teratoma (as qualitative data, as opposed to the more subjective assessment of percentage of embryonal carcinoma) can independently complement vascular invasion as a predictive factor of relapse requires validation [96].

The significant prognostic pathological risk factors for stage I TC are listed in Table 6.1.

Table 6.1: Risk factors for occult metastatic disease in stage I testicular cancer

<table>
<thead>
<tr>
<th>Pathological (for stage I)</th>
<th>For seminoma</th>
<th>For non-seminoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histopathological type</td>
<td>• Tumour size (> 4 cm)</td>
<td>• Vascular/lymphatic in or peri-tumoural invasion</td>
</tr>
<tr>
<td></td>
<td>• Invasion of the rete testis</td>
<td>• Proliferation rate > 70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Percentage of embryonal carcinoma > 50%</td>
</tr>
</tbody>
</table>

7. DISEASE MANAGEMENT

7.1 Impact on fertility and fertility-associated issues
Sperm abnormalities and Leydig cell dysfunction are frequently found in patients with TCs prior to orchiectomy [97]. Furthermore, chemotherapy and RT can additionally impair fertility; however, long-term infertility is rare after RT and dose-cumulative-dependant after chemotherapy [98, 99]. In patients in the reproductive age group, pre-treatment fertility assessment (testosterone, luteinising hormone [LH] and follicle stimulating hormone [FSH] levels) should be performed, and semen analysis and cryopreservation should be offered as this is the most cost-effective strategy for fertility preservation when several assisted reproductive techniques are compared [100] (Table 5.10). If cryopreservation is desired, it should preferably be performed before orchiectomy, but in any case prior to chemotherapy or RT [81, 98-102]. In cases of bilateral orchiectomy or low testosterone levels after treatment of GCNIS, life-long testosterone supplementation is necessary [103].

Patients with unilateral or bilateral orchiectomy should be offered a testicular prosthesis [104]. For more detailed information, the reader is referred to the EAU Male Infertility Guidelines [105].

7.2 Stage I Germ cell tumours
7.2.1 Seminoma Stage I
After modern staging procedures, less than 15% of stage I seminoma patients have subclinical metastatic disease, usually in the retroperitoneum, and will relapse after orchiectomy alone [89, 92, 106, 107].

The decision regarding adjuvant treatment should always be based on a thorough discussion with the patient, taking into account the described advantages and disadvantages, as well as the individual situation of the patient.
7.2.1.1 Surveillance
Several prospective non-randomised surveillance studies have been conducted during the past decade, the largest study from Canada with > 1,500 patients [108]. Previous analyses from four studies showed an actuarial five-year relapse-free rate of 82.3%. The Princess Margaret Hospital series (n = 1,559) showed an overall relapse rate in unselected patients of 16.8%. The actuarial relapse rate is in the order of 15-20% at five years, and most of the relapses are first detected in infra-diaphragmatic lymph nodes [109].

In patients with low risk (tumour size < 4 cm and no stromal rete testis invasion), the recurrence under surveillance is as low as 6% [91]. Chemotherapy, according to the IGCCCG classification, is a possible treatment for seminoma relapse under surveillance. However, 70% of patients with relapse are suitable for treatment with RT alone because of small volume disease at the time of recurrence. Patients who relapse after salvage RT can be effectively treated with chemotherapy [110]. The combination of carboplatin chemotherapy and modern RT for treatment of low-stage seminoma relapse (IIA/IIB) is under investigation.

The overall cancer-specific survival (CSS) rate, reported under surveillance performed by experienced centres, is 97-100% for seminoma stage I [109, 110]. The main drawback of surveillance is the need for more intensive follow-up, especially with repeated imaging examinations of the retroperitoneal lymph nodes.

7.2.1.2 Adjuvant chemotherapy
A joint trial by the Medical Research Council (MRC) and the European Organisation for Research and Treatment of Cancer (EORTC), which compared one cycle of carboplatin area under curve (AUC) 7 with adjuvant RT, did not show a significant difference with regard to recurrence rate, time to recurrence and survival after a median follow-up of four years [111-113]. Therefore, adjuvant carboplatin therapy using a dosage of one course of AUC 7 is an alternative to RT or surveillance in stage I seminoma [109, 111-113]. Two courses of adjuvant carboplatin seem to further reduce the relapse rate to the order of 1-3% [88, 114]. Long-term data report the recurrence rate after three years following adjuvant carboplatin as 15%. Not all of these patients were cured [115].

7.2.1.3 Adjuvant radiotherapy and risk-adapted treatment
Seminoma cells are extremely radiosensitive. Adjuvant RT to a para-aortic (PA) field or to a PA and ipsilateral field (PA and ipsilateral iliac nodes), with moderate doses (total 20-24 Gy), will reduce the relapse rate to 1-3% [116-118]. Adjuvant irradiation of supra-diaphragmatic lymph nodes is not indicated.

With regard to the irradiation dose, a large MRC RCT of 20 Gy vs. 30 Gy PA radiation in stage I seminoma showed non-inferiority in terms of recurrence rates [117]. The rate of severe radiation induced long-term toxicity is less than 2%. Moderate chronic gastrointestinal (GI) side-effects are seen in about 5% of patients, and moderate acute GI toxicity in about 60% [116]. The main concern surrounding adjuvant RT is the increased risk of radiation-induced second non-germ cell malignancies [119-122].

A scrotal shield should be considered during adjuvant RT in order to prevent scattered radiation toxicity in the contralateral testis [119].

7.2.1.4 Risk-adapted treatment
Using tumour size > 4 cm and stromal rete testis invasion, patients with seminoma stage I may be subdivided into low- and high-risk groups for occult metastatic disease. Patients with and without both risk factors have a 32% and 12% risk of occult disease, respectively. These risk factors were introduced through an analysis of retrospective trials [87], and then confirmed in prospective studies [91, 92, 123]. A prospective trial based on one or no risk factors, showed the feasibility of a risk-adapted approach; the group without risk factors were managed with surveillance, whilst the group with both risk factors received two courses of carboplatin, AUC 7 [123]. In patients with two risk factors, adjuvant carboplatin reduces the risk of relapse by about 60% [92]. Early data with limited follow-up indicated that patients without either risk factor have a very low risk, 6-15%, of relapse at five years. Patients in the high-risk group treated with two courses of carboplatin experienced a 1.4%-3.2% relapse rate at mean follow-up of 34 months [94, 123]. The level of evidence supporting risk-adapted treatment based on the existence of pathological risk factors is low [93].
7.2.1.5 **Recommendations for the treatment of stage I seminoma**

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully inform the patient about all available management options, including surveillance or adjuvant chemotherapy after orchiectomy, as well as treatment-specific recurrence rates and acute and long-term side effects.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer surveillance as a management option if facilities are available and the patient is compliant.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer one course at area under curve 7 (AUC), if carboplatin chemotherapy is considered.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not perform adjuvant treatment in patients at very low risk (no risk factors).</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not perform radiotherapy as adjuvant treatment.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

7.2.2 **NSGCT clinical stage I**

Up to 30% of NSGCT patients with CS1 disease have subclinical metastases and will relapse during surveillance. The decision regarding adjuvant treatment should always be based on a thorough discussion with the patient, taking into account the described advantages and disadvantages, as well as the individual situation of the patient.

7.2.2.1 **Surveillance**

Improvements in clinical staging and follow-up methods, and the availability of effective salvage treatment with cisplatin-based chemotherapy and post-chemotherapy surgery, have led to studies of close surveillance only after orchiectomy in CS1 NSGCT patients. The largest reports of the surveillance strategy indicate a cumulative relapse rate of about 30%, with 80% of relapses occurring during the first twelve months of follow-up, 12% during the second year and 6% during the third year, decreasing to 1% during the fourth and fifth years, and occasionally even later [124, 125]. Approximately 35% of relapsing patients have normal levels of serum tumour markers at relapse, with 60% of relapses occurring in the retroperitoneum. Despite very close follow-up, 11% of relapsing patients presented with large-volume recurrent disease.

The somewhat lower relapse rates reported from surveillance studies compared with some series of patients staged by retroperitoneal lymph node dissection (RPLND) [126] can be explained by the fact that some patients (presumably at higher risk) are excluded once surveillance is advised. Based on the overall CSS data, surveillance within an experienced surveillance programme can safely be offered to patients with non-risk stratified CS1 non-seminoma as long as they are compliant and informed about the expected recurrence rate as well as the salvage treatment [127, 128].

7.2.2.2 **Adjuvant chemotherapy**

Patients with CS1 NSGCT have a 14-48% risk of recurrence within two years after orchiectomy. Adjuvant chemotherapy with two courses of BEP was introduced in 1996 by a prospective MRC trial [129]. Subsequently, adjuvant chemotherapy was mainly given in high-risk patients (vascular invasion present) [129-131]. In these series, including 200 patients, some with a median follow-up of nearly 7.9 years [129], a relapse rate of only 2.7% was reported, with very little long-term toxicity. Two cycles of cisplatin-based adjuvant chemotherapy do not seem to adversely affect fertility or sexual activity [132]. However, the very-long term (> 20 years) side effects of adjuvant chemotherapy in this setting are currently unknown, especially the long-term cardiovascular effects of chemotherapy [133]. This should be taken into consideration during decision-making.

In 2008, a RCT of nerve-sparing RPLND or one course of BEP as adjuvant treatment in CS1 NSGCT without risk-adaption reported that adjuvant chemotherapy significantly increased the two-year recurrence-free survival rate to 99.41% (CI: 95.87%, 99.92%) as opposed to surgery, which had a two-year recurrence-free survival rate of 92.37% (CI: 87.21%, 95.5%) [134]. The difference was 7.04%, (CI: 2.52%, 11.56%) and, therefore, the main endpoint of the trial was reached. The hazard ratio (HR) to experience a tumour recurrence with surgery as opposed to chemotherapy was 7.937, (CI: 1.808, 34.48). Of the 174 patients who received one course of BEP, 43% had high-risk features (> pT1) [134].

A community-based prospective study recommended one course of BEP in lymphovascular invasion (LVI)+ patients, while LVI-patients chose between surveillance and BEP x 1 [135]. The relapse-rate of the 490 patients who received BEP x 1 at five years was 3.2% for LVI+ patients and 1.6% for LVI- patients. After a median follow-up of 8.1 years the relapse rate was 2.3%, 3.4% and 1.3% for all, LVI+, and LVI-, respectively [136]. These numbers imply that > 90% of relapses were prevented by adjuvant chemotherapy and, importantly, no
Relapses were observed later than 3.3 years. Reduction from two to one cycle of BEP considerably improves the risk-benefit ratio of adjuvant chemotherapy.

In addition, it is important to be aware of slow-growing retroperitoneal teratomas after primary chemotherapy [137]. Until now, only a limited number of patients with long-term follow-up and toxicity data have been reported on [138].

The results of cost analyses comparing surveillance, RPLND and primary chemotherapy show different results among the reported studies, possibly because of differences in intensity and costs related to follow-up procedures [139]. With low frequency follow-up CTs (a surveillance strategy which has been proven to be effective in non-seminoma CS1), the costs of follow-up can be considerably reduced [140].

7.2.2.3 Risk-adapted treatment
Risk-adapted treatment is an alternative to surveillance for all patients with CS1 NSGCT. Risk-adapted treatment is based on the risk factor of vascular invasion. Stratifying patients with CS1 NSGCT according to their presumed risk of relapse is a rational option. Similar survival rates and a final cure rate close to 100%, with all available treatment options using the risk-stratifying approach, have been reported by several studies [129-131, 135, 136, 141-143].

If the risk-adapted policy is applied, patients with vascular invasion are recommended to undergo adjuvant chemotherapy and patients with absent vascular invasion are recommended a surveillance strategy. In the past, two cycles of BEP have been recommended for adjuvant treatment. In view of the low rates of recurrence (2-3%) and equivalent CSS rates, including salvage strategies in large prospective trials with sufficient follow-up, one cycle of BEP is now recommended as adjuvant chemotherapy in patients with vascular invasion.

In cases of relapse after BEP x 1 in marker negative patients, RPLND should be considered as the relapse may be teratoma. If markers are positive three courses of BEP are recommended. However, only limited evidence exists, which does not support a specific salvage regimen.

7.2.2.4 Retroperitoneal lymph node dissection
In view of the high CSS rates of surveillance with salvage treatment in cases of relapse and the low relapse rates if adjuvant chemotherapy is chosen, the role of primary diagnostic RPLND has diminished. A randomised phase III trial compared RPLND to BEP x 1 as adjuvant treatment, with a 7% difference in favour of chemotherapy. One course of BEP showed a significantly lower recurrence rate as compared to surgery [134]. No clinically relevant differences in quality of life (QoL) were detected [144].

When RPLND is performed in a multicentre setting, higher rates of in-field recurrences and complications were reported [134, 145]. Therefore, nerve-sparing RPLND, if indicated, should be performed by an experienced surgeon in specialised centres.

About 18-30% of patients are found to have retroperitoneal lymph node metastases on RPLND, corresponding to pathological stage II (PS2) disease [145, 146]. If no retroperitoneal metastases are found at RPLND (PS1), approximately 10% of patients relapse at distant sites [95, 146] with recent series reporting lower figures in the rate of pN+ cases and of relapses [147]. If metastases are present and not treated with adjuvant chemotherapy, recurrence will occur in approximately 31% of patients [146].

The presence of vascular invasion, predominant embryonal carcinoma, pT category as well as a high number of extranodal extensions in metastatic nodes may be associated with an increased risk of recurrence in PS2 cases without adjuvant chemotherapy. As yet, the clinical significance of these further parameters remains limited and not applicable in clinical practice [146, 148].

The follow-up after RPLND is simpler and less costly than that carried out during post-orchiectomy surveillance because of the reduced need for abdominal CT scans [149]. If there is an indication to perform a staging RPLND, a laparoscopic or robot-assisted RPLND is feasible in expert hands. This minimal-invasive approach cannot be recommended as the standard approach outside of a specialised laparoscopic centre [147].
7.2.2.5 Recommendations for the treatment of stage I non-seminomatous germ cell tumour

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inform patients with stage I non-seminomatous germ cell tumour (NSGCT) about all adjuvant treatment options after orchiectomy (surveillance, adjuvant chemotherapy, and retroperitoneal lymph node dissection [RPLND]) including treatment-specific recurrence rates as well as acute and long-term side effects.</td>
<td>Strong</td>
</tr>
<tr>
<td>In patients with stage I NSGCT, offer surveillance or risk-adapted treatment based on vascular invasion (see 7.2.2.6. below).</td>
<td>Strong</td>
</tr>
<tr>
<td>If patients are not willing to undergo surveillance, offer one course of cisplatin, etoposide, bleomycin (BEP) as an adjuvant treatment alternative since it has proven to be superior to RPLND in terms of recurrence rates.</td>
<td>Strong</td>
</tr>
<tr>
<td>In patients with marker-positive recurrent and/or progressing lesion during surveillance, perform salvage treatment consisting of three or four courses of BEP chemotherapy according to the International Germ Cell Cancer Collaborative Group classification, followed by post-chemotherapy RPLND, if necessary.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

7.2.2.6 Risk-adapted treatment for clinical stage I based on vascular invasion

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IA (pT1, no vascular invasion): low risk</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer surveillance if the patient is willing and able to comply.</td>
<td>Strong</td>
</tr>
<tr>
<td>In low-risk patients not willing (or unsuitable) to undergo surveillance, offer adjuvant chemotherapy with one course of cisplatin, etoposide, bleomycin (BEP).</td>
<td>Strong</td>
</tr>
<tr>
<td>Stage IB (pT2-pT4): high risk</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer primary chemotherapy with one course of BEP, or surveillance.</td>
<td>Strong</td>
</tr>
<tr>
<td>Inform patients having adjuvant chemotherapy about the advantages and disadvantages of one vs. two cycles of BEP.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer surveillance to patients not willing to undergo adjuvant chemotherapy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer nerve-sparing retroperitoneal lymph node dissection to highly selected patients only; those with contraindication to adjuvant chemotherapy and unwilling to accept surveillance.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Figure 1 provides a treatment algorithm for patients with NSGCT stage I.
*Discuss all treatment options with individual patients, to allow them to make an informed decision as to their further care.

BEP = cisplatin, etoposide, bleomycin; CS = clinical stage; IGCCCG = International Germ Cell Cancer Collaborative Group; NS = nerve-sparing; NSGCT = non-seminomatous germ cell tumour; RLNPD = retroperitoneal lymph node dissection; VIP = etoposide, cisplatin, ifosfamide.

7.3 Metastatic germ cell tumours
The first-line treatment of metastatic GCTs depends on:
- the histology of the primary tumour;
- prognostic groups as defined by the IGCCCG based on 5,202 non-seminoma and 660 seminoma cases (Table 4.3) [35];
- marker decline during the first cycle of chemotherapy in “poor-prognosis” patients.

In relapsed patients a new prognostic score has been developed including response to first-line therapy which can be used to estimate patient outcome following salvage chemotherapy (see 7.3.3.).
7.3.1 **CS1S with (persistently) elevated serum tumour markers**

Serum tumour markers should be followed closely until levels fall into the reference values according to the expected half-life values for AFP and hCG. The clinical significance of persistently elevated LDH after orchiectomy in stage I disease is unclear. If the marker level for AFP or hCG increases after orchiectomy, the patient has residual disease. An US examination of the contralateral testicle must be performed. In case of NSGCT where RPLND is performed, up to 87% of these patients have pathologically documented nodes in the retroperitoneum [151]. The treatment of true CS1S NSGT patients is still controversial. They may be treated with chemotherapy and with follow-up as for CS1B patients (high risk, see below) after primary chemotherapy [152], or by RPLND [140].

A population-based study reported on persistently elevated LDH or β-hCG in 19% and 15% of stage I seminoma patients, respectively. These patients frequently had a more advanced T stage, but both CSS and OS did not differ from stage IA/B patients, independent of treatment [153].

In all patients with GCTs and rising markers only after orchidectomy, repeated imaging to detect metastasis is justified in order to individually tailor treatment.

7.3.2 **Metastatic disease (stage IIA/B)**

7.3.2.1 Stage IIA/B seminoma

Slightly enlarged retroperitoneal lymph nodes < 2 cm in patients without elevated tumour markers offer a diagnostic problem. These lymph nodes may be benign or represent metastases. An observation period of eight weeks with a second staging is recommended unless a biopsy verifies metastatic disease. Treatment should not be initiated unless metastatic disease is unequivocal, (e.g. growth or positive biopsy).

Specific trials (e.g. including RPLND or involved field radiation combined with a single course of carboplatin chemotherapy) are addressing the role of treatment options with potentially lower toxicity compared to either RT or chemotherapy with three cycles of BEP.

Until recently, the standard treatment for stage IIA/B seminoma has been RT with reported relapse rates of 9-24% [154, 155]. Accumulating data on long-term morbidity, such as increased risk of cardiovascular events and increased risk of second malignancies following RT has led to concern. One study with a follow-up of nineteen years reported sevenfold higher all-cause mortality rates than mortality due to seminoma [156]. Most reports refer to patients irradiated with larger target volumes and higher doses but there are also more recent studies reporting on patients treated with more modern RT [157]. The radiation dose recommended in stage IIA and IIB is 30 Gy and 36 Gy, respectively. The standard radiation field compared with stage I is extended from the PA region to the ipsilateral iliac field. In stage IIB, the lateral borders should include the metastatic lymph nodes with a safety margin of 1.0-1.5 cm. This technique yields relapse-free survival rates in stage IIA and IIB of 92% and 90%, respectively [154, 155]. Conversely, dose reduction to 27 Gy has been associated with 11% of relapses in stage IIA patients [110, 157].

In patients with stage IIA/B seminoma, chemotherapy is an alternative to RT. In this case three courses of BEP or four courses of etoposide and cisplatin (EP), in case of contraindications to bleomycin, should be administered. There are no randomised studies comparing RT vs. chemotherapy. A population based study from the USA, showed that RT is associated with a significant lower all-cause mortality than chemotherapy in stage IIA seminoma (HR 13.3; p < .01) [158].

However, a recent meta-analysis of thirteen high-quality studies comparing efficacy and toxicity of RT and chemotherapy in stage IIA and IIB patients [159] shows that RT and chemotherapy appeared to be similarly effective in both stages, with a non-significant trend toward a greater efficacy of chemotherapy (HR: 2.17) in stage IIB seminoma.

Acute toxicity was almost exclusively reported following chemotherapy, while long-term toxicity was more frequent following RT, mainly represented by bowel toxicity and by a higher occurrence of second cancers, almost all occurring in the irradiated field. A recent population-based study [122] did not show a significantly increased risk of second malignancies in stage IIA seminoma patients undergoing RT.

Single-agent carboplatin is not an alternative to standard EP or BEP chemotherapy for metastatic disease [160].
7.3.2.2 Stage IIA/B non-seminoma

There is a general consensus that treatment should start with initial chemotherapy in all advanced cases of NSGCT except for stage IIA NSGCT disease and pure teratoma without elevated tumour markers, which can be managed by primary RPLND or surveillance to clarify stage [139, 161].

If surveillance is chosen, one follow-up evaluation after six weeks is indicated to document whether the lesion is growing, remaining stable or shrinking. A shrinking lesion is probably non-malignant in origin and should be observed further. A stable or growing lesion indicates either teratoma or an undifferentiated malignant tumour. If the lesion is growing without a corresponding increase in the tumour markers AFP or β-hCG, teratoma is suspected. In such cases “nerve-sparing” RPLND represents the first treatment option which should be performed by an experienced surgeon [161]. Patients with a growing lesion and a concomitant increase in the tumour markers AFP or β-hCG require primary chemotherapy according to the treatment algorithm for patients with metastatic disease and the IGCCCG recommendations (Figure 2). A CT- or US-guided biopsy, if technically possible, may represent an alternative to surveillance strategy in stage IIA non-seminoma patients.

When a marker negative stage IIA/B relapse is diagnosed two or more years following initial diagnosis, a CT- or US-guided biopsy should be carried out to confirm the diagnosis of GCT relapse. There is insufficient published data on PET scans in this situation to provide recommendations.

Primary chemotherapy and primary ‘nerve-sparing’ RPLND are comparable options in terms of outcome, but early and long-term side-effects and toxicity are different, allowing for involvement of the patient in selecting the treatment of choice [162]. In case of PS-IIA or B, patients can be followed or receive two cycles of BEP. The cure rate with either approach will be close to 98% [163-165].

BEP = cisplatin, etoposide, bleomycin; EP = etoposide, cisplatin.
7.3.3 **Metastatic disease (stage IIC and III)**

7.3.3.1 **Primary chemotherapy**

For metastatic seminoma, only very limited data are available from RCTs and they indicate that a cisplatin-based regimen should be preferred to carboplatin chemotherapy [166]. Recent data indicate that EP x 4 results in cure in almost all cases of good-prognosis SGCTs [167]. Standard treatment in good-prognosis seminoma should therefore be, BEP x 3 or EP x 4. In the case of contraindications to bleomycin, EP x 4 should be given [168]. Post-chemotherapy masses should be managed as described in Section 7.5.2.

7.3.3.1.2 Intermediate prognosis risk group - seminomatous germ cell tumour

For patients with intermediate-risk seminoma, BEP x 4 or etoposide, cisplatin, ifosfamide (VIP) (in the case of contraindications to bleomycin) are recommended options, although no RCT has focused specifically on this group of rare patients [169]. A risk-adapted approach with EP x 4 for patients with good prognosis and VIP x 4 for patients with intermediate-prognosis metastatic seminoma yielded an OS of 99% and 87% for good- and intermediate-prognosis patients, respectively [167].

7.3.3.1.3 Good prognosis risk group - non-seminomatous germ cell tumour

For non-seminoma, the primary treatment of choice for metastatic disease in patients with good-prognosis disease, according to the IGCCCG risk classification, is BEP x 3 (Table 7.1). This regimen was proven superior to cisplatin, vinblastine and bleomycin (PVB) in patients with advanced disease [170, 171]. While data support a three-day regimen of administering combination chemotherapy to be equally effective as a five-day regimen, this is associated with increased toxicity when four cycles are used [172], thus the five-day BEP regimen is recommended.
Table 7.1: cisplatin, etoposide, bleomycin (BEP) regimen (interval 21 days)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Duration of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>20 mg/m²</td>
<td>Days 1-5*</td>
</tr>
<tr>
<td>Etoposide</td>
<td>100 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>30 mg</td>
<td>Days 1, 8, 15</td>
</tr>
</tbody>
</table>

*Plus hydration.

In selected cases where bleomycin is contraindicated, EP x 4 can be given [171]. A RCT from the French Groupe d’Etude des Tumeurs Genito-Uriniaries (GETUG) suggested that when BEP is used in this setting the mortality rate was half that of EP, although the difference did not reach statistical significance [173]. Furthermore, the incidence of active cancer in the retroperitoneal specimen at post-chemotherapy RPLND was significantly higher in patients who received EP x 4 as compared to BEP x 3 (31.9% vs. 7.8%, p < 0.0.01) [174, 175]. The risk of requiring post-RPLND adjuvant chemotherapy could be higher after EP x 4 which could therefore offset the hoped-for less toxic treatment.

Higher age is an adverse factor for the efficacy of BEP x 3 [176]. A randomised study using 72H-infusional versus bolus bleomycin in order to reduce pulmonary toxicity did not show any significant difference in efficacy or in pulmonary side effects [177].

Therapy should be given without reduction of the doses at 21-day intervals; delaying the following chemotherapy cycle is justified only in cases of fever with granulocytopenia < 1,000/mm³ or thrombocytopenia < 100,000/IU. Neutropenia without fever is not by itself a reason to delay the next cycle. As GCS-F (Granulocyte colony-stimulating factor) lowers the risk of neutropenic sepsis, one may consider giving it up-front. However, GCS-F should at least be given if infectious complications have occurred during or after chemotherapy, or if treatment interval was delayed due to myelotoxicity [178].

7.3.3.1.4 Intermediate prognosis risk group - non-seminomatous germ cell tumour

The ‘intermediate-prognosis’ group in the IGCCCG has been defined as patients with a five-year survival rate of about 80%. The available data support BEP x 4 as standard treatment [179, 180]. A RCT comparing BEP x 4 to BEP x 4 with the addition of paclitaxel (T-BEP) showed no significant improvement in OS [181]. The overall toxicity with T-BEP was higher than with BEP; therefore, it cannot be recommended as a standard approach.

Patients with intermediate prognosis treated in recent years (after 1997) are more likely to reach a five year survival of close to 90% [182].

7.3.3.1.5 Poor prognosis risk group - non-seminomatous germ cell tumour

For patients with a ‘poor-prognosis’ non-seminoma as defined by the IGCCCG, standard treatment consists of BEP x 4. Four cycles of cisplatin, etoposide and ifosfamide (PEI) have the same effect, but are more myelotoxic [183, 184]. The five-year PFS is between 45% and 50%. Four RCTs have shown no advantage in OS for high-dose chemotherapy in the overall ‘poor-prognosis’ patients group [36, 185-187]. However, patients with a slow tumour marker decline after the first or second cycle represent a prognostically inferior subgroup [36, 37]. An online calculator is available at https://www.gustaveroussy.fr/calculation-tumor/NSGCT.html. Recently, an international randomised phase III trial (GETUG 13) conducted in 263 patients with IGCCCG poor-risk NSGCT demonstrated that intensifying treatment with dose-dense chemotherapy improves PFS, but not OS in patients with an early unfavourable tumour marker decline [38]. Based on the results from this trial, patients with an unfavourable tumour marker decline after BEP x 1 should be switched to a more intensive chemotherapy regimen [188, 189]. Further prospective trials/registries are planned to validate this approach.

Additional patient groups that may benefit form up-front dose intensification are those with mediastinal primary non-seminoma and patients with brain metastases at initial diagnosis [190, 191].

Since a matched-pair analysis comparing high-dose to conventional treatment resulted in a better survival rate [37, 192], poor-prognosis patients should still be treated in ongoing prospective trials or registries, whenever possible. Patients meeting ‘poor-prognosis’ criteria should be transferred to a reference centre as a better outcome was reported for intermediate- and poor-prognosis patients who had been treated within a clinical trial in a high volume centre [14, 167]. There are no general recommendations for treatment modifications for patients with a poor general condition (Karnofsky < 50%) or extended liver infiltration (≥ 50%), but two small reports indicate that a first cycle of dose-reduced therapy may reduce acute mortality without compromising long-term outcome. However, the number of subsequent cycles of full-dose therapy should not be reduced after a first low-dose induction cycle [193, 194].

Patients with extended pulmonary infiltration are at risk for acute respiratory distress syndrome:
adapting the doses of the BEP regimen in the first cycle of chemotherapy (only three days of EP without bleomycin) has been suggested to reduce the risk of early death in this setting [193]. Management of patients with advanced disease in high-volume centres is associated with improved survival and is consequently recommended [195].

7.4 Restaging and further treatment

7.4.1 Restaging

Restaging is performed by imaging investigations and re-evaluation of tumour markers. Upon marker decline and stable or regressive tumour manifestation, chemotherapy will be completed (three or four cycles, depending on the initial stage) [179, 196, 197]. In the case of marker decline, but growing metastases, resection of the tumour is obligatory after termination of induction therapy, other than in an emergency, according to local tumour growth [198].

Patients with clear upfront progression (primary cisplatin refractory) should be switched to experimental new drug trials [199]. Patients with slow marker decline after the first one to two cycles of chemotherapy are candidates for dose intensification (see section 7.4.4.). Patients with a low-level hCG marker plateau post-treatment should be observed to see whether complete normalisation occurs. In patients with a low plateau serum AFP level after chemotherapy, surgery of residual masses should be performed, with post-surgery AFP monitoring. Salvage chemotherapy is indicated for documented marker rise only [200, 201].

7.4.2 Residual tumour resection

7.4.2.1 Seminoma

A residual mass of seminoma should not be primarily resected, irrespective of the size, but controlled by imaging investigations and tumour markers [202-205].

Fluorodeoxyglucose-positron emission tomography has a high NPV in patients with residual masses after treatment of seminoma. False positive results are less frequent when scans are scheduled > two months after chemotherapy. In patients with residuals of > 3 cm, FDG-PET should be performed in order to gain more information on the viability of these residuals. In patients with residuals of < 3 cm, the use of FDG-PET is optional [48].

In the case of a post-chemotherapy mass that is still positive at reclassification FDG-PET with no volume increase, a second FDG-PET should be performed six weeks later. Alternatively, a biopsy should be taken to ascertain persistent disease. In these cases, as well as in those with progressive disease (i.e. a growing mass which up-takes contrast medium at CT scans or radionuclide tracer at FDG-PET), salvage therapy is indicated (usually chemotherapy or RT) [206-208]. However, a recent publication shows a low PPV for vital tumours in residual lesions (most of them > 3 cm) after chemotherapy in metastatic seminoma (11 to 38% depending on subgroups). Thus, at present, caution is recommended when positive PET lesions alone are driving clinical decisions [209].

Patients with persistent and progressing hCG elevation after first-line chemotherapy should immediately proceed with salvage chemotherapy. Progressing patients without hCG progression should undergo histological verification (e.g. by biopsy or mini-invasive or open surgery) before salvage chemotherapy is given.

Retroperitoneal lymph node dissection is rarely indicated. In cases in which RPLND is indicated, this should be performed in referral centres, as residuals from seminoma may be difficult to remove due to intense fibrosis [207]. Ejaculation may be preserved in these cases [210].

7.4.2.2 Non-seminoma

Following first-line BEP chemotherapy, only 6-10% of residual masses contain viable cancer, 50% contain mature teratoma, and 40% contain necrotic-fibrotic tissue [211]. Fluorodeoxyglucose-positron emission tomography is not indicated to re-stage patients after chemotherapy. In cases of complete remission after first-line chemotherapy (no visible tumour), tumour resection is not indicated [212, 213]. So far no diagnostic or risk-calculator can definitely predict histology of residual masses. External validation of new models is still pending [214]. Residual tumour resection is mandatory in all patients with a residual mass > 1 cm at cross-sectional CT imaging [215-218].

The role of surgery is debated in patients with retroperitoneal. Residual lesions < 1 cm. There is still a risk of residual cancer or teratoma, although the vast majority of patients (> 70%) harbour fibro-necrotic tissue [219]. Proponents of post-chemotherapy RPLND for all patients refer to the fact that both teratoma and vital malignant GCTs are still found after radiologic complete remission in lesions < 10 mm [220]. The alternative is to put patients with residual disease < 1 cm on an observation protocol based on recurrence data of 6-9% depending on the time of follow-up [212, 213]. In the series with a longer observation of 15.5 years, twelve of
141 patients (9%) relapsed after having achieved a complete response after primary treatment [213], but eight of the twelve relapsing patients were cured. Therefore, patients treated with first-line chemotherapy should be informed about this life-long risk of recurrence in the order of 10% before consenting to observe residual lesions < 1 cm. Patients after salvage chemotherapy or high-dose chemotherapy in first or subsequent salvage situations harbour vital tumour at a much higher rate [221]. Therefore, there is an indication to perform surgery in salvage patients even with residual disease < 1 cm [212, 213].

When surgery is indicated, all areas of primary metastatic sites must be completely resected within two to six weeks of completion of chemotherapy. If technically feasible, a bilateral nerve-sparing procedure should be performed. There is growing evidence that template resections with unilateral preservation of nerves in selected patients yield equivalent long-term results compared to bilateral systematic resections in all patients. The mere resection of the residual tumour (so called lumpectomy) should not be performed [213, 219, 222-225].

Laparoscopic RPLND may yield comparable outcomes to the open procedure in elected cases with low residual disease and in very experienced hands, but it is not recommended outside a specialised laparoscopic centre with specific expertise in TC. In that setting, up to 30% of post-chemotherapy RPLND may be performed via a laparoscopic approach [226-228].

7.4.3 Timing of surgery in the case of multiple sites

In general, residual surgery should start at the location with the highest volume of residual disease. The histology may diverge in different organ sites [215]. In cases of retroperitoneal and lung residual masses, the presence of fibro-necrotic tissue in the retroperitoneum is associated with a probability as high as 90% that lung masses contain the same histology [229].

Resection of contralateral pulmonary lesions is not mandatory in cases where pathologic examination of the lesions from the first lung show complete necrosis. However, discordant histology between both lungs may occur in up to 20% of patients [230, 231].

7.4.3.1 Quality and intensity of surgery

Post-chemotherapy surgery is always demanding. Most of the time, post-chemotherapy RPLND does not require further interventions on abdominal or retroperitoneal organs. However, about a third of patients may require a planned intervention where removal of organs affected by the disease (for example kidney, psoas muscle or gross vessels) is performed and followed by ad hoc reconstructive surgery (e.g. vascular interventions such as vena cava or aortic prostheses). Patients undergoing adjunct complex surgeries benefit from disease control but have a greater risk of complications than from standard procedures [232, 233]. In patients with intermediate- or poor-risk and residual disease > 5 cm the probability of vascular procedures is as high as 20% [234]. This surgery must therefore be referred to specialised centres capable of interdisciplinary surgery (hepatic resections, vessel replacement, spinal neurosurgery, thoracic surgery). Even with centralisation of treatment, the median number of RPLNDs performed per surgeon/year in the U.K. is six [235]. Nevertheless, patients treated within such centres benefit from a significant reduction in peri-operative mortality from 6% to 0.8% [15]. In addition, specialised urologic surgeons are capable of reducing the local recurrence rate from 16% to 3% with a higher rate of complete resections [16].

7.4.3.2 Salvage and desperation surgery

Surgery of resectable disease after salvage treatment remains a potentially curative option in all patients with any residual mass following salvage chemotherapy. Survival after surgery and first salvage chemotherapy was improved 70% at 10 years, following taxane-containing regimens [236]. Also, in the case of extensive salvage chemotherapy, surgery remains a fundamental tool to achieve durable complete remissions in up to 20% of patients [237, 238].

Desperation surgery refers to resection of non-responsive or progressive (e.g. rising markers) disease following salvage chemotherapy. When the disease is resectable, a significant proportion of these patients can be rendered disease-free in the long-term [239].

7.4.3.3 Consolidation chemotherapy after secondary surgery

After resection of necrosis or post-pubertal teratoma, no further treatment is required. In cases of incomplete resection of viable cancer, two adjuvant cycles of conventionally dosed cisplatin-based chemotherapy may be given in certain subgroups (e.g. ‘poor-prognosis’ patients) [223] (caution: cumulative doses of bleomycin). After complete resection of ‘vital’ tumour < 10% of the total volume, especially in patients in an initially good-prognosis group according to IGCCCG, the relapse rate is very low and adjuvant chemotherapy is not beneficial for preventing further relapse [240]. The prognosis will definitely deteriorate if viable malignant neoplasm is found in resection specimens after second- and third-line chemotherapy. In this latter situation, post-operative chemotherapy is not indicated and is unable to improve the prognosis [241].
7.4.4 **Systemic salvage treatment for relapse or refractory disease**

Cisplatin-based combination salvage chemotherapy will result in long-term remissions in about 50% of the patients who relapse after first-line chemotherapy, but the results are highly dependent on several prognostic factors [242]. The regimens of choice are four cycles of a triplet regimen including cisplatin and ifosfamide plus a third agent: etoposide (PEI/VIP), paclitaxel (TIP), or potentially gemcitabine (GIP) (Table 7.2) [243]. No RCT has compared these regimens. Due to their potentially lethal risk of haematological toxicity, these regimens should be used with G-CSF support and by well-trained oncologists.

The only available RCT comparing standard-dose vs. high-dose chemotherapy plus transplant in the salvage setting showed no benefit in OS in patients treated with three cycles of vinblastine, ifosfamide, and cisplatin (VeIP) plus one cycle of consolidation high-dose chemotherapy, compared with VeIP x 4 [244]. Due to several methodological reasons this trial design can no longer be considered state of the art.

There is clear evidence from large retrospective analyses that there are different prognostic groups in the case of relapse after first-line chemotherapy [245, 246], and the Lorch-Beyer score has resulted in five prognostic subgroups (Table 7.3). Several recent trials have confirmed this score [247, 248]. As in first-line therapy, the prognostic impact of tumour marker decline has also been demonstrated in the salvage setting [249]. While progression to induction chemotherapy was negative for OS, prior use of paclitaxel was not significantly associated with a negative outcome [250].

A second large analysis in this cohort of 1,600 patients showed an improvement of about 10-15% in OS in patients from all prognostic subgroups when treated with high-dose salvage therapy compared to standard-dose therapy. To prospectively confirm this finding, an international RCT of high-dose vs. conventional-dose chemotherapy in patients with first-line relapse has started (Tiger trial). If high-dose chemotherapy is used as a salvage treatment, sequential treatment cycles of high-dose carboplatin and etoposide (HD-CE) should be preferred to a single high-dose regimen because the former is associated with less toxicity-related deaths [251]. A recent systematic review confirmed the superiority of using at least two high-dose cycles in the salvage setting over a single high-dose cycle [252].

It is clearly of the utmost importance that these rare patients with relapse are treated within clinical trials and at experienced centres.

Table 7.2: Standard PEI/VIP, TIP and GIP chemotherapy (interval 21 days)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Chemotherapy agents</th>
<th>Dosage</th>
<th>Duration of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEI/VIP</td>
<td>Cisplatin*</td>
<td>20 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Etoposide</td>
<td>75-100 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide†</td>
<td>1.2 g/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td>TIP</td>
<td>Paclitaxel</td>
<td>250 mg/m² xx</td>
<td>24 hour continuous infusion day 1</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide†</td>
<td>1.5 g/m²</td>
<td>Days 2-5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin*</td>
<td>25 mg/m²</td>
<td>Days 2-5</td>
</tr>
<tr>
<td>Alternative schedule</td>
<td>Paclitaxel</td>
<td>175 mg/m²</td>
<td>Day 1, 3 hour infusion</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide†</td>
<td>1.2 g/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin*</td>
<td>20 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td>GIP</td>
<td>Gemcitabine</td>
<td>1000 mg/m²</td>
<td>Day 1 + 5</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide</td>
<td>1200 mg/m²</td>
<td>Day 1 - 5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin</td>
<td>20 mg/m²</td>
<td>Days 1-5</td>
</tr>
</tbody>
</table>

* Plus hydration.
† Plus mesna protection.
xx An MRC schedule uses paclitaxel at 175 mg/m² in a three hour infusion [253].

The International Prognostic Factors Study Group score, comprised of seven important factors, is listed in Table 7.3. Using these factors, five risk groups (very low risk = -1 points; low risk = 0 points; intermediate-risk = 1-2 points; high risk = 3-4 points; and very high risk > 5 points) were identified with significant differences in PFS and OS. Table 4.3 illustrates the five risk groups and the corresponding two-year PFS and three-year OS rates [254].
Table 7.3: The International Prognostic Factors Study Group Score Construction [246]

<table>
<thead>
<tr>
<th>Points</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>Seminoma</td>
<td>Non-seminoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary site</td>
<td>Gonadal</td>
<td>Retroperitoneal</td>
<td>Mediastinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>CR/PRm-</td>
<td>PRm+/SD</td>
<td>PD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFI > 3 months</td>
<td>> 3 months</td>
<td>< 3 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFP salvage</td>
<td>Normal</td>
<td>< 1000</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hCG salvage</td>
<td>< 1000</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBB</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFP = alpha-fetoprotein; CR = complete remission; PRm- = partial remission, negative markers; PRm+ = partial remission, positive markers; hCG = human chorionic gonadotrophin; LBB = liver, bone, brain metastases; PD = progressive disease; PFI = progression-free interval; SD = stable disease.

Table 7.4: PFS and OS estimates for all patients according to IGCCCG-2 prognostic score [246]

<table>
<thead>
<tr>
<th>Score (n = 1,435)</th>
<th>N</th>
<th>%</th>
<th>HR</th>
<th>2-years PFS</th>
<th>3-year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>76</td>
<td>5.30</td>
<td>1</td>
<td>75.1</td>
<td>77.0</td>
</tr>
<tr>
<td>Low</td>
<td>257</td>
<td>17.9</td>
<td>2.07</td>
<td>52.6</td>
<td>69.0</td>
</tr>
<tr>
<td>Intermediate</td>
<td>646</td>
<td>45.0</td>
<td>2.88</td>
<td>42.8</td>
<td>57.3</td>
</tr>
<tr>
<td>High</td>
<td>351</td>
<td>24.5</td>
<td>4.81</td>
<td>26.4</td>
<td>31.7</td>
</tr>
<tr>
<td>Very High</td>
<td>105</td>
<td>7.3</td>
<td>8.95</td>
<td>11.5</td>
<td>14.7</td>
</tr>
<tr>
<td>Missing</td>
<td>159</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

HR = hazard ratio; PFS = progression-free survival; n = number of patients; OS = overall survival.

7.4.5 Second relapse

There are no RCTs for patients with second relapse; however, conventional therapy does not appear to be very effective. For patients having received two series of conventionally-dosed therapy (first-line and first-salvage), HD chemotherapy with autologous stem cell support should be used [246]. Even with HD-therapy the chance of cure is only 20-25%.

Refractory disease: Patients relapsing within four to eight weeks after platinum-based therapy, or who are progressing despite platinum-based therapy, as well as those relapsing shortly after HD chemotherapy, are considered cisplatin refractory. For these patients, combinations of gemcitabine and oxaliplatin or the triple combination of gemcitabine, oxaliplatin and paclitaxel have resulted in response rates of 25-45%. Targeted agents have mostly failed with limited responses for Brentuximab Vedotin in CD30-expressing germ cell tumours [255-260]. Cisplatin re-challenge in association with gemcitabine and paclitaxel could be considered in patients with good renal function [261]. For patients with a second relapse not responding to the combination of oxaliplatin and gemcitabine or the triple combination, inclusion in clinical trials should be encouraged.

Patients with a good response undergoing subsequent resection of residual tumour lesions may still have a 15-20% chance of long-term cure [237, 262]. Immunotherapy with PD1-checkpoint inhibitors is currently being studied due a substantial expression of PDL1 in GCTs; in most series about 50% of tumour cells or tumour infiltration cells express PDL1.

7.4.5.1 Late relapse (> two years after end of first-line treatment)

Late relapse is defined as recurrence more than two years following cure after chemotherapy for metastatic TC, with, or without, residual tumour surgery and occurs, according to a pooled analysis, in 1.4% and 3.2% of seminoma and non-seminoma patients, respectively [263, 264]. If feasible, all lesions of late-relapsing non-seminoma patients should be removed by radical surgery.

Patients with rapidly rising hCG may benefit from induction salvage chemotherapy before complete resection, but in most patients, surgery should be performed irrespective of the level of their tumour markers in order to completely resect all undifferentiated GCT and/or mature teratoma with or without somatic transformation [137, 222, 265].

Survival strongly depends on the histology of the removed lesions rather than on the initial germ cell cancer. Interestingly, in a population-based study all late-relapsing seminoma patients had viable GCT, whereas teratoma or necrosis was found in half of the patients with initial non-seminoma [266].

If the lesions are not completely resectable, biopsies should be obtained for histological
assessment, and salvage chemotherapy should be initiated according to the histological results. In these cases, consultation of an experienced pathologist is required to avoid misinterpretation of the therapeutic morphological changes in the germ cell neoplasms [267]. If the patient responds to salvage chemotherapy, secondary surgery should be conducted, whenever possible. In the case of unresectable, localised, refractory disease, stereotactic or conventional RT may be considered. To avoid excess mortality, late relapses should be treated only at centres experienced in managing such patients [268].

7.4.5.2 Treatment of brain metastases

Brain metastases occur in the frame of the initial diagnosis of metastatic disease or a systemic relapse and rarely as an isolated relapse. The long-term survival of patients presenting with brain metastases at initial diagnosis is poor (30-50%), but it is even poorer when brain metastasis develops as recurrent disease (the five-year survival-rate is 2-5%) [269, 270]. A large international database comprising 523 patients reported 48% three-year OS rates in patients with brain metastases at initial diagnoses and 27% three-year OS rates for patients with brain metastases at relapse [271]. Chemotherapy was the initial treatment in this case, which proved particularly effective in a first-line setting (potentially even as dose-intensified therapy upfront) while data support the use of multimodal treatment particularly in relapsed patients [271]. Consolidation RT, even in the case of a total response after chemotherapy, should thus be used in patients with brain metastases at relapse, but this option must be carefully discussed in a first-line setting [272]. Surgery can be considered in the case of a persistent solitary metastasis, depending on the systemic state, the histology of the primary tumour and the location of the metastasis.

7.4.6 Recommendations for the treatment of metastatic germ cell tumours

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat low-volume non-seminomatous germ cell tumour (NSGCT) stage IIA/B with elevated markers like ‘good- or intermediate-prognosis’ advanced NSGCT, with three or four cycles of cisplatin, etoposide, bleomycin (BEP).</td>
<td>Strong</td>
</tr>
<tr>
<td>In stage IIA/B NSGCT without marker elevation, exclude marker negative embryonal carcinoma by obtaining histology by either retroperitoneal lymph node dissection (RPLND) or biopsy. If not possible, repeat staging after six weeks of surveillance before making a final decision on further treatment.</td>
<td>Strong</td>
</tr>
<tr>
<td>In metastatic NSGCT with an intermediate prognosis, treat with four courses of standard BEP.</td>
<td>Strong</td>
</tr>
<tr>
<td>In metastatic NSGCT with a poor prognosis, treat with one cycle of BCP or cisplatin, etoposide and ifosfamide (PEI), in case of poor lung function, followed by tumour marker assessment after three weeks. In case of a favourable marker decline, continue BCP (or PEI) up to a total of four cycles. In case of an unfavourable decline, initiate chemotherapy intensification.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform surgical resection of residual masses after chemotherapy in NSGCT in the case of visible residual masses and when serum levels of tumour markers are normal or normalising.</td>
<td>Strong</td>
</tr>
<tr>
<td>In CS IIA seminoma, offer radiotherapy or chemotherapy and inform the patient of possible undesirable long-term side effects of both management options.</td>
<td>Strong</td>
</tr>
<tr>
<td>Initially offer chemotherapy in seminoma stage CS IIB (BEP x 3 or EP x 4, in good prognosis) as an alternative to radiotherapy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Treat seminoma stage IIC and higher, with primary chemotherapy according to the same principles used for NSGCT.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

8. FOLLOW-UP AFTER CURATIVE THERAPY

8.1 Rationale for follow-up

The primary aim of follow-up in the first five years is the timely diagnosis of recurrent disease in order to be able to treat the patient with curative intent with the least aggressive therapy [263]. An adequate follow-up relies on profound knowledge about TC with regards to histology, stage, primary treatment and treatment success. Follow-up has to be tailored to each individual patient and the schedule has to be acceptable to the patient, the physician, and the health care system. The interval of follow-up visits and the clinical investigations...
to be performed at each visit should depend on the risk of relapse, in general, and on the likely site of relapse in an individual patient [273]. Only one RCT was published addressing the implication of different follow-up schedules and the use of imaging and tumour markers [140]. Several recent publications have added valuable information and recommendations [90, 92, 107, 111, 113, 136, 274-277] contributing to the development of consensus recommendations by the European Society for Medical Oncology Testicular Cancer Consensus Committee [278].

In recognition of the ionising radiation exposure risks associated with repeated CT scanning [279], a reduction in the number of follow-up CT scans advised has been seen in the past years [1, 280]. Looking at the different risks of relapse depending on diagnosis and initial treatment three major follow-up groups can be defined:

1. patients with seminoma stage I;
2. patients with non-seminoma stage I on active surveillance;
3. all patients having received either adjuvant treatment or curative chemotherapy for good- and intermediate-prognosis metastatic disease (according to the IGCCCG) achieving a complete remission with, or without, surgery (for seminoma this includes residual lesions < 3 cm, or residual lesions > 3 cm that are PET-negative).

It is important to note that patients not achieving a complete remission or presenting with poor-prognosis disease should be followed up individually in specialised centres.

Tables 8.1-8.3 show the minimal recommendations for follow-up of the three different groups based on recommendations developed at the ESMO Testicular seminoma and non-seminoma consensus conference [278].

Generally, MRI of the abdomen can be used instead of CT in experienced centres. Regarding the use of US of the contralateral testis, the majority of the consensus meeting participants voted against repeat US investigation, both in case of negative biopsy (21/31) and also if no contralateral biopsy has been performed (17/32).

Follow-up for relapse beyond five years is generally not recommended. A very late relapse (VLR) after five years is a rare event occurring in approximately 0.5% of patients according to a population-based analysis [266]. The aim of follow-up beyond five years therefore shifts to detection of late side effects of treatment.

Most patients with VLR are diagnosed due to symptoms; however, in up to 50% elevated tumour markers can be found in both seminomatous and non-seminomatous GCTs [266, 281]. Patient education about relapse symptoms and physician awareness is a very important part of survivorship management. The early use of imaging and tumour markers in case of suspicion of relapse is encouraged.

Table 8.1: Recommended minimal follow-up for seminoma stage I on active surveillance or after adjuvant treatment (carboplatin or radiotherapy)

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Years 4 & 5</th>
<th>After 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour markers + doctor visit</td>
<td>2 times</td>
<td>2 times</td>
<td>2 times</td>
<td>Once</td>
<td>Further management according to survivorship care plan</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Abdominopelvic computed tomography/magnetic resonance imaging</td>
<td>2 times</td>
<td>2 times</td>
<td>Once at 36 months</td>
<td>Once at 60 months</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.2: Recommended minimal follow-up for non-seminoma stage I on active surveillance

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4 & 5</th>
<th>After 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour markers ± doctor visit</td>
<td>4 times**</td>
<td>4 times</td>
<td>2 times</td>
<td>1-2 times</td>
<td>Further management according to survivorship care plan</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>2 times</td>
<td>2 times</td>
<td>Once, in case of LVI+</td>
<td>At 60 months if LVI+</td>
<td></td>
</tr>
<tr>
<td>Abdominopelvic computed tomography/magnetic resonance imaging</td>
<td>2 times</td>
<td>At 24 months***</td>
<td>Once at 36 months*</td>
<td>Once at 60 months*</td>
<td></td>
</tr>
</tbody>
</table>

* Recommended by 50% of the consensus group members.
** In case of high risk (LVI+) a minority of the consensus group members recommended six times.
*** In case of high risk (LVI+) a majority of the consensus group members recommended an additional CT at eighteen months.

Table 8.3: Recommended minimal follow-up after adjuvant treatment or complete remission for advanced disease (excluded: poor prognosis and no remission)

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4 & 5</th>
<th>After 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour markers ± doctor visit</td>
<td>4 times</td>
<td>4 times</td>
<td>2 times</td>
<td>2 times</td>
<td>Further management according to survivorship care plan**</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>1-2 times</td>
<td>Once</td>
<td>Once</td>
<td>Once</td>
<td></td>
</tr>
<tr>
<td>Abdominopelvic computed tomography (CT)/magnetic resonance imaging</td>
<td>1-2 times</td>
<td>At 24 months</td>
<td>Once at 36 months</td>
<td>Once at 60 months</td>
<td></td>
</tr>
<tr>
<td>Thorax CT</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

* Same time points as abdominopelvic CT/MRI in case of pulmonary metastases at diagnosis.
** In case of teratoma in resected residual disease: the patient should remain with the uro-oncologist.

8.2 Quality of life and long-term toxicities after cure of testicular cancer

The vast majority of patients will be cured and five-year relative survival rates are approximately 95% in Western Europe. Furthermore, TC patients are usually between 18 and 40 years of age at diagnosis and life expectancy after cure extends over several decades [282]. Patients should be informed before treatment of common long-term toxicities, which are probably best avoided by adherence to international guidelines.

Treatment of stage I TC is controversial, with some experts advocating surveillance for all, thereby avoiding unnecessary adjuvant chemotherapy [128], whereas others highlight the importance of patient autonomy and consider the prospect of avoiding salvage treatment with long-term toxicities as quite appealing [283]. Unfortunately, it is not known which treatment spares most patients long-term toxicities, which so far seem to be absent or mild after adjuvant chemotherapy [130, 138, 284].

During follow-up, patients should be screened and treated for known risk factors such as high blood pressure, hyperlipidaemia and testosterone deficiency. When follow-up by the TC expert is discontinued, a written cancer survivorship plan addressing late toxic effects, lifestyle recommendations, recurrence risk, and cancer-specific follow-up might be helpful [263, 285]. The following overview is not complete and interested readers are referred to review articles on this topic [282, 285, 286].

8.2.1 Second malignant neoplasms (SMN)

Treatment-induced SMN usually occurs after the first ten years [285]. The risk for solid SMN increases with younger age at RT or chemotherapy and remains significantly elevated for at least 35 years [120, 287-289]. Radiotherapy-related SMNs are primarily localised within or close to the RT field (colon, stomach, pancreas, bladder and the urinary tract) [120, 121, 288-291]. Hauptmann et al. could demonstrate a remarkably clear radiation-dose relationship to gastric- and pancreatic-cancer [292]. Fung et al. demonstrated that modern cisplatin-based chemotherapy was associated with a 40% increased risk of a solid SMN [293].

The European Society for Blood and Marrow Transplantation (EBMT) reported SMN in 59 of the 5,295 TC patients registered after receiving high-dose chemotherapy within a median follow-up of 3.8 years. Of them, 39% developed a hematologic SMN and 57.6% a solid SMN. Twenty year cumulative incidence of solid and hematologic SMN was 4.2% and 1.4%, respectively, with median OS shorter after diagnosis of hematologic vs. solid SMN (8.6 vs. 34.4 months). Age ≥ 40 years at the time of high-dose chemotherapy was significantly associated with hematologic, but not with solid SMNs [294].
8.2.2 **Leukaemia**
In a series of 40,576 TC survivors, the observed ratio for developing leukaemia, mostly acute myeloid (AML) and lymphoblastic leukaemia was 2.6 [295]. The risk of AML seems to be both related to the dose of cisplatin and etoposide. Doses of etoposide exceeding 2 g/m² have been shown to increase the subsequent risk of AML [296]. It is important to keep in mind that the majority of TC patients receive much lower doses of etoposide so that the absolute risk of AML after three to four courses of BEP is very low, and in patients requiring high-dose chemotherapy with cumulative etoposide doses exceeding this threshold, less than 1.5% have been reported to suffer from AML. There is a cumulative dose-disease relationship regarding cisplatin and AML. Chemotherapy-induced leukaemia is usually diagnosed within the first ten years after treatment and has a very poor prognosis [297].

8.2.3 **Infections**
Chemotherapy-treated TC survivors (TCSs) have a higher risk of dying from infections than the general population (standard mortality ratio 2.48, 95% CI: 1.70-3.5) [298]. This is possibly due to long-term depression of bone-marrow, but also complications of subsequent salvage treatment (which was not reliably registered). Alternatively, extensive or subsequent surgical treatment might contribute to these numbers. Furthermore, asymptomatic pulmonary fibrosis by mediastinal RT and/or bleomycin may render TCSs vulnerable to potentially deadly pneumonias many years after treatment.

8.2.4 **Pulmonary complications**
Chemotherapy exposed TCSs have a nearly three-fold increased risk of dying of pulmonary diseases than the normal population [298]. Bleomycin-induced lung toxicity may affect 7-21% of patients in the long-term, resulting in death in 1-3% [299]. Chemotherapy-treated TC survivors treated with high cumulative cisplatin doses and/or pulmonary surgery, have a poorer pulmonary function than those cured by surgery alone [300]. Intriguingly, long-term pulmonary complications were associated with the cumulative cisplatin dose and not with the dose of bleomycin [300]. The data contrast with a meta-analysis on chemotherapy for TC including 6,498 patients showing a significant effect of bleomycin administration on all-grade pulmonary toxicity [301]. In a Danish cohort of 565 TC survivors, pulmonary function recovered during repeated assessments over five years in almost all patients [302]. Of note, an association with risk factors such as reduced renal function, age, tobacco-smoking, and cumulative chemotherapy, were not associated with pulmonary function, but with pulmonary embolism, lung surgery, and poor IGCCCG risk group [302].

8.2.5 **Cardiovascular toxicity**
Thromboembolic events (mostly venous) occur more frequently in patients with GCT receiving chemotherapy than in other young male adults treated with chemotherapy for other cancers [303]. Low-dose heparins used during the course of chemotherapy may prevent the onset of thromboembolic events [304], though level 1 evidence is lacking. Mortality from cardiovascular disease (CVD) is higher in TCSs than in the general population (OR 5) [298, 305, 306]. Furthermore, CVD is more common in chemotherapy-treated TCSs than in those who underwent surgery only [133, 307]. Metabolic syndrome, which is a risk factor for CVD and its components, hypertension, obesity and hypercholesterolaemia, increases with treatment intensity (OR 9.8) [306, 308, 309]. Hypogonadism increases the risk of insulin resistance, a proxy for metabolic syndrome, and an inherent risk of CVD. Bogefors et al. showed, however, that most associations between TC treatment and metabolic parameters became statistically non-significant after adjustment for hypogonadism, indicating that hypogonadism might be the mediator of several toxicities which are usually attributed to the applied TC treatment [310]. Circulating residual serum platinum might exert endothelial stress and thereby possibly lead to hypertension [311, 312]. Furthermore, exposure to circulating platinum has been shown to be associated with paraesthesia, hypogonadism, and hypercholesterolaemia [312]. Cisplatin-based chemotherapy also causes acute CVD as is shown by a 0.24% incidence of major vascular events [303].

Physical activity reduces the risk of metabolic syndrome and CVD. High-intensity aerobic interval training (HIIT) for twelve weeks improved the cardiorespiratory fitness, multiple pathways of CVD risk, and surrogate markers of mortality in TC survivors as compared to standard care, i.e. no supervised training [313]. However, HIIT during cisplatin-based chemotherapy might be harmful as a planned study on 94 patients closed early after recruiting nineteen patients and the finding of severe CVD complications among three out of nine patients undergoing HIIT [314]. Two patients developed a pulmonary embolism (at days seven and nine of BEP cycle 2, respectively) and the remainder a myocardial infarction (at day seven of BEP cycle 3). It is difficult to draw firm conclusions from such small patient numbers, but the observed CVD was well above the expected 5% risk of thromboembolic complications during, or shortly after, cisplatin-based chemotherapy such that the authors discourage HIIT during cisplatin-based chemotherapy for TC.
Office-based Framingham risk scores to predict the 10-year CVD morbidity after diagnosis can be applied to TC survivors who received chemotherapy. In a population of almost 800 TC survivors, less educated and less vigorously active patients had higher risk scores of 10-year CVD morbidity [315].

8.2.6 Raynaud-like phenomena
Chemotherapy-related Raynaud-like phenomena were reported before the introduction of cisplatin and are usually ascribed to the application of bleomycin [316, 317]. Cisplatin is believed to contribute to cold-induced vasospasms. Vogelzang et al. reported that the incidence of Raynaud's phenomenon was higher after treatment with CVB than after only vinblastine and bleomycin, 41% vs. 21%, respectively [318].

8.2.7 Neurotoxicity
Cisplatin induces a symmetric dose-dependent sensory, distal, length-dependent glove and stocking paraesthesias, affecting 29% of TCSs who received cisplatin-based chemotherapy as opposed to 10% after orchiectomy alone [306, 319]. Treatment with five or more cycles increases the frequency of this symptom to 46%. Paclitaxel-induced acute neuropathy consists of an acute pain syndrome, which usually develops within three days to a week following paclitaxel administration. Platinum is measurable in the serum of TCSs many years after its application and the intensity of paraesthesias is more strongly associated with platinum serum level than with the cumulative dose of applied cisplatin [311]. Patients who experience a larger decline in circulating residual serum platinum during follow-up are at reduced risk of worsening of tinnitus or of paraesthesias in hands [320].

8.2.8 Cognitive function
There are concerns that chemotherapy may reduce the cognitive function leading to “chemo-brain”. Amidi et al. could show an alteration of brain structural networks after cisplatin-based chemotherapy for TC [321]. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in TC survivors following chemotherapy.

8.2.9 Otoxicity
Cisplatin-induced ototoxicity comprises tinnitus and hearing impairment, particularly frequencies of 4,000 Hz and higher, and is caused by damage to the outer hair cells in the inner ear [306, 322-324]. Both hearing impairment and tinnitus are considerably increased after application of 50 mg/m² cisplatin over two days as compared to 20 mg/m² over five days (OR 5.1 and 7.3, respectively), indicating a higher impact of serum peak concentrations than cumulative doses [319]. A significant association between glutathione S-transferases (GST) genotypes and the risk of cisplatin-induced ototoxicity has been demonstrated [325, 326]. Hopefully, increasing insight into the pathogenesis of and vulnerability for this complication will lead to more individualised treatment in the future.

8.2.10 Nephrotoxicity
Cisplatin-based chemotherapy may lead to long-term renal function impairment in 20-30% of TCSs [319, 322-324]. In TC patients, reduced renal elimination of cisplatin and bleomycin might increase the risk of other toxicities, e.g. bleomycin-related pneumonitis [327, 328]. However, a comprehensive assessment of 1,206 Danish TCSs did not reveal a significant association between chemotherapy-induced impaired renal function and other toxicities [304]. Renal recovery was poor after five or more cycles of BEP as compared to after BEP x 3 [329].

8.2.11 Hypogonadism
Testicular endocrine dysfunction comprises insufficient testosterone production and/or compensatory increased LH levels. Subnormal testosterone levels have been reported in TCSs treated with chemotherapy, when compared to those treated with surgery only or the general population [284, 306, 329, 330].

Hypogonadism increases the risk of insulin resistance and hence of the metabolic syndrome, which, in turn, might lead to CVD in the long-term [310]. Wiechno et al. could show a decline in testosterone and an increase in LH and FSH within one year after treatment for unilateral TC [331]. Although there are clear indications of hypogonadism-related complications, and despite an established association between low testosterone and metabolic syndrome, no clear association between Leydig cell dysfunction and the risk of metabolic syndrome during a median ten-year follow-up could be established [332]. Furthermore, the clinical benefits of testosterone substitution are not well established. An ongoing Danish RCT might yield level 1 evidence [333].

Erectile dysfunction (OR 4.2) has been significantly associated with chemotherapy in a recent multicentric study [306].
8.2.12 **Fatigue**

Chronic fatigue (CF) is described as a subjective feeling of emotional, physical and/or cognitive tiredness that is not relieved by rest, and persists for more than six months. Significantly higher levels of C-reactive protein and interleukin-1 receptor antagonist are measured in TCSs with CF [334]. Also, a significantly higher frequency of CF (16%) was reported in a cross-sectional Norwegian study of long-term TCSs at a median of twelve years after treatment for TC when compared with the age-matched Norwegian population (10%) [335]. Of note, the prevalence of CF increased from 15% to 27% during a ten year period in long-term TCSs [336].

8.2.13 **Quality of life**

Quality of life is transiently reduced by chemotherapy, during which patients experience a loss of appetite, increased fatigue, increased dyspnoea and reduced social- and physical function [335]. When comparing three or four cycles of BEP in good-risk patients, all outcomes favour treatment with three courses [172]. After one and two years, one-third of patients reported an improvement in global QoL after chemotherapy, whereas, one-fifth of patients reported deterioration, with no difference between treatment groups. After adjuvant treatment of non-seminoma stage I patients, there was no difference in short- or long-term (five years) QoL between RPLND, or one course of BEP [337]. Anxiety, depression, fear of cancer recurrence, and distress may impair the health-related quality of life (HRQoL) in TCSs. A recent review by Smith et al. from the Australian TC group identified a considerable variation in both severity and prevalence of each of these issues, probably due to use of different questionnaires and also cultural variations [338]. Clinically significant anxiety is reported in approximately 1 out of 5 TCSs and distress in 1 out of 7, and is therefore more frequent among TCSs than in the general population. Depression was not uniformly found to be more frequent, whereas every third TCSs reported feeling recurrence. Importantly, poorer psychological outcomes were more common among single, unemployed TCSs with a low socio-economic status and co-morbidities, as well as those experiencing worse symptoms/side effects, and those using passive coping strategies. These findings are mostly in-line with an earlier reported survivorship study on HRQoL among 486 TCSs revealing a greater prevalence of moderate- to extremely severe anxiety (19%) and depression (20%); and significant deficits to mostly mental aspects of HRQoL. The authors found that, again, helpless/hopeless coping style was correlated with psychological distress and impaired generic HRQoL [339].

A German study found clinically significant anxiety in 6.1% and depression in 7.9% of TC patients, with both a higher number of physical symptoms and having children relating to higher levels of anxiety and depression [340]. For a subset of approximately 11% of TSCc, the diagnosis of TC was traumatic. This subset was found to suffer from post-traumatic stress disorder in the long-term, which resulted in significant QoL reduction [341]. The authors recommend that healthcare professionals explore stress symptoms at follow-up visits in order to timely identify TSCs requiring support.

9. TESTICULAR STROMAL TUMOURS

9.1 **Classification**

Non-germ-cell tumours of the testicle include sex cord/gonadal stromal tumours and miscellaneous nonspecific stromal tumours. The different histological subtypes of testicular tumours are defined according to the 2016 WHO classification (adapted) [33].

9.1.1 **Epidemiology and prognosis**

Sex cord stromal tumours comprise less than 5% of testicular neoplasms. Recent population-based registries in the US (National Cancer Data Base and Surveillance Epidemiology and End Results) show that 0.39 to 0.59% of all testis neoplasm patients are diagnosed with a primary malignant Leydig or Sertoli cell tumour. Of these, between 71% and 79% present with a malignant Leydig cell tumour and 21% to 29% with malignant Sertoli cell tumours [342, 343].

Median ages at diagnostic are 39 and 47 years for malignant Sertoli and Leydig cell tumours, respectively. At diagnostic 98.5% of the Leydig cell tumours are CSI, whilst 35% of Sertoli cell tumours are CS II/III [343].

Overall survival at one and five years for CS I Leydig cell tumours is 22-35% (95% CI: 96-100) and 91% (95% CI: 85-96), respectively, and for CSI Sertoli cell tumours OS is 93% (95% CI: 83-100) and 77% (95% CI: 62-95), respectively (p = 0.015). Overall, five-year survival estimates of stage I Leydig and Sertoli cell tumours are...
significantly lower compared to those of stage I GCTs, with Sertoli cell tumours significantly worse than Leydig cell tumours [342]. Presentation with metastatic disease is the only variable associated with worse CSS [344].

Only limited evidence is available for local and systemic treatment of testicular stromal tumours. After testis sparing surgery, local recurrence rates up to 9.5% have been reported [345].

A systematic review [312] analysing the impact of previously identified pathologic risk factors on harbouring occult metastatic disease (OMD) in patients with CS I testicular stromal tumours showed an increased risk of OMD for each additional risk factor (p < .001). Five-year OMD-free survival was 98.1% for those with < 2 risk factors vs. 44.9% for those with ≥ 2 risk factors (p < 0.001). Whilst the existing literature does not support making firm recommendations, testis sparing surgery instead of radical orchectomy might be offered in patients with localised disease and risk stratification might improve clinical decision-making regarding adjuvant treatment options [346].

These data support the importance of large databases to evaluate the efficacy of treatment in rare neoplasms.

9.2 Leydig cell tumours

9.2.1 Epidemiology

Leydig cell tumours constitute about 1-3% of adult testicular tumours [347, 348] and 3% of testicular tumours in infants and children [348]. These tumours are most common in the third to sixth decade in adults, with a similar incidence observed in each decade. Another peak incidence is seen in children aged between three and nine years. Only 3% of Leydig cell tumours are bilateral [347]. These tumours occur in about 8% of patients with Klinefelter's syndrome [348].

9.2.2 Pathology of Leydig cell tumours

Leydig cell tumours are the most common type of sex cord/gonadal stromal tumours. Histopathologically, they are well delineated and usually up to 5 cm in diameter. They are solid, yellow to tan in colour, with haemorrhage and/or necrosis in 30% of cases. Microscopically, the cells are polygonal, with eosinophilic cytoplasm and occasional Reinke crystals, regular nucleus, solid arrangement and capillary stroma. The cells express vimentin, inhibin, protein S-100, steroid hormones, calretinin and cytokeratin (focally) [68].

Approximately 10% of Leydig cell tumours are malignant and present with the following parameters [349, 350]:

- large size (> 5 cm);
- older age;
- increased mitotic activity (> 3 per 10 high-power field [HPF]);
- vascular invasion;
- cytological atypia;
- increased MIB-1 expression;
- necrosis;
- infiltrative margins;
- extension beyond the testicular parenchyma;
- DNA aneuploidy.

9.2.3 Diagnosis

Patients either present with a painless enlarged testis or the tumour is found incidentally on US. In up to 80% of cases, hormonal disorders with high oestrogen and oestradiol levels, low testosterone, and increased levels of LH and FSH are reported [351, 352], while negative results are always obtained for the testicular GCT-markers AFP, hCG, LDH and PLAP. Up to 10% of adult patients present with gynaecomastia [352, 353].

Diagnostic work-up must include markers, hormones (at least testosterone, LH and FSH; if not conclusive, also oestrogen, oestradiol, progesterone and cortisol), US of both testes, and CT of chest and abdomen. On US, it may be possible to observe well-defined, small, hypoechocic lesions with hypervascularisation; however, the appearance is variable and is indistinguishable from GCTs [354]. Contrast-enhanced US [355] or contrast-enhanced MRI [356] may improve the diagnosis. The proportion of metastatic tumours in all published case reports is less than 10%. In three old series with long follow-up, eighteen metastatic tumours were found in a total of 83 cases (21.7%) [347, 349, 357], while five recently published studies with long follow-up reported only two metastatic tumours in 156 patients (1.3%) [342, 352, 353, 358, 359].
9.3 Sertoli cell tumours

9.3.1 Epidemiology

Sertoli cell tumours account for fewer than 1% of testicular tumours, and the mean age at diagnosis is around 45 years, with sporadic cases under 20 years of age [360, 361]. On rare occasions, these tumours may develop in patients with androgen insensitivity syndrome and Peutz-Jeghers syndrome.

9.3.2 Pathology of Sertoli cell tumours

These tumours are well circumscribed, yellow, tan or white in colour, with an average diameter of 3.5 cm [360]. Microscopically, the cells are eosinophilic to pale with a vacuolated cytoplasm. The nuclei are regular with grooves, and inclusions may be present. The arrangement of the cells is tubular or solid; a cord-like or retiform pattern is possible. The stroma is fine with capillaries, but in some cases a sclerosing aspect predominates. The cells express vimentin, cytokeratins, inhibin (40%) and protein S-100 (30%) [360]. The rate of malignancy ranges between 10% and 22%. Signs of a malignant Sertoli tumour are [362, 363]:

- large size (> 5 cm);
- increased mitotic activity (> 5 per 10 HPF);
- pleomorphic nuclei with nucleoli;
- necrosis;
- vascular invasion.

9.3.2.1 Classification

Three subtypes have been described [361]:

- classic Sertoli cell tumour [360];
- large cell calcifying form with characteristic calcifications [364, 365];
- sclerosing form [366, 367].

9.3.3 Diagnosis

Patients present either with an enlarged testis, or the tumour is found incidentally on US. Most classic Sertoli cell tumours are unilateral and unifocal. Hormonal disorders are infrequent, although gynaecomastia is sometimes seen [360]. The testicular tumour-markers AFP, hCG, LDH and PLAP are always negative. Diagnostic work-up must include tumour markers, hormones (at least testosterone, LH and FSH; if not conclusive, also oestrogen, oestradiol, progesterone and cortisol), US of both testes and CT of chest and abdomen. Sertoli cell tumours are generally hypoechoic on US, but they can be of variant appearance and thus cannot be safely distinguished from GCTs [361]. Only the large cell calcifying form has a characteristic image with bright echogenic foci due to calcification [368]. Metastatic disease of 12% in classic Sertoli cell tumour has been reported. In general, affected patients are older, tumours are nearly always palpable, and show more than one sign of malignancy [360].

The large cell calcifying form is diagnosed in younger men and is associated with genetic dysplastic syndromes (Carney’s complex [369] and Peutz-Jeghers syndrome [370]) or, in about 40% of cases, endocrine disorders. Forty-four percent of cases are bilateral, either synchronous or metachronous, and 28% show multifocality with good prognosis [365].

Up to 20% of the large cell calcifying forms are malignant. It has been suggested that discrimination between an early and late onset type may define a different risk for metastatic disease (5.5% compared to 23%) [361].

The sclerosing subtype is very rare, unilateral, with a mean age around 40 years and metastases are infrequent [367].

9.4 Treatment of Leydig- and Sertoli cell tumours

Asymptomatic, small volume testicular tumours are often misinterpreted as GCTs, and inguinal orchidectomy is performed. An organ-sparing procedure in every small US-detected, non-palpable intraparenchymal lesion is highly recommended in order to obtain a histological diagnosis. The incidence of benign definitive histology is high at approximately 80% [371]. When a non-GCT is suggested by frozen section immediate orchidectomy can be avoided. In cases with GCT in either frozen section or paraffin histology, orchidectomy is recommended as long as a contralateral normal testicle is present.

When diagnosed and treated early, long-term favourable outcomes are seen at follow-up in Leydig cell tumours, even with its potential metastatic behaviour. In stromal tumours with histological signs of malignancy, especially in older patients, orchidectomy and early RPLND may be an option to prevent metastases [342, 372] or to achieve long-term cure in stage IIA cases [373]. Prophylactic RPLND is unjustified for patients with CSI disease without high-risk features [374].
Tumours that have metastasised to lymph nodes, lung, liver or bone respond poorly to chemotherapy or radiation and survival is poor [342, 372]. No recommendations are available for the treatment of these patients.

9.5 Granulosa cell tumour
This is a rare tumour with two variants: juvenile and adult. Less than 100 cases are reported with a predominance of the juvenile type.
- The juvenile type is benign. It is the most frequent congenital testicular tumour and represents about 1-5% of all pre-pubertal testicular neoplasms. The cystic appearance is characteristic of this tumour type [375, 376].
- The average age of the adult type at presentation is 45 years. The typical morphology is a homogeneous, yellow-grey tumour, with elongated cells with grooves in microfollicular and Call-Exner body arrangements [377].

Malignant tumours represent around 20% of cases. Lymphovascular invasion, necrosis, infiltrative borders and size > 4 cm may help in identifying cases with aggressive behaviour. Mitotic counts vary and do not appear to be of prognostic significance [378].

9.6 Thecoma/fibroma group of tumours
These tumours are rare with variable histology such as minimal invasion into surrounding testis, high cellularity, and increased mitotic rate. Their immunoprofile is variable and typically not diagnostic. They seem to be uniformly benign [379].

9.7 Other sex cord/gonadal stromal tumours
Sex cord/gonadal stromal tumours may be incompletely differentiated or in mixed forms. There is limited experience with incompletely differentiated sex cord/gonadal stromal tumours and no reported cases of metastasis [40]. In mixed tumour forms, all the histological components should be reported. However, the clinical behaviour most likely reflects the predominant pattern or the most aggressive component of the tumour [380].

9.8 Tumours containing germ cell and sex cord/gonadal stroma (gonadoblastoma)
Some patients with disorders of sex development (DSDs) have abnormal gonadal development with ambiguous genitalia and an increased risk of GCTs. If the arrangement of the germ cells is in a nested pattern and the rest of the tumour is composed of sex cord/gonadal stroma, the term gonadoblastoma is used. Bilateral tumours are present in 40% of cases. The prognosis correlates with the invasive growth of the germinal component [381, 382]. In the case of a diffuse arrangement of the different components, there are some doubts about the neoplastic nature of the germinal cells and some authors consider them to be entrapped rather than neoplastic [383].

9.9 Miscellaneous tumours of the testis
9.9.1 Tumours of ovarian epithelial types
These tumours resemble epithelial tumours of the ovary. A cystic appearance with occasional mucinous material can be observed. Microscopically, their aspect is identical to their ovarian counterparts, and their evolution is similar to that of the different epithelial ovarian subtypes. Some Brenner types are malignant [68].

9.9.2 Tumours of the collecting ducts and rete testis
These tumours are very rare. Benign (adenoma) and malignant (adenocarcinoma) variants have been reported, with malignant tumours showing local growth with a mortality rate of 40% within one year [384].

9.9.3 Tumours (benign and malignant) of non-specific stroma
These are very uncommon and have similar criteria, prognosis and treatment to soft tissue sarcomas.

10. REFERENCES

11. CONFLICT OF INTEREST

All members of the Testicular Cancer Guidelines working group have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publicly accessible through the EAU website: http://www.uroweb.org/guidelines. This guidelines document was developed with the financial support of the EAU. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.

12. CITATION INFORMATION

The format in which to cite the EAU Guidelines will vary depending on the style guide of the journal in which the citation appears. Accordingly, the number of authors or whether, for instance, to include the publisher, location, or an ISBN number may vary.

The compilation of the complete Guidelines should be referenced as:

If a publisher and/or location is required, include:

References to individual guidelines should be structured in the following way:
Contributors’ names. Title of resource. Publication type. ISBN. Publisher and publisher location, year.