4. REFERENCES
1.Phillips B, et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 1998.
2.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.
https://pubmed.ncbi.nlm.nih.gov/18467413
3.Lennerling, A., et al. Living organ donation practices in Europe - results from an online survey. Transpl Int, 2013. 26: 145.
https://pubmed.ncbi.nlm.nih.gov/23198985
4.Antcliffe, D., et al. A meta-analysis of mini-open versus standard open and laparoscopic living donor nephrectomy. Transpl Int, 2009. 22: 463.
https://pubmed.ncbi.nlm.nih.gov/19175543
5.Greco, F., et al. Laparoscopic living-donor nephrectomy: analysis of the existing literature. Eur Urol, 2010. 58: 498.
https://pubmed.ncbi.nlm.nih.gov/20417024
6.Wilson, C.H., et al. Laparoscopic versus open nephrectomy for live kidney donors. Cochrane Database Syst Rev, 2011: CD006124.
https://pubmed.ncbi.nlm.nih.gov/22071829
7.Yuan, H., et al. The safety and efficacy of laparoscopic donor nephrectomy for renal transplantation: an updated meta-analysis. Transplant Proc, 2013. 45: 65.
https://pubmed.ncbi.nlm.nih.gov/23375276
8.Serrano, O.K., et al. Evolution of Living Donor Nephrectomy at a Single Center: Long-Term Outcomes with 4 Different Techniques in Greater Than 4000 Donors over 50 Years. Transplantation, 2016. 100: 1299.
https://pubmed.ncbi.nlm.nih.gov/610202307
9.Breda, A., et al. Mini-laparoscopic live donor nephrectomy with the use of 3-mm instruments and laparoscope. World J Urol, 2015. 33: 707.
https://pubmed.ncbi.nlm.nih.gov/25182807
10.Elmaraezy, A., et al. Should hand-assisted retroperitoneoscopic nephrectomy replace the standard laparoscopic technique for living donor nephrectomy? A meta-analysis. International Journal of Surgery, 2017. 40: 83.
https://pubmed.ncbi.nlm.nih.gov/614566997
11.Creta, M., et al. Donor and Recipient Outcomes following Robotic-Assisted Laparoscopic Living Donor Nephrectomy: A Systematic Review. Biomed Res Int, 2019. 2019: 1729138.
https://pubmed.ncbi.nlm.nih.gov/31143770
12.Lentine, K.L., et al. Perioperative Complications After Living Kidney Donation: A National Study. Am J Transplant, 2016. 16: 1848.
https://pubmed.ncbi.nlm.nih.gov/26700551
13.Wang, H., et al. Robot-assisted laparoscopic vs laparoscopic donor nephrectomy in renal transplantation: A meta-analysis. Clin Transplant, 2019. 33: e13451.
https://pubmed.ncbi.nlm.nih.gov/30461073
14.Autorino, R., et al. Laparoendoscopic single-site (LESS) vs laparoscopic living-donor nephrectomy: a systematic review and meta-analysis. BJU Int, 2015. 115: 206.
https://pubmed.ncbi.nlm.nih.gov/24588876
15.Gupta, A., et al. Laparoendoscopic single-site donor nephrectomy (LESS-DN) versus standard laparoscopic donor nephrectomy [Systematic Review]. Cochrane Database of Systematic Reviews, 2016. 6: 6.
https://pubmed.ncbi.nlm.nih.gov/24588876
16.Alcaraz, A., et al. Feasibility of transvaginal natural orifice transluminal endoscopic surgery-assisted living donor nephrectomy: is kidney vaginal delivery the approach of the future? Eur Urol, 2011. 59: 1019.
https://pubmed.ncbi.nlm.nih.gov/21458151
17.Liu, N., et al. Maximizing the donor pool: left versus right laparoscopic live donor nephrectomy--systematic review and meta-analysis. Int Urol Nephrol, 2014. 46: 1511.
https://pubmed.ncbi.nlm.nih.gov/24595603
18.Khalil, A., et al. Trends and outcomes in right vs. left living donor nephrectomy: An analysis of the OPTN/UNOS database of donor and recipient outcomes - should we be doing more right-sided nephrectomies? Clinical Transplantation, 2016. 30: 145.
https://pubmed.ncbi.nlm.nih.gov/607640149
19.Hsi, R.S., et al. Analysis of techniques to secure the renal hilum during laparoscopic donor nephrectomy: review of the FDA database. Urology, 2009. 74: 142.
https://pubmed.ncbi.nlm.nih.gov/19406458
20.Hsi, R.S., et al. Mechanisms of hemostatic failure during laparoscopic nephrectomy: review of Food and Drug Administration database. Urology, 2007. 70: 888.
https://pubmed.ncbi.nlm.nih.gov/17919695
21.Ponsky, L., et al. The Hem-o-lok clip is safe for laparoscopic nephrectomy: a multi-institutional review. Urology, 2008. 71: 593.
https://pubmed.ncbi.nlm.nih.gov/18295866
22.Allen, M.B., et al. Donor hemodynamics as a predictor of outcomes after kidney transplantation from donors after cardiac death. American Journal of Transplantation, 2016. 16: 181.
https://pubmed.ncbi.nlm.nih.gov/605992316
23.Heylen, L., et al. The duration of asystolic ischemia determines the risk of graft failure after circulatory-dead donor kidney transplantation: A Eurotransplant cohort study. Am J Transplant, 2018. 18: 881.
https://pubmed.ncbi.nlm.nih.gov/28980391
24.Osband, A.J., et al. Extraction Time of Kidneys from Deceased Donors and Impact on Outcomes. American Journal of Transplantation, 2016. 16: 700.
https://pubmed.ncbi.nlm.nih.gov/606702054
25.Redfield, R.R., et al. Predictors and outcomes of delayed graft function after living-donor kidney transplantation. Transpl Int, 2016. 29: 81.
https://pubmed.ncbi.nlm.nih.gov/26432507
26.Irish, W.D., et al. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant, 2010. 10: 2279.
https://pubmed.ncbi.nlm.nih.gov/20883559
27.de Boer, J., et al. Eurotransplant randomized multicenter kidney graft preservation study comparing HTK with UW and Euro-Collins. Transpl Int, 1999. 12: 447.
https://pubmed.ncbi.nlm.nih.gov/10654357
28.Parsons, R.F., et al. Preservation solutions for static cold storage of abdominal allografts: which is best? Curr Opin Organ Transplant, 2014. 19: 100.
https://pubmed.ncbi.nlm.nih.gov/24553501
29.Tillou, X., et al. Comparison of UW and Celsior: long-term results in kidney transplantation. Ann Transplant, 2013. 18: 146.
https://pubmed.ncbi.nlm.nih.gov/23792514
30.Barnett, D., Black, D. W., Buckley, B., Campbell, D., Clarke, P.,. Machine perfusion systems and cold static storage of kidneys from deceased donors. NICE Guidelines. Technology appraisal guidance 2009.
https://www.nice.org.uk/guidance/ta165
31.Kay, M.D., et al. Comparison of preservation solutions in an experimental model of organ cooling in kidney transplantation. Br J Surg, 2009. 96: 1215.
https://pubmed.ncbi.nlm.nih.gov/19787767
32.Bond, M., et al. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model. Health Technol Assess, 2009. 13: iii.
https://pubmed.ncbi.nlm.nih.gov/19674537
33.Lledo-Garcia, E., et al. Spanish consensus document for acceptance and rejection of kidneys from expanded criteria donors. Clin Transplant, 2014. 28: 1155.
https://pubmed.ncbi.nlm.nih.gov/25109314
34.Johnston, T.D., et al. Sensitivity of expanded-criteria donor kidneys to cold ischaemia time. Clin Transplant, 2004. 18 Suppl 12: 28.
https://pubmed.ncbi.nlm.nih.gov/15217404
35.Peters-Sengers, H., et al. Impact of Cold Ischemia Time on Outcomes of Deceased Donor Kidney Transplantation: An Analysis of a National Registry. Transplant Direct, 2019. 5: e448.
https://pubmed.ncbi.nlm.nih.gov/31165083
36.Summers, D.M., et al. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: a cohort study. Lancet, 2010. 376: 1303.
https://pubmed.ncbi.nlm.nih.gov/20727576
37.Aubert, O., et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study. BMJ, 2015. 351: h3557.
https://pubmed.ncbi.nlm.nih.gov/26232393
38.Kayler, L.K., et al. Impact of cold ischemia time on graft survival among ECD transplant recipients: a paired kidney analysis. Am J Transplant, 2011. 11: 2647.
https://pubmed.ncbi.nlm.nih.gov/21906257
39.Chatauret, N., et al. Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr Opin Organ Transplant, 2011. 16: 180.
https://pubmed.ncbi.nlm.nih.gov/21415820
40.Jochmans, I., et al. Past, Present, and Future of Dynamic Kidney and Liver Preservation and Resuscitation. Am J Transplant, 2016. 16: 2545.
https://pubmed.ncbi.nlm.nih.gov/26946212
41.O’Callaghan, J.M., et al. Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. Br J Surg, 2013. 100: 991.
https://pubmed.ncbi.nlm.nih.gov/23754643
42.Martinez Arcos, L., et al. Functional Results of Renal Preservation in Hypothermic Pulsatile Machine Perfusion Versus Cold Preservation: Systematic Review and Meta-Analysis of Clinical Trials. Transplant Proc, 2018. 50: 24.
https://pubmed.ncbi.nlm.nih.gov/29407316
43.Tingle, S.J., et al. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev, 2019. 3: CD011671.
https://pubmed.ncbi.nlm.nih.gov/30875082
44.Jochmans, I., et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg, 2010. 252: 756.
https://pubmed.ncbi.nlm.nih.gov/21037431
45.Reznik, O.N., et al. Machine perfusion as a tool to select kidneys recovered from uncontrolled donors after cardiac death. Transplant Proc, 2008. 40: 1023.
https://pubmed.ncbi.nlm.nih.gov/18555105
46.Jochmans, I., et al. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl Int, 2015. 28: 665.
https://pubmed.ncbi.nlm.nih.gov/25630347
47.Treckmann, J., et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transpl Int, 2011. 24: 548.
https://pubmed.ncbi.nlm.nih.gov/21332580
48.Gill, J., et al. Pulsatile perfusion reduces the risk of delayed graft function in deceased donor kidney transplants, irrespective of donor type and cold ischemic time. Transplantation, 2014. 97: 668.
https://pubmed.ncbi.nlm.nih.gov/24637865
49.Matsuno, N., et al. Machine perfusion preservation for kidney grafts with a high creatinine from uncontrolled donation after cardiac death. Transplant Proc, 2010. 42: 155.
https://pubmed.ncbi.nlm.nih.gov/20172304
50.Jochmans, I., et al. Graft quality assessment in kidney transplantation: not an exact science yet! Curr Opin Organ Transplant, 2011. 16: 174.
https://pubmed.ncbi.nlm.nih.gov/21383549
51.Jochmans, I., et al. Oxygenated Hypothermic Machine Perfusion of Kidneys Donated after Circulatory Death: An International Randomised Controlled Trial [abstract]. Am J Transplant, 2019. 19.
52.Hosgood, S.A., et al. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int, 2015. 28: 657.
https://pubmed.ncbi.nlm.nih.gov/24629095
53.Reddy, S.P., et al. Normothermic perfusion: a mini-review. Transplantation, 2009. 87: 631.
https://pubmed.ncbi.nlm.nih.gov/19295304
54.Antoine, C., et al. Kidney Transplant From Uncontrolled Donation After Circulatory Death: Contribution of Normothermic Regional Perfusion. Transplantation, 2020. 104: 130.
https://pubmed.ncbi.nlm.nih.gov/30985577
55.Reznik, O., et al. Kidney from uncontrolled donors after cardiac death with one hour warm ischemic time: resuscitation by extracorporal normothermic abdominal perfusion “in situ” by leukocytes-free oxygenated blood. Clin Transplant, 2011. 25: 511.
https://pubmed.ncbi.nlm.nih.gov/20973824
56.Hosgood, S.A., et al. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br J Surg, 2015. 102: 1433.
https://pubmed.ncbi.nlm.nih.gov/26313559
57.Hoyer, D.P., et al. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl Int, 2014. 27: 1097.
https://pubmed.ncbi.nlm.nih.gov/24963744
58.Naesens, M. Zero-Time Renal Transplant Biopsies: A Comprehensive Review. Transplantation, 2016. 100: 1425.
https://pubmed.ncbi.nlm.nih.gov/26599490
59.Reese, P.P., et al. Assessment of the Utility of Kidney Histology as a Basis for Discarding Organs in the United States: A Comparison of International Transplant Practices and Outcomes. J Am Soc Nephrol, 2021. 32: 397.
https://pubmed.ncbi.nlm.nih.gov/33323474
60.Kasiske, B.L., et al. The role of procurement biopsies in acceptance decisions for kidneys retrieved for transplant. Clin J Am Soc Nephrol, 2014. 9: 562.
https://pubmed.ncbi.nlm.nih.gov/24558053
61.Marrero, W.J., et al. Predictors of Deceased Donor Kidney Discard in the United States. Transplantation, 2016.
https://pubmed.ncbi.nlm.nih.gov/27163541
62.Sung, R.S., et al. Determinants of discard of expanded criteria donor kidneys: impact of biopsy and machine perfusion. Am J Transplant, 2008. 8: 783.
https://pubmed.ncbi.nlm.nih.gov/18294347
63.Lentine, K.L., et al. Deceased Donor Procurement Biopsy Practices, Interpretation, and Histology-Based Decision-Making: A Survey of US Kidney Transplant Centers. Kidney Int Rep, 2022. 7: 1268.
https://pubmed.ncbi.nlm.nih.gov/35685316
64.Wang, C.J., et al. The Donor Kidney Biopsy and Its Implications in Predicting Graft Outcomes: A Systematic Review. Am J Transplant, 2015. 15: 1903.
https://pubmed.ncbi.nlm.nih.gov/25772854
65.Hopfer, H., et al. Assessment of donor biopsies. Curr Opin Organ Transplant, 2013. 18: 306.
https://pubmed.ncbi.nlm.nih.gov/23492644
66.Gaber, L.W., et al. Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation, 1995. 60: 334.
https://pubmed.ncbi.nlm.nih.gov/7652761
67.Solez, K., et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant, 2008. 8: 753.
https://pubmed.ncbi.nlm.nih.gov/18294345
68.De Vusser, K., et al. The predictive value of kidney allograft baseline biopsies for long-term graft survival. J Am Soc Nephrol, 2013. 24: 1913.
https://pubmed.ncbi.nlm.nih.gov/23949799
69.Anglicheau, D., et al. A simple clinico-histopathological composite scoring system is highly predictive of graft outcomes in marginal donors. Am J Transplant, 2008. 8: 2325.
https://pubmed.ncbi.nlm.nih.gov/18785957
70.Balaz, P., et al. Identification of expanded-criteria donor kidney grafts at lower risk of delayed graft function. Transplantation, 2013. 96: 633.
https://pubmed.ncbi.nlm.nih.gov/23912171
71.Lopes, J.A., et al. Evaluation of pre-implantation kidney biopsies: comparison of Banff criteria to a morphometric approach. Kidney Int, 2005. 67: 1595.
https://pubmed.ncbi.nlm.nih.gov/15780116
72.Munivenkatappa, R.B., et al. The Maryland aggregate pathology index: a deceased donor kidney biopsy scoring system for predicting graft failure. Am J Transplant, 2008. 8: 2316.
https://pubmed.ncbi.nlm.nih.gov/18801024
73.Liapis, H., et al. Banff Histopathological Consensus Criteria for Preimplantation Kidney Biopsies. Am J Transplant, 2016.
https://pubmed.ncbi.nlm.nih.gov/27333454
74.Haas, M. Donor kidney biopsies: pathology matters, and so does the pathologist. Kidney Int, 2014. 85: 1016.
https://pubmed.ncbi.nlm.nih.gov/24786876
75.Girolami, I., et al. Pre-implantation kidney biopsy: value of the expertise in determining histological score and comparison with the whole organ on a series of discarded kidneys. J Nephrol, 2020. 33: 167.
https://pubmed.ncbi.nlm.nih.gov/31471818
76.Azancot, M.A., et al. The reproducibility and predictive value on outcome of renal biopsies from expanded criteria donors. Kidney Int, 2014. 85: 1161.
https://pubmed.ncbi.nlm.nih.gov/24284518
77.Peters, B., et al. Sixteen Gauge biopsy needles are better and safer than 18 Gauge in native and transplant kidney biopsies. Acta Radiol, 2017. 58: 240.
https://pubmed.ncbi.nlm.nih.gov/27055922
78.Haas, M., et al. Arteriosclerosis in kidneys from healthy live donors: comparison of wedge and needle core perioperative biopsies. Arch Pathol Lab Med, 2008. 132: 37.
https://pubmed.ncbi.nlm.nih.gov/18181671
79.Mazzucco, G., et al. The reliability of pre-transplant donor renal biopsies (PTDB) in predicting the kidney state. A comparative single-centre study on 154 untransplanted kidneys. Nephrol Dial Transplant, 2010. 25: 3401.
https://pubmed.ncbi.nlm.nih.gov/20356979
80.Wang, H.J., et al. On the influence of sample size on the prognostic accuracy and reproducibility of renal transplant biopsy. Nephrol Dial Transplant, 1998. 13: 165.
https://pubmed.ncbi.nlm.nih.gov/9481734
81.Yushkov, Y., et al. Optimized technique in needle biopsy protocol shown to be of greater sensitivity and accuracy compared to wedge biopsy. Transplant Proc, 2010. 42: 2493.
https://pubmed.ncbi.nlm.nih.gov/20832530
82.Muruve, N.A., et al. Are wedge biopsies of cadaveric kidneys obtained at procurement reliable? Transplantation, 2000. 69: 2384.
https://pubmed.ncbi.nlm.nih.gov/10868645
83.Randhawa, P. Role of donor kidney biopsies in renal transplantation. Transplantation, 2001. 71: 1361.
https://pubmed.ncbi.nlm.nih.gov/11391219
84.Bago-Horvath, Z., et al. The cutting (w)edge--comparative evaluation of renal baseline biopsies obtained by two different methods. Nephrol Dial Transplant, 2012. 27: 3241.
https://pubmed.ncbi.nlm.nih.gov/22492825
85.Jankovic, Z. Anaesthesia for living-donor renal transplant. Current Anaesthesia & Critical Care, 2008. 19: 175.
86.Karmarkar, S., et al. Kidney Transplantation. Anaesthesia And Intensive Care Medicine 2009. 10.5.
https://www.anaesthesiajournal.co.uk/article/S1472-0299(12)00070-7/abstract
87.Abramowicz, D., et al. European Renal Best Practice Guideline on kidney donor and recipient evaluation and perioperative care. Nephrol Dial Transplant, 2015. 30: 1790.
https://pubmed.ncbi.nlm.nih.gov/25007790
88.Van Loo, A.A., et al. Pretransplantation hemodialysis strategy influences early renal graft function. J Am Soc Nephrol, 1998. 9: 473.
https://pubmed.ncbi.nlm.nih.gov/9513911
89.Task Force for Preoperative Cardiac Risk, A., et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J, 2009. 30: 2769.
https://pubmed.ncbi.nlm.nih.gov/19713421
90.Douketis, J.D., et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2012. 141: e326S.
https://pubmed.ncbi.nlm.nih.gov/22315266
91.Benahmed, A., et al. Ticlopidine and clopidogrel, sometimes combined with aspirin, only minimally increase the surgical risk in renal transplantation: a case-control study. Nephrol Dial Transplant, 2014. 29: 463.
https://pubmed.ncbi.nlm.nih.gov/24275542
92.Osman, Y., et al. Necessity of routine postoperative heparinization in non-risky live-donor renal transplantation: results of a prospective randomized trial. Urology, 2007. 69: 647.
https://pubmed.ncbi.nlm.nih.gov/17445644
93.Orlando, G., et al. One-shot versus multidose perioperative antibiotic prophylaxis after kidney transplantation: a randomized, controlled clinical trial. Surgery, 2015. 157: 104.
https://pubmed.ncbi.nlm.nih.gov/25304836
94.Choi, S.U., et al. Clinical significance of prophylactic antibiotics in renal transplantation. Transplant Proc, 2013. 45: 1392.
https://pubmed.ncbi.nlm.nih.gov/23726580
95.O’Malley, C.M., et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg, 2005. 100: 1518.
https://pubmed.ncbi.nlm.nih.gov/15845718
96.Othman, M.M., et al. The impact of timing of maximal crystalloid hydration on early graft function during kidney transplantation. Anesth Analg, 2010. 110: 1440.
https://pubmed.ncbi.nlm.nih.gov/20418304
97.Dalton, R.S., et al. Physiologic impact of low-dose dopamine on renal function in the early post renal transplant period. Transplantation, 2005. 79: 1561.
https://pubmed.ncbi.nlm.nih.gov/15940046
98.Ciapetti, M., et al. Low-dose dopamine in kidney transplantation. Transplant Proc, 2009. 41: 4165.
https://pubmed.ncbi.nlm.nih.gov/20005360
99.Hanif, F., et al. Outcome of renal transplantation with and without intra-operative diuretics. Int J Surg, 2011. 9: 460.
https://pubmed.ncbi.nlm.nih.gov/21600319
100.Valeriani, G., et al. Bench surgery in right kidney transplantation. Transplant Proc, 2010. 42: 1120.
https://pubmed.ncbi.nlm.nih.gov/20534239
101.Wagenaar, S., et al. Minimally Invasive, Laparoscopic, and Robotic-assisted Techniques Versus Open Techniques for Kidney Transplant Recipients: A Systematic Review. Eur Urol, 2017. 72: 205.
https://pubmed.ncbi.nlm.nih.gov/28262412
102.Chedid, M.F., et al. Living donor kidney transplantation using laparoscopically procured multiple renal artery kidneys and right kidneys. J Am Coll Surg, 2013. 217: 144.
https://pubmed.ncbi.nlm.nih.gov/23791283
103.Kaminska, D., et al. The influence of warm ischemia elimination on kidney injury during transplantation - clinical and molecular study. Sci Rep, 2016. 6: 36118.
https://pubmed.ncbi.nlm.nih.gov/27808277
104.Ozdemir-van Brunschot, D.M., et al. Is the Reluctance for the Implantation of Right Donor Kidneys Justified? World J Surg, 2016. 40: 471.
https://pubmed.ncbi.nlm.nih.gov/26319261
105.Khalil, A., et al. Trends and outcomes in right vs. left living donor nephrectomy: an analysis of the OPTN/UNOS database of donor and recipient outcomes--should we be doing more right-sided nephrectomies? Clin Transplant, 2016. 30: 145.
https://pubmed.ncbi.nlm.nih.gov/26589133
106.Hsu, J.W., et al. Increased early graft failure in right-sided living donor nephrectomy. Transplantation, 2011. 91: 108.
https://pubmed.ncbi.nlm.nih.gov/21441855
107.Kulkarni, S., et al. Outcomes From Right Versus Left Deceased-Donor Kidney Transplants: A US National Cohort Study. Am J Kidney Dis, 2020. 75: 725.
https://pubmed.ncbi.nlm.nih.gov/31812448
108.Wang, K., et al. Right Versus Left Laparoscopic Living-Donor Nephrectomy: A Meta-Analysis. Exp Clin Transplant, 2015. 13: 214.
https://pubmed.ncbi.nlm.nih.gov/26086831
109.Ciudin, A., et al. Transposition of iliac vessels in implantation of right living donor kidneys. Transplant Proc, 2012. 44: 2945.
https://pubmed.ncbi.nlm.nih.gov/23195003
110.Phelan, P.J., et al. Left versus right deceased donor renal allograft outcome. Transpl Int, 2009. 22: 1159.
https://pubmed.ncbi.nlm.nih.gov/19891044
111.Feng, J.Y., et al. Renal vein lengthening using gonadal vein reduces surgical difficulty in living-donor kidney transplantation. World J Surg, 2012. 36: 468.
https://pubmed.ncbi.nlm.nih.gov/21882021
112.Nghiem, D.D. Use of spiral vein graft in living donor renal transplantation. Clin Transplant, 2008. 22: 719.
https://pubmed.ncbi.nlm.nih.gov/18673376
113.Matheus, W.E., et al. Kidney transplant anastomosis: internal or external iliac artery? Urol J, 2009. 6: 260.
https://pubmed.ncbi.nlm.nih.gov/20027554
114.El-Sherbiny, M., et al. The use of the inferior epigastric artery for accessory lower polar artery revascularization in live donor renal transplantation. Int Urol Nephrol, 2008. 40: 283.
https://pubmed.ncbi.nlm.nih.gov/17721826
115.Firmin, L.C., et al. The use of explanted internal iliac artery grafts in renal transplants with multiple arteries. Transplantation, 2010. 89: 766.
https://pubmed.ncbi.nlm.nih.gov/20308866
116.Oertl, A.J., et al. Saphenous vein interposition as a salvage technique for complex vascular situations during renal transplantation. Transplant Proc, 2007. 39: 140.
https://pubmed.ncbi.nlm.nih.gov/17275492
117.Tozzi, M., et al. Treatment of aortoiliac occlusive or dilatative disease concomitant with kidney transplantation: how and when? Int J Surg, 2013. 11 Suppl 1: S115.
https://pubmed.ncbi.nlm.nih.gov/24380542
118.Franchin, M., et al. ePTFE suture is an effective tool for vascular anastomosis in kidney transplantation. Italian Journal of Vascular and Endovascular Surgery, 2015. 22: 61.
119.Izquierdo, L., et al. Third and fourth kidney transplant: still a reasonable option. Transplant Proc, 2010. 42: 2498.
https://pubmed.ncbi.nlm.nih.gov/20832531
120.Blanco, M., et al. Third kidney transplantation: a permanent medical-surgical challenge. Transplant Proc, 2009. 41: 2366.
https://pubmed.ncbi.nlm.nih.gov/19715921
121.Nourbala, M.H., et al. Our experience with third renal transplantation: results, surgical techniques and complications. Int J Urol, 2007. 14: 1057.
https://pubmed.ncbi.nlm.nih.gov/18036037
122.Musquera, M., et al. Orthotopic kidney transplantation: an alternative surgical technique in selected patients. Eur Urol, 2010. 58: 927.
https://pubmed.ncbi.nlm.nih.gov/20888120
123.Heylen, L., et al. The Impact of Anastomosis Time During Kidney Transplantation on Graft Loss: A Eurotransplant Cohort Study. Am J Transplant, 2017. 17: 724.
https://pubmed.ncbi.nlm.nih.gov/27593738
124.Weissenbacher, A., et al. The faster the better: anastomosis time influences patient survival after deceased donor kidney transplantation. Transpl Int, 2015. 28: 535.
https://pubmed.ncbi.nlm.nih.gov/25557890
125.McCulloch, P., et al. IDEAL framework for surgical innovation 1: the idea and development stages. BMJ, 2013. 346: f3012.
https://pubmed.ncbi.nlm.nih.gov/23778427
126.Breda, A., et al. Robot-assisted Kidney Transplantation: The European Experience. Eur Urol, 2018. 73: 273.
https://pubmed.ncbi.nlm.nih.gov/28916408
127.Gallioli, A., et al. Learning Curve in Robot-assisted Kidney Transplantation: Results from the European Robotic Urological Society Working Group. Eur Urol, 2020. 78: 239.
https://pubmed.ncbi.nlm.nih.gov/31928760
128.Tzvetanov, I.G., et al. Robotic kidney transplantation in the obese patient: 10-year experience from a single center. Am J Transplant, 2020. 20: 430.
https://pubmed.ncbi.nlm.nih.gov/31571369
129.Basu, A., et al. Adult dual kidney transplantation. Current Opinion in Organ Transplantation, 2007. 12: 379.
130.Haider, H.H., et al. Dual kidney transplantation using midline extraperitoneal approach: description of a technique. Transplant Proc, 2007. 39: 1118.
https://pubmed.ncbi.nlm.nih.gov/17524907
131.Ekser, B., et al. Technical aspects of unilateral dual kidney transplantation from expanded criteria donors: experience of 100 patients. Am J Transplant, 2010. 10: 2000.
https://pubmed.ncbi.nlm.nih.gov/20636454
132.Nghiem, D.D. Simultaneous double adult kidney transplantation using single arterial and venous anastomoses. Urology, 2006. 67: 1076.
https://pubmed.ncbi.nlm.nih.gov/16581114
133.Veroux, P., et al. Two-as-one monolateral dual kidney transplantation. Urology, 2011. 77: 227.
https://pubmed.ncbi.nlm.nih.gov/20399490
134.Salehipour, M., et al. En-bloc Transplantation: an Eligible Technique for Unilateral Dual Kidney Transplantation. Int J Organ Transplant Med, 2012. 3: 111.
https://pubmed.ncbi.nlm.nih.gov/25013633
135.Rigotti, P., et al. A single-center experience with 200 dual kidney transplantations. Clin Transplant, 2014. 28: 1433.
https://pubmed.ncbi.nlm.nih.gov/25297945
136.Al-Shraideh, Y., et al. Single vs dual (en bloc) kidney transplants from donors </= 5 years of age: A single center experience. World J Transplant, 2016. 6: 239.
https://pubmed.ncbi.nlm.nih.gov/27011923
137.Alberts, V.P., et al. Ureterovesical anastomotic techniques for kidney transplantation: a systematic review and meta-analysis. Transpl Int, 2014. 27: 593.
https://pubmed.ncbi.nlm.nih.gov/24606191
138.Slagt, I.K., et al. A randomized controlled trial comparing intravesical to extravesical ureteroneocystostomy in living donor kidney transplantation recipients. Kidney Int, 2014. 85: 471.
https://pubmed.ncbi.nlm.nih.gov/24284515
139.Timsit, M.O., et al. Should routine pyeloureterostomy be advocated in adult kidney transplantation? A prospective study of 283 recipients. J Urol, 2010. 184: 2043.
https://pubmed.ncbi.nlm.nih.gov/20850818
140.Suttle, T., et al. Comparison of urologic complications between ureteroneocystostomy and ureteroureterostomy in renal transplant: A meta-analysis. Experimental and Clinical Transplantation, 2016. 14: 276.
https://pubmed.ncbi.nlm.nih.gov/610598765
141.Dadkhah, F., et al. Modified ureteroneocystostomy in kidney transplantation to facilitate endoscopic management of subsequent urological complications. Int Urol Nephrol, 2010. 42: 285.
https://pubmed.ncbi.nlm.nih.gov/19760513
142.Kehinde, E.O., et al. Complications associated with using nonabsorbable sutures for ureteroneocystostomy in renal transplant operations. Transplant Proc, 2000. 32: 1917.
https://pubmed.ncbi.nlm.nih.gov/11119999
143.Wilson, C.H., et al. Routine intraoperative ureteric stenting for kidney transplant recipients. Cochrane Database Syst Rev, 2013: CD004925.
https://pubmed.ncbi.nlm.nih.gov/23771708
144.Tavakoli, A., et al. Impact of stents on urological complications and health care expenditure in renal transplant recipients: results of a prospective, randomized clinical trial. J Urol, 2007. 177: 2260.
https://pubmed.ncbi.nlm.nih.gov/17509336
145.Cai, J.F., et al. Meta-analysis of Early Versus Late Ureteric Stent Removal After Kidney Transplantation. Transplant Proc, 2018. 50: 3411.
https://pubmed.ncbi.nlm.nih.gov/30577214
146.Visser, I.J., et al. Timing of Ureteric Stent Removal and Occurrence of Urological Complications after Kidney Transplantation: A Systematic Review and Meta-Analysis. J Clin Med, 2019. 8.
https://pubmed.ncbi.nlm.nih.gov/31100847
147.Patel, P., et al. Prophylactic Ureteric Stents in Renal Transplant Recipients: A Multicenter Randomized Controlled Trial of Early Versus Late Removal. Am J Transplant, 2017. 17: 2129.
https://pubmed.ncbi.nlm.nih.gov/28188678
148.Heidari, M., et al. Transplantation of kidneys with duplicated ureters. Scand J Urol Nephrol, 2010. 44: 337.
https://pubmed.ncbi.nlm.nih.gov/20653492
149.Alberts, V.P., et al. Duplicated ureters and renal transplantation: a case-control study and review of the literature. Transplant Proc, 2013. 45: 3239.
https://pubmed.ncbi.nlm.nih.gov/24182792
150.Surange, R.S., et al. Kidney transplantation into an ileal conduit: a single center experience of 59 cases. J Urol, 2003. 170: 1727.
https://pubmed.ncbi.nlm.nih.gov/14532763
151.Kortram, K., et al. Perioperative Events and Complications in Minimally Invasive Live Donor Nephrectomy: A Systematic Review and Meta-Analysis. Transplantation, 2016.
https://pubmed.ncbi.nlm.nih.gov/27428715
152.Segev, D.L., et al. Perioperative mortality and long-term survival following live kidney donation. JAMA, 2010. 303: 959.
https://pubmed.ncbi.nlm.nih.gov/20215610
153.Chu, K.H., et al. Long-term outcomes of living kidney donors: a single centre experience of 29 years. Nephrology (Carlton), 2012. 17: 85.
https://pubmed.ncbi.nlm.nih.gov/21919999
154.Fehrman-Ekholm, I., et al. Post-nephrectomy development of renal function in living kidney donors: a cross-sectional retrospective study. Nephrol Dial Transplant, 2011. 26: 2377.
https://pubmed.ncbi.nlm.nih.gov/21459783
155.Li, S.S., et al. A meta-analysis of renal outcomes in living kidney donors. [Review]. Medicine, 2016. 95.
https://pubmed.ncbi.nlm.nih.gov/27310964
156.Thiel, G.T., et al. Investigating kidney donation as a risk factor for hypertension and microalbuminuria: findings from the Swiss prospective follow-up of living kidney donors. BMJ Open, 2016. 6: 22.
https://pubmed.ncbi.nlm.nih.gov/27006347
157.Bellini, M.I., et al. Risks for donors associated with living kidney donation: meta-analysis. Br J Surg, 2022. 109: 671.
https://pubmed.ncbi.nlm.nih.gov/35612960
158.Haugen, A.J., et al. Increased risk of ischaemic heart disease after kidney donation. Nephrol Dial Transplant, 2022. 37: 928.
https://pubmed.ncbi.nlm.nih.gov/33624826
159.Ibrahim, H.N., et al. Long-term consequences of kidney donation. N Engl J Med, 2009. 360: 459.
https://pubmed.ncbi.nlm.nih.gov/19179315
160.Li, S.S., et al. A meta-analysis of renal outcomes in living kidney donors. Medicine (Baltimore), 2016. 95: e3847.
https://pubmed.ncbi.nlm.nih.gov/27310964
161.Matas, A.J., et al. Causes and timing of end-stage renal disease after living kidney donation. Am J Transplant, 2018. 18: 1140.
https://pubmed.ncbi.nlm.nih.gov/29369517
162.Locke, J.E., et al. Obesity increases the risk of end-stage renal disease among living kidney donors. Kidney Int, 2017. 91: 699.
https://pubmed.ncbi.nlm.nih.gov/28041626
163.Gross, C.R., et al. Health-related quality of life in kidney donors from the last five decades: results from the RELIVE study. Am J Transplant, 2013. 13: 2924.
https://pubmed.ncbi.nlm.nih.gov/24011252
164.Maggiore, U., et al. Long-term risks of kidney living donation: Review and position paper by the ERA-EDTA DESCARTES working group. Nephrology Dialysis Transplantation, 2017. 32: 216.
https://pubmed.ncbi.nlm.nih.gov/614992517
165.Lorenz, E.C., et al. The impact of urinary tract infections in renal transplant recipients. Kidney Int, 2010. 78: 719.
https://pubmed.ncbi.nlm.nih.gov/20877371
166.Ariza-Heredia, E.J., et al. Urinary tract infections in kidney transplant recipients: role of gender, urologic abnormalities, and antimicrobial prophylaxis. Ann Transplant, 2013. 18: 195.
https://pubmed.ncbi.nlm.nih.gov/23792521
167.Chang, C.Y., et al. Urological manifestations of BK polyomavirus in renal transplant recipients. Can J Urol, 2005. 12: 2829.
https://pubmed.ncbi.nlm.nih.gov/16274519
168.Hwang, J.K., et al. Comparative analysis of ABO-incompatible living donor kidney transplantation with ABO-compatible grafts: a single-center experience in Korea. Transplant Proc, 2013. 45: 2931.
https://pubmed.ncbi.nlm.nih.gov/24157006
169.Habicht, A., et al. Increase of infectious complications in ABO-incompatible kidney transplant recipients--a single centre experience. Nephrol Dial Transplant, 2011. 26: 4124.
https://pubmed.ncbi.nlm.nih.gov/21622990
170.Sorto, R., et al. Risk factors for urinary tract infections during the first year after kidney transplantation. Transplant Proc, 2010. 42: 280.
https://pubmed.ncbi.nlm.nih.gov/20172330
171.Thrasher, J.B., et al. Extravesical versus Leadbetter-Politano ureteroneocystostomy: a comparison of urological complications in 320 renal transplants. J Urol, 1990. 144: 1105.
https://pubmed.ncbi.nlm.nih.gov/2231880
172.Mangus, R.S., et al. Stented versus nonstented extravesical ureteroneocystostomy in renal transplantation: a metaanalysis. Am J Transplant, 2004. 4: 1889.
https://pubmed.ncbi.nlm.nih.gov/15476491
173.Wilson, C.H., et al. Routine intraoperative ureteric stenting for kidney transplant recipients. Cochrane Database Syst Rev, 2005: CD004925.
https://pubmed.ncbi.nlm.nih.gov/16235385
174.Osman, Y., et al. Routine insertion of ureteral stent in live-donor renal transplantation: is it worthwhile? Urology, 2005. 65: 867.
https://pubmed.ncbi.nlm.nih.gov/15882713
175.Georgiev, P., et al. Routine stenting reduces urologic complications as compared with stenting “on demand” in adult kidney transplantation. Urology, 2007. 70: 893.
https://pubmed.ncbi.nlm.nih.gov/17919691
176.Akoh, J.A., et al. Effect of ureteric stents on urological infection and graft function following renal transplantation. World J Transplant, 2013. 3: 1.
https://pubmed.ncbi.nlm.nih.gov/24175202
177.Fayek, S.A., et al. Ureteral stents are associated with reduced risk of ureteral complications after kidney transplantation: a large single center experience. Transplantation, 2012. 93: 304.
https://pubmed.ncbi.nlm.nih.gov/22179401
178.Dimitroulis, D., et al. Vascular complications in renal transplantation: a single-center experience in 1367 renal transplantations and review of the literature. Transplant Proc, 2009. 41: 1609.
https://pubmed.ncbi.nlm.nih.gov/19545690
179.Pawlicki, J., et al. Risk factors for early hemorrhagic and thrombotic complications after kidney transplantation. Transplant Proc, 2011. 43: 3013.
https://pubmed.ncbi.nlm.nih.gov/21996213
180.Rouviere, O., et al. Acute thrombosis of renal transplant artery: graft salvage by means of intra-arterial fibrinolysis. Transplantation, 2002. 73: 403.
https://pubmed.ncbi.nlm.nih.gov/11884937
181.Domagala, P., et al. Complications of transplantation of kidneys from expanded-criteria donors. Transplant Proc, 2009. 41: 2970.
https://pubmed.ncbi.nlm.nih.gov/19857652
182.Ammi, M., et al. Evaluation of the Vascular Surgical Complications of Renal Transplantation. Annals of Vascular Surgery, 2016. 33: 23.
https://pubmed.ncbi.nlm.nih.gov/614681588
183.Giustacchini, P., et al. Renal vein thrombosis after renal transplantation: an important cause of graft loss. Transplant Proc, 2002. 34: 2126.
https://pubmed.ncbi.nlm.nih.gov/12270338
184.Wuthrich, R.P. Factor V Leiden mutation: potential thrombogenic role in renal vein, dialysis graft and transplant vascular thrombosis. Curr Opin Nephrol Hypertens, 2001. 10: 409.
https://pubmed.ncbi.nlm.nih.gov/11342806
185.Parajuli, S., et al. Hypercoagulability in Kidney Transplant Recipients. Transplantation, 2016. 100: 719.
https://pubmed.ncbi.nlm.nih.gov/26413991
186.Granata, A., et al. Renal transplant vascular complications: the role of Doppler ultrasound. J Ultrasound, 2015. 18: 101.
https://pubmed.ncbi.nlm.nih.gov/26191097
187.Hogan, J.L., et al. Late-onset renal vein thrombosis: A case report and review of the literature. Int J Surg Case Rep, 2015. 6C: 73.
https://pubmed.ncbi.nlm.nih.gov/25528029
188.Musso, D., et al. Symptomatic Venous Thromboembolism and Major Bleeding After Renal Transplantation: Should We Use Pharmacologic Thromboprophylaxis? Transplantation Proceedings, 2016. 48: 2773.
https://pubmed.ncbi.nlm.nih.gov/613014201
189.Hurst, F.P., et al. Incidence, predictors and outcomes of transplant renal artery stenosis after kidney transplantation: analysis of USRDS. Am J Nephrol, 2009. 30: 459.
https://pubmed.ncbi.nlm.nih.gov/19776559
190.Willicombe, M., et al. Postanastomotic transplant renal artery stenosis: association with de novo class II donor-specific antibodies. Am J Transplant, 2014. 14: 133.
https://pubmed.ncbi.nlm.nih.gov/24354873
191.Ghazanfar, A., et al. Management of transplant renal artery stenosis and its impact on long-term allograft survival: a single-centre experience. Nephrol Dial Transplant, 2011. 26: 336.
https://pubmed.ncbi.nlm.nih.gov/20601365
192.Seratnahaei, A., et al. Management of transplant renal artery stenosis. Angiology, 2011. 62: 219.
https://pubmed.ncbi.nlm.nih.gov/20682611
193.Rountas, C., et al. Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography, and digital substraction angiography. Ren Fail, 2007. 29: 295.
https://pubmed.ncbi.nlm.nih.gov/17497443
194.Fervenza, F.C., et al. Renal artery stenosis in kidney transplants. Am J Kidney Dis, 1998. 31: 142.
https://pubmed.ncbi.nlm.nih.gov/9428466
195.Bach, D., et al. Percutaneous renal biopsy: three years of experience with the biopty gun in 761 cases--a survey of results and complications. Int Urol Nephrol, 1999. 31: 15.
https://pubmed.ncbi.nlm.nih.gov/10408297
196.Loffroy, R., et al. Management of post-biopsy renal allograft arteriovenous fistulas with selective arterial embolization: immediate and long-term outcomes. Clin Radiol, 2008. 63: 657.
https://pubmed.ncbi.nlm.nih.gov/18455557
197.Atray, N.K., et al. Post transplant lymphocele: a single centre experience. Clin Transplant, 2004. 18 Suppl 12: 46.
https://pubmed.ncbi.nlm.nih.gov/15217407
198.Ulrich, F., et al. Symptomatic lymphoceles after kidney transplantation - multivariate analysis of risk factors and outcome after laparoscopic fenestration. Clin Transplant, 2010. 24: 273.
https://pubmed.ncbi.nlm.nih.gov/19719727
199.Lucewicz, A., et al. Management of primary symptomatic lymphocele after kidney transplantation: a systematic review. Transplantation, 2011. 92: 663.
https://pubmed.ncbi.nlm.nih.gov/21849931
200.Capocasale, E., et al. Octreotide in the treatment of lymphorrhea after renal transplantation: a preliminary experience. Transplant Proc, 2006. 38: 1047.
https://pubmed.ncbi.nlm.nih.gov/16757259
201.Kayler, L., et al. Kidney transplant ureteroneocystostomy techniques and complications: review of the literature. Transplant Proc, 2010. 42: 1413.
https://pubmed.ncbi.nlm.nih.gov/20620446
202.Secin, F.P., et al. Comparing Taguchi and Lich-Gregoir ureterovesical reimplantation techniques for kidney transplants. J Urol, 2002. 168: 926.
https://pubmed.ncbi.nlm.nih.gov/12187192
203.Dinckan, A., et al. Early and late urological complications corrected surgically following renal transplantation. Transpl Int, 2007. 20: 702.
https://pubmed.ncbi.nlm.nih.gov/17511829
204.Kumar, A., et al. Evaluation of the urological complications of living related renal transplantation at a single center during the last 10 years: impact of the Double-J* stent. J Urol, 2000. 164: 657.
https://pubmed.ncbi.nlm.nih.gov/10953120
205.Mazzucchi, E., et al. Primary reconstruction is a good option in the treatment of urinary fistula after kidney transplantation. Int Braz J Urol, 2006. 32: 398.
https://pubmed.ncbi.nlm.nih.gov/16953905
206.Davari, H.R., et al. Urological complications in 980 consecutive patients with renal transplantation. Int J Urol, 2006. 13: 1271.
https://pubmed.ncbi.nlm.nih.gov/17010003
207.Sabnis, R.B., et al. The development and current status of minimally invasive surgery to manage urological complications after renal transplantation. Indian J Urol, 2016. 32: 186.
https://pubmed.ncbi.nlm.nih.gov/27555675
208.Breda, A., et al. Incidence of ureteral strictures after laparoscopic donor nephrectomy. J Urol, 2006. 176: 1065.
https://pubmed.ncbi.nlm.nih.gov/16890691
209.Helfand, B.T., et al. Reconstruction of late-onset transplant ureteral stricture disease. BJU Int, 2011. 107: 982.
https://pubmed.ncbi.nlm.nih.gov/20825404
210.Kaskarelis, I., et al. Ureteral complications in renal transplant recipients successfully treated with interventional radiology. Transplant Proc, 2008. 40: 3170.
https://pubmed.ncbi.nlm.nih.gov/19010224
211.Gabr, A.H., et al. Ureteral complications after hand-assisted laparoscopic living donor nephrectomy. Transplantation, 2014. 97: 788.
https://pubmed.ncbi.nlm.nih.gov/24305639
212.Kristo, B., et al. Treatment of renal transplant ureterovesical anastomotic strictures using antegrade balloon dilation with or without holmium:YAG laser endoureterotomy. Urology, 2003. 62: 831.
https://pubmed.ncbi.nlm.nih.gov/14624903
213.Nie, Z., et al. Comparison of urological complications with primary ureteroureterostomy versus conventional ureteroneocystostomy. Clin Transplant, 2010. 24: 615.
https://pubmed.ncbi.nlm.nih.gov/19925475
214.Chaykovska, L., et al. Kidney transplantation into urinary conduits with ureteroureterostomy between transplant and native ureter: single-center experience. Urology, 2009. 73: 380.
https://pubmed.ncbi.nlm.nih.gov/19022489
215.Kumar, S., et al. Long-term graft and patient survival after balloon dilation of ureteric stenosis after renal transplant: A 23-year retrospective matched cohort study. Radiology, 2016. 281: 301.
https://pubmed.ncbi.nlm.nih.gov/612480205
216.Jung, G.O., et al. Clinical significance of posttransplantation vesicoureteral reflux during short-term period after kidney transplantation. Transplant Proc, 2008. 40: 2339.
https://pubmed.ncbi.nlm.nih.gov/18790229
217.Giral, M., et al. Acute graft pyelonephritis and long-term kidney allograft outcome. Kidney Int, 2002. 61: 1880.
https://pubmed.ncbi.nlm.nih.gov/11967040
218.Pichler, R., et al. Endoscopic application of dextranomer/hyaluronic acid copolymer in the treatment of vesico-ureteric reflux after renal transplantation. BJU Int, 2011. 107: 1967.
https://pubmed.ncbi.nlm.nih.gov/21059169
219.Abbott, K.C., et al. Hospitalized nephrolithiasis after renal transplantation in the United States. Am J Transplant, 2003. 3: 465.
https://pubmed.ncbi.nlm.nih.gov/12694070
220.Verrier, C., et al. Decrease in and management of urolithiasis after kidney transplantation. J Urol, 2012. 187: 1651.
https://pubmed.ncbi.nlm.nih.gov/22425102
221.Oliveira, M., et al. Percutaneous nephrolithotomy in renal transplants: a safe approach with a high stone-free rate. Int Urol Nephrol, 2011. 43: 329.
https://pubmed.ncbi.nlm.nih.gov/20848196
222.Silva, A., et al. Risk factors for urinary tract infection after renal transplantation and its impact on graft function in children and young adults. J Urol, 2010. 184: 1462.
https://pubmed.ncbi.nlm.nih.gov/20727542
223.Challacombe, B., et al. Multimodal management of urolithiasis in renal transplantation. BJU Int, 2005. 96: 385.
https://pubmed.ncbi.nlm.nih.gov/16042735
224.Basiri, A., et al. Ureteroscopic management of urological complications after renal transplantation. Scand J Urol Nephrol, 2006. 40: 53.
https://pubmed.ncbi.nlm.nih.gov/16452057
225.Roine, E., et al. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. Transplant Proc, 2010. 42: 2542.
https://pubmed.ncbi.nlm.nih.gov/20832540
226.Yannam, G.R., et al. Experience of laparoscopic incisional hernia repair in kidney and/or pancreas transplant recipients. Am J Transplant, 2011. 11: 279.
https://pubmed.ncbi.nlm.nih.gov/21272235
227.Boissier, R., et al. The Risk of Tumour Recurrence in Patients Undergoing Renal Transplantation for End-stage Renal Disease after Previous Treatment for a Urological Cancer: A Systematic Review. Eur Urol, 2018. 73: 94.
https://pubmed.ncbi.nlm.nih.gov/28803033
228.Hevia, V., et al. Effectiveness and Harms of Using Kidneys with Small Renal Tumors from Deceased or Living Donors as a Source of Renal Transplantation: A Systematic Review. Eur Urol Focus, 2018.
https://pubmed.ncbi.nlm.nih.gov/29433988
229.Hevia, V., et al. Management of Localised Prostate Cancer in Kidney Transplant Patients: A Systematic Review from the EAU Guidelines on Renal Transplantation Panel. Eur Urol Focus, 2018. 4: 153.
https://pubmed.ncbi.nlm.nih.gov/29921544
230.Marra, G., et al. Prostate cancer treatment in renal transplant recipients: a systematic review. BJU Int, 2018. 121: 327.
https://pubmed.ncbi.nlm.nih.gov/28921938
231.Tait, B.D., et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation, 2013. 95: 19.
https://pubmed.ncbi.nlm.nih.gov/23238534
232.European Renal Best Practice Transplantation Guideline Development Group. ERBP Guideline on the Management and Evaluation of the Kidney Donor and Recipient. Nephrol Dial Transplant, 2013. 28 Suppl 2: ii1.
https://pubmed.ncbi.nlm.nih.gov/24026881
233.Poulton, K., et al. British Transplantation Society. Guidelines for the detection of clinically relevant antibodies in allotransplantation. 2014.
https://bts.org.uk/wp-content/uploads/2016/09/06_BTS_BSHI_Antibodies-1.pdf
234.UNOS. Unitied Network For Organ Sharing Website: https://www.unos.org/
235.Heidt, S., Eurotransplant Manual version 3.1 Chapter 10 Histocompatibility. 2015.
236.European Federation for Immunogenetics, EFI Standards for Histocompatibility and Immunogenetics Testing Version 6.3. 2015.
237.De Meester, J., et al. Renal transplantation of highly sensitised patients via prioritised renal allocation programs. Shorter waiting time and above-average graft survival. Nephron, 2002. 92: 111.
https://pubmed.ncbi.nlm.nih.gov/12187093
238.Susal, C., et al. Algorithms for the determination of unacceptable HLA antigen mismatches in kidney transplant recipients. Tissue Antigens, 2013. 82: 83.
https://pubmed.ncbi.nlm.nih.gov/23718733
239.Bohmig, G.A., et al. Strategies to overcome the ABO barrier in kidney transplantation. Nat Rev Nephrol, 2015. 11: 732.
https://pubmed.ncbi.nlm.nih.gov/26324199
240.Zschiedrich, S., et al. An update on ABO-incompatible kidney transplantation. Transpl Int, 2015. 28: 387.
https://pubmed.ncbi.nlm.nih.gov/25387763
241.Higgins, R.M., et al. Antibody-incompatible kidney transplantation in 2015 and beyond. Nephrol Dial Transplant, 2015. 30: 1972.
https://pubmed.ncbi.nlm.nih.gov/25500804
242.Wongsaroj, P., et al. Modern approaches to incompatible kidney transplantation. World J Nephrol, 2015. 4: 354.
https://pubmed.ncbi.nlm.nih.gov/26167458
243.Bamoulid, J., et al. Immunosuppression and Results in Renal Transplantation. European Urology Supplements, 2016. 15: 415.
https://www.eu-openscience.europeanurology.com/article/S1569-9056(16)30082-3/fulltext
244.Kidney Disease Improving Global Outcomes Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant, 2009. 9 Suppl 3: S1.
https://pubmed.ncbi.nlm.nih.gov/19845597
245.Bamoulid, J., et al. The need for minimization strategies: current problems of immunosuppression. Transpl Int, 2015. 28: 891.
https://pubmed.ncbi.nlm.nih.gov/25752992
246.Jones-Hughes, T., et al. Immunosuppressive therapy for kidney transplantation in adults: a systematic review and economic model. Health Technol Assess, 2016. 20: 1.
https://pubmed.ncbi.nlm.nih.gov/27578428
247.Leas, B.F., et al., in Calcineurin Inhibitors for Renal Transplant. 2016: Rockville (MD).
248.Sawinski, D., et al. Calcineurin Inhibitor Minimization, Conversion, Withdrawal, and Avoidance Strategies in Renal Transplantation: A Systematic Review and Meta-Analysis. Am J Transplant, 2016. 16: 2117.
https://pubmed.ncbi.nlm.nih.gov/26990455
249.Webster, A.C., et al. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ, 2005. 331: 810.
https://pubmed.ncbi.nlm.nih.gov/16157605
250.Brunet, M., et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit, 2019. 41: 261.
https://pubmed.ncbi.nlm.nih.gov/31045868
251.Ekberg, H., et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. Transplantation, 2011. 92: 82.
https://pubmed.ncbi.nlm.nih.gov/21562449
252.Xia, T., et al. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis. Drug Des Devel Ther, 2018. 12: 417.
https://pubmed.ncbi.nlm.nih.gov/29535503
253.Gallagher, M., et al. Cyclosporine withdrawal improves long-term graft survival in renal transplantation. Transplantation, 2009. 87: 1877.
https://pubmed.ncbi.nlm.nih.gov/19543068
254.Yang, K., et al. Systematic review and meta-analysis of calcineurin inhibitors on long-term prognosis of renal transplant patients. Transpl Immunol, 2022. 75: 101741.
https://pubmed.ncbi.nlm.nih.gov/36372141
255.Liu, J.Y., et al. Tacrolimus Versus Cyclosporine as Primary Immunosuppressant After Renal Transplantation: A Meta-Analysis and Economics Evaluation. Am J Ther, 2016. 23: e810.
https://pubmed.ncbi.nlm.nih.gov/25299636
256.Opelz, G., et al. Influence of immunosuppressive regimens on graft survival and secondary outcomes after kidney transplantation. Transplantation, 2009. 87: 795.
https://pubmed.ncbi.nlm.nih.gov/19300179
257.Cheung, C.Y., et al. Long-term graft function with tacrolimus and cyclosporine in renal transplantation: paired kidney analysis. Nephrology (Carlton), 2009. 14: 758.
https://pubmed.ncbi.nlm.nih.gov/20025685
258.de Fijter, J.W., et al. Early Conversion From Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. Am J Transplant, 2017. 17: 1853.
https://pubmed.ncbi.nlm.nih.gov/28027625
259.Goring, S.M., et al. A network meta-analysis of the efficacy of belatacept, cyclosporine and tacrolimus for immunosuppression therapy in adult renal transplant recipients. Curr Med Res Opin, 2014. 30: 1473.
https://pubmed.ncbi.nlm.nih.gov/24628478
260.Pascual, J., et al. Everolimus with Reduced Calcineurin Inhibitor Exposure in Renal Transplantation. J Am Soc Nephrol, 2018. 29: 1979.
https://pubmed.ncbi.nlm.nih.gov/29752413
261.Basso, G., et al. The effect of anti-thymocyte globulin and everolimus on the kinetics of cytomegalovirus viral load in seropositive kidney transplant recipients without prophylaxis. Transpl Infect Dis, 2018. 20: e12919.
https://pubmed.ncbi.nlm.nih.gov/29797676
262.Bloom, R.D., et al. A randomized, crossover pharmacokinetic study comparing generic tacrolimus vs. the reference formulation in subpopulations of kidney transplant patients. Clin Transplant, 2013. 27: E685.
https://pubmed.ncbi.nlm.nih.gov/24118450
263.Glander, P., et al. Bioavailability and costs of once-daily and twice-daily tacrolimus formulations in de novo kidney transplantation. Clin Transplant, 2018. 32: e13311.
https://pubmed.ncbi.nlm.nih.gov/29888809
264.Guirado, L., et al. Medium-Term Renal Function in a Large Cohort of Stable Kidney Transplant Recipients Converted From Twice-Daily to Once-Daily Tacrolimus. Transplant Direct, 2015. 1: e24.
https://pubmed.ncbi.nlm.nih.gov/27500226
265.Melilli, E., et al. De novo use of a generic formulation of tacrolimus versus reference tacrolimus in kidney transplantation: evaluation of the clinical results, histology in protocol biopsies, and immunological monitoring. Transpl Int, 2015. 28: 1283.
https://pubmed.ncbi.nlm.nih.gov/26088437
266.Robertsen, I., et al. Use of generic tacrolimus in elderly renal transplant recipients: precaution is needed. Transplantation, 2015. 99: 528.
https://pubmed.ncbi.nlm.nih.gov/25148382
267.Rostaing, L., et al. Novel Once-Daily Extended-Release Tacrolimus Versus Twice-Daily Tacrolimus in De Novo Kidney Transplant Recipients: Two-Year Results of Phase 3, Double-Blind, Randomized Trial. Am J Kidney Dis, 2016. 67: 648.
https://pubmed.ncbi.nlm.nih.gov/26717860
268.Saengram, W., et al. Extended release versus immediate release tacrolimus in kidney transplant recipients: a systematic review and meta-analysis. Eur J Clin Pharmacol, 2018. 74: 1249.
https://pubmed.ncbi.nlm.nih.gov/29961086
269.Silva, H.T., Jr., et al. Long-term follow-up of a phase III clinical trial comparing tacrolimus extended-release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients. Transplantation, 2014. 97: 636.
https://pubmed.ncbi.nlm.nih.gov/24521771
270.Kahn, J., et al. Immunosuppression with generic tacrolimus in liver and kidney transplantation-systematic review and meta-analysis on biopsy-proven acute rejection and bioequivalence. Transpl Int, 2020. 33: 356.
https://pubmed.ncbi.nlm.nih.gov/31971288
271.Lehner, L.J., et al. Evaluation of adherence and tolerability of prolonged-release tacrolimus (Advagraf) in kidney transplant patients in Germany: A multicenter, noninterventional study. Clin Transplant, 2018. 32: e13142.
https://pubmed.ncbi.nlm.nih.gov/29052906
272.Paterson, T.S.E., et al. Impact of Once- Versus Twice-Daily Tacrolimus Dosing on Medication Adherence in Stable Renal Transplant Recipients: A Canadian Single-Center Randomized Controlled Trial. Can J Kidney Health Dis, 2019. 6: 2054358119867993.
https://pubmed.ncbi.nlm.nih.gov/31452902
273.Caillard, S., et al. Advagraf((R)) , a once-daily prolonged release tacrolimus formulation, in kidney transplantation: literature review and guidelines from a panel of experts. Transpl Int, 2016. 29: 860.
https://pubmed.ncbi.nlm.nih.gov/26373896
274.McCormack, P.L. Extended-release tacrolimus: a review of its use in de novo kidney transplantation. Drugs, 2014. 74: 2053.
https://pubmed.ncbi.nlm.nih.gov/25352392
275.Molnar, A.O., et al. Generic immunosuppression in solid organ transplantation: systematic review and meta-analysis. BMJ, 2015. 350: h3163.
https://pubmed.ncbi.nlm.nih.gov/26101226
276.Staatz, C.E., et al. Clinical Pharmacokinetics of Once-Daily Tacrolimus in Solid-Organ Transplant Patients. Clin Pharmacokinet, 2015. 54: 993.
https://pubmed.ncbi.nlm.nih.gov/26038096
277.van Gelder, T., et al. European Society for Organ Transplantation Advisory Committee recommendations on generic substitution of immunosuppressive drugs. Transpl Int, 2011. 24: 1135.
https://pubmed.ncbi.nlm.nih.gov/22032583
278.Wissing, K.M., et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation. Am J Transplant, 2018. 18: 1726.
https://pubmed.ncbi.nlm.nih.gov/29337426
279.Diekmann, F. Immunosuppressive minimization with mTOR inhibitors and belatacept. Transpl Int, 2015. 28: 921.
https://pubmed.ncbi.nlm.nih.gov/25959589
280.Kamar, N., et al. Calcineurin inhibitor-sparing regimens based on mycophenolic acid after kidney transplantation. Transpl Int, 2015. 28: 928.
https://pubmed.ncbi.nlm.nih.gov/25557802
281.Park, S., et al. Reduced Tacrolimus Trough Level Is Reflected by Estimated Glomerular Filtration Rate (eGFR) Changes in Stable Renal Transplantation Recipients: Results of the OPTIMUM Phase 3 Randomized Controlled Study. Ann Transplant, 2018. 23: 401.
https://pubmed.ncbi.nlm.nih.gov/29891834
282.Sharif, A., et al. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J Am Soc Nephrol, 2011. 22: 2107.
https://pubmed.ncbi.nlm.nih.gov/21949096
283.Snanoudj, R., et al. Immunological risks of minimization strategies. Transpl Int, 2015. 28: 901.
https://pubmed.ncbi.nlm.nih.gov/25809144
284.Etienne, I., et al. A 50% reduction in cyclosporine exposure in stable renal transplant recipients: renal function benefits. Nephrol Dial Transplant, 2010. 25: 3096.
https://pubmed.ncbi.nlm.nih.gov/20299336
285.Budde, K., et al. Enteric-coated mycophenolate sodium. Expert Opin Drug Saf, 2010. 9: 981.
https://pubmed.ncbi.nlm.nih.gov/20795786
286.Cooper, M., et al. Enteric-coated mycophenolate sodium immunosuppression in renal transplant patients: efficacy and dosing. Transplant Rev (Orlando), 2012. 26: 233.
https://pubmed.ncbi.nlm.nih.gov/22863029
287.Staatz, C.E., et al. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol, 2014. 88: 1351.
https://pubmed.ncbi.nlm.nih.gov/24792322
288.van Gelder, T., et al. Mycophenolate revisited. Transpl Int, 2015. 28: 508.
https://pubmed.ncbi.nlm.nih.gov/25758949
289.Wagner, M., et al. Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev, 2015: CD007746.
https://pubmed.ncbi.nlm.nih.gov/26633102
290.Hirsch, H.H., et al. European perspective on human polyomavirus infection, replication and disease in solid organ transplantation. Clin Microbiol Infect, 2014. 20 Suppl 7: 74.
https://pubmed.ncbi.nlm.nih.gov/24476010
291.Langone, A.J., et al. Enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients experiencing gastrointestinal intolerance: a multicenter, double-blind, randomized study. Transplantation, 2011. 91: 470.
https://pubmed.ncbi.nlm.nih.gov/21245794
292.Doria, C., et al. Association of mycophenolic acid dose with efficacy and safety events in kidney transplant patients receiving tacrolimus: an analysis of the Mycophenolic acid Observational REnal transplant registry. Clin Transplant, 2012. 26: E602.
https://pubmed.ncbi.nlm.nih.gov/23121178
293.Langone, A., et al. Does reduction in mycophenolic acid dose compromise efficacy regardless of tacrolimus exposure level? An analysis of prospective data from the Mycophenolic Renal Transplant (MORE) Registry. Clin Transplant, 2013. 27: 15.
https://pubmed.ncbi.nlm.nih.gov/22861144
294.Su, V., et al. Impact of Mycophenolate Mofetil Dose Reduction on Allograft Outcomes in Kidney Transplant Recipients on Tacrolimus-Based Regimens: A Systematic Review. Ann Pharmacother, 2011. 45: 248.
https://pubmed.ncbi.nlm.nih.gov/21304036
295.Kotton, C.N., et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation, 2013. 96: 333.
https://pubmed.ncbi.nlm.nih.gov/23896556
296.Le Meur, Y., et al. Therapeutic drug monitoring of mycophenolates in kidney transplantation: report of The Transplantation Society consensus meeting. Transplant Rev (Orlando), 2011. 25: 58.
https://pubmed.ncbi.nlm.nih.gov/21454067
297.Haller, M.C., et al. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev, 2016: CD005632.
https://pubmed.ncbi.nlm.nih.gov/27546100
298.Meier-Kriesche, H.U., et al. Mycophenolate mofetil initiation in renal transplant patients at different times posttransplantation: the TranCept Switch study. Transplantation, 2011. 91: 984.
https://pubmed.ncbi.nlm.nih.gov/21464796
299.Mathis, A.S., et al. Calcineurin inhibitor sparing strategies in renal transplantation, part one: Late sparing strategies. World J Transplant, 2014. 4: 57.
https://pubmed.ncbi.nlm.nih.gov/25032096
300.Remuzzi, G., et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol, 2007. 18: 1973.
https://pubmed.ncbi.nlm.nih.gov/17460145
301.Kunz, R., et al. Maintenance therapy with triple versus double immunosuppressive regimen in renal transplantation: a meta-analysis. Transplantation, 1997. 63: 386.
https://pubmed.ncbi.nlm.nih.gov/9039928
302.Le Meur, Y., et al. Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil. Transplantation, 2011. 92: 1244.
https://pubmed.ncbi.nlm.nih.gov/22067312
303.Suszynski, T.M., et al. Prospective randomized trial of maintenance immunosuppression with rapid discontinuation of prednisone in adult kidney transplantation. Am J Transplant, 2013. 13: 961.
https://pubmed.ncbi.nlm.nih.gov/23432755
304.Thomusch, O., et al. Rabbit-ATG or basiliximab induction for rapid steroid withdrawal after renal transplantation (Harmony): an open-label, multicentre, randomised controlled trial. Lancet, 2016. 388: 3006.
https://pubmed.ncbi.nlm.nih.gov/27871759
305.Torres, A., et al. Randomized Controlled Trial Assessing the Impact of Tacrolimus Versus Cyclosporine on the Incidence of Posttransplant Diabetes Mellitus. Kidney Int Rep, 2018. 3: 1304.
https://pubmed.ncbi.nlm.nih.gov/30450457
306.Halleck, F., et al. An evaluation of sirolimus in renal transplantation. Expert Opin Drug Metab Toxicol, 2012. 8: 1337.
https://pubmed.ncbi.nlm.nih.gov/22928953
307.Ventura-Aguiar, P., et al. Safety of mTOR inhibitors in adult solid organ transplantation. Expert Opin Drug Saf, 2016. 15: 303.
https://pubmed.ncbi.nlm.nih.gov/26667069
308.Witzke, O., et al. Everolimus immunosuppression in kidney transplantation: What is the optimal strategy? Transplant Rev (Orlando), 2016. 30: 3.
https://pubmed.ncbi.nlm.nih.gov/26603484
309.Montero, N., et al. Mammalian Target of Rapamycin Inhibitors Combined With Calcineurin Inhibitors as Initial Immunosuppression in Renal Transplantation: A Meta-analysis. Transplantation, 2019. 103: 2031.
https://pubmed.ncbi.nlm.nih.gov/31343574
310.Badve, S.V., et al. Mammalian Target of Rapamycin Inhibitors and Clinical Outcomes in Adult Kidney Transplant Recipients. Clin J Am Soc Nephrol, 2016. 11: 1845.
https://pubmed.ncbi.nlm.nih.gov/27445164
311.Lim, W.H., et al. A systematic review of conversion from calcineurin inhibitor to mammalian target of rapamycin inhibitors for maintenance immunosuppression in kidney transplant recipients. Am J Transplant, 2014. 14: 2106.
https://pubmed.ncbi.nlm.nih.gov/25088685
312.Liu, J., et al. Efficacy and Safety of Everolimus for Maintenance Immunosuppression of Kidney Transplantation: A Meta-Analysis of Randomized Controlled Trials. PLoS One, 2017. 12: e0170246.
https://pubmed.ncbi.nlm.nih.gov/28107397
313.Knoll, G.A., et al. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ, 2014. 349: g6679.
https://pubmed.ncbi.nlm.nih.gov/25422259
314.Xie, X., et al. mTOR inhibitor versus mycophenolic acid as the primary immunosuppression regime combined with calcineurin inhibitor for kidney transplant recipients: a meta-analysis. BMC Nephrol, 2015. 16: 91.
https://pubmed.ncbi.nlm.nih.gov/26126806
315.Wolf, S., et al. Effects of mTOR-Is on malignancy and survival following renal transplantation: A systematic review and meta-analysis of randomized trials with a minimum follow-up of 24 months. PLoS One, 2018. 13: e0194975.
https://pubmed.ncbi.nlm.nih.gov/29659588
316.Hahn, D., et al. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev, 2019. 12: CD004290.
https://pubmed.ncbi.nlm.nih.gov/31840244
317.Shipkova, M., et al. Therapeutic Drug Monitoring of Everolimus: A Consensus Report. Ther Drug Monit, 2016. 38: 143.
https://pubmed.ncbi.nlm.nih.gov/26982492
318.Rostaing, L., et al. The pharmacokinetics of everolimus in de novo kidney transplant patients receiving tacrolimus: an analysis from the randomized ASSET study. Ann Transplant, 2014. 19: 337.
https://pubmed.ncbi.nlm.nih.gov/25017487
319.Shihab, F., et al. Association of Clinical Events With Everolimus Exposure in Kidney Transplant Patients Receiving Low Doses of Tacrolimus. Am J Transplant, 2017. 17: 2363.
https://pubmed.ncbi.nlm.nih.gov/28141897
320.Kumar, J., et al. Systematic Review on Role of Mammalian Target of Rapamycin Inhibitors as an Alternative to Calcineurin Inhibitors in Renal Transplant: Challenges and Window to Excel. Exp Clin Transplant, 2017. 15: 241.
https://pubmed.ncbi.nlm.nih.gov/27915965
321.Qazi, Y., et al. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. Am J Transplant, 2017. 17: 1358.
https://pubmed.ncbi.nlm.nih.gov/27775865
322.Rummo, O.O., et al. ADHERE: randomized controlled trial comparing renal function in de novo kidney transplant recipients receiving prolonged-release tacrolimus plus mycophenolate mofetil or sirolimus. Transpl Int, 2017. 30: 83.
https://pubmed.ncbi.nlm.nih.gov/27754567
323.Berger, S.P., et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant, 2019. 19: 3018.
https://pubmed.ncbi.nlm.nih.gov/31152476
324.Sommerer, C., et al. An open-label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients. Kidney Int, 2019. 96: 231.
https://pubmed.ncbi.nlm.nih.gov/31027892
325.Tedesco-Silva, H., et al. Safety of Everolimus With Reduced Calcineurin Inhibitor Exposure in De Novo Kidney Transplants: An Analysis From the Randomized TRANSFORM Study. Transplantation, 2019. 103: 1953.
https://pubmed.ncbi.nlm.nih.gov/30801548
326.He, L., et al. Efficacy and safety of everolimus plus low-dose calcineurin inhibitor vs. mycophenolate mofetil plus standard-dose calcineurin inhibitor in renal transplant recipients: A systematic review and meta-analysis Clin Nephrol, 2018. 89: 336.
https://pubmed.ncbi.nlm.nih.gov/29292693
327.Liu, J.Y., et al. Sirolimus Versus Tacrolimus as Primary Immunosuppressant After Renal Transplantation: A Meta-Analysis and Economics Evaluation. Am J Ther, 2016. 23: e1720.
https://pubmed.ncbi.nlm.nih.gov/25569597
328.Zhao, D.Q., et al. Sirolimus-Based Immunosuppressive Regimens in Renal Transplantation: A Systemic Review. Transplant Proc, 2016. 48: 3.
https://pubmed.ncbi.nlm.nih.gov/26915834
329.Liefeldt, L., et al. Donor-specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation. Am J Transplant, 2012. 12: 1192.
https://pubmed.ncbi.nlm.nih.gov/22300538
330.Wolf, S., et al. Infections after kidney transplantation: A comparison of mTOR-Is and CNIs as basic immunosuppressants. A systematic review and meta-analysis. Transpl Infect Dis, 2020. 22: e13267.
https://pubmed.ncbi.nlm.nih.gov/32072714
331.Halleck, F., et al. Transplantation: Sirolimus for secondary SCC prevention in renal transplantation. Nat Rev Nephrol, 2012. 8: 687.
https://pubmed.ncbi.nlm.nih.gov/23026948
332.Ponticelli, C., et al. Skin cancer in kidney transplant recipients. J Nephrol, 2014. 27: 385.
https://pubmed.ncbi.nlm.nih.gov/24809813
333.Cheung, C.Y., et al. Conversion to mammalian target of rapamycin inhibitors in kidney transplant recipients with de novo cancers. Oncotarget, 2017. 8: 44833.
https://pubmed.ncbi.nlm.nih.gov/28160552
334.Opelz, G., et al. Immunosuppression with mammalian target of rapamycin inhibitor and incidence of post-transplant cancer in kidney transplant recipients. Nephrol Dial Transplant, 2016. 31: 1360.
https://pubmed.ncbi.nlm.nih.gov/27190384
335.Liu, Y., et al. Basiliximab or antithymocyte globulin for induction therapy in kidney transplantation: a meta-analysis. Transplant Proc, 2010. 42: 1667.
https://pubmed.ncbi.nlm.nih.gov/20620496
336.Sun, Z.J., et al. Efficacy and Safety of Basiliximab Versus Daclizumab in Kidney Transplantation: A Meta-Analysis. Transplant Proc, 2015. 47: 2439.
https://pubmed.ncbi.nlm.nih.gov/26518947
337.Webster, A.C., et al. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst Rev, 2010: CD003897.
https://pubmed.ncbi.nlm.nih.gov/20091551
338.Lim, W., et al. Effect of interleukin-2 receptor antibody therapy on acute rejection risk and severity, long-term renal function, infection and malignancy-related mortality in renal transplant recipients. Transpl Int, 2010. 23: 1207.
https://pubmed.ncbi.nlm.nih.gov/20536789
339.McKeage, K., et al. Basiliximab: a review of its use as induction therapy in renal transplantation. BioDrugs, 2010. 24: 55.
https://pubmed.ncbi.nlm.nih.gov/20055533
340.Hellemans, R., et al. Induction Therapy for Kidney Transplant Recipients: Do We Still Need Anti-IL2 Receptor Monoclonal Antibodies? Am J Transplant, 2017. 17: 22.
https://pubmed.ncbi.nlm.nih.gov/27223882
341.Ali, H., et al. Rabbit anti-thymocyte globulin (rATG) versus IL-2 receptor antagonist induction therapies in tacrolimus-based immunosuppression era: a meta-analysis. Int Urol Nephrol, 2020. 52: 791.
https://pubmed.ncbi.nlm.nih.gov/32170593
342.Bamoulid, J., et al. Anti-thymocyte globulins in kidney transplantation: focus on current indications and long-term immunological side effects. Nephrol Dial Transplant, 2016.
https://pubmed.ncbi.nlm.nih.gov/27798202
343.Malvezzi, P., et al. Induction by anti-thymocyte globulins in kidney transplantation: a review of the literature and current usage. J Nephropathol, 2015. 4: 110.
https://pubmed.ncbi.nlm.nih.gov/26457257
344.Hill, P., et al. Polyclonal and monoclonal antibodies for induction therapy in kidney transplant recipients. Cochrane Database Syst Rev, 2017. 1: CD004759.
https://pubmed.ncbi.nlm.nih.gov/28073178
345.Webster, A.C., et al. Polyclonal and monoclonal antibodies for treating acute rejection episodes in kidney transplant recipients. Cochrane Database Syst Rev, 2017. 7: CD004756.
https://pubmed.ncbi.nlm.nih.gov/28731207
346.Gill, J., et al. Induction immunosuppressive therapy in the elderly kidney transplant recipient in the United States. Clin J Am Soc Nephrol, 2011. 6: 1168.
https://pubmed.ncbi.nlm.nih.gov/21511836
347.Lombardi, Y., et al. Belatacept in Kidney Transplantation: What Are the True Benefits? A Systematic Review. Front Med (Lausanne), 2022. 9: 942665.
https://pubmed.ncbi.nlm.nih.gov/35911396
348.Budde, K., et al. Conversion from Calcineurin Inhibitor- to Belatacept-Based Maintenance Immunosuppression in Renal Transplant Recipients: A Randomized Phase 3b Trial. J Am Soc Nephrol, 2021. 32: 3252.
https://pubmed.ncbi.nlm.nih.gov/34706967
349.Grinyo, J.M., et al. Belatacept utilization recommendations: an expert position. Expert Opin Drug Saf, 2013. 12: 111.
https://pubmed.ncbi.nlm.nih.gov/23206310
350.Wojciechowski, D., et al. Current status of costimulatory blockade in renal transplantation. Curr Opin Nephrol Hypertens, 2016. 25: 583.
https://pubmed.ncbi.nlm.nih.gov/27517137
351.Durrbach, A., et al. Long-Term Outcomes in Belatacept- Versus Cyclosporine-Treated Recipients of Extended Criteria Donor Kidneys: Final Results From BENEFIT-EXT, a Phase III Randomized Study. Am J Transplant, 2016. 16: 3192.
https://pubmed.ncbi.nlm.nih.gov/27130868
352.Vincenti, F., et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. N Engl J Med, 2016. 374: 333.
https://pubmed.ncbi.nlm.nih.gov/26816011
353.de Graav, G.N., et al. A Randomized Controlled Clinical Trial Comparing Belatacept With Tacrolimus After De Novo Kidney Transplantation. Transplantation, 2017. 101: 2571.
https://pubmed.ncbi.nlm.nih.gov/28403127
354.Masson, P., et al. Belatacept for kidney transplant recipients. Cochrane Database Syst Rev, 2014. 2014: CD010699.
https://pubmed.ncbi.nlm.nih.gov/25416857
355.Talawila, N., et al. Does belatacept improve outcomes for kidney transplant recipients? A systematic review. Transpl Int, 2015. 28: 1251.
https://pubmed.ncbi.nlm.nih.gov/25965549
356.Bray, R.A., et al. De novo donor-specific antibodies in belatacept-treated vs cyclosporine-treated kidney-transplant recipients: Post hoc analyses of the randomized phase III BENEFIT and BENEFIT-EXT studies. Am J Transplant, 2018. 18: 1783.
https://pubmed.ncbi.nlm.nih.gov/29509295
357.Abdelwahab Elhamahmi, D., et al. Early Conversion to Belatacept in Kidney Transplant Recipients With Low Glomerular Filtration Rate. Transplantation, 2018. 102: 478.
https://pubmed.ncbi.nlm.nih.gov/29077658
358.Grinyo, J.M., et al. Safety and Efficacy Outcomes 3 Years After Switching to Belatacept From a Calcineurin Inhibitor in Kidney Transplant Recipients: Results From a Phase 2 Randomized Trial. Am J Kidney Dis, 2017. 69: 587.
https://pubmed.ncbi.nlm.nih.gov/27889299
359.Darres, A., et al. Conversion to Belatacept in Maintenance Kidney Transplant Patients: A Retrospective Multicenter European Study. Transplantation, 2018. 102: 1545.
https://pubmed.ncbi.nlm.nih.gov/29570163
360.Bamoulid, J., et al. Advances in pharmacotherapy to treat kidney transplant rejection. Expert Opin Pharmacother, 2015. 16: 1627.
https://pubmed.ncbi.nlm.nih.gov/26159444
361.Broecker, V., et al. The significance of histological diagnosis in renal allograft biopsies in 2014. Transpl Int, 2015. 28: 136.
https://pubmed.ncbi.nlm.nih.gov/25205033
362.Halloran, P.F., et al. Molecular assessment of disease states in kidney transplant biopsy samples. Nat Rev Nephrol, 2016. 12: 534.
https://pubmed.ncbi.nlm.nih.gov/27345248
363.Lentine, K.L., et al. The implications of acute rejection for allograft survival in contemporary U.S. kidney transplantation. Transplantation, 2012. 94: 369.
https://pubmed.ncbi.nlm.nih.gov/22836133
364.Clayton, P.A., et al. Long-Term Outcomes after Acute Rejection in Kidney Transplant Recipients: An ANZDATA Analysis. J Am Soc Nephrol, 2019. 30: 1697.
https://pubmed.ncbi.nlm.nih.gov/31308074
365.Halloran, P.F., et al. The Molecular Phenotype of Kidney Transplants: Insights From the MMDx Project. Transplantation, 2024. 108: 45.
https://pubmed.ncbi.nlm.nih.gov/37310258
366.Loupy, A., et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am J Transplant, 2020. 20: 2318.
https://pubmed.ncbi.nlm.nih.gov/32463180
367.Morgan, T.A., et al. Complications of Ultrasound-Guided Renal Transplant Biopsies. Am J Transplant, 2016. 16: 1298.
https://pubmed.ncbi.nlm.nih.gov/26601796
368.Redfield, R.R., et al. Nature, timing, and severity of complications from ultrasound-guided percutaneous renal transplant biopsy. Transpl Int, 2016. 29: 167.
https://pubmed.ncbi.nlm.nih.gov/26284692
369.Bouatou, Y., et al. Response to treatment and long-term outcomes in kidney transplant recipients with acute T cell-mediated rejection. Am J Transplant, 2019. 19: 1972.
https://pubmed.ncbi.nlm.nih.gov/30748089
370.Schinstock, C.A., et al. Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation: The 2019 Expert Consensus From the Transplantion Society Working Group. Transplantation, 2020. 104: 911.
https://pubmed.ncbi.nlm.nih.gov/31895348
371.Amore, A. Antibody-mediated rejection. Curr Opin Organ Transplant, 2015. 20: 536.
https://pubmed.ncbi.nlm.nih.gov/26348571
372.Burton, S.A., et al. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin Transplant, 2015. 29: 118.
https://pubmed.ncbi.nlm.nih.gov/25430052
373.Haririan, A. Current status of the evaluation and management of antibody-mediated rejection in kidney transplantation. Curr Opin Nephrol Hypertens, 2015. 24: 576.
https://pubmed.ncbi.nlm.nih.gov/26406806
374.Sautenet, B., et al. One-year Results of the Effects of Rituximab on Acute Antibody-Mediated Rejection in Renal Transplantation: RITUX ERAH, a Multicenter Double-blind Randomized Placebo-controlled Trial. Transplantation, 2016. 100: 391.
https://pubmed.ncbi.nlm.nih.gov/26555944
375.Loupy, A., et al. Antibody-Mediated Rejection of Solid-Organ Allografts. N Engl J Med, 2018. 379: 1150.
https://pubmed.ncbi.nlm.nih.gov/30231232
376.Wan, S.S., et al. The Treatment of Antibody-Mediated Rejection in Kidney Transplantation: An Updated Systematic Review and Meta-Analysis. Transplantation, 2018. 102: 557.
https://pubmed.ncbi.nlm.nih.gov/29315141
377.Kamar, N., et al. Incidence and predictive factors for infectious disease after rituximab therapy in kidney-transplant patients. Am J Transplant, 2010. 10: 89.
https://pubmed.ncbi.nlm.nih.gov/19656128
378.Velidedeoglu, E., et al. Summary of 2017 FDA Public Workshop: Antibody-mediated Rejection in Kidney Transplantation. Transplantation, 2018. 102: e257.
https://pubmed.ncbi.nlm.nih.gov/29470345
379.Farrugia, D., et al. Malignancy-related mortality following kidney transplantation is common. Kidney Int, 2014. 85: 1395.
https://pubmed.ncbi.nlm.nih.gov/24257690
380.Piselli, P., et al. Risk of de novo cancers after transplantation: results from a cohort of 7217 kidney transplant recipients, Italy 1997-2009. Eur J Cancer, 2013. 49: 336.
https://pubmed.ncbi.nlm.nih.gov/23062667
381.Jardine, A.G., et al. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet, 2011. 378: 1419.
https://pubmed.ncbi.nlm.nih.gov/22000138
382.Liefeldt, L., et al. Risk factors for cardiovascular disease in renal transplant recipients and strategies to minimize risk. Transpl Int, 2010. 23: 1191.
https://pubmed.ncbi.nlm.nih.gov/21059108
383.Mellon, L., et al. Interventions for increasing immunosuppressant medication adherence in solid organ transplant recipients. Cochrane Database Syst Rev, 2022. 9: Cd012854.
https://pubmed.ncbi.nlm.nih.gov/36094829
384.Nankivell, B.J., et al. Diagnosis and prevention of chronic kidney allograft loss. Lancet, 2011. 378: 1428.
https://pubmed.ncbi.nlm.nih.gov/22000139
385.Boor, P., et al. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant, 2015. 15: 863.
https://pubmed.ncbi.nlm.nih.gov/25691290
386.Westall, G.P., et al. Antibody-mediated rejection. Curr Opin Organ Transplant, 2015. 20: 492.
https://pubmed.ncbi.nlm.nih.gov/26262460
387.Chapman, J.R. Chronic calcineurin inhibitor nephrotoxicity-lest we forget. Am J Transplant, 2011. 11: 693.