4. REFERENCES
1.Bogaert, G., et al. Practical recommendations of the EAU-ESPU guidelines committee for monosymptomatic enuresis-Bedwetting. Neurourol Urodyn, 2020. 39: 489.
https://www.ncbi.nlm.nih.gov/pubmed/31793066/
2.Dogan, H.S., et al. Are EAU/ESPU pediatric urology guideline recommendations on neurogenic bladder well received by the patients? Results of a survey on awareness in spina bifida patients and caregivers. Neurourol Urodyn, 2019. 38: 1625.
https://www.ncbi.nlm.nih.gov/pubmed/31102557/
3.Radmayr, C., et al. Management of undescended testes: European Association of Urology/European Society for Paediatric Urology Guidelines. J Pediatr Urol, 2016. 12: 335.
https://www.ncbi.nlm.nih.gov/pubmed/27687532/
4.Stein, R., et al. EAU/ESPU guidelines on the management of neurogenic bladder in children and adolescent part I diagnostics and conservative treatment. Neurourol Urodyn, 2020. 39: 45.
https://www.ncbi.nlm.nih.gov/pubmed/31724222/
5.Stein, R., et al. EAU/ESPU guidelines on the management of neurogenic bladder in children and adolescent part II operative management. Neurourol Urodyn, 2020. 39: 498.
https://www.ncbi.nlm.nih.gov/pubmed/31794087/
6.Stein, R., et al. Urinary tract infections in children: EAU/ESPU guidelines. Eur Urol, 2015. 67: 546.
https://www.ncbi.nlm.nih.gov/pubmed/25477258/
7.Tekgul, S., et al. EAU guidelines on vesicoureteral reflux in children. Eur Urol, 2012. 62: 534.
https://www.ncbi.nlm.nih.gov/pubmed/22698573/
8.Gnech, M., et al. Update and Summary of the European Association of Urology/European Society of Paediatric Urology Paediatric Guidelines on Vesicoureteral Reflux in Children. Eur Urol, 2024. 85: 433.
https://www.ncbi.nlm.nih.gov/pubmed/38182493/
9.Gnech, M., et al. European Association of Urology/European Society for Paediatric Urology Guidelines on Paediatric Urology: Summary of the 2024 Updates. Eur Urol, 2024. 86: 447.
https://www.ncbi.nlm.nih.gov/pubmed/38627150/
10.Skott, M., et al. Endoscopic dilatation/incision of primary obstructive megaureter. A systematic review. On behalf of the EAU paediatric urology guidelines panel. J Pediatr Urol, 2024. 20: 47.
https://www.ncbi.nlm.nih.gov/pubmed/37758534/
11.Stein, R., et al. EAU-ESPU pediatric urology guidelines on testicular tumors in prepubertal boys. J Pediatr Urol, 2021. 17: 529.
https://www.ncbi.nlm.nih.gov/pubmed/34162520/
12.‘t Hoen, L.A., et al. The prognostic value of testicular microlithiasis as an incidental finding for the risk of testicular malignancy in children and the adult population: A systematic review. On behalf of the EAU pediatric urology guidelines panel. J Pediatr Urol, 2021. 17: 815.
https://www.ncbi.nlm.nih.gov/pubmed/34217588/
13.‘t Hoen, L.A., et al. Update of the EAU/ESPU guidelines on urinary tract infections in children. J Pediatr Urol, 2021. 17: 200.
https://www.ncbi.nlm.nih.gov/pubmed/33589366/
14.Riedmiller, H., et al. EAU guidelines on paediatric urology. Eur Urol, 2001. 40: 589.
https://www.ncbi.nlm.nih.gov/pubmed/11752871/
15.Phillips, B., et al. Oxford Centre for Evidence-Based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 1998. 2014.
16.Guyatt, G.H., et al. Going from evidence to recommendations. BMJ, 2008. 336: 1049.
https://www.ncbi.nlm.nih.gov/pubmed/18467413/
17.Osborn, L.M., et al. Hygienic care in uncircumcised infants. Pediatrics, 1981. 67: 365.
https://www.ncbi.nlm.nih.gov/pubmed/7243473/
18.Herzog, L.W., et al. The frequency of foreskin problems in uncircumcised children. Am J Dis Child, 1986. 140: 254.
https://www.ncbi.nlm.nih.gov/pubmed/3946358/
19.Gairdner, D. The Fate of the Foreskin: A Study of Circumcision. Obstet Gynecol Surv., 1950. Oct;5(5). 699.
https://www.ncbi.nlm.nih.gov/pubmed/15408299/
20.Oster, J. Further fate of the foreskin. Incidence of preputial adhesions, phimosis, and smegma among Danish schoolboys. Arch Dis Child, 1968. 43: 200.
https://www.ncbi.nlm.nih.gov/pubmed/5689532/
21.Babu, R., et al. Ballooning of the foreskin and physiological phimosis: is there any objective evidence of obstructed voiding? BJU Int, 2004. 94: 384.
https://www.ncbi.nlm.nih.gov/pubmed/15291873/
22.Clifford, I.D., et al. Paediatric paraphimosis. Emerg Med Australas, 2016. 28: 96.
https://www.ncbi.nlm.nih.gov/pubmed/26781045/
23.Morris, B.J., et al. Penile Inflammatory Skin Disorders and the Preventive Role of Circumcision. Int J Prev Med, 2017. 8: 32.
https://www.ncbi.nlm.nih.gov/pubmed/28567234/
24.Jayakumar, S., et al. Balanitis xerotica obliterans in children and its incidence under the age of 5 years. J Pediatr Urol, 2012. 8: 272.
https://www.ncbi.nlm.nih.gov/pubmed/21705275/
25.Li, J., et al. Underestimation of genital lichen sclerosus incidence in boys with phimosis: results from a systematic review. Pediatr Surg Int, 2018. 34: 1245.
https://www.ncbi.nlm.nih.gov/pubmed/30264374/
26.Celis, S., et al. Balanitis xerotica obliterans in children and adolescents: a literature review and clinical series. J Pediatr Urol, 2014. 10: 34.
https://www.ncbi.nlm.nih.gov/pubmed/24295833/
27.Shalaby, M., et al. Megaprepuce: a systematic review of a rare condition with a controversial surgical management. Pediatr Surg Int, 2021. 37: 815.
https://www.ncbi.nlm.nih.gov/pubmed/33760967/
28.McGregor, T.B., et al. Pathologic and physiologic phimosis: approach to the phimotic foreskin. Can Fam Phys, 2007. 53: 445.
https://www.ncbi.nlm.nih.gov/pubmed/17872680/
29.Nguyen, A.T.M., et al. Balanitis xerotica obliterans: an update for clinicians. Eur J Pediatr, 2020. 179: 9.
https://www.ncbi.nlm.nih.gov/pubmed/31760506/
30.Kuehhas, F.E., et al. Incidence of balanitis xerotica obliterans in boys younger than 10 years presenting with phimosis. Urol Int, 2013. 90: 439.
https://www.ncbi.nlm.nih.gov/pubmed/23296396/
31.Management of Abnormalities of the External Genitalia in Boys, Lane S. Palmer & Jeffrey S. Palmer, Editors. 2021, Campbell-Walsh Urology,.
https://doctorlib.info/urology/urology/146.html
32.Moreno, G., et al. Topical corticosteroids for treating phimosis in boys. Cochrane Database Syst Rev, 2014. 2014: CD008973.
https://www.ncbi.nlm.nih.gov/pubmed/25180668/
33.ter Meulen, P.H., et al. A conservative treatment of phimosis in boys. Eur Urol, 2001. 40: 196.
https://www.ncbi.nlm.nih.gov/pubmed/11528198/
34.Elmore, J.M., et al. Topical steroid therapy as an alternative to circumcision for phimosis in boys younger than 3 years. J Urol, 2002. 168: 1746.
https://www.ncbi.nlm.nih.gov/pubmed/12352350/
35.Zavras, N., et al. Conservative treatment of phimosis with fluticasone proprionate 0.05%: a clinical study in 1185 boys. J Pediatr Urol, 2009. 5: 181.
https://www.ncbi.nlm.nih.gov/pubmed/19097823/
36.Chamberlin, J.D., et al. Randomized open-label trial comparing topical prescription triamcinolone to over-the-counter hydrocortisone for the treatment of phimosis. J Pediatr Urol, 2019. 15: 388 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31130504/
37.Reddy, S., et al. Local steroid therapy as the first-line treatment for boys with symptomatic phimosis - a long-term prospective study. Acta Paediatr, 2012. 101: e130.
https://www.ncbi.nlm.nih.gov/pubmed/22103624/
38.Ghysel, C., et al. Long-term efficiency of skin stretching and a topical corticoid cream application for unretractable foreskin and phimosis in prepubertal boys. Urol Int, 2009. 82: 81.
https://www.ncbi.nlm.nih.gov/pubmed/19172103/
39.Sridharan, K., et al. Topical corticosteroids for phimosis in children: a network meta-analysis of randomized clinical trials. Pediatr Surg Int, 2021. 37: 1117.
https://www.ncbi.nlm.nih.gov/pubmed/33991205/
40.Golubovic, Z., et al. The conservative treatment of phimosis in boys. Br J Urol, 1996. 78: 786.
https://www.ncbi.nlm.nih.gov/pubmed/8976781/
41.Pileggi, F.O., et al. Is suppression of hypothalamic-pituitary-adrenal axis significant during clinical treatment of phimosis? J Urol, 2010. 183: 2327.
https://www.ncbi.nlm.nih.gov/pubmed/20400146/
42.Wiswell, T.E. The prepuce, urinary tract infections, and the consequences. Pediatrics, 2000. 105: 860.
https://www.ncbi.nlm.nih.gov/pubmed/10742334/
43.Hiraoka, M., et al. Meatus tightly covered by the prepuce is associated with urinary infection. Pediatr Int, 2002. 44: 658.
https://www.ncbi.nlm.nih.gov/pubmed/12421265/
44.To, T., et al. Cohort study on circumcision of newborn boys and subsequent risk of urinary-tract infection. Lancet, 1998. 352: 1813.
https://www.ncbi.nlm.nih.gov/pubmed/9851381/
45.Ellison, J.S., et al. Neonatal Circumcision and Urinary Tract Infections in Infants With Hydronephrosis. Pediatrics, 2018. 142.
https://www.ncbi.nlm.nih.gov/pubmed/29880703/
46.Ladenhauf, H.N., et al. Reduced bacterial colonisation of the glans penis after male circumcision in children--a prospective study. J Pediatr Urol, 2013. 9: 1137.
https://www.ncbi.nlm.nih.gov/pubmed/23685114/
47.Chen, C.J., et al. The use of steroid cream for physiologic phimosis in male infants with a history of UTI and normal renal ultrasound is associated with decreased risk of recurrent UTI. J Pediatr Urol, 2019. 15: 472 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31345734/
48.Larke, N.L., et al. Male circumcision and penile cancer: a systematic review and meta-analysis. Cancer Causes Control, 2011. 22: 1097.
https://www.ncbi.nlm.nih.gov/pubmed/21695385/
49.Pedersini, P., et al. “Trident” preputial plasty for phimosis in childhood. J Pediatr Urol, 2017. 13: 278 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28359779/
50.Benson, M., et al. Prepuce sparing: Use of Z-plasty for treatment of phimosis and scarred foreskin. J Pediatr Urol, 2018. 14: 545 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29909192/
51.Miernik, A., et al. Complete removal of the foreskin--why? Urol Int, 2011. 86: 383.
https://www.ncbi.nlm.nih.gov/pubmed/21474914/
52.Thompson, H.C., et al. Report of the ad hoc task force on circumcision. Pediatrics, 1975. 56: 610.
https://www.ncbi.nlm.nih.gov/pubmed/1174384/
53.American Academy of Pediatrics: Report of the Task Force on Circumcision. Pediatrics, 1989. 84: 388.
https://www.ncbi.nlm.nih.gov/pubmed/2664697/
54.Anand, A., et al. Mannitol for paraphimosis reduction. Urol Int, 2013. 90: 106.
https://www.ncbi.nlm.nih.gov/pubmed/23257575/
55.DeVries, C.R., et al. Reduction of paraphimosis with hyaluronidase. Urology, 1996. 48: 464.
https://www.ncbi.nlm.nih.gov/pubmed/8804504/
56.Weiss, H.A., et al. Complications of circumcision in male neonates, infants and children: a systematic review. BMC Urol, 2010. 10: 2.
https://www.ncbi.nlm.nih.gov/pubmed/20158883/
57.Hung, Y.C., et al. A Longitudinal Population Analysis of Cumulative Risks of Circumcision. J Surg Res, 2019. 233: 111.
https://www.ncbi.nlm.nih.gov/pubmed/30502236/
58.Pradhan, A., et al. 10 Years’ Experience in Balanitis Xerotica Obliterans: A Single-Institution Study. Eur J Pediatr Surg, 2019. 29: 302.
https://www.ncbi.nlm.nih.gov/pubmed/30130825/
59.Homer, L., et al. Meatal stenosis in boys following circumcision for lichen sclerosus (balanitis xerotica obliterans). J Urol, 2014. 192: 1784.
https://www.ncbi.nlm.nih.gov/pubmed/24992332/
60.Sijstermans, K., et al. The frequency of undescended testis from birth to adulthood: a review. Int J Androl, 2008. 31: 1.
https://www.ncbi.nlm.nih.gov/pubmed/17488243/
61.Berkowitz, G.S., et al. Prevalence and natural history of cryptorchidism. Pediatrics, 1993. 92: 44.
https://www.ncbi.nlm.nih.gov/pubmed/8100060/
62.Kaefer, M., et al. The incidence of intersexuality in children with cryptorchidism and hypospadias: stratification based on gonadal palpability and meatal position. J Urol, 1999. 162: 1003.
https://www.ncbi.nlm.nih.gov/pubmed/10458421/
63.Raitio, A., et al. Congenital abdominal wall defects and cryptorchidism: a population-based study. Pediatr Surg Int, 2021. 37: 837.
https://www.ncbi.nlm.nih.gov/pubmed/33517489/
64.Ceccanti, S., et al. Prevalence, management, and outcome of cryptorchidism associated with gastroschisis: A systematic review and meta-analysis. J Pediatr Surg, 2022. 57: 1414.
https://www.ncbi.nlm.nih.gov/pubmed/34344532/
65.Gates, R.L., et al. Management of the undescended testis in children: An American Pediatric Surgical Association Outcomes and Evidence Based Practice Committee Systematic Review. J Pediatr Surg, 2022. 57: 1293.
https://www.ncbi.nlm.nih.gov/pubmed/35151498/
66.van Brakel, J., et al. Fertility potential in a cohort of 65 men with previously acquired undescended testes. J Pediatr Surg, 2014. 49: 599.
https://www.ncbi.nlm.nih.gov/pubmed/24726121/
67.Rusnack, S.L., et al. The ascending testis and the testis undescended since birth share the same histopathology. J Urol, 2002. 168: 2590.
https://www.ncbi.nlm.nih.gov/pubmed/12441991/
68.Mayr, J., et al. Ascent of the testis in children. Eur J Pediatr, 1995. 154: 893.
https://www.ncbi.nlm.nih.gov/pubmed/8582401/
69.Hildorf, S., et al. Fertility Potential is Impaired in Boys with Bilateral Ascending Testes. J Urol, 2021. 205: 586.
https://www.ncbi.nlm.nih.gov/pubmed/32903117/
70.Pakkasjärvi, N., et al. Surgical treatment of cryptorchidism: current insights and future directions. Front Endocrinol (Lausanne), 2024. 15: 1327957.
https://www.ncbi.nlm.nih.gov/pubmed/38495791/
71.Kollin, C., et al. Cryptorchidism: a clinical perspective. Pediatr Endocrinol Rev, 2014. 11 Suppl 2: 240.
https://www.ncbi.nlm.nih.gov/pubmed/24683948/
72.Hack, W.W., et al. Prevalence of acquired undescended testis in 6-year, 9-year and 13-year-old Dutch schoolboys. Arch Dis Child, 2007. 92: 17.
https://www.ncbi.nlm.nih.gov/pubmed/16905567/
73.Hakimi, T., et al. Supernumerary testis or polyorchidism: A rare urogenital anomaly (case report and literature review). Int J Surg Case Rep, 2024. 120: 109837.
https://www.ncbi.nlm.nih.gov/pubmed/38833904/
74.Caesar, R.E., et al. The incidence of the cremasteric reflex in normal boys. J Urol, 1994. 152: 779.
https://www.ncbi.nlm.nih.gov/pubmed/7912745/
75.Barthold, J.S., et al. The epidemiology of congenital cryptorchidism, testicular ascent and orchiopexy. J Urol, 2003. 170: 2396.
https://www.ncbi.nlm.nih.gov/pubmed/14634436/
76.Gao, L., et al. Histopathological Features of Vanishing Testes in 332 Boys: What Is Its Significance? A Retrospective Study From a Tertiary Hospital. Front Pediatr, 2022. 10: 834083.
https://www.ncbi.nlm.nih.gov/pubmed/35433532/
77.Rabinowitz, R., et al. Late presentation of cryptorchidism: the etiology of testicular re-ascent. J Urol, 1997. 157: 1892.
https://www.ncbi.nlm.nih.gov/pubmed/9112557/
78.Cendron, M., et al. Anatomical, morphological and volumetric analysis: a review of 759 cases of testicular maldescent. J Urol, 1993. 149: 570.
https://www.ncbi.nlm.nih.gov/pubmed/8094761/
79.Braga, L.H., et al. Is there an optimal contralateral testicular cut-off size that predicts monorchism in boys with nonpalpable testicles? J Pediatr Urol, 2014. 10: 693.
https://www.ncbi.nlm.nih.gov/pubmed/25008806/
80.Hurwitz, R.S., et al. How well does contralateral testis hypertrophy predict the absence of the nonpalpable testis? J Urol, 2001. 165: 588.
https://www.ncbi.nlm.nih.gov/pubmed/11176443/
81.Hodhod, A., et al. Testicular hypertrophy as a predictor for contralateral monorchism: Retrospective review of prospectively recorded data. J Pediatr Urol, 2016. 12: 34.e1.
https://www.ncbi.nlm.nih.gov/pubmed/26279100/
82.Wei, Y., et al. Testicular hypertrophy as predictor of contralateral nonpalpable testis among Chinese boys: An 18-year retrospective study. Arch Pediatr, 2020. 27: 456.
https://www.ncbi.nlm.nih.gov/pubmed/33011030/
83.Elert, A., et al. Population-based investigation of familial undescended testis and its association with other urogenital anomalies. J Pediatr Urol, 2005. 1: 403.
https://www.ncbi.nlm.nih.gov/pubmed/18947580/
84.Hrebinko, R.L., et al. The limited role of imaging techniques in managing children with undescended testes. J Urol, 1993. 150: 458.
https://www.ncbi.nlm.nih.gov/pubmed/8100860/
85.Tasian, G.E., et al. Diagnostic performance of ultrasound in nonpalpable cryptorchidism: a systematic review and meta-analysis. Pediatrics, 2011. 127: 119.
https://www.ncbi.nlm.nih.gov/pubmed/21149435/
86.Elder, J.S. Ultrasonography is unnecessary in evaluating boys with a nonpalpable testis. Pediatrics, 2002. 110: 748.
https://www.ncbi.nlm.nih.gov/pubmed/12359789/
87.Wenzler, D.L., et al. What is the rate of spontaneous testicular descent in infants with cryptorchidism? J Urol, 2004. 171: 849.
https://www.ncbi.nlm.nih.gov/pubmed/14713841/
88.Park, K.H., et al. Histological evidences suggest recommending orchiopexy within the first year of life for children with unilateral inguinal cryptorchid testis. Int J Urol, 2007. 14: 616.
https://www.ncbi.nlm.nih.gov/pubmed/17645605/
89.Engeler, D.S., et al. Early orchiopexy: prepubertal intratubular germ cell neoplasia and fertility outcome. Urology, 2000. 56: 144.
https://www.ncbi.nlm.nih.gov/pubmed/10869645/
90.Forest, M.G., et al. Undescended testis: comparison of two protocols of treatment with human chorionic gonadotropin. Effect on testicular descent and hormonal response. Horm Res, 1988. 30: 198.
https://www.ncbi.nlm.nih.gov/pubmed/2907898/
91.Rajfer, J., et al. Hormonal therapy of cryptorchidism. A randomized, double-blind study comparing human chorionic gonadotropin and gonadotropin-releasing hormone. N Engl J Med, 1986. 314: 466.
https://www.ncbi.nlm.nih.gov/pubmed/2868413/
92.Dunkel, L., et al. Germ cell apoptosis after treatment of cryptorchidism with human chorionic gonadotropin is associated with impaired reproductive function in the adult. J Clin Invest, 1997. 100: 2341.
https://www.ncbi.nlm.nih.gov/pubmed/9410913/
93.Kaleva, M., et al. Treatment with human chorionic gonadotrophin for cryptorchidism: clinical and histological effects. Int J Androl, 1996. 19: 293.
https://www.ncbi.nlm.nih.gov/pubmed/8985778/
94.Pyorala, S., et al. A review and meta-analysis of hormonal treatment of cryptorchidism. J Clin Endocrinol Metab, 1995. 80: 2795.
https://www.ncbi.nlm.nih.gov/pubmed/7673426/
95.Rajfer, J., et al. The incidence of intersexuality in patients with hypospadias and cryptorchidism. J Urol, 1976. 116: 769.
https://www.ncbi.nlm.nih.gov/pubmed/12377/
96.Lala, R., et al. Combined therapy with LHRH and HCG in cryptorchid infants. Eur J Pediatr, 1993. 152 Suppl 2: S31.
https://www.ncbi.nlm.nih.gov/pubmed/8101810/
97.Hagberg, S., et al. Treatment of undescended testes with intranasal application of synthetic LH-RH. Eur J Pediatr, 1982. 139: 285.
https://www.ncbi.nlm.nih.gov/pubmed/6133757/
98.Hadziselimovic, F., et al. Treatment with a luteinizing hormone-releasing hormone analogue after successful orchiopexy markedly improves the chance of fertility later in life. J Urol, 1997. 158: 1193.
https://www.ncbi.nlm.nih.gov/pubmed/9258170/
99.Bartoletti, R., et al. 16 years follow-up evaluation of immediate vs delayed vs. combined hormonal therapy on fertility of patients with cryptorchidism: results of a longitudinal cohort study. Reprod Biol Endocrinol, 2022. 20: 102.
https://www.ncbi.nlm.nih.gov/pubmed/35836180/
100.Kollin, C., et al. Surgical treatment of unilaterally undescended testes: testicular growth after randomization to orchiopexy at age 9 months or 3 years. J Urol, 2007. 178: 1589.
https://www.ncbi.nlm.nih.gov/pubmed/17707045/
101.Ritzen, E.M. Undescended testes: a consensus on management. Eur J Endocrinol, 2008. 159 Suppl 1: S87.
https://www.ncbi.nlm.nih.gov/pubmed/18728121/
102.Allin, B.S.R., et al. Systematic review and meta-analysis comparing outcomes following orchidopexy for cryptorchidism before or after 11398042195year of age. BJS Open, 2018. 2: 1.
https://www.ncbi.nlm.nih.gov/pubmed/29951624/
103.Hildorf, S., et al. Fertility Potential is Compromised in 20% to 25% of Boys with Nonsyndromic Cryptorchidism despite Orchiopexy within the First Year of Life. J Urol, 2020. 203: 832.
https://www.ncbi.nlm.nih.gov/pubmed/31642739/
104.Docimo, S.G. The results of surgical therapy for cryptorchidism: a literature review and analysis. J Urol, 1995. 154: 1148.
https://www.ncbi.nlm.nih.gov/pubmed/7637073/
105.Ziylan, O., et al. Failed orchiopexy. Urol Int, 2004. 73: 313.
https://www.ncbi.nlm.nih.gov/pubmed/15604574/
106.Fernandez Atuan, R., et al. Testicular volume in adult patients undergoing cryptorchidism surgery in childhood, and impact on paternity. Cir Pediatr, 2022. 35: 25.
https://www.ncbi.nlm.nih.gov/pubmed/35037437/
107.Prentiss, R.J., et al. Undescended testis: surgical anatomy of spermatic vessels, spermatic surgical triangles and lateral spermatic ligament. J Urol, 1960. 83: 686.
https://www.ncbi.nlm.nih.gov/pubmed/14434738/
108.Kozminski, D.J., et al. Orchiopexy without Transparenchymal Fixation Suturing: A 29-Year Experience. J Urol, 2015. 194: 1743.
https://www.ncbi.nlm.nih.gov/pubmed/26141850/
109.Anand, S., et al. Transparenchymal testicular suture: A systematic review and meta-analysis highlighting the impact of additional fixation suture during routine orchiopexy. J Pediatr Urol, 2021. 17: 183.
https://www.ncbi.nlm.nih.gov/pubmed/33478901/
110.Martin, J.M., et al. Is radiotherapy a good adjuvant strategy for men with a history of cryptorchism and stage I seminoma? Int J Radiat Oncol Biol Phys, 2010. 76: 65.
https://www.ncbi.nlm.nih.gov/pubmed/19362785/
111.Na, S.W., et al. Single scrotal incision orchiopexy for children with palpable low-lying undescended testis: early outcome of a prospective randomized controlled study. Korean J Urol, 2011. 52: 637.
https://www.ncbi.nlm.nih.gov/pubmed/22025961/
112.Parsons, J.K., et al. The low scrotal approach to the ectopic or ascended testicle: prevalence of a patent processus vaginalis. J Urol, 2003. 169: 1832.
https://www.ncbi.nlm.nih.gov/pubmed/12686856/
113.Novaes, H.F., et al. Single scrotal incision orchiopexy - a systematic review. Int Braz J Urol, 2013. 39: 305.
https://www.ncbi.nlm.nih.gov/pubmed/23849581/
114.Feng, S., et al. Single scrotal incision orchiopexy versus the inguinal approach in children with palpable undescended testis: a systematic review and meta-analysis. Pediatr Surg Int, 2016. 32: 989.
https://www.ncbi.nlm.nih.gov/pubmed/27510940/
115.Yu, C., et al. Comparison of Single-Incision Scrotal Orchiopexy and Traditional Two-Incision Inguinal Orchiopexy for Primary Palpable Undescended Testis in Children: A Systematic Review and Meta-Analysis. Front Pediatr, 2022. 10: 805579.
https://www.ncbi.nlm.nih.gov/pubmed/35372152/
116.Wahyudi, I., et al. Comparison of scrotal and inguinal orchiopexy for palpable undescended testis: a meta-analysis of randomized controlled trials. Pediatr Surg Int, 2024. 40: 74.
https://www.ncbi.nlm.nih.gov/pubmed/38451346/
117.Huang, W.-H., et al. The effect of scrotal versus inguinal orchiopexy on the testicular function of children with clinically palpable, inguinal undescended testis: a randomized controlled trial. Asian J Androl, 2023. 25: 745.
https://www.ncbi.nlm.nih.gov/pubmed/37282382/
118.Wayne, C., et al. What is the ideal surgical approach for intra-abdominal testes? A systematic review. Pediatr Surg Int, 2015. 31: 327.
https://www.ncbi.nlm.nih.gov/pubmed/25663531/
119.Cortesi, N., et al. Diagnosis of bilateral abdominal cryptorchidism by laparoscopy. Endoscopy, 1976. 8: 33.
https://www.ncbi.nlm.nih.gov/pubmed/16743/
120.Jordan, G.H., et al. Laparoscopic single stage and staged orchiopexy. J Urol, 1994. 152: 1249.
https://www.ncbi.nlm.nih.gov/pubmed/7915336/
121.Snodgrass, W.T., et al. Scrotal exploration for unilateral nonpalpable testis. J Urol, 2007. 178: 1718.
https://www.ncbi.nlm.nih.gov/pubmed/17707015/
122.Cisek, L.J., et al. Current findings in diagnostic laparoscopic evaluation of the nonpalpable testis. J Urol, 1998. 160: 1145.
https://www.ncbi.nlm.nih.gov/pubmed/9719296/
123.Patil, K.K., et al. Laparoscopy for impalpable testes. BJU Int, 2005. 95: 704.
https://www.ncbi.nlm.nih.gov/pubmed/15784081/
124.He, T.-Q., et al. Clinical Efficacy of Laparoscopic Orchiopexy With the Modified Prentiss Maneuver for Non-palpable Testis Near the Internal Ring. Front Pediatr, 2022. 10: 906739.
https://www.ncbi.nlm.nih.gov/pubmed/35769212/
125.Elderwy, A.A., et al. Laparoscopic versus open orchiopexy in the management of peeping testis: a multi-institutional prospective randomized study. J Pediatr Urol, 2014. 10: 605.
https://www.ncbi.nlm.nih.gov/pubmed/25042877/
126.Kirsch, A.J., et al. Surgical management of the nonpalpable testis: the Children’s Hospital of Philadelphia experience. J Urol, 1998. 159: 1340.
https://www.ncbi.nlm.nih.gov/pubmed/9507881/
127.Fowler, R., et al. The role of testicular vascular anatomy in the salvage of high undescended testes. Aust N Z J Surg, 1959. 29: 92.
https://www.ncbi.nlm.nih.gov/pubmed/13849840/
128.Shehata, S.M. Laparoscopically assisted gradual controlled traction on the testicular vessels: a new concept in the management of abdominal testis. A preliminary report. Eur J Pediatr Surg, 2008. 18: 402.
https://www.ncbi.nlm.nih.gov/pubmed/19012232/
129.Koff, S.A., et al. Treatment of high undescended testes by low spermatic vessel ligation: an alternative to the Fowler-Stephens technique. J Urol, 1996. 156: 799.
https://www.ncbi.nlm.nih.gov/pubmed/8683787/
130.Esposito, C., et al. Exploration of inguinal canal is mandatory in cases of non palpable testis if laparoscopy shows elements entering a closed inguinal ring. Eur J Pediatr Surg, 2010. 20: 138.
https://www.ncbi.nlm.nih.gov/pubmed/19746341/
131.Baker, L.A., et al. A multi-institutional analysis of laparoscopic orchidopexy. BJU Int, 2001. 87: 484.
https://www.ncbi.nlm.nih.gov/pubmed/11298039/
132.Dave, S., et al. Open versus laparoscopic staged Fowler-Stephens orchiopexy: impact of long loop vas. J Urol, 2009. 182: 2435.
https://www.ncbi.nlm.nih.gov/pubmed/19765743/
133.Tian, Q., et al. Compared outcomes of high-level cryptorchidism managed by Fowler-Stephens orchiopexy versus the Shehata technique: A systematic review and meta-analysis. J Pediatr Urol, 2023. 19: 313.
https://www.ncbi.nlm.nih.gov/pubmed/36966014/
134.Bidault-Jourdainne, V., et al. Staged laparoscopic orchiopexy of intra-abdominal testis: Spermatic vessels division versus traction? A multicentric comparative study. J Pediatr Urol, 2024. 3: 498.e1.
https://www.ncbi.nlm.nih.gov/pubmed/38310033/
135.Borkar, N.B., et al. Techniques of staged laparoscopic orchidopexy for high intra-abdominal testes in children: A systematic review and meta-analysis. Urol Ann, 2024. 16: 64.
https://www.ncbi.nlm.nih.gov/pubmed/38415237/
136.Penson, D., et al. Effectiveness of hormonal and surgical therapies for cryptorchidism: a systematic review. Pediatrics, 2013. 131: e1897.
https://www.ncbi.nlm.nih.gov/pubmed/23690511/
137.Florou, M., et al. Orchidopexy for congenital cryptorchidism in childhood and adolescence and testicular cancer in adults: an updated systematic review and meta-analysis of observational studies. Eur J Pediatr, 2023. 182: 2499.
https://www.ncbi.nlm.nih.gov/pubmed/36988678/
138.Nicol, D., et al. EAU Guidelines on Testicular Cancer. Edn. presented at the EAU Annual Congress Paris 2024. ISBN 978-94-92671-23-3, 2024.
https://uroweb.org/guidelines/compilations-of-all-guidelines/
139.Trussell, J.C., et al. The relationship of cryptorchidism to fertility. Curr Urol Rep, 2004. 5: 142.
https://www.ncbi.nlm.nih.gov/pubmed/15028208/
140.Hadziselimovic, F., et al. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet, 2001. 358: 1156.
https://www.ncbi.nlm.nih.gov/pubmed/11597673/
141.Lee, P.A. Fertility after cryptorchidism: epidemiology and other outcome studies. Urology, 2005. 66: 427.
https://www.ncbi.nlm.nih.gov/pubmed/16098371/
142.Chua, M.E., et al. Hormonal therapy using gonadotropin releasing hormone for improvement of fertility index among children with cryptorchidism: a meta-analysis and systematic review. J Pediatr Surg, 2014. 49: 1659.
https://www.ncbi.nlm.nih.gov/pubmed/25475814/
143.Coughlin, M.T., et al. Age at unilateral orchiopexy: effect on hormone levels and sperm count in adulthood. J Urol, 1999. 162: 986.
https://www.ncbi.nlm.nih.gov/pubmed/10458417/
144.Hildorf, S., et al. The impact of early and successful orchidopexy on hormonal follow-up for 208 boys with bilateral non-syndromic cryptorchidism. Pediatr Surg Int, 2021. 37: 339.
https://www.ncbi.nlm.nih.gov/pubmed/33423103/
145.Tasian, G.E., et al. Age at orchiopexy and testis palpability predict germ and Leydig cell loss: clinical predictors of adverse histological features of cryptorchidism. J Urol, 2009. 182: 704.
https://www.ncbi.nlm.nih.gov/pubmed/19539332/
146.Dieckmann, K.P., et al. Clinical epidemiology of testicular germ cell tumors. World J Urol, 2004. 22: 2.
https://www.ncbi.nlm.nih.gov/pubmed/15034740/
147.Pettersson, A., et al. Age at surgery for undescended testis and risk of testicular cancer. N Engl J Med, 2007. 356: 1835.
https://www.ncbi.nlm.nih.gov/pubmed/17476009/
148.Walsh, T.J., et al. Prepubertal orchiopexy for cryptorchidism may be associated with lower risk of testicular cancer. J Urol, 2007. 178: 1440.
https://www.ncbi.nlm.nih.gov/pubmed/17706709/
149.Pohl, H.G., et al. Prepubertal testis tumors: actual prevalence rate of histological types. J Urol, 2004. 172: 2370.
https://www.ncbi.nlm.nih.gov/pubmed/15538270/
150.Taskinen, S., et al. Testicular tumors in children and adolescents. J Pediatr Urol, 2008. 4: 134.
https://www.ncbi.nlm.nih.gov/pubmed/18631909/
151.Metcalfe, P.D., et al. Pediatric testicular tumors: contemporary incidence and efficacy of testicular preserving surgery. J Urol, 2003. 170: 2412.
https://www.ncbi.nlm.nih.gov/pubmed/14634440/
152.Shukla, A.R., et al. Experience with testis sparing surgery for testicular teratoma. J Urol, 2004. 171: 161.
https://www.ncbi.nlm.nih.gov/pubmed/14665867/
153.Nerli, R.B., et al. Prepubertal testicular tumors: Our 10 years experience. Indian J Cancer, 2010. 47: 292.
https://www.ncbi.nlm.nih.gov/pubmed/20587905/
154.Wu, D., et al. Prepubertal testicular tumors in China: a 10-year experience with 67 cases. Pediatr Surg Int, 2018. 34: 1339.
https://www.ncbi.nlm.nih.gov/pubmed/30324570/
155.Hawkins, E., et al. The prepubertal testis (prenatal and postnatal): its relationship to intratubular germ cell neoplasia: a combined Pediatric Oncology Group and Children’s Cancer Study Group. Hum Pathol, 1997. 28: 404.
https://www.ncbi.nlm.nih.gov/pubmed/9104938/
156.Nazemi, A., et al. Pediatric genitourinary tumors: Distribution, demographics, and outcomes. Pediatr Invest, 2022. 6: 85.
https://www.ncbi.nlm.nih.gov/pubmed/35774527/
157.Hermann, A.L., et al. Imaging of Pediatric Testicular and Para-Testicular Tumors: A Pictural Review. Cancers, 2022. 14: 3180.
https://www.ncbi.nlm.nih.gov/pubmed/35804952/
158.Manivel, J.C., et al. Intratubular germ cell neoplasia in testicular teratomas and epidermoid cysts. Correlation with prognosis and possible biologic significance. Cancer, 1989. 64: 715.
https://www.ncbi.nlm.nih.gov/pubmed/2663131/
159.Renedo, D.E., et al. Intratubular germ cell neoplasia (ITGCN) with p53 and PCNA expression and adjacent mature teratoma in an infant testis. An immunohistochemical and morphologic study with a review of the literature. Am J Surg Pathol, 1994. 18: 947.
https://www.ncbi.nlm.nih.gov/pubmed/7741838/
160.Rushton, H.G., et al. Testicular sparing surgery for prepubertal teratoma of the testis: a clinical and pathological study. J Urol, 1990. 144: 726.
https://www.ncbi.nlm.nih.gov/pubmed/2388338/
161.Li, Z., et al. Testis-Preserving Tumor Enucleation Is Applicable in Children with Immature Testicular Teratoma. Urol Int, 2021. 105: 27.
https://www.ncbi.nlm.nih.gov/pubmed/33176305/
162.Roth, L.M., et al. Gonadoblastoma: origin and outcome. Hum Pathol, 2019.
https://www.ncbi.nlm.nih.gov/pubmed/31805291/
163.Ahmed, H.U., et al. Testicular and paratesticular tumours in the prepubertal population. Lancet Oncol, 2010. 11: 476.
https://www.ncbi.nlm.nih.gov/pubmed/20434716/
164.Henderson, C.G., et al. Enucleation for prepubertal leydig cell tumor. J Urol, 2006. 176: 703.
https://www.ncbi.nlm.nih.gov/pubmed/16813923/
165.Akbar, S.A., et al. Multimodality imaging of paratesticular neoplasms and their rare mimics. Radiographics, 2003. 23: 1461.
https://www.ncbi.nlm.nih.gov/pubmed/14615558/
166.Esen, B., et al. Should we rely on Doppler ultrasound for evaluation of testicular solid lesions? World J Urol, 2018. 36: 1263.
https://www.ncbi.nlm.nih.gov/pubmed/29572727/
167.Lock, G. [Contrast-enhanced ultrasonography of testicular tumours]. Urologe A, 2019. 58: 1410.
https://www.ncbi.nlm.nih.gov/pubmed/31712858/
168.Tallen, G., et al. High reliability of scrotal ultrasonography in the management of childhood primary testicular neoplasms. Klin Padiatr, 2011. 223: 131.
https://www.ncbi.nlm.nih.gov/pubmed/21462100/
169.Ager, M., et al. Radiological features characterising indeterminate testes masses: a systematic review and meta-analysis. BJU Int, 2023. 131: 288.
https://www.ncbi.nlm.nih.gov/pubmed/35980855/
170.Sag, S., et al. Is testicular microlithiasis associated with testicular pathologies in children? Pediatr Surg Int, 2022. 38: 1317.
https://www.ncbi.nlm.nih.gov/pubmed/35829746/
171.Schneider, D.T., et al. Diagnostic value of alpha 1-fetoprotein and beta-human chorionic gonadotropin in infancy and childhood. Pediatr Hematol Oncol, 2001. 18: 11.
https://www.ncbi.nlm.nih.gov/pubmed/11205836/
172.Ross, J.H., et al. Clinical behavior and a contemporary management algorithm for prepubertal testis tumors: a summary of the Prepubertal Testis Tumor Registry. J Urol, 2002. 168: 1675.
https://www.ncbi.nlm.nih.gov/pubmed/12352332/
173.Fankhauser, C.D., et al. Risk Factors and Treatment Outcomes of 1,375 Patients with Testicular Leydig Cell Tumors: Analysis of Published Case Series Data. J Urol, 2020. 203: 949.
https://www.ncbi.nlm.nih.gov/pubmed/31845841/
174.Grogg, J., et al. Sertoli Cell Tumors of the Testes: Systematic Literature Review and Meta-Analysis of Outcomes in 435 Patients. Oncologist, 2020. 7:585.
https://www.ncbi.nlm.nih.gov/pubmed/32043680/
175.Miao, X., et al. Testis-sparing surgery in children with testicular tumors: A systematic review and meta-analysis. Asian J Surg, 2021. 44: 1503.
https://www.ncbi.nlm.nih.gov/pubmed/33893031/
176.Santos, M., et al. Multicenter retrospective study on benign testicular tumors in children: save as much as you can......please. Pediatr Surg Int, 2023. 39: 162.
https://www.ncbi.nlm.nih.gov/pubmed/36976363/
177.Zhou, G., et al. Clinical characteristics and long-term management of prepubertal testicular teratomas: a retrospective, multicenter study. Eur J Pediatr, 2023. 182: 1823.
https://www.ncbi.nlm.nih.gov/pubmed/36795187/
178.Rogers, T.N., et al. Surgical management of paratesticular rhabdomyosarcoma: A consensus opinion from the Children’s Oncology Group, European paediatric Soft tissue sarcoma Study Group, and the Cooperative Weichteilsarkom Studiengruppe. Pediatric Blood and Cancer, 2021. 68: e28938.
https://www.ncbi.nlm.nih.gov/pubmed/33522706/
179.Little, T., et al. Paediatric testicular tumours in a New Zealand centre. New Zealand Med J, 2017. 130: 68.
https://www.ncbi.nlm.nih.gov/pubmed/29240742/
180.Williamson, S.R., et al. The World Health Organization 2016 classification of testicular germ cell tumours: a review and update from the International Society of Urological Pathology Testis Consultation Panel. Histopathology, 2017. 70: 335.
https://www.ncbi.nlm.nih.gov/pubmed/27747907/
181.Hasegawa, T., et al. A case of immature teratoma originating in intra-abdominal undescended testis in a 3-month-old infant. Pediatr Surg Int, 2006. 22: 570.
https://www.ncbi.nlm.nih.gov/pubmed/16736229/
182.Chang, M.Y., et al. Prepubertal Testicular Teratomas and Epidermoid Cysts: Comparison of Clinical and Sonographic Features. J Ultrasound Med, 2015. 34: 1745.
https://www.ncbi.nlm.nih.gov/pubmed/26324756/
183.Hisamatsu, E., et al. Prepubertal testicular tumors: A 20-year experience with 40 cases. Int J Urol, 2010. 17: 956.
https://www.ncbi.nlm.nih.gov/pubmed/21046693/
184.Friend, J., et al. Benign scrotal masses in children - some new lessons learned. J Pediatr Surg, 2016. 51: 1737.
https://www.ncbi.nlm.nih.gov/pubmed/27558482/
185.Ye, Y.L., et al. Relapse in children with clinical stage I testicular yolk sac tumors after initial orchiectomy. Pediatr Surgery Int, 2018.
https://www.ncbi.nlm.nih.gov/pubmed/30539226/
186.Grady, R.W. Current management of prepubertal yolk sac tumors of the testis. Urol Clin North Am, 2000. 27: 503.
https://www.ncbi.nlm.nih.gov/pubmed/10985149/
187.Li, M., et al. Characteristics and outcomes of pediatric testicular yolk Sac tumor. Front Pediatr, 2022. 10: 1024906.
https://www.ncbi.nlm.nih.gov/pubmed/36601033/
188.Haas, R.J., et al. Testicular germ cell tumors, an update. Results of the German cooperative studies 1982-1997. Klin Padiatr, 1999. 211: 300.
https://www.ncbi.nlm.nih.gov/pubmed/10472566/
189.Liu, X., et al. Clinical characteristics and prognostic models of gonadal and extra-gonadal yolk sac tumors: a population-based analysis in children and adolescents. World J Urol, 2023. 41: 3009.
https://www.ncbi.nlm.nih.gov/pubmed/37747514/
190.Grogg, J.B., et al. Risk factors and treatment outcomes of 239 patients with testicular granulosa cell tumors: a systematic review of published case series data. J Cancer Res Clin Oncol, 2020. 146: 2829.
https://www.ncbi.nlm.nih.gov/pubmed/32719989/
191.Talon, I., et al. Sertoli cell tumor of the testis in children: reevaluation of a rarely encountered tumor. J Pediatr Hematol Oncol, 2005. 27: 491.
https://www.ncbi.nlm.nih.gov/pubmed/16189443/
192.Li, G., et al. Prepubertal Malignant Large Cell Calcifying Sertoli Cell Tumor of the Testis. Urology, 2018. 117: 145.
https://www.ncbi.nlm.nih.gov/pubmed/29626571/
193.Borer, J.G., et al. The spectrum of Sertoli cell tumors in children. Urol Clin North Am, 2000. 27: 529.
https://www.ncbi.nlm.nih.gov/pubmed/10985152/
194.Wilson, D.M., et al. Testicular tumors with Peutz-Jeghers syndrome. Cancer, 1986. 57: 2238.
https://www.ncbi.nlm.nih.gov/pubmed/3697923/
195.Alleemudder, A., et al. A case of Carney complex presenting as acute testicular pain. Urol Ann, 2016. 8: 360.
https://www.ncbi.nlm.nih.gov/pubmed/27453662/
196.Luckie, T.M., et al. A Multicenter Retrospective Review of Pediatric Leydig Cell Tumor of the Testis. J Pediatr Hematol/Oncol, 2019. 41: 74.
https://www.ncbi.nlm.nih.gov/pubmed/29554024/
197.Emre, S., et al. Testis sparing surgery for Leydig cell pathologies in children. J Pediatr Urol, 2017. 13: 51.
https://www.ncbi.nlm.nih.gov/pubmed/27773621/
198.Geminiani, J.J., et al. Testicular Leydig Cell Tumor with Metachronous Lesions: Outcomes after Metastasis Resection and Cryoablation. Case Rep Urol, 2015. 2015: 748495.
https://www.ncbi.nlm.nih.gov/pubmed/26525589/
199.Al-Ghamdi, W.M., et al. Testicular adrenal rest tumors in children with congenital adrenal hyperplasia. Saudi Med J, 2021. 42: 986.
https://www.ncbi.nlm.nih.gov/pubmed/34470837/
200.Claahsen-Van der Grinten, H.L., et al. Increased prevalence of testicular adrenal rest tumours during adolescence in congenital adrenal hyperplasia. Horm Res Paediatr, 2014. 82: 238.
https://www.ncbi.nlm.nih.gov/pubmed/25195868/
201.Merke, D.P., et al. Management of adolescents with congenital adrenal hyperplasia. Lancet Diabetes Endocrinol, 2013. 1: 341.
https://www.ncbi.nlm.nih.gov/pubmed/24622419/
202.Rivera-Hernandez, A., et al. Risk factors for testicular adrenal rest tumors in pediatric patients with congenital adrenal hyperplasia. J Pediatr Urol, 2023. 19: 398.e1.
https://www.ncbi.nlm.nih.gov/pubmed/37029011/
203.Schroder, M.A.M., et al. Hormonal control during infancy and testicular adrenal rest tumor development in males with congenital adrenal hyperplasia: a retrospective multicenter cohort study. Eur J Endocrinol, 2023. 189: 460.
https://www.ncbi.nlm.nih.gov/pubmed/37837609/
204.Claahsen-van der Grinten, H.L., et al. Testicular adrenal rest tumours in congenital adrenal hyperplasia. Int J Pediatr Endocrinol, 2009. 2009: 624823.
https://www.ncbi.nlm.nih.gov/pubmed/19956703/
205.Chaudhari, M., et al. Testicular adrenal rest tumor screening and fertility counseling among males with congenital adrenal hyperplasia. J Pediatr Urol, 2018. 14: 155.
https://www.ncbi.nlm.nih.gov/pubmed/29330018/
206.Rohayem, J., et al. Semen quality and testicular adrenal rest tumour development in 46,XY congenital adrenal hyperplasia: The importance of optimal hormonal replacement. Eur J Endocrinol, 2021. 184: 487.
https://www.ncbi.nlm.nih.gov/pubmed/33524003/
207.Radford, A., et al. Testicular-sparing surgery in the pediatric population: multicenter review of practice with review of the literature. Curr Opin Urol, 2019. 29: 481.
https://www.ncbi.nlm.nih.gov/pubmed/31205272/
208.Dittrich, R., et al. Fertility Preservation for Patients with Malignant Disease. Guideline of the DGGG, DGU and DGRM (S2k-Level, AWMF Registry No. 015/082, November 2017) - Recommendations and Statements for Girls and Women. Geburtshilfe Frauenheilkd, 2018. 78: 567.
https://www.ncbi.nlm.nih.gov/pubmed/29962516/
209.Mulder, R.L., et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol, 2021. 22: e45.
https://www.ncbi.nlm.nih.gov/pubmed/33539753/
210.Mulder, R.L., et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol, 2021. 22: e57.
https://www.ncbi.nlm.nih.gov/pubmed/33539754/
211.Poirot, C.J., et al. Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer. Pediatr Blood Cancer, 2007. 49: 74.
https://www.ncbi.nlm.nih.gov/pubmed/16977608/
212.Duncan, F.E., et al. Pediatric and Teen Ovarian Tissue Removed for Cryopreservation Contains Follicles Irrespective of Age, Disease Diagnosis, Treatment History, and Specimen Processing Methods. J Adolesc Young Adult Oncol, 2015. 4: 174.
https://www.ncbi.nlm.nih.gov/pubmed/26697267/
213.Pampanini, V., et al. Impact of first-line cancer treatment on the follicle quality in cryopreserved ovarian samples from girls and young women. Hum Reprod, 2019. 34: 1674.
https://www.ncbi.nlm.nih.gov/pubmed/31411325/
214.El Issaoui, M., et al. Effect of first line cancer treatment on the ovarian reserve and follicular density in girls under the age of 18 years. Fertil Steril, 2016. 106: 1757.
https://www.ncbi.nlm.nih.gov/pubmed/27717554/
215.Behl, S., et al. Consult and procedure incidence outcomes following establishment of a fertility preservation program for children with cancer. J Assist Reprod Genet, 2021. 38: 495.
https://www.ncbi.nlm.nih.gov/pubmed/33389381/
216.Ben-Aharon, I., et al. Optimizing the process of fertility preservation in pediatric female cancer patients - a multidisciplinary program. BMC Cancer, 2016. 16: 620.
https://www.ncbi.nlm.nih.gov/pubmed/27506811/
217.Rowell, E.E., et al. Laparoscopic unilateral oophorectomy for ovarian tissue cryopreservation in children. J Pediatr Surg, 2019. 54: 543.
https://www.ncbi.nlm.nih.gov/pubmed/30782317/
218.Poirot, C., et al. Human ovarian tissue cryopreservation: indications and feasibility. Hum Reprod, 2002. 17: 1447.
https://www.ncbi.nlm.nih.gov/pubmed/12042259/
219.Babayev, S.N., et al. Evaluation of ovarian and testicular tissue cryopreservation in children undergoing gonadotoxic therapies. J Assist Reprod Genet, 2013. 30: 3.
https://www.ncbi.nlm.nih.gov/pubmed/23242649/
220.Lavery, S.A., et al. The medical and ethical challenges of fertility preservation in teenage girls: a case series of sickle cell anaemia patients prior to bone marrow transplant. Hum Reprod, 2016. 31: 1501.
https://www.ncbi.nlm.nih.gov/pubmed/27112701/
221.Manuel, S.L., et al. Ovarian stimulation is a safe and effective fertility preservation option in the adolescent and young adult population. J Assist Reprod Genet, 2020. 37: 699.
https://www.ncbi.nlm.nih.gov/pubmed/31828481/
222.Poirot, C., et al. Ovarian tissue cryopreservation for fertility preservation in 418 girls and adolescents up to 15 years of age facing highly gonadotoxic treatment. Twenty years of experience at a single center. Acta Obstet Gynecol Scand, 2019. 98: 630.
https://www.ncbi.nlm.nih.gov/pubmed/30919447/
223.Anderson, R.A., et al. Ovarian tissue cryopreservation for fertility preservation: clinical and research perspectives. Hum Reprod Open, 2017. 2017: hox001.
https://www.ncbi.nlm.nih.gov/pubmed/30895221/
224.de Lambert, G., et al. A new surgical approach of temporary ovarian transposition for children undergoing brachytherapy: technical assessment and dose evaluation. J Pediatr Surg, 2014. 49: 1177.
https://www.ncbi.nlm.nih.gov/pubmed/24952812/
225.Arapaki, A., et al. Ovarian Tissue Cryopreservation in Children and Adolescents. Children (Basel), 2022. 9.
https://www.ncbi.nlm.nih.gov/pubmed/36010146/
226.Jadoul, P., et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod, 2017. 32: 1046.
https://www.ncbi.nlm.nih.gov/pubmed/28333228/
227.Rodriguez-Wallberg, K.A., et al. A prospective study of women and girls undergoing fertility preservation due to oncologic and non-oncologic indications in Sweden-Trends in patients’ choices and benefit of the chosen methods after long-term follow up. Acta Obstet Gynecol Scand, 2019. 98: 604.
https://www.ncbi.nlm.nih.gov/pubmed/30723910/
228.Demeestere, I., et al. Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum Reprod, 2015. 30: 2107.
https://www.ncbi.nlm.nih.gov/pubmed/26062556/
229.Matthews, S.J., et al. Successful pregnancy in a woman previously suffering from beta-thalassemia following transplantation of ovarian tissue cryopreserved before puberty. Minerva Ginecol, 2018. 70: 432.
https://www.ncbi.nlm.nih.gov/pubmed/29696941/
230.Wyns, C., et al. Fertility preservation for prepubertal boys: lessons learned from the past and update on remaining challenges towards clinical translation. Hum Reprod Update, 2021. 27: 433.
https://www.ncbi.nlm.nih.gov/pubmed/33326572/
231.Ishiguro, H., et al. Gonadal shielding to irradiation is effective in protecting testicular growth and function in long-term survivors of bone marrow transplantation during childhood or adolescence. Bone Marrow Transplant, 2007. 39: 483.
https://www.ncbi.nlm.nih.gov/pubmed/17334386/
232.Sayan, M., et al. Gonadal shielding technique to preserve fertility in male pediatric patients treated with total body irradiation for stem cell transplantation. Bone Marrow Transplant, 2016. 51: 997.
https://www.ncbi.nlm.nih.gov/pubmed/26950374/
233.de Lambert, G., et al. Testicular transposition in children undergoing brachytherapy for bladder and/or prostate rhabdomyosarcoma. J Pediatr Surg, 2018. 53: 1428.
https://www.ncbi.nlm.nih.gov/pubmed/29753523/
234.Kanbar, M., et al. Long-term follow-up of boys who have undergone a testicular biopsy for fertility preservation. Hum Reprod, 2021. 36: 26.
https://www.ncbi.nlm.nih.gov/pubmed/33259629/
235.Thorup, J., et al. Selecting Infants With Cryptorchidism and High Risk of Infertility for Optional Adjuvant Hormonal Therapy and Cryopreservation of Germ Cells: Experience From a Pilot Study. Front Endocrinol (Lausanne), 2018. 9: 299.
https://www.ncbi.nlm.nih.gov/pubmed/29922233/
236.Johnson, E.K., et al. Gonadal Tissue Cryopreservation for Children with Differences of Sex Development. Horm Res Paediatr, 2019. 92: 84.
https://www.ncbi.nlm.nih.gov/pubmed/31509845/
237.Giudice, M.G., et al. Male fertility preservation in DSD, XXY, pre-gonadotoxic treatments - Update, methods, ethical issues, current outcomes, future directions. Best Pract Res Clin Endocrinol Metab, 2019. 33: 101261.
https://www.ncbi.nlm.nih.gov/pubmed/30718080/
238.Kapur, P., et al. Pediatric hernias and hydroceles. Pediatr Clin North Am, 1998. 45: 773.
https://www.ncbi.nlm.nih.gov/pubmed/9728185/
239.Morini, F., et al. Surgical Management of Pediatric Inguinal Hernia: A Systematic Review and Guideline from the European Pediatric Surgeons’ Association Evidence and Guideline Committee. Eur J Pediatr Surg, 2022. 32: 219.
https://www.ncbi.nlm.nih.gov/pubmed/33567466/
240.Rubenstein, R.A., et al. Benign intrascrotal lesions. J Urol, 2004. 171: 1765.
https://www.ncbi.nlm.nih.gov/pubmed/15076274/
241.Xu, W., et al. Abdominoscrotal hydrocele: excision of sac may not be necessary. J Pediatr Urol, 2020. 16: 494 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32694088/
242.Cozzi, D.A., et al. Infantile abdominoscrotal hydrocele: a not so benign condition. J Urol, 2008. 180: 2611.
https://www.ncbi.nlm.nih.gov/pubmed/18950814/
243.Lin, H.C., et al. Testicular teratoma presenting as a transilluminating scrotal mass. Urology, 2006. 67: 1290 e3.
https://www.ncbi.nlm.nih.gov/pubmed/16750249/
244.Skoog, S.J. Benign and malignant pediatric scrotal masses. Pediatr Clin North Am, 1997. 44: 1229.
https://www.ncbi.nlm.nih.gov/pubmed/9326960/
245.Chaudhry, H., et al. Pitfalls and Practical Challenges in Imaging of the Pediatric Scrotum. Ultrasound Q, 2022. 38: 208.
https://www.ncbi.nlm.nih.gov/pubmed/36054277/
246.Koski, M.E., et al. Infant communicating hydroceles--do they need immediate repair or might some clinically resolve? J Pediatr Surg, 2010. 45: 590.
https://www.ncbi.nlm.nih.gov/pubmed/20223325/
247.Hori, S., et al. Trends in treatment outcomes of hydrocele in Japanese children: A single-institute experience. Int J Urol, 2020. 27: 946.
https://www.ncbi.nlm.nih.gov/pubmed/32748516/
248.Kurobe, M., et al. The outcomes of conservative management and the natural history of asymptomatic hydroceles in children. Pediatr Surg Int, 2020. 36: 1189.
https://www.ncbi.nlm.nih.gov/pubmed/32700002/
249.Christensen, T., et al. New onset of hydroceles in boys over 1 year of age. Int J Urol, 2006. 13: 1425.
https://www.ncbi.nlm.nih.gov/pubmed/17083397/
250.Khorasani, M., et al. The treatment of abdominoscrotal hydrocele: Is there a role for nonoperative management? J Pediatr Surg, 2016. 51: 815.
https://www.ncbi.nlm.nih.gov/pubmed/27261560/
251.Stylianos, S., et al. Incarceration of inguinal hernia in infants prior to elective repair. J Pediatr Surg, 1993. 28: 582.
https://www.ncbi.nlm.nih.gov/pubmed/8483072/
252.Alp, B.F., et al. Comparison of the inguinal and scrotal approaches for the treatment of communicating hydrocele in children. Kaohsiung J Med Sci, 2014. 30: 200.
https://www.ncbi.nlm.nih.gov/pubmed/24656161/
253.Oh, J.H., et al. Hydrocelectomy via scrotal incision is a valuable alternative to the traditional inguinal approach for hydrocele treatment in boys. Investig Clin Urol, 2018. 59: 416.
https://www.ncbi.nlm.nih.gov/pubmed/30402575/
254.Grimsby, G.M., et al. Non-absorbable sutures are associated with lower recurrence rates in laparoscopic percutaneous inguinal hernia ligation. J Pediatr Urol, 2015. 11: 275 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26233553/
255.Saka, R., et al. Safety and efficacy of laparoscopic percutaneous extraperitoneal closure for inguinal hernias and hydroceles in children: a comparison with traditional open repair. J Laparoendosc Adv Surg Tech A, 2014. 24: 55.
https://www.ncbi.nlm.nih.gov/pubmed/24180356/
256.Muensterer, O.J., et al. Contralateral processus closure to prevent metachronous inguinal hernia: A systematic review. Int J Surg, 2019. 68: 11.
https://www.ncbi.nlm.nih.gov/pubmed/31185313/
257.Cavusoglu, Y.H., et al. Acute scrotum -- etiology and management. Indian J Pediatr, 2005. 72: 201.
https://www.ncbi.nlm.nih.gov/pubmed/15812112/
258.Klin, B., et al. Epididymitis in childhood: a clinical retrospective study over 5 years. Isr Med Assoc J, 2001. 3: 833.
https://www.ncbi.nlm.nih.gov/pubmed/11729579/
259.Makela, E., et al. A 19-year review of paediatric patients with acute scrotum. Scand J Surg, 2007. 96: 62.
https://www.ncbi.nlm.nih.gov/pubmed/17461315/
260.McAndrew, H.F., et al. The incidence and investigation of acute scrotal problems in children. Pediatr Surg Int, 2002. 18: 435.
https://www.ncbi.nlm.nih.gov/pubmed/12415374/
261.Sakellaris, G.S., et al. Acute epididymitis in Greek children: a 3-year retrospective study. Eur J Pediatr, 2008. 167: 765.
https://www.ncbi.nlm.nih.gov/pubmed/17786475/
262.Varga, J., et al. Acute scrotal pain in children--ten years’ experience. Urol Int, 2007. 78: 73.
https://www.ncbi.nlm.nih.gov/pubmed/17192737/
263.Bingol-Kologlu, M., et al. An exceptional complication following appendectomy: acute inguinal and scrotal suppuration. Int Urol Nephrol, 2006. 38: 663.
https://www.ncbi.nlm.nih.gov/pubmed/17160451/
264.Dayanir, Y.O., et al. Epididymoorchitis mimicking testicular torsion in Henoch-Schonlein purpura. Eur Radiol, 2001. 11: 2267.
https://www.ncbi.nlm.nih.gov/pubmed/11702171/
265.Diamond, D.A., et al. Neonatal scrotal haematoma: mimicker of neonatal testicular torsion. BJU Int, 2003. 91: 675.
https://www.ncbi.nlm.nih.gov/pubmed/12699483/
266.Ha, T.S., et al. Scrotal involvement in childhood Henoch-Schonlein purpura. Acta Paediatr, 2007. 96: 552.
https://www.ncbi.nlm.nih.gov/pubmed/17306010/
267.Hara, Y., et al. Acute scrotum caused by Henoch-Schonlein purpura. Int J Urol, 2004. 11: 578.
https://www.ncbi.nlm.nih.gov/pubmed/15242376/
268.Klin, B., et al. Acute idiopathic scrotal edema in children--revisited. J Pediatr Surg, 2002. 37: 1200.
https://www.ncbi.nlm.nih.gov/pubmed/12149702/
269.Krause, W. Is acute idiopathic scrotal edema in children a special feature of neutrophilic eccrine hidradenitis? Dermatology, 2004. 208: 86; author reply 86.
https://www.ncbi.nlm.nih.gov/pubmed/14730248/
270.Matsumoto, A., et al. Torsion of the hernia sac within a hydrocele of the scrotum in a child. Int J Urol, 2004. 11: 789.
https://www.ncbi.nlm.nih.gov/pubmed/15379947/
271.Myers, J.B., et al. Torsion of an indirect hernia sac causing acute scrotum. J Pediatr Surg, 2004. 39: 122.
https://www.ncbi.nlm.nih.gov/pubmed/14694389/
272.Ng, K.H., et al. An unusual presentation of acute scrotum after appendicitis. Singapore Med J, 2002. 43: 365.
https://www.ncbi.nlm.nih.gov/pubmed/12437045/
273.Singh, S., et al. Acute scrotum in children: a rare presentation of acute, non-perforated appendicitis. Pediatr Surg Int, 2003. 19: 298.
https://www.ncbi.nlm.nih.gov/pubmed/12682749/
274.van Langen, A.M., et al. Acute idiopathic scrotal oedema: four cases and a short review. Eur J Pediatr, 2001. 160: 455.
https://www.ncbi.nlm.nih.gov/pubmed/11475590/
275.Vlazakis, S., et al. Right acute hemiscrotum caused by insertion of an inflamed appendix. BJU Int, 2002. 89: 967.
https://www.ncbi.nlm.nih.gov/pubmed/12010250/
276.D’Andrea, A., et al. US in the assessment of acute scrotum. Crit Ultrasound J, 2013. 5: S8.
https://www.ncbi.nlm.nih.gov/pubmed/23902859/
277.Davis, J.E., et al. Scrotal emergencies. Emerg Med Clin North Am, 2011. 29: 469.
https://www.ncbi.nlm.nih.gov/pubmed/21782069/
278.Jimoh, B.M., et al. Idiopathic scrotal hematoma in neonate: a case report and review of the literature. Case Rep Urol, 2014. 2014: 212914.
https://www.ncbi.nlm.nih.gov/pubmed/24982811/
279.Matzek, B.A., et al. Traumatic testicular dislocation after minor trauma in a pediatric patient. J Emerg Med, 2013. 45: 537.
https://www.ncbi.nlm.nih.gov/pubmed/23899815/
280.Wright, S., et al. Emergency ultrasound of acute scrotal pain. Eur J Emerg Med, 2015. 22: 2.
https://www.ncbi.nlm.nih.gov/pubmed/24910960/
281.Yusuf, G.T., et al. A review of ultrasound imaging in scrotal emergencies. J Ultrasound, 2013. 16: 171.
https://www.ncbi.nlm.nih.gov/pubmed/24432171/
282.Remer, E.M., et al. ACR Appropriateness Criteria (R) acute onset of scrotal pain--without trauma, without antecedent mass. Ultrasound Q, 2012. 28: 47.
https://www.ncbi.nlm.nih.gov/pubmed/22357246/
283.Kadish, H.A., et al. A retrospective review of pediatric patients with epididymitis, testicular torsion, and torsion of testicular appendages. Pediatrics, 1998. 102: 73.
https://www.ncbi.nlm.nih.gov/pubmed/9651416/
284.Sauvat, F., et al. [Age for testicular torsion?]. Arch Pediatr, 2002. 9: 1226.
https://www.ncbi.nlm.nih.gov/pubmed/12536102/
285.Somekh, E., et al. Acute epididymitis in boys: evidence of a post-infectious etiology. J Urol, 2004. 171: 391.
https://www.ncbi.nlm.nih.gov/pubmed/14665940/
286.Yerkes, E.B., et al. Management of perinatal torsion: today, tomorrow or never? J Urol, 2005. 174: 1579.
https://www.ncbi.nlm.nih.gov/pubmed/16148656/
287.O’Kelly, F., et al. Delaying Urgent Exploration in Neonatal Testicular Torsion May Have Significant Consequences for the Contralateral Testis: A Critical Literature Review. Urology, 2021. 153: 277.
https://www.ncbi.nlm.nih.gov/pubmed/33373706/
288.Boettcher, M., et al. Clinical and sonographic features predict testicular torsion in children: a prospective study. BJU Int, 2013. 112: 1201.
https://www.ncbi.nlm.nih.gov/pubmed/23826981/
289.Nelson, C.P., et al. The cremasteric reflex: a useful but imperfect sign in testicular torsion. J Pediatr Surg, 2003. 38: 1248.
https://www.ncbi.nlm.nih.gov/pubmed/12891505/
290.Visser, A.J., et al. Testicular function after torsion of the spermatic cord. BJU Int, 2003. 92: 200.
https://www.ncbi.nlm.nih.gov/pubmed/12887467/
291.Dupond-Athenor, A., et al. A multicenter review of undescended testis torsion: A plea for early management. J Pediatr Urol, 2021. 17: 191.e1.
https://www.ncbi.nlm.nih.gov/pubmed/33388261/
292.Mushtaq, I., et al. Retrospective review of paediatric patients with acute scrotum. ANZ J Surg, 2003. 73: 55.
https://www.ncbi.nlm.nih.gov/pubmed/12534742/
293.Murphy, F.L., et al. Early scrotal exploration in all cases is the investigation and intervention of choice in the acute paediatric scrotum. Pediatr Surg Int, 2006. 22: 413.
https://www.ncbi.nlm.nih.gov/pubmed/16602024/
294.Barbosa, J.A., et al. Development and initial validation of a scoring system to diagnose testicular torsion in children. J Urol, 2013. 189: 1859.
https://www.ncbi.nlm.nih.gov/pubmed/23103800/
295.Qin, K.R., et al. Diagnosing with a TWIST: Systematic Review and Meta-Analysis of a Testicular Torsion Risk Score. J Urol, 2022. 208: 62.
https://www.ncbi.nlm.nih.gov/pubmed/35238603/
296.Choudhury, P., et al. Unjumbling the TWIST score for testicular torsion: systematic review and meta-analysis. Pediatr Surg Int, 2023. 39: 137.
https://www.ncbi.nlm.nih.gov/pubmed/36811717/
297.Klinke, M., et al. The BAL-Score Almost Perfectly Predicts Testicular Torsion in Children: A Two-Center Cohort Study. Front Pediatr, 2020. 8: 601892.
https://www.ncbi.nlm.nih.gov/pubmed/33365292/
298.Baker, L.A., et al. An analysis of clinical outcomes using color doppler testicular ultrasound for testicular torsion. Pediatrics, 2000. 105: 604.
https://www.ncbi.nlm.nih.gov/pubmed/10699116/
299.Gunther, P., et al. Acute testicular torsion in children: the role of sonography in the diagnostic workup. Eur Radiol, 2006. 16: 2527.
https://www.ncbi.nlm.nih.gov/pubmed/16724203/
300.Kalfa, N., et al. Multicenter assessment of ultrasound of the spermatic cord in children with acute scrotum. J Urol, 2007. 177: 297.
https://www.ncbi.nlm.nih.gov/pubmed/17162068/
301.Karmazyn, B., et al. Clinical and sonographic criteria of acute scrotum in children: a retrospective study of 172 boys. Pediatr Radiol, 2005. 35: 302.
https://www.ncbi.nlm.nih.gov/pubmed/15503003/
302.Lam, W.W., et al. Colour Doppler ultrasonography replacing surgical exploration for acute scrotum: myth or reality? Pediatr Radiol, 2005. 35: 597.
https://www.ncbi.nlm.nih.gov/pubmed/15761770/
303.Schalamon, J., et al. Management of acute scrotum in children--the impact of Doppler ultrasound. J Pediatr Surg, 2006. 41: 1377.
https://www.ncbi.nlm.nih.gov/pubmed/16863840/
304.Pepe, P., et al. Does color Doppler sonography improve the clinical assessment of patients with acute scrotum? Eur J Radiol, 2006. 60: 120.
https://www.ncbi.nlm.nih.gov/pubmed/16730939/
305.Mori, T., et al. Diagnostic accuracy of point-of-care ultrasound for paediatric testicular torsion: A systematic review and meta-Analysis. Emergency Med J, 2022. 40: 140.
https://www.ncbi.nlm.nih.gov/pubmed/35523539/
306.Kalfa, N., et al. Ultrasonography of the spermatic cord in children with testicular torsion: impact on the surgical strategy. J Urol, 2004. 172: 1692.
https://www.ncbi.nlm.nih.gov/pubmed/15371792/
307.Karmazyn, B., et al. Duplex sonographic findings in children with torsion of the testicular appendages: overlap with epididymitis and epididymoorchitis. J Pediatr Surg, 2006. 41: 500.
https://www.ncbi.nlm.nih.gov/pubmed/16516624/
308.Lee, Y.S., et al. Different managements for prepubertal epididymitis based on a preexisting genitourinary anomaly diagnosis. PLOS ONE, 2018. 13: e0194761.
https://www.ncbi.nlm.nih.gov/pubmed/29668706/
309.Lau, P., et al. Acute epididymitis in boys: are antibiotics indicated? Br J Urol, 1997. 79: 797.
https://www.ncbi.nlm.nih.gov/pubmed/9158522/
310.Cristoforo, T.A. Evaluating the Necessity of Antibiotics in the Treatment of Acute Epididymitis in Pediatric Patients: A Literature Review of Retrospective Studies and Data Analysis. Pediatr Emerg Care, 2021. 37: e1675.
https://www.ncbi.nlm.nih.gov/pubmed/28099292/
311.Abul, F., et al. The acute scrotum: a review of 40 cases. Med Princ Pract, 2005. 14: 177.
https://www.ncbi.nlm.nih.gov/pubmed/15863992/
312.Moore, S.L., et al. Orchidopexy for Testicular Torsion: A Systematic Review of Surgical Technique. Eur Urol Focus, 2021. 7: 1493.
https://www.ncbi.nlm.nih.gov/pubmed/32863201/
313.Cornel, E.B., et al. Manual derotation of the twisted spermatic cord. BJU Int, 1999. 83: 672.
https://www.ncbi.nlm.nih.gov/pubmed/10233577/
314.Sessions, A.E., et al. Testicular torsion: direction, degree, duration and disinformation. J Urol, 2003. 169: 663.
https://www.ncbi.nlm.nih.gov/pubmed/12544339/
315.Cabral Dias Filho, A., et al. Testicular Torsion Patients Should Be Manually Detorsed at Diagnosis: A Propensity Score Matched Analysis of the Influence of Interhospital Transfer and Surgical Wait Times on Surgical Organ Salvage. Pediatr Emerg Care, 2022. 38: e936.
https://www.ncbi.nlm.nih.gov/pubmed/34225327/
316.Garel, L., et al. Preoperative manual detorsion of the spermatic cord with Doppler ultrasound monitoring in patients with intravaginal acute testicular torsion. Pediatr Radiol, 2000. 30: 41.
https://www.ncbi.nlm.nih.gov/pubmed/10663509/
317.Tryfonas, G., et al. Late postoperative results in males treated for testicular torsion during childhood. J Pediatr Surg, 1994. 29: 553.
https://www.ncbi.nlm.nih.gov/pubmed/8014814/
318.Anderson, M.J., et al. Semen quality and endocrine parameters after acute testicular torsion. J Urol, 1992. 147: 1545.
https://www.ncbi.nlm.nih.gov/pubmed/1593686/
319.Arap, M.A., et al. Late hormonal levels, semen parameters, and presence of antisperm antibodies in patients treated for testicular torsion. J Androl, 2007. 28: 528.
https://www.ncbi.nlm.nih.gov/pubmed/17287456/
320.Koh, Y.H., et al. Testicular Appendage Torsion-To Explore the Other Side or Not? Urology, 2020. 141: 130.
https://www.ncbi.nlm.nih.gov/pubmed/32283168/
321.Taskinen, S., et al. Effect of Pediatric Testicular Torsion on Testicular Function in the Short Term. J Pediatr Surg, 2020. 55: 1613.
https://www.ncbi.nlm.nih.gov/pubmed/31718871/
322.Mor, Y., et al. Testicular fixation following torsion of the spermatic cord--does it guarantee prevention of recurrent torsion events? J Urol, 2006. 175: 171.
https://www.ncbi.nlm.nih.gov/pubmed/16406900/
323.Figueroa, V., et al. Comparative analysis of detorsion alone versus detorsion and tunica albuginea decompression (fasciotomy) with tunica vaginalis flap coverage in the surgical management of prolonged testicular ischemia. J Urol, 2012. 188: 1417.
https://www.ncbi.nlm.nih.gov/pubmed/22906680/
324.Hidaka, A.K., et al. Testicular decompression and tunica vaginalis flap in human acute testicular torsion: modified step-by-step technique description and preliminary outcomes. Einstein (Sao Paulo, Brazil), 2023. 21: eAO0220.
https://www.ncbi.nlm.nih.gov/pubmed/37585887/
325.Erlich, T., et al. Perinatal testicular torsion: The clear cut, the controversial, and the “quiet” scenarios. J Pediatr Surg, 2022. 57: 288.
https://www.ncbi.nlm.nih.gov/pubmed/34753560/
326.Lian, B.S., et al. Factors Predicting Testicular Atrophy after Testicular Salvage following Torsion. Eur J Pediatr Surg, 2016. 26: 17.
https://www.ncbi.nlm.nih.gov/pubmed/26509312/
327.Terai, A., et al. Dynamic contrast-enhanced subtraction magnetic resonance imaging in diagnostics of testicular torsion. Urology, 2006. 67: 1278.
https://www.ncbi.nlm.nih.gov/pubmed/16765192/
328.Philip, J., et al. Mumps orchitis in the non-immune postpubertal male: a resurgent threat to male fertility? BJU Int, 2006. 97: 138.
https://www.ncbi.nlm.nih.gov/pubmed/16336344/
329.Gielchinsky, I., et al. Pregnancy Rates after Testicular Torsion. J Urol, 2016. 196: 852.
https://www.ncbi.nlm.nih.gov/pubmed/27117442/
330.Mäkelä, E.P., et al. Paternity, erectile function, and health-related quality of life in patients operated for pediatric testicular torsion. J Pediatr Urol, 2020. 16: 44.e1.
https://www.ncbi.nlm.nih.gov/pubmed/31734118/
331.Bergman, J.E., et al. Epidemiology of hypospadias in Europe: a registry-based study. World J Urol, 2015. 33: 2159.
https://www.ncbi.nlm.nih.gov/pubmed/25712311/
332.Springer, A., et al. Worldwide prevalence of hypospadias. J Pediatr Urol, 2016. 12: 152 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26810252/
333.van der Zanden, L.F., et al. Exploration of gene-environment interactions, maternal effects and parent of origin effects in the etiology of hypospadias. J Urol, 2012. 188: 2354.
https://www.ncbi.nlm.nih.gov/pubmed/23088992/
334.van der Zanden, L.F., et al. Aetiology of hypospadias: a systematic review of genes and environment. Hum Reprod Update, 2012. 18: 260.
https://www.ncbi.nlm.nih.gov/pubmed/22371315/
335.Zhu, C., et al. Association of abnormal placental perfusion with the risk of male hypospadias: a hospital-based retrospective cohort study. BMC Pregnancy Childbirth, 2020. 20: 673.
https://www.ncbi.nlm.nih.gov/pubmed/33160306/
336.Zhou, X., et al. Identification of endocrine-disrupting chemicals targeting the genes and pathways of genital anomalies in males. Ecotoxicol Environ Saf, 2022. 247: 114241.
https://www.ncbi.nlm.nih.gov/pubmed/36308879/
337.Rodprasert, W., et al. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne), 2021. 12: 706532.
https://www.ncbi.nlm.nih.gov/pubmed/34690925/
338.Fredell, L., et al. Heredity of hypospadias and the significance of low birth weight. J Urol, 2002. 167: 1423.
https://www.ncbi.nlm.nih.gov/pubmed/11832761/
339.van Rooij, I.A., et al. Risk factors for different phenotypes of hypospadias: results from a Dutch case-control study. BJU Int, 2013. 112: 121.
https://www.ncbi.nlm.nih.gov/pubmed/23305310/
340.Haid, B., et al. Being born small for gestational age (SGA) might be associated with a higher reoperation rate in proximal hypospadias. J Pediatr Urol, 2022. 18: 609.e1.
https://www.ncbi.nlm.nih.gov/pubmed/36075827/
341.Liu, Z., et al. Maternal Diabetes and Risk of Hypospadias: A Systemic Review and Meta-Analysis. Urol Int, 2024. 108: 108.
https://www.ncbi.nlm.nih.gov/pubmed/38224672/
342.Duckett, J.W., Jr. Hypospadias. Pediatr Rev, 1989. 11: 37.
https://www.ncbi.nlm.nih.gov/pubmed/2668910/
343.D’Oro, A., et al. Association between intra-operative meatal mismatch and urethrocutaneous fistula development in hypospadias repair. J Pediatr Urol, 2021. 17: 223.e1.
https://www.ncbi.nlm.nih.gov/pubmed/33339733/
344.Tasian, G.E., et al. Proximal hypospadias and risk of acquired cryptorchidism. J Urol, 2010. 184: 715.
https://www.ncbi.nlm.nih.gov/pubmed/20639045/
345.Itesako, T., et al. Acquired undescended testes in boys with hypospadias. J Urol, 2011. 185: 2440.
https://www.ncbi.nlm.nih.gov/pubmed/21527201/
346.D’Oro, A., et al. Proximal Hypospadias and Acquired Cryptorchidism: Incidence, Morphology and Potential Clinical Implications. J Urol, 2021. 206: 1291.
https://www.ncbi.nlm.nih.gov/pubmed/34251872/
347.Dodds, P.R., et al. Adaptation of adults to uncorrected hypospadias. Urology, 2008. 71: 682.
https://www.ncbi.nlm.nih.gov/pubmed/18279924/
348.Fichtner, J., et al. Analysis of meatal location in 500 men: wide variation questions need for meatal advancement in all pediatric anterior hypospadias cases. J Urol, 1995. 154: 833.
https://www.ncbi.nlm.nih.gov/pubmed/7609191/
349.Bush, N.C., et al. Complaints of Men with Uncorrected Distal Hypospadias. Res Rep Urol, 2023. 15: 425.
https://www.ncbi.nlm.nih.gov/pubmed/37753487/
350.Leunbach, T.L., et al. Referral patterns, clinical features and management of uncorrected hypospadias in a series of adult men. J Pediatr Urol, 2022. 18: 480.e1.
https://www.ncbi.nlm.nih.gov/pubmed/35773150/
351.Schlomer, B., et al. Do adult men with untreated hypospadias have adverse outcomes? A pilot study using a social media advertised survey. J Pediatr Urol, 2014. 10: 672.
https://www.ncbi.nlm.nih.gov/pubmed/24613143/
352.Belman, A.B., Hypospadias and chordee, in: Clinical Pediatric Urology. A.B. Belman, L.R. King & S.A. Kramer, Editors. 2002, Martin Dunitz: London.
353.Di, H., et al. Preoperative hormone therapy in single-stage repair of hypospadias: A comprehensive systematic review. J Pediatr Urol, 2023. 19: 250.
https://www.ncbi.nlm.nih.gov/pubmed/36746717/
354.Fawzy, M., et al. Preoperative hormone stimulation; does it increase hypospadias postoperative complications? J Pediatr Urol, 2023. 19: 698.e1.
https://www.ncbi.nlm.nih.gov/pubmed/37524573/
355.Mittal, S., et al. Quantifying Glans Width Changes in Response to Preoperative Androgen Stimulation in Patients Undergoing Hypospadias Repair. J Urol, 2022. 207: 1314.
https://www.ncbi.nlm.nih.gov/pubmed/35147445/
356.Malik, R.D., et al. Survey of pediatric urologists on the preoperative use of testosterone in the surgical correction of hypospadias. J Pediatr Urol, 2014. 10: 840.
https://www.ncbi.nlm.nih.gov/pubmed/24726783/
357.Netto, J.M., et al. Hormone therapy in hypospadias surgery: a systematic review. J Pediatr Urol, 2013. 9: 971.
https://www.ncbi.nlm.nih.gov/pubmed/23602841/
358.Wright, I., et al. Effect of preoperative hormonal stimulation on postoperative complication rates after proximal hypospadias repair: a systematic review. J Urol, 2013. 190: 652.
https://www.ncbi.nlm.nih.gov/pubmed/23597451/
359.Menon, P., et al. Outcome of urethroplasty after parenteral testosterone in children with distal hypospadias. J Pediatr Urol, 2017. 13: 292 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28111208/
360.Bush, N.C., et al. Age does not impact risk for urethroplasty complications after tubularized incised plate repair of hypospadias in prepubertal boys. J Pediatr Urol, 2013. 9: 252.
https://www.ncbi.nlm.nih.gov/pubmed/22542204/
361.Perlmutter, A.E., et al. Impact of patient age on distal hypospadias repair: a surgical perspective. Urology, 2006. 68: 648.
https://www.ncbi.nlm.nih.gov/pubmed/16979730/
362.Bhat, A., et al. Comparison of variables affecting the surgical outcomes of tubularized incised plate urethroplasty in adult and pediatric hypospadias. J Pediatr Urol, 2016. 12: 108 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26778183/
363.Abbas, T.O. Evaluation of penile curvature in patients with hypospadias; gaps in the current practice and future perspectives. J Pediatr Urol, 2022. 18: 151.
https://www.ncbi.nlm.nih.gov/pubmed/35031224/
364.Castagnetti, M., et al. Surgical management of primary severe hypospadias in children: an update focusing on penile curvature. Nat Rev Urol, 2022. 19: 147.
https://www.ncbi.nlm.nih.gov/pubmed/35039660/
365.Yang, Z., et al. Effectiveness of penile ventral curvature correction and the trend of hypospadias repair: a prospective study of the national center in China. BMJ Paediatr Open, 2023. 7.
https://www.ncbi.nlm.nih.gov/pubmed/37463825/
366.Baskin, L.S., et al. Changing concepts of hypospadias curvature lead to more onlay island flap procedures. J Urol, 1994. 151: 191.
https://www.ncbi.nlm.nih.gov/pubmed/8254812/
367.Hollowell, J.G., et al. Preservation of the urethral plate in hypospadias repair: extended applications and further experience with the onlay island flap urethroplasty. J Urol, 1990. 143: 98.
https://www.ncbi.nlm.nih.gov/pubmed/2294275/
368.Yadav, P., et al. A scoping review on chordee correction in boys with ventral congenital penile curvature and hypospadias. Indian J Urol, 2024. 40: 17.
https://www.ncbi.nlm.nih.gov/pubmed/38314084/
369.Babu, R., et al. A meta-analysis comparing dorsal plication and ventral lengthening for chordee correction during primary proximal hypospadias repair. Pediatr Surg Int, 2022. 38: 389.
https://www.ncbi.nlm.nih.gov/pubmed/35048166/
370.Ting, C.S., et al. Taping alone for persistent ventral curvature after urethral plate transection in hypospadias. J Pediatr Urol, 2024. 20: 409.e1.
https://www.ncbi.nlm.nih.gov/pubmed/38631939/
371.Snodgrass, W., et al. Straightening ventral curvature while preserving the urethral plate in proximal hypospadias repair. J Urol, 2009. 182: 1720.
https://www.ncbi.nlm.nih.gov/pubmed/19692004/
372.Helmy, T.E., et al. Does intraoperative penile tourniquet application during hypospadias repair affect the patients and surgeons reported outcomes? A randomized controlled trial. J Pediatr Urol, 2020. 16: 683.e1.
https://www.ncbi.nlm.nih.gov/pubmed/32828682/
373.el-Kassaby, A.W., et al. Modified tubularized incised plate urethroplasty for hypospadias repair: a long-term results of 764 patients. Urology, 2008. 71: 611.
https://www.ncbi.nlm.nih.gov/pubmed/18295308/
374.El-Sherbiny, M.T., et al. Comprehensive analysis of tubularized incised-plate urethroplasty in primary and re-operative hypospadias. BJU Int, 2004. 93: 1057.
https://www.ncbi.nlm.nih.gov/pubmed/15142164/
375.Orkiszewski, M., et al. Morphology and urodynamics after longitudinal urethral plate incision in proximal hypospadias repairs: long-term results. Eur J Pediatr Surg, 2004. 14: 35.
https://www.ncbi.nlm.nih.gov/pubmed/15024677/
376.Snodgrass, W.T., et al. Tubularized incised plate hypospadias repair for distal hypospadias. J Pediatr Urol, 2010. 6: 408.
https://www.ncbi.nlm.nih.gov/pubmed/19837000/
377.Silay, M.S., et al. Are there any benefits of using an inlay graft in the treatment of primary hypospadias in children? A systematic review and metanalysis. J Pediatr Urol, 2021. 17: 303.
https://www.ncbi.nlm.nih.gov/pubmed/33691984/
378.Ahmed, S., et al. Buccal mucosal graft for secondary hypospadias repair and urethral replacement. Br J Urol, 1997. 80: 328.
https://www.ncbi.nlm.nih.gov/pubmed/9284210/
379.Pippi Salle, J.L., et al. Proximal hypospadias: A persistent challenge. Single institution outcome analysis of three surgical techniques over a 10-year period. J Pediatr Urol, 2016. 12: 28 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26279102/
380.Castagnetti, M., et al. Surgical management of primary severe hypospadias in children: systematic 20-year review. J Urol, 2010. 184: 1469.
https://www.ncbi.nlm.nih.gov/pubmed/20727541/
381.Castagnetti, M., et al. Primary severe hypospadias: comparison of reoperation rates and parental perception of urinary symptoms and cosmetic outcomes among 4 repairs. J Urol, 2013. 189: 1508.
https://www.ncbi.nlm.nih.gov/pubmed/23154207/
382.Kocvara, R., et al. Inlay-onlay flap urethroplasty for hypospadias and urethral stricture repair. J Urol, 1997. 158: 2142.
https://www.ncbi.nlm.nih.gov/pubmed/9366331/
383.Perovic, S., et al. Onlay island flap urethroplasty for severe hypospadias: a variant of the technique. J Urol, 1994. 151: 711.
https://www.ncbi.nlm.nih.gov/pubmed/8308994/
384.Catti, M., et al. Original Koyanagi urethroplasty versus modified Hayashi technique: outcome in 57 patients. J Pediatr Urol, 2009. 5: 300.
https://www.ncbi.nlm.nih.gov/pubmed/19457720/
385.DeFoor, W., et al. Results of single staged hypospadias surgery to repair penoscrotal hypospadias with bifid scrotum or penoscrotal transposition. J Urol, 2003. 170: 1585.
https://www.ncbi.nlm.nih.gov/pubmed/14501667/
386.Hayashi, Y., et al. Neo-modified Koyanagi technique for the single-stage repair of proximal hypospadias. J Pediatr Urol, 2007. 3: 239.
https://www.ncbi.nlm.nih.gov/pubmed/18947743/
387.Koyanagi, T., et al. One-stage repair of hypospadias: is there no simple method universally applicable to all types of hypospadias? J Urol, 1994. 152: 1232.
https://www.ncbi.nlm.nih.gov/pubmed/8072111/
388.Babu, R., et al. Meta-analysis comparing the outcomes of single stage (foreskin pedicled tube) versus two stage (foreskin free graft & foreskin pedicled flap) repair for proximal hypospadias in the last decade. J Pediatr Urol, 2021. 17: 681.
https://www.ncbi.nlm.nih.gov/pubmed/34099397/
389.Bracka, A. A versatile two-stage hypospadias repair. Br J Plast Surg, 1995. 48: 345.
https://www.ncbi.nlm.nih.gov/pubmed/7551506/
390.Lam, P.N., et al. 2-stage repair in infancy for severe hypospadias with chordee: long-term results after puberty. J Urol, 2005. 174: 1567.
https://www.ncbi.nlm.nih.gov/pubmed/16148653/
391.Mokhless, I.A., et al. The multistage use of buccal mucosa grafts for complex hypospadias: histological changes. J Urol, 2007. 177: 1496.
https://www.ncbi.nlm.nih.gov/pubmed/17382762/
392.Stanasel, I., et al. Complications following Staged Hypospadias Repair Using Transposed Preputial Skin Flaps. J Urol, 2015. 194: 512.
https://www.ncbi.nlm.nih.gov/pubmed/25701546/
393.Yuan, Y., et al. A meta-analysis: single or double dartos flap layer in tubularized incised plate urethroplasty to prevent urethrocutaneous fistula? Front Pediatr, 2023. 11: 1091242.
https://www.ncbi.nlm.nih.gov/pubmed/37360362/
394.Yang, H., et al. Comparison of effect between dartos fascia and tunica vaginalis fascia in TIP urethroplasty: a meta-analysis of comparative studies. BMC Urol, 2020. 20: 161.
https://www.ncbi.nlm.nih.gov/pubmed/33059661/
395.Moran, G.W., et al. Biologic adjuvant urethral coverings for single-stage primary hypospadias repairs: A systematic review and pooled proportional meta-analysis of postoperative urethrocutaneous fistulas. J Pediatr Urol, 2022. 18: 598.
https://www.ncbi.nlm.nih.gov/pubmed/36085187/
396.Anttila, A., et al. Cumulative re-operation rates during follow-up after hypospadias repair. BJU Int, 2024.
https://www.ncbi.nlm.nih.gov/pubmed/39224939/
397.Castagnetti, M., et al. Does Preputial Reconstruction Increase Complication Rate of Hypospadias Repair? 20-Year Systematic Review and Meta-Analysis. Front Pediatr, 2016. 4: 41.
https://www.ncbi.nlm.nih.gov/pubmed/27200322/
398.Shoor, G., et al. Outcomes of preputioplasty in patients undergoing TIP urethroplasty (tubularization of incised urethral plate) for distal and mid penile hypospadias. J Pediatr Urol, 2020. 16: 319.e1.
https://www.ncbi.nlm.nih.gov/pubmed/32376290/
399.Burki, T., et al. Outcome of stented versus unstented mid-shaft to distal hypospadias repair. Urol Ann, 2022. 14: 147.
https://www.ncbi.nlm.nih.gov/pubmed/35711489/
400.Chalmers, D.J., et al. Distal hypospadias repair in infants without a postoperative stent. Pediatr Surg Int, 2015. 31: 287.
https://www.ncbi.nlm.nih.gov/pubmed/25475503/
401.Rowe, C.K., et al. Do the materials matter? A review of the literature and analysis of the materials properties of urethral stents for hypospadias repair. J Pediatr Urol, 2022. 18: 160.
https://www.ncbi.nlm.nih.gov/pubmed/35120811/
402.Escolino, M., et al. The Role of Postoperative Dressing in Hypospadias Surgery: A Systematic Review and Meta-analysis of the Pediatric Literature. Eur J Pediatr Surg, 2023. 33: 441.
https://www.ncbi.nlm.nih.gov/pubmed/36882156/
403.Hsieh, M.H., et al. Surgical antibiotic practices among pediatric urologists in the United States. J Pediatr Urol, 2011. 7: 192.
https://www.ncbi.nlm.nih.gov/pubmed/20537590/
404.Białek, Ł., et al. A Systematic Review on Postoperative Antibiotic Prophylaxis after Pediatric and Adult Male Urethral Reconstruction. J Clin Med, 2023. 12.
https://www.ncbi.nlm.nih.gov/pubmed/37834807/
405.Canon, S.J., et al. Comparative analysis of perioperative prophylactic antibiotics in prevention of surgical site infections in stented, distal hypospadias repair. J Pediatr Urol, 2021. 17: 256.e1.
https://www.ncbi.nlm.nih.gov/pubmed/33349560/
406.Chua, M.E., et al. The use of postoperative prophylactic antibiotics in stented distal hypospadias repair: a systematic review and meta-analysis. J Pediatr Urol, 2019. 15: 138.
https://www.ncbi.nlm.nih.gov/pubmed/30527683/
407.Chan, K.H., et al. Comparison of Intraoperative and Early Postoperative Outcomes of Caudal vs Dorsal Penile Nerve Blocks for Outpatient Penile Surgeries. Urology, 2018. 118: 164.
https://www.ncbi.nlm.nih.gov/pubmed/29122625/
408.Kendall, M.C., et al. Regional anesthesia to ameliorate postoperative analgesia outcomes in pediatric surgical patients: an updated systematic review of randomized controlled trials. Local Reg Anesth, 2018. 11: 91.
https://www.ncbi.nlm.nih.gov/pubmed/30532585/
409.Zhu, C., et al. Analgesic efficacy and impact of caudal block on surgical complications of hypospadias repair: a systematic review and meta-analysis. Reg Anesth Pain Med, 2019. 44: 259.
https://www.ncbi.nlm.nih.gov/pubmed/30700621/
410.Adler, A.C., et al. Association of Analgesic Block With the Incidence of Complications Following Hypospadias Surgery; A Meta-Analysis. Urology, 2022. 166: 11.
https://www.ncbi.nlm.nih.gov/pubmed/35292293/
411.Xia, Y., et al. Urethrocutaneous fistula and glans dehiscence formation of hypospadias surgery in patients receiving caudal block vs. non-caudal block: A meta-analysis. J Pediatr Urol, 2024. 20: 227.
https://www.ncbi.nlm.nih.gov/pubmed/38000951/
412.Pfistermuller, K.L., et al. Meta-analysis of complication rates of the tubularized incised plate (TIP) repair. J Pediatr Urol, 2015. 11: 54.
https://www.ncbi.nlm.nih.gov/pubmed/25819601/
413.Cousin, I., et al. Complication rates of proximal hypospadias: meta-analyses of four surgical repairs. J Pediatr Urol, 2022. 18: 587.
https://www.ncbi.nlm.nih.gov/pubmed/36058812/
414.Jiang, D.D., et al. Perioperative complications within 30 days of hypospadias surgery: Results from NSQIP-Pediatrics. J Pediatr Urol, 2020. 16: 316.e1.
https://www.ncbi.nlm.nih.gov/pubmed/32317234/
415.Long, C.J., et al. Intermediate-Term Followup of Proximal Hypospadias Repair Reveals High Complication Rate. J Urol, 2017. 197: 852.
https://www.ncbi.nlm.nih.gov/pubmed/27840122/
416.Wu, Y., et al. Complications Following Primary Repair of Non-proximal Hypospadias in Children: A Systematic Review and Meta-Analysis. Front Pediatr, 2020. 8: 579364.
https://www.ncbi.nlm.nih.gov/pubmed/33363061/
417.Leslie, B., et al. Critical outcome analysis of staged buccal mucosa graft urethroplasty for prior failed hypospadias repair in children. J Urol, 2011. 185: 1077.
https://www.ncbi.nlm.nih.gov/pubmed/21256520/
418.Wilkinson, D.J., et al. Outcomes in distal hypospadias: a systematic review of the Mathieu and tubularized incised plate repairs. J Pediatr Urol, 2012. 8: 307.
https://www.ncbi.nlm.nih.gov/pubmed/21159560/
419.Bush, N.C., et al. Glans size is an independent risk factor for urethroplasty complications after hypospadias repair. J Pediatr Urol, 2015. 11: 355 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26320396/
420.Snodgrass, W., et al. Recurrent ventral curvature after proximal TIP hypospadias repair. J Pediatr Urol, 2021. 17: 222.e1.
https://www.ncbi.nlm.nih.gov/pubmed/33339735/
421.Ru, W., et al. Identification of risk factors associated with numerous reoperations following primary hypospadias repair. J Pediatr Urol, 2021. 17: 61.e1.
https://www.ncbi.nlm.nih.gov/pubmed/33246830/
422.Durante, L., et al. Glans dehiscence after severe hypospadias repair. Is it a real complication? Clues from a study in post-pubertal patients. Pediatr Surg Int, 2023. 39: 101.
https://www.ncbi.nlm.nih.gov/pubmed/36737577/
423.Lucas, J., et al. Time to Complication Detection after Primary Pediatric Hypospadias Repair: A Large, Single Center, Retrospective Cohort Analysis. J Urol, 2020. 204: 338.
https://www.ncbi.nlm.nih.gov/pubmed/31971496/
424.Spinoit, A.F., et al. Hypospadias repair at a tertiary care center: long-term followup is mandatory to determine the real complication rate. J Urol, 2013. 189: 2276.
https://www.ncbi.nlm.nih.gov/pubmed/23306089/
425.Andersson, M., et al. Normalized Urinary Flow at Puberty after Tubularized Incised Plate Urethroplasty for Hypospadias in Childhood. J Urol, 2015. 194: 1407.
https://www.ncbi.nlm.nih.gov/pubmed/26087380/
426.Gonzalez, R., et al. Importance of urinary flow studies after hypospadias repair: a systematic review. Int J Urol, 2011. 18: 757.
https://www.ncbi.nlm.nih.gov/pubmed/21883491/
427.Hueber, P.A., et al. Long-term functional outcomes of distal hypospadias repair: a single center retrospective comparative study of TIPs, Mathieu and MAGPI. J Pediatr Urol, 2015. 11: 68 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25824882/
428.Holland, A.J., et al. HOSE: an objective scoring system for evaluating the results of hypospadias surgery. BJU Int, 2001. 88: 255.
https://www.ncbi.nlm.nih.gov/pubmed/11488741/
429.Weber, D.M., et al. The Penile Perception Score: an instrument enabling evaluation by surgeons and patient self-assessment after hypospadias repair. J Urol, 2013. 189: 189.
https://www.ncbi.nlm.nih.gov/pubmed/23174225/
430.Gulseth, E., et al. Sexual well-being and penile appearance in adolescents operated for distal hypospadias in childhood. J Pediatr Urol, 2023. 19: 293.e1.
https://www.ncbi.nlm.nih.gov/pubmed/36935329/
431.Haid, B., et al. Penile appearance after hypospadias correction from a parent’s point of view: Comparison of the hypospadias objective penile evaluation score and parents penile perception score. J Pediatr Urol, 2016. 12: 33 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26725130/
432.Rynja, S.P., et al. Functional, cosmetic and psychosexual results in adult men who underwent hypospadias correction in childhood. J Pediatr Urol, 2011. 7: 504.
https://www.ncbi.nlm.nih.gov/pubmed/21429804/
433.Andersson, M., et al. Urological results and patient satisfaction in adolescents after surgery for proximal hypospadias in childhood. J Pediatr Urol, 2020. 16: 660.e1.
https://www.ncbi.nlm.nih.gov/pubmed/32800709/
434.Gul, M., et al. Sexual functions and fertility outcomes after hypospadias repair. Int J Impot Res, 2021. 33: 149.
https://www.ncbi.nlm.nih.gov/pubmed/33262531/
435.Ortqvist, L., et al. Long-term followup of men born with hypospadias: urological and cosmetic results. J Urol, 2015. 193: 975.
https://www.ncbi.nlm.nih.gov/pubmed/25268894/
436.Gamidov, S., et al. Sexual dysfunction in patients with late complications of hypospadias surgery. Andrologia, 2022. 54: e14413.
https://www.ncbi.nlm.nih.gov/pubmed/35243664/
437.Bhatia, V.P., et al. Evaluating quality of patient-reported outcome measures in patients with hypospadias. J Pediatr Urol, 2021. 17: 50.
https://www.ncbi.nlm.nih.gov/pubmed/33371965/
438.Kelami, A. Congenital penile deviation and its treatment with the Nesbit-Kelami technique. Br J Urol, 1987. 60: 261.
https://www.ncbi.nlm.nih.gov/pubmed/3676674/
439.Mayer, M., et al. Patient satisfaction with correction of congenital penile curvature. Actas Urol Esp (Engl Ed), 2018. 42: 414.
https://www.ncbi.nlm.nih.gov/pubmed/29292041/
440.Hsieh, J.T., et al. Correction of congenital penile curvature using modified tunical plication with absorbable sutures: the long-term outcome and patient satisfaction. Eur Urol, 2007. 52: 261.
https://www.ncbi.nlm.nih.gov/pubmed/17234333/
441.Sasso, F., et al. Penile curvature: an update for management from 20 years experience in a high volume centre. Urologia, 2016. 83: 130.
https://www.ncbi.nlm.nih.gov/pubmed/27103093/
442.Cetin, S., et al. Comparison of corporal plication for the correction of congenital penile curvature in pre-pubertal and post-pubertal patients: Does age matter? Andrologia, 2021. 53: e13965.
https://www.ncbi.nlm.nih.gov/pubmed/33426697/
443.Akdemir, F., et al. DORSAL Plication Technique for the Treatment of Congenital Ventral Penile Curvature: Long-Term Outcomes of 72 Cases. J Sex Med, 2021. 18: 1715.
https://www.ncbi.nlm.nih.gov/pubmed/34511368/
444.Paris, A., et al. Long-Term Functional Outcomes After Surgical Correction of Congenital Penile Curvature. Urology, 2021. 154: 288.
https://www.ncbi.nlm.nih.gov/pubmed/33991575/
445.Cayan, S., et al. Comparison of Patient’s Satisfaction and Long-term Results of 2 Penile Plication Techniques: Lessons Learned From 387 Patients With Penile Curvature. Urology, 2019. 129: 106.
https://www.ncbi.nlm.nih.gov/pubmed/30954611/
446.Sokolakis, I., et al. Long-Term Results after Surgical Treatment of Congenital Penile Curvature Using a Modified Nesbit Technique. World J Mens Health, 2020. 38: 564.
https://www.ncbi.nlm.nih.gov/pubmed/31496150/
447.Akbay, E., et al. The prevalence of varicocele and varicocele-related testicular atrophy in Turkish children and adolescents. BJU Int, 2000. 86: 490.
https://www.ncbi.nlm.nih.gov/pubmed/10971279/
448.Kogan, S.J., The pediatric varicocele., in: Pediatric urology, J.P. Gearhart, R.C. Rink & P.D.E. Mouriquand, Editors. 2001, WB Saunders: Philadelphia.
449.Oster, J. Varicocele in children and adolescents. An investigation of the incidence among Danish school children. Scand J Urol Nephrol, 1971. 5: 27.
https://www.ncbi.nlm.nih.gov/pubmed/5093090/
450.Santana, V.P., et al. Genetics and epigenetics of varicocele pathophysiology: an overview. J Assist Reprod Genet, 2017. 34: 839.
https://www.ncbi.nlm.nih.gov/pubmed/28523408/
451.Griffiths, L., et al. The role of inheritance in the development of adolescent varicoceles. Transl Androl Urol, 2018. 7: 920.
https://www.ncbi.nlm.nih.gov/pubmed/30505728/
452.Belardin, L.B., et al. Alterations in the proliferative/apoptotic equilibrium in semen of adolescents with varicocele. J Assist Reprod Genet, 2016. 33: 1657.
https://www.ncbi.nlm.nih.gov/pubmed/27629121/
453.Barradas, V., et al. Evaluation of oxidative stress in seminal plasma of adolescents with varicocele. Reprod Fertil, 2021. 2: 141.
https://www.ncbi.nlm.nih.gov/pubmed/35128449/
454.Damsgaard, J., et al. Varicocele Is Associated with Impaired Semen Quality and Reproductive Hormone Levels: A Study of 7035 Healthy Young Men from Six European Countries. Eur Urol, 2016. 70: 1019.
https://www.ncbi.nlm.nih.gov/pubmed/27423503/
455.Zampieri, N. Hormonal evaluation in adolescents with varicocele. J Pediatr Urol, 2021. 17: 49 e1.
https://www.ncbi.nlm.nih.gov/pubmed/33281047/
456.Van Batavia, J.P., et al. Total Motile Sperm Count in Adolescent Boys with Varicocele is Associated with Hormone Levels and Total Testicular Volume. J Urol, 2021. 205: 888.
https://www.ncbi.nlm.nih.gov/pubmed/33026928/
457.The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil Steril, 1992. 57: 1289.
https://www.ncbi.nlm.nih.gov/pubmed/1601152/
458.Dubin, L., et al. Varicocele size and results of varicocelectomy in selected subfertile men with varicocele. Fertil Steril, 1970. 21: 606.
https://www.ncbi.nlm.nih.gov/pubmed/5433164/
459.Diamond, D.A., et al. Relationship of varicocele grade and testicular hypotrophy to semen parameters in adolescents. J Urol, 2007. 178: 1584.
https://www.ncbi.nlm.nih.gov/pubmed/17707046/
460.Tasci, A.I., et al. Color doppler ultrasonography and spectral analysis of venous flow in diagnosis of varicocele. Eur Urol, 2001. 39: 316.
https://www.ncbi.nlm.nih.gov/pubmed/11275726/
461.Chu, D.I., et al. The natural history of semen parameters in untreated asymptomatic adolescent varicocele patients: A retrospective cohort study. J Pediatr Urol, 2017. 13: 77 e1.
https://www.ncbi.nlm.nih.gov/pubmed/27815047/
462.Fine, R.G., et al. Barriers to use of semen analysis in the adolescent with a varicocele: Survey of patient, parental, and practitioner attitudes. J Pediatr Urol, 2016. 12: 41 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26342542/
463.Okuyama, A., et al. Surgical repair of varicocele at puberty: preventive treatment for fertility improvement. J Urol, 1988. 139: 562.
https://www.ncbi.nlm.nih.gov/pubmed/3343743/
464.Aragona, F., et al. Correlation of testicular volume, histology and LHRH test in adolescents with idiopathic varicocele. Eur Urol, 1994. 26: 61.
https://www.ncbi.nlm.nih.gov/pubmed/7925532/
465.Kurtz, M.P., et al. Prepubertal presentation of varicocele does not affect outcomes. J Pediatr Urol, 2015. 11: 73 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25837706/
466.Keene, D.J., et al. Sperm concentration and forward motility are not correlated with age in adolescents with an idiopathic varicocele and symmetrical testicular volumes. J Pediatr Surg, 2016. 51: 293.
https://www.ncbi.nlm.nih.gov/pubmed/26811206/
467.Zampieri, N., et al. Semen analysis in patients treated for varicocele in pediatric age: are surgical outcomes enough to preserve the fertility potential? Am J Clin Exp Urol, 2018. 6: 149.
https://www.ncbi.nlm.nih.gov/pubmed/30038947/
468.Patil, N., et al. Varicocelectomy in adolescents - Does it safeguard future fertility? A single centre experience. J Pediatr Urol, 2022. 18: 5 e1.
https://www.ncbi.nlm.nih.gov/pubmed/34980555/
469.Bogaert, G., et al. Pubertal screening and treatment for varicocele do not improve chance of paternity as adult. J Urol, 2013. 189: 2298.
https://www.ncbi.nlm.nih.gov/pubmed/23261480/
470.Vaganee, D., et al. Testicular asymmetry in healthy adolescent boys. BJU Int, 2018. 122: 654.
https://www.ncbi.nlm.nih.gov/pubmed/29461677/
471.Abrol, N., et al. Painful varicoceles: Role of varicocelectomy. Indian J Urol, 2014. 30: 369.
https://www.ncbi.nlm.nih.gov/pubmed/25378815/
472.Goldstein, M., et al. Microsurgical inguinal varicocelectomy with delivery of the testis: an artery and lymphatic sparing technique. J Urol, 1992. 148: 1808.
https://www.ncbi.nlm.nih.gov/pubmed/1433614/
473.Hopps, C.V., et al. Intraoperative varicocele anatomy: a microscopic study of the inguinal versus subinguinal approach. J Urol, 2003. 170: 2366.
https://www.ncbi.nlm.nih.gov/pubmed/14634418/
474.Kocvara, R., et al. Lymphatic sparing laparoscopic varicocelectomy: a microsurgical repair. J Urol, 2005. 173: 1751.
https://www.ncbi.nlm.nih.gov/pubmed/15821575/
475.Riccabona, M., et al. Optimizing the operative treatment of boys with varicocele: sequential comparison of 4 techniques. J Urol, 2003. 169: 666.
https://www.ncbi.nlm.nih.gov/pubmed/12544340/
476.Fast, A.M., et al. Adolescent varicocelectomy: does artery sparing influence recurrence rate and/or catch-up growth? Andrology, 2014. 2: 159.
https://www.ncbi.nlm.nih.gov/pubmed/24339439/
477.Kim, K.S., et al. Impact of internal spermatic artery preservation during laparoscopic varicocelectomy on recurrence and the catch-up growth rate in adolescents. J Pediatr Urol, 2014. 10: 435.
https://www.ncbi.nlm.nih.gov/pubmed/24314819/
478.Kocvara, R., et al. Division of lymphatic vessels at varicocelectomy leads to testicular oedema and decline in testicular function according to the LH-RH analogue stimulation test. Eur Urol, 2003. 43: 430.
https://www.ncbi.nlm.nih.gov/pubmed/12667726/
479.Marmar, J., et al. New scientific information related to varicoceles. J Urol, 2003. 170: 2371.
https://www.ncbi.nlm.nih.gov/pubmed/14634419/
480.Minevich, E., et al. Inguinal microsurgical varicocelectomy in the adolescent: technique and preliminary results. J Urol, 1998. 159: 1022.
https://www.ncbi.nlm.nih.gov/pubmed/9474223/
481.Mirilas, P., et al. Microsurgical subinguinal varicocelectomy in children, adolescents, and adults: surgical anatomy and anatomically justified technique. J Androl, 2012. 33: 338.
https://www.ncbi.nlm.nih.gov/pubmed/21835913/
482.Oswald, J., et al. The use of isosulphan blue to identify lymphatic vessels in high retroperitoneal ligation of adolescent varicocele--avoiding postoperative hydrocele. BJU Int, 2001. 87: 502.
https://www.ncbi.nlm.nih.gov/pubmed/11298043/
483.Esposito, C., et al. Near-Infrared fluorescence imaging using indocyanine green (ICG): Emerging applications in pediatric urology. J Pediatr Urol, 2020. 16: 700.
https://www.ncbi.nlm.nih.gov/pubmed/32747308/
484.Fayad, F., et al. Percutaneous retrograde endovascular occlusion for pediatric varicocele. J Pediatr Surg, 2011. 46: 525.
https://www.ncbi.nlm.nih.gov/pubmed/21376204/
485.Thon, W.F., et al. Percutaneous sclerotherapy of idiopathic varicocele in childhood: a preliminary report. J Urol, 1989. 141: 913.
https://www.ncbi.nlm.nih.gov/pubmed/2926889/
486.Kass, E.J., et al. Reversal of testicular growth failure by varicocele ligation. J Urol, 1987. 137: 475.
https://www.ncbi.nlm.nih.gov/pubmed/3820376/
487.Paduch, D.A., et al. Repair versus observation in adolescent varicocele: a prospective study. J Urol, 1997. 158: 1128.
https://www.ncbi.nlm.nih.gov/pubmed/9258155/
488.Li, F., et al. Effect of varicocelectomy on testicular volume in children and adolescents: a meta-analysis. Urology, 2012. 79: 1340.
https://www.ncbi.nlm.nih.gov/pubmed/22516359/
489.Laven, J.S., et al. Effects of varicocele treatment in adolescents: a randomized study. Fertil Steril, 1992. 58: 756.
https://www.ncbi.nlm.nih.gov/pubmed/1426322/
490.Nork, J.J., et al. Youth varicocele and varicocele treatment: a meta-analysis of semen outcomes. Fertil Steril, 2014. 102: 381.
https://www.ncbi.nlm.nih.gov/pubmed/24907913/
491.Pinto, K.J., et al. Varicocele related testicular atrophy and its predictive effect upon fertility. J Urol, 1994. 152: 788.
https://www.ncbi.nlm.nih.gov/pubmed/8022015/
492.Locke, J.A., et al. Treatment of varicocele in children and adolescents: A systematic review and meta-analysis of randomized controlled trials. J Pediatr Urol, 2017. 13: 437.
https://www.ncbi.nlm.nih.gov/pubmed/28851509/
493.Silay, M.S., et al. Treatment of Varicocele in Children and Adolescents: A Systematic Review and Meta-analysis from the European Association of Urology/European Society for Paediatric Urology Guidelines Panel. Eur Urol, 2019. 75: 448.
https://www.ncbi.nlm.nih.gov/pubmed/30316583/
494.Rotker, K., et al. Recurrent varicocele. Asian J Androl, 2016. 18: 229.
https://www.ncbi.nlm.nih.gov/pubmed/26806078/
495.Hoberman, A., et al. Prevalence of urinary tract infection in febrile infants. J Pediatr, 1993. 123: 17.
https://www.ncbi.nlm.nih.gov/pubmed/8320616/
496.Marild, S., et al. Incidence rate of first-time symptomatic urinary tract infection in children under 6 years of age. Acta Paediatr, 1998. 87: 549.
https://www.ncbi.nlm.nih.gov/pubmed/9641738/
497.O’Brien, K., et al. Prevalence of urinary tract infection (UTI) in sequential acutely unwell children presenting in primary care: exploratory study. Scand J Prim Health Care, 2011. 29: 19.
https://www.ncbi.nlm.nih.gov/pubmed/21323495/
498.Alberici, I., et al. Pathogens causing urinary tract infections in infants: a European overview by the ESCAPE study group. Eur J Pediatr, 2015. 174: 783.
https://www.ncbi.nlm.nih.gov/pubmed/25428232/
499.Collingwood, J.D., et al. Increasing Prevalence of Pediatric Community-acquired UTI by Extended Spectrum β-Lactamase-producing E. Coli: Cause for Concern. Pediatr Infect Dis J, 2023. 42: 106.
https://www.ncbi.nlm.nih.gov/pubmed/36638394/
500.Dejonckheere, Y., et al. A study of the 20-year evolution of antimicrobial resistance patterns of pediatric urinary tract infections in a single center. Eur J Pediatr, 2022. 181: 3271.
https://www.ncbi.nlm.nih.gov/pubmed/35739294/
501.Shaikh, N., et al. Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr Infect Dis J, 2008. 27: 302.
https://www.ncbi.nlm.nih.gov/pubmed/18316994/
502.Zorc, J.J., et al. Clinical and demographic factors associated with urinary tract infection in young febrile infants. Pediatrics, 2005. 116: 644.
https://www.ncbi.nlm.nih.gov/pubmed/16140703/
503.Magin, E.C., et al. Efficacy of short-term intravenous antibiotic in neonates with urinary tract infection. Pediatr Emerg Care, 2007. 23: 83.
https://www.ncbi.nlm.nih.gov/pubmed/17351406/
504.Sastre, J.B., et al. Urinary tract infection in the newborn: clinical and radio imaging studies. Pediatr Nephrol, 2007. 22: 1735.
https://www.ncbi.nlm.nih.gov/pubmed/17665222/
505.Ladomenou, F., et al. Incidence and morbidity of urinary tract infection in a prospective cohort of children. Acta Paediatr, 2015. 104: e324.
https://www.ncbi.nlm.nih.gov/pubmed/25736706/
506.Urakami, C., et al. Abnormal Development of Microbiota May Be a Risk Factor for Febrile Urinary Tract Infection in Infancy. Microorganisms, 2023. 11.
https://www.ncbi.nlm.nih.gov/pubmed/37894232/
507.Karavanaki, K.A., et al. Delayed treatment of the first febrile urinary tract infection in early childhood increased the risk of renal scarring. Acta Paediatr, 2017. 106: 149.
https://www.ncbi.nlm.nih.gov/pubmed/27748543/
508.Hum, S.W., et al. Risk Factors for Delayed Antimicrobial Treatment in Febrile Children with Urinary Tract Infections. J Pediatr, 2019. 205: 126.
https://www.ncbi.nlm.nih.gov/pubmed/30340935/
509.Swerkersson, S., et al. Urinary tract infection in small children: the evolution of renal damage over time. Pediatr Nephrol, 2017. 32: 1907.
https://www.ncbi.nlm.nih.gov/pubmed/28681079/
510.Shaikh, N., et al. Association of Renal Scarring With Number of Febrile Urinary Tract Infections in Children. JAMA Pediatr, 2019. 173: 949.
https://www.ncbi.nlm.nih.gov/pubmed/31381021/
511.Zhou, G., et al. Association of Renal Function (Estimate Glomerular Filtration Rate) with the Number of Febrile Urinary Tract Infections in Children with Neurogenic Bladder. Eur J Pediatr Surg, 2023. 33: 499.
https://www.ncbi.nlm.nih.gov/pubmed/36720248/
512.Shaikh, N., et al. Predictors of Antimicrobial Resistance among Pathogens Causing Urinary Tract Infection in Children. J Pediatr, 2016. 171: 116.
https://www.ncbi.nlm.nih.gov/pubmed/26794472/
513.Zaffanello, M., et al. Management of constipation in preventing urinary tract infections in children: a concise review. Eur Res J, 2019. 5: 236.
https://www.researchgate.net/publication/327723739/
514.Grier, W.R., et al. Obesity as a Risk Factor for Urinary Tract Infection in Children. Clin Pediatr (Phila), 2016. 55: 952.
https://www.ncbi.nlm.nih.gov/pubmed/26810625/
515.Renko, M., et al. Meta-analysis of the Risk Factors for Urinary Tract Infection in Children. Pediatr Infect Dis J, 2022. 41: 787.
https://www.ncbi.nlm.nih.gov/pubmed/35788126/
516.Morgan, K.E., et al. Upper pole pathologies in duplex kidneys: an analysis of predictive factors for surgery and urinary tract infections from the Mid-Atlantic Pediatric Academic Consortium. J Pediatr Urol, 2022. 18: 803.e1.
https://www.ncbi.nlm.nih.gov/pubmed/35691790/
517.Hum, S., et al. Risk Factors for the Development of Febrile Recurrences in Children with a History of Urinary Tract Infection. J Pediatr, 2022. 243: 152.
https://www.ncbi.nlm.nih.gov/pubmed/34953817/
518.Boon, H.A., et al. Incidence rates and trends of childhood urinary tract infections and antibiotic prescribing: registry-based study in general practices (2000 to 2020). BMC Prim Care, 2022. 23: 177.
https://www.ncbi.nlm.nih.gov/pubmed/35858840/
519.Forster, C.S., et al. Predictors of Empiric Antibiotic Use in the Emergency Department in Children Without Urinary Tract Infections. Pediatr Emerg Care, 2022. 38: e1251.
https://www.ncbi.nlm.nih.gov/pubmed/35482501/
520.Ostrow, O., et al. Decreasing Misdiagnoses of Urinary Tract Infections in a Pediatric Emergency Department. Pediatrics, 2022. 150.
https://www.ncbi.nlm.nih.gov/pubmed/35773521/
521.Joshi D.D., et al. Assessment of the urinary tract infection prevalence in febrile subjects of age less than 5 years: a prospective clinical study. Eur J Molecul Clin Med, 2022. 9: 1415.
https://ejmcm.com/uploads/paper/99197dbcabc1712ffd11b94f0bb438c1.pdf
522.Walton, R.F., et al. Can diagnostic and imaging recommendations from the 2011 AAP UTI guidelines be applied to infants <2 months of age? J Pediatr Urol, 2022. 18: 848.
https://www.ncbi.nlm.nih.gov/pubmed/35781184/
523.Autore, G., et al. Management of Pediatric Urinary Tract Infections: A Delphi Study. Antibiotics (Basel), 2022. 11.
https://www.ncbi.nlm.nih.gov/pubmed/36009990/
524.Craig, J.C., et al. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: prospective cohort study of 15 781 febrile illnesses. BMJ, 2010. 340: c1594.
https://www.ncbi.nlm.nih.gov/pubmed/20406860/
525.Lin, D.S., et al. Urinary tract infection in febrile infants younger than eight weeks of Age. Pediatrics, 2000. 105: E20.
https://www.ncbi.nlm.nih.gov/pubmed/10654980/
526.Tebruegge, M., et al. The age-related risk of co-existing meningitis in children with urinary tract infection. PLoS One, 2011. 6: e26576.
https://www.ncbi.nlm.nih.gov/pubmed/22096488/
527.Williams, G., et al. Long-term antibiotics for preventing recurrent urinary tract infection in children. Cochrane Database Syst Rev, 2019. 4: CD001534.
https://www.ncbi.nlm.nih.gov/pubmed/30932167/
528.Yiee, J.H., et al. Prospective blinded laboratory assessment of prophylactic antibiotic compliance in a pediatric outpatient setting. J Urol, 2012. 187: 2176.
https://www.ncbi.nlm.nih.gov/pubmed/22503029/
529.Neheman, A., et al. Ureteral Stent Colonization and Urinary Tract Infection in Children Undergoing Minimally Invasive Pyeloplasty. Eur J Pediatr Surg, 2023. 33: 47.
https://www.ncbi.nlm.nih.gov/pubmed/35858642/
530.Cruz, A.T., et al. Frequency of Bacteremia and Urinary Tract Infection in Pediatric Renal Transplant Recipients. Pediatr Infect Dis J, 2022. 41: 997.
https://www.ncbi.nlm.nih.gov/pubmed/36102710/
531.Tullus, K. Difficulties in diagnosing urinary tract infections in small children. Pediatr Nephrol, 2011. 26: 1923.
https://www.ncbi.nlm.nih.gov/pubmed/21773821/
532.Vaillancourt, S., et al. To clean or not to clean: effect on contamination rates in midstream urine collections in toilet-trained children. Pediatrics, 2007. 119: e1288.
https://www.ncbi.nlm.nih.gov/pubmed/17502345/
533.Kauffman, J.D., et al. Risk factors and associated morbidity of urinary tract infections in pediatric surgical patients: A NSQIP pediatric analysis. J Pediatr Surg, 2020. 55: 715.
https://www.ncbi.nlm.nih.gov/pubmed/31126686/
534.Whiting, P., et al. Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review. BMC Pediatr, 2005. 5: 4.
https://www.ncbi.nlm.nih.gov/pubmed/15811182/
535.Ramage, I.J., et al. Accuracy of clean-catch urine collection in infancy. J Pediatr, 1999. 135: 765.
https://www.ncbi.nlm.nih.gov/pubmed/10586183/
536.Subcommittee on Urinary Tract Infection et al. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics, 2011. 128: 595.
https://www.ncbi.nlm.nih.gov/pubmed/21873693/
537.Tosif, S., et al. Contamination rates of different urine collection methods for the diagnosis of urinary tract infections in young children: an observational cohort study. J Paediatr Child Health, 2012. 48: 659.
https://www.ncbi.nlm.nih.gov/pubmed/22537082/
538.Labrosse, M., et al. Evaluation of a New Strategy for Clean-Catch Urine in Infants. Pediatrics, 2016. 138.
https://www.ncbi.nlm.nih.gov/pubmed/27542848/
539.Buys, H., et al. Suprapubic aspiration under ultrasound guidance in children with fever of undiagnosed cause. BMJ, 1994. 308: 690.
https://www.ncbi.nlm.nih.gov/pubmed/8142792/
540.Kiernan, S.C., et al. Ultrasound guidance of suprapubic bladder aspiration in neonates. J Pediatr, 1993. 123: 789.
https://www.ncbi.nlm.nih.gov/pubmed/8229492/
541.Powell, H.R., et al. Urinary nitrite in symptomatic and asymptomatic urinary infection. Arch Dis Child, 1987. 62: 138.
https://www.ncbi.nlm.nih.gov/pubmed/3548604/
542.Coulthard, M.G. Using urine nitrite sticks to test for urinary tract infection in children aged < 2 years: a meta-analysis. Pediatr Nephrol, 2019. 34: 1283.
https://www.ncbi.nlm.nih.gov/pubmed/30895368/
543.Mori, R., et al. Diagnostic performance of urine dipstick testing in children with suspected UTI: a systematic review of relationship with age and comparison with microscopy. Acta Paediatr, 2010. 99: 581.
https://www.ncbi.nlm.nih.gov/pubmed/20055779/
544.Herreros, M.L., et al. Performing a urine dipstick test with a clean-catch urine sample is an accurate screening method for urinary tract infections in young infants. Acta Paediatr, 2018. 107: 145.
https://www.ncbi.nlm.nih.gov/pubmed/28940750/
545.Waterfield, T., et al. Diagnostic test accuracy of dipstick urinalysis for diagnosing urinary tract infection in febrile infants attending the emergency department. Arch Dis Child, 2022. 107: 1095.
https://www.ncbi.nlm.nih.gov/pubmed/36002228/
546.Anand S, et al. A study on urine dipstick fast screening for UTI in children. J Cardiovasc Dis Res, 2023. 14: 1030.
https://jcdronline.org/admin/Uploads/Files/650c45d136fe67.02134463.pdf
547.Hildebrand, W.L., et al. Suprapubic bladder aspiration in infants. Am Fam Physician, 1981. 23: 115.
https://www.ncbi.nlm.nih.gov/pubmed/7234629/
548.Hoberman, A., et al. Is urine culture necessary to rule out urinary tract infection in young febrile children? Pediatr Infect Dis J, 1996. 15: 304.
https://www.ncbi.nlm.nih.gov/pubmed/8866798/
549.Herr, S.M., et al. Enhanced urinalysis improves identification of febrile infants ages 60 days and younger at low risk for serious bacterial illness. Pediatrics, 2001. 108: 866.
https://www.ncbi.nlm.nih.gov/pubmed/11581437/
550.Williams, G.J., et al. Absolute and relative accuracy of rapid urine tests for urinary tract infection in children: a meta-analysis. Lancet Infect Dis, 2010. 10: 240.
https://www.ncbi.nlm.nih.gov/pubmed/20334847/
551.Mayo, S., et al. Clinical laboratory automated urinalysis: comparison among automated microscopy, flow cytometry, two test strips analyzers, and manual microscopic examination of the urine sediments. J Clin Lab Anal, 2008. 22: 262.
https://www.ncbi.nlm.nih.gov/pubmed/18623125/
552.Broeren, M., et al. Urine flow cytometry is an adequate screening tool for urinary tract infections in children. Eur J Pediatr, 2019. 178: 363.
https://www.ncbi.nlm.nih.gov/pubmed/30569406/
553.Hill, E.B., et al. Novel urine biomarkers to distinguish UTI from culture-negative pyuria. Pediatr Nephrol, 2022. 37: 385.
https://www.ncbi.nlm.nih.gov/pubmed/34272611/
554.Hosseini, M., et al. The value of interleukin levels in the diagnosis of febrile urinary tract infections in children and adolescents; a systematic review and meta-analysis. J Pediatr Urol, 2022. 18: 211.
https://www.ncbi.nlm.nih.gov/pubmed/35184943/
555.Boon, H.A., et al. Diagnostic value of biomarkers for paediatric urinary tract infections in primary care: systematic review and meta-analysis. BMC Fam Pract, 2021. 22: 193.
https://www.ncbi.nlm.nih.gov/pubmed/34565335/
556.Akagawa, Y., et al. Optimal bacterial colony counts for the diagnosis of upper urinary tract infections in infants. Clin Exp Nephrol, 2020. 24: 253.
https://www.ncbi.nlm.nih.gov/pubmed/31712943/
557.Shaikh, N., et al. Biomarkers for febrile urinary tract infection in children. Front Pediatr, 2023. 11: 1163546.
https://www.ncbi.nlm.nih.gov/pubmed/37228436/
558.Kotoula, A., et al. Comparative efficacies of procalcitonin and conventional inflammatory markers for prediction of renal parenchymal inflammation in pediatric first urinary tract infection. Urology, 2009. 73: 782.
https://www.ncbi.nlm.nih.gov/pubmed/19152962/
559.Zhang, H., et al. Diagnostic value of serum procalcitonin for acute pyelonephritis in infants and children with urinary tract infections: an updated meta-analysis. World J Urol, 2016. 34: 431.
https://www.ncbi.nlm.nih.gov/pubmed/26142087/
560.Chang, S.J., et al. Elevated postvoid residual urine volume predicting recurrence of urinary tract infections in toilet-trained children. Pediatr Nephrol, 2015. 30: 1131.
https://www.ncbi.nlm.nih.gov/pubmed/25673516/
561.Watanabe, Y., et al. Fecal impaction detected by imaging predicts recurrent urinary tract infection. Pediatr Int, 2022. 64: e15171.
https://www.ncbi.nlm.nih.gov/pubmed/35522799/
562.Broadis, E., et al. ‘Targeted top down’ approach for the investigation of UTI: A 10-year follow-up study in a cohort of 1000 children. J Pediatr Urol, 2016. 12: 39 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26586296/
563.Aydin, O., et al. Evaluating the requirement of ultrasonography for children with their first urinary tract infection. J Pediatr Urol, 2024. 20: 504.
https://www.ncbi.nlm.nih.gov/pubmed/37932198/
564.Shaikh, N.A., et al. Is ultrasound detect renal infections? Med Forum Monthly, 2016. 27: 16.
https://medicalforummonthly.com/index.php/mfm/article/view/3533
565.Stoica, I., et al. Xanthogranulomatous pyelonephritis in a paediatric cohort (1963-2016): Outcomes from a large single-center series. J Pediatr Urol, 2018. 14: 169 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29233628/
566.Shiraishi, K., et al. Risk factors for breakthrough infection in children with primary vesicoureteral reflux. J Urol, 2010. 183: 1527.
https://www.ncbi.nlm.nih.gov/pubmed/20172558/
567.Siomou, E., et al. Implications of 99mTc-DMSA scintigraphy performed during urinary tract infection in neonates. Pediatrics, 2009. 124: 881.
https://www.ncbi.nlm.nih.gov/pubmed/19661052/
568.Shaikh, N., et al. Early Antibiotic Treatment for Pediatric Febrile Urinary Tract Infection and Renal Scarring. JAMA Pediatr, 2016. 170: 848.
https://www.ncbi.nlm.nih.gov/pubmed/27455161/
569.Quirino, I.G., et al. Combined use of late phase dimercapto-succinic acid renal scintigraphy and ultrasound as first line screening after urinary tract infection in children. J Urol, 2011. 185: 258.
https://www.ncbi.nlm.nih.gov/pubmed/21074813/
570.Bosakova, A., et al. Diffusion-weighted magnetic resonance imaging is more sensitive than dimercaptosuccinic acid scintigraphy in detecting parenchymal lesions in children with acute pyelonephritis: A prospective study. J Pediatr Urol, 2018. 14: 269 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29588142/
571.Mazzi, S., et al. Timing of voiding cystourethrography after febrile urinary tract infection in children: a systematic review. Arch Dis Child, 2020. 105: 264.
https://www.ncbi.nlm.nih.gov/pubmed/31466991/
572.Spencer, J.D., et al. The accuracy and health risks of a voiding cystourethrogram after a febrile urinary tract infection. J Pediatr Urol, 2012. 8: 72.
https://www.ncbi.nlm.nih.gov/pubmed/21126919/
573.Ntoulia, A., et al. Contrast-enhanced voiding urosonography (ceVUS) with the intravesical administration of the ultrasound contrast agent Optison for vesicoureteral reflux detection in children: a prospective clinical trial. Pediatr Radiol, 2018. 48: 216.
https://www.ncbi.nlm.nih.gov/pubmed/29181582/
574.Pšeničny, E., et al. Contrast-enhanced ultrasound in detection and follow-up of focal renal infections in children. Br J Radiol, 2022. 95: 20220290.
https://www.ncbi.nlm.nih.gov/pubmed/36240431/
575.Lee, L.C., et al. The role of voiding cystourethrography in the investigation of children with urinary tract infections. Can Urol Assoc J, 2016. 10: 210.
https://www.ncbi.nlm.nih.gov/pubmed/27713802/
576.Swartz, S., et al. Imaging Practices and Implications in Young Infants With Urinary Tract Infection. Hosp Pediatr, 2022. 12: 922.
https://www.ncbi.nlm.nih.gov/pubmed/36278285/
577.Klubdaeng, A., et al. Model for predicting high-grade vesicoureteral reflux in young children presenting with febrile urinary tract infection. J Pediatr Urol, 2022. 18: 518.
https://www.ncbi.nlm.nih.gov/pubmed/35760670/
578.Scott Wang, H.H., et al. Top-Down versus Bottom-Up Approach in Children Presenting with Urinary Tract Infection: Comparative Effectiveness Analysis Using RIVUR and CUTIE Data. J Urol, 2021. 206: 1284.
https://www.ncbi.nlm.nih.gov/pubmed/34181468/
579.Pakkasjärvi, N., et al. PIC cystography in occult vesicoureteral reflux: A systematic review highlighting its utility in children with recurrent urinary tract infections and normal VCUG. J Pediatr Urol, 2023. 19: 804.
https://www.ncbi.nlm.nih.gov/pubmed/37633825/
580.Kinnear, N., et al. The impact of catheter-based bladder drainage method on urinary tract infection risk in spinal cord injury and neurogenic bladder: A systematic review. Neurourol Urodyn, 2020. 39: 854.
https://www.ncbi.nlm.nih.gov/pubmed/31845396/
581.Kamei, J., et al. Complicated urinary tract infections with diabetes mellitus. J Infect Chemother, 2021. 27: 1131.
https://www.ncbi.nlm.nih.gov/pubmed/34024733/
582.Yang, S., et al. Kidney Ultrasonography After First Febrile Urinary Tract Infection in Children: A Systematic Review and Meta-analysis. JAMA Pediatr, 2023. 177: 764.
https://www.ncbi.nlm.nih.gov/pubmed/37252727/
583.Petrosillo, N., et al. Preventing sepsis development in complicated urinary tract infections. Expert Rev Anti Infect Ther, 2020. 18: 47.
https://www.ncbi.nlm.nih.gov/pubmed/31795788/
584.Nandagopal, R., et al. Transient Pseudohypoaldosteronism due to Urinary Tract Infection in Infancy: A Report of 4 Cases. Int J Pediatr Endocrinol, 2009. 2009: 195728.
https://www.ncbi.nlm.nih.gov/pubmed/19946403/
585.Tutunculer, F., et al. Transient Pseudohypoaldosteronism in an infant with urinary tract anomaly. Pediatr Int, 2004. 46: 618.
https://www.ncbi.nlm.nih.gov/pubmed/15491397/
586.Bryce, A., et al. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ, 2016. 352: i939.
https://www.ncbi.nlm.nih.gov/pubmed/26980184/
587.Flokas, M.E., et al. Prevalence of ESBL-producing Enterobacteriaceae in paediatric urinary tract infections: A systematic review and meta-analysis. J Infect, 2016. 73: 547.
https://www.ncbi.nlm.nih.gov/pubmed/27475789/
588.Wandawy, A., et al. Study of Antibiotic-resistant Bacteria Isolated from Children with Urinary Tract Infection. Int J Drug Del Techno, 2023. 13: 150.
https://impactfactor.org/PDF/IJDDT/13/IJDDT,Vol13,Issue1,Article23.pdf
589.Fostira, E., et al. Short-term antibiotic exposure affected the type and resistance of uropathogens similar to long-term antibiotic prophylaxis in children hospitalised for urinary tract infections. Acta Paediatr, 2020. 109: 1260.
https://www.ncbi.nlm.nih.gov/pubmed/31746494/
590.Uyar Aksu, N., et al. Childhood urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria: Risk factors and empiric therapy. Pediatr Int, 2017. 59: 176.
https://www.ncbi.nlm.nih.gov/pubmed/27501161/
591.Kara, A., et al. The use of nitrofurantoin for children with acute cystitis caused by extended-spectrum Beta-lactamase-producing Escherichia coli. J Pediatr Urol, 2019. 15: 378 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31014984/
592.Beetz, R., et al. [Urinary tract infections in infants and children -- a consensus on diagnostic, therapy and prophylaxis]. Urologe A, 2007. 46: 112.
https://www.ncbi.nlm.nih.gov/pubmed/17225140/
593.Roman, H.K., et al. Diagnosis and management of bacteremic urinary tract infection in infants. Hosp Pediatr, 2015. 5: 1.
https://www.ncbi.nlm.nih.gov/pubmed/25554753/
594.Bouissou, F., et al. Prospective, randomized trial comparing short and long intravenous antibiotic treatment of acute pyelonephritis in children: dimercaptosuccinic acid scintigraphic evaluation at 9 months. Pediatrics, 2008. 121: e553.
https://www.ncbi.nlm.nih.gov/pubmed/18267977/
595.Robinson, J.L., et al. Management of urinary tract infections in children in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther, 2016. 14: 809.
https://www.ncbi.nlm.nih.gov/pubmed/27348347/
596.Buonsenso, D., et al. Comparison between Short Therapy and Standard Therapy in Pediatric Patients Hospitalized with Urinary Tract Infection: A Single Center Retrospective Analysis. Children (Basel), 2022. 9.
https://www.ncbi.nlm.nih.gov/pubmed/36360375/
597.Desai, S., et al. Parenteral Antibiotic Therapy Duration in Young Infants With Bacteremic Urinary Tract Infections. Pediatrics, 2019. 144: e20183844.
https://www.ncbi.nlm.nih.gov/pubmed/31431480/
598.Hikmat, S., et al. Short Intravenous Antibiotic Courses for Urinary Infections in Young Infants: A Systematic Review. Pediatrics, 2022. 149.
https://www.ncbi.nlm.nih.gov/pubmed/35075480/
599.Hodson, E.M., et al. Antibiotics for acute pyelonephritis in children. Cochrane Database Syst Rev, 2007: CD003772.
https://www.ncbi.nlm.nih.gov/pubmed/17943796/
600.Craig, J.C., et al. Antibiotic prophylaxis and recurrent urinary tract infection in children. N Engl J Med, 2009. 361: 1748.
https://www.ncbi.nlm.nih.gov/pubmed/19864673/
601.Neuhaus, T.J., et al. Randomised trial of oral versus sequential intravenous/oral cephalosporins in children with pyelonephritis. Eur J Pediatr, 2008. 167: 1037.
https://www.ncbi.nlm.nih.gov/pubmed/18074149/
602.Hoberman, A., et al. Oral versus initial intravenous therapy for urinary tract infections in young febrile children. Pediatrics, 1999. 104: 79.
https://www.ncbi.nlm.nih.gov/pubmed/10390264/
603.Salomonsson, P., et al. Best oral empirical treatment for pyelonephritis in children: Do we need to differentiate between age and gender? Infect Dis (Lond), 2016. 48: 721.
https://www.ncbi.nlm.nih.gov/pubmed/27300266/
604.Mak, R.H., et al. Are oral antibiotics alone efficacious for the treatment of a first episode of acute pyelonephritis in children? Nat Clin Pract Nephrol, 2008. 4: 10.
https://www.ncbi.nlm.nih.gov/pubmed/17971799/
605.Janett, S., et al. Pyuria and microbiology in acute bacterial focal nephritis: a systematic review. Minerva Med, 2019. 110: 232.
https://www.ncbi.nlm.nih.gov/pubmed/30809996/
606.Rius-Gordillo, N., et al. Dexamethasone to prevent kidney scarring in acute pyelonephritis: a randomized clinical trial. Pediatr Nephrol, 2022. 37: 2109.
https://www.ncbi.nlm.nih.gov/pubmed/35041042/
607.Alsubaie, S.S., et al. Current status of long-term antibiotic prophylaxis for urinary tract infections in children: An antibiotic stewardship challenge. Kidney Res Clin Pract, 2019. 38: 441.
https://www.ncbi.nlm.nih.gov/pubmed/31739385/
608.Holzman, S.A., et al. Risk of urinary tract infection in patients with hydroureter: An analysis from the Society of Fetal Urology Prenatal Hydronephrosis Registry. J Pediatr Urol, 2021. 17: 775.
https://www.ncbi.nlm.nih.gov/pubmed/34556410/
609.Dray, E.V., et al. Recurrent urinary tract infections in patients with incomplete bladder emptying: is there a role for intravesical therapy? Transl Androl Urol, 2017. 6: S163.
https://www.ncbi.nlm.nih.gov/pubmed/28791235/
610.Ong Lopez, A.M.C., et al. Symptomatic treatment (using NSAIDS) versus antibiotics in uncomplicated lower urinary tract infection: a meta-analysis and systematic review of randomized controlled trials. BMC Infect Dis, 2021. 21: 619.
https://www.ncbi.nlm.nih.gov/pubmed/34187385/
611.Naber, K.G., et al., EAU/International Consultation on Urological Infections 2010, European Association of Urology: The Netherlands.
https://uroweb.org/guidelines/archive/urological-infections
612.Durham, S.H., et al. Cranberry Products for the Prophylaxis of Urinary Tract Infections in Pediatric Patients. Ann Pharmacother, 2015. 49: 1349.
https://www.ncbi.nlm.nih.gov/pubmed/26400007/
613.Schwentner, C., et al. Interim outcome of the single stage dorsal inlay skin graft for complex hypospadias reoperations. J Urol, 2006. 175: 1872.
https://www.ncbi.nlm.nih.gov/pubmed/16600785/
614.Sadeghi-Bojd, S., et al. Efficacy of Probiotic Prophylaxis After The First Febrile Urinary Tract Infection in Children With Normal Urinary Tracts. J Pediatric Infect Dis Soc, 2020. 9: 305.
https://www.ncbi.nlm.nih.gov/pubmed/31100124/
615.Hosseini, M., et al. The efficacy of probiotics in prevention of urinary tract infection in children: A systematic review and meta-analysis. J Pediatr Urol, 2017. 13: 581.
https://www.ncbi.nlm.nih.gov/pubmed/29102297/
616.Jepson, R.G., et al. Cranberries for treating urinary tract infections. Cochrane Database Syst Rev, 2023. 12: Cd001322.
https://www.ncbi.nlm.nih.gov/pubmed/38096261/
617.Kahbazi, M., et al. Vitamin A supplementation is effective for improving the clinical symptoms of urinary tract infections and reducing renal scarring in girls with acute pyelonephritis: a randomized, double-blind placebo-controlled, clinical trial study. Complement Ther Med, 2019. 42: 429.
https://www.ncbi.nlm.nih.gov/pubmed/30670279/
618.Zhang, G.Q., et al. The effect of vitamin A on renal damage following acute pyelonephritis in children: a meta-analysis of randomized controlled trials. Pediatr Nephrol, 2016. 31: 373.
https://www.ncbi.nlm.nih.gov/pubmed/25980468/
619.Yousefichaijan, P., et al. Vitamin E as adjuvant treatment for urinary tract infection in girls with acute pyelonephritis. Iranian J Kidney Dis, 2015. 9: 97.
https://www.ncbi.nlm.nih.gov/pubmed/25851287/
620.Sürmeli Döven, S., et al. Vitamin D deficiency as a risk factor for renal scarring in recurrent urinary tract infections. Pediatr Int, 2021. 63: 295.
https://www.ncbi.nlm.nih.gov/pubmed/33118657/
621.Wahyudi, I., et al. Circumcision reduces urinary tract infection in children with antenatal hydronephrosis: Systematic review and meta-analysis. J Pediatr Urol, 2023. 19: 66.
https://www.ncbi.nlm.nih.gov/pubmed/36371332/
622.Boon, H.A., et al. Clinical Features for the Diagnosis of Pediatric Urinary Tract Infections: Systematic Review and Meta-Analysis. Ann Fam Med, 2021. 19: 437.
https://www.ncbi.nlm.nih.gov/pubmed/34546950/
623.Shaikh, N., et al. Recurrent Urinary Tract Infections in Children With Bladder and Bowel Dysfunction. Pediatrics, 2016. 137.
https://www.ncbi.nlm.nih.gov/pubmed/26647376/
624.Keren, R., et al. Risk Factors for Recurrent Urinary Tract Infection and Renal Scarring. Pediatrics, 2015. 136: e13.
https://www.ncbi.nlm.nih.gov/pubmed/26055855/
625.Agrawal, P., et al. Urinary Tract Infection in Children: A Narrative Review. Cureus, 2024. 16: e51469.
https://www.ncbi.nlm.nih.gov/pubmed/38298274/
626.Liu, J., et al. Value of sufficient clean intermittent catheterization in urinary tract infection and upper urinary tract protection in children with neurogenic bladder. J Pediatr Urol, 2022. 18: 499.e1.
https://www.ncbi.nlm.nih.gov/pubmed/35527206/
627.Jiang, M., et al. Risk Factors for Recurrent Urinary Tract Infection in Children With Neurogenic Bladder Following Clean Intermittent Catheterization. Urology, 2022. 164: 224.
https://www.ncbi.nlm.nih.gov/pubmed/35026189/
628.Austin, P.F., et al. The standardization of terminology of lower urinary tract function in children and adolescents: Update report from the standardization committee of the International Children’s Continence Society. Neurourol Urodyn, 2016. 35: 471.
https://www.ncbi.nlm.nih.gov/pubmed/25772695/
629.Xu, P.C., et al. Delayed elimination communication on the prevalence of children’s bladder and bowel dysfunction. Scientific reports, 2021. 11: 12366.
https://www.ncbi.nlm.nih.gov/pubmed/34117301/
630.Jorgensen, C.S., et al. Dissatisfaction with school toilets is associated with bladder and bowel dysfunction. Eur J Pediatr, 2021. 180: 3317.
https://www.ncbi.nlm.nih.gov/pubmed/33999258/
631.Sumboonnanonda, A., et al. Screening and management of bladder and bowel dysfunction in general pediatric outpatient clinic: a prospective observational study. BMC Pediatr, 2022. 22: 288.
https://www.ncbi.nlm.nih.gov/pubmed/35581653/
632.Kaplan, F., et al. Prevalence estimates of voiding disorders in Turkish school-age children. LUTS: Lower Urinary Tract Symptoms, 2021. 13: 244.
https://www.ncbi.nlm.nih.gov/pubmed/33089669/
633.Luo, Y., et al. Prevalence and associated factors of urinary incontinence among chinese adolescents in henan province: A cross-sectional survey. Int J Environ Res Public Health, 2020. 17: 1.
https://www.ncbi.nlm.nih.gov/pubmed/32825745/
634.Xing, D., et al. Prevalence and risk factors of overactive bladder in Chinese children: A population-based study. Neurourol Urodyn, 2020. 39: 688.
https://www.ncbi.nlm.nih.gov/pubmed/31804751/
635.Li, X., et al. Delayed in toilet training association with pediatric lower urinary tract dysfunction: A systematic review and meta-analysis. J Pediatr Urol, 2020. 16: 352.e1.
https://www.ncbi.nlm.nih.gov/pubmed/32241587/
636.Breinbjerg, A., et al. Does the development and use of modern disposable diapers affect bladder control? A systematic review. J Pediatr Urol, 2021. 17: 463.
https://www.ncbi.nlm.nih.gov/pubmed/34099398/
637.Hjalmas, K., et al. Lower urinary tract dysfunction and urodynamics in children. Eur Urol, 2000. 38: 655.
https://www.ncbi.nlm.nih.gov/pubmed/11096254/
638.van Summeren, J., et al. Bladder Symptoms in Children With Functional Constipation: A Systematic Review. J Pediatr Gastroenterol Nutr, 2018. 67: 552.
https://www.ncbi.nlm.nih.gov/pubmed/30212423/
639.Ambartsumyan, L., et al. Simultaneous urodynamic and anorectal manometry studies in children: insights into the relationship between the lower gastrointestinal and lower urinary tracts. Neurogastroenterol Motil, 2016. 28: 924.
https://www.ncbi.nlm.nih.gov/pubmed/27214097/
640.Mahjani, B., et al. Systematic review and meta-analysis: relationships between attention-deficit/hyperactivity disorder and urinary symptoms in children. Eur Child Adolesc Psych, 2022. 31: 663.
https://www.ncbi.nlm.nih.gov/pubmed/33635440/
641.O’Kelly, F., et al. Neuropsychiatric Developmental Disorders in Children Are Associated with an Impaired Response to Treatment in Bladder Bowel Dysfunction: A Prospective Multi-Institutional European Observational Study. J Urol, 2023. 210: 899.
https://www.ncbi.nlm.nih.gov/pubmed/37747130/
642.Eliezer, D.D., et al. Optimising the management of children with concomitant bladder dysfunction and behavioural disorders. Eur Child Adolesc Psych, 2023. 32: 1989.
https://www.ncbi.nlm.nih.gov/pubmed/35767104/
643.Logan, B.L., et al. Giggle incontinence: Evolution of concept and treatment. J Pediatr Urol, 2017. 13: 430.
https://www.ncbi.nlm.nih.gov/pubmed/28673794/
644.Chen, J.J., et al. Infant vesicoureteral reflux: a comparison between patients presenting with a prenatal diagnosis and those presenting with a urinary tract infection. Urology, 2003. 61: 442.
https://www.ncbi.nlm.nih.gov/pubmed/12597964/
645.Burgers, R.E., et al. Management of functional constipation in children with lower urinary tract symptoms: report from the Standardization Committee of the International Children’s Continence Society. J Urol, 2013. 190: 29.
https://www.ncbi.nlm.nih.gov/pubmed/23313210/
646.Chang, S.J., et al. Constipation is associated with incomplete bladder emptying in healthy children. Neurourol Urodyn, 2012. 31: 105.
https://www.ncbi.nlm.nih.gov/pubmed/22038844/
647.da Silva Filho, J.C., et al. Assessment instruments for lower urinary tract dysfunction in children: Symptoms, characteristics and psychometric properties. J Pediatr Urol, 2020. 16: 636.
https://www.ncbi.nlm.nih.gov/pubmed/32798106/
648.Hoppman, T., et al. Sonographically Determined Fecal Width: An Objective Indicator of Management of Bladder and Bowel Dysfunction in Children. Urology, 2024. 184: 224.
https://www.ncbi.nlm.nih.gov/pubmed/38176617/
649.Siegal, A.R., et al. Does KUB play a role in the diagnosis of bladder bowel dysfunction? J Pediatr Urol, 2023. 20: 223.e1.
https://www.ncbi.nlm.nih.gov/pubmed/37968162/
650.Neveus, T., et al. The standardization of terminology of lower urinary tract function in children and adolescents: report from the Standardisation Committee of the International Children’s Continence Society. J Urol, 2006. 176: 314.
https://www.ncbi.nlm.nih.gov/pubmed/16753432/
651.Van Batavia, J.P., et al. Is it time to reconsider how we document pediatric uroflow studies?: A study from the SPU Voiding Dysfunction task force. J Pediatr Urol, 2023. 19: 546.
https://www.ncbi.nlm.nih.gov/pubmed/37302925/
652.Hoebeke, P., et al. Diagnostic evaluation of children with daytime incontinence. J Urol, 2010. 183: 699.
https://www.ncbi.nlm.nih.gov/pubmed/20022025/
653.Bauer, S.B., et al. International Children’s Continence Society standardization report on urodynamic studies of the lower urinary tract in children. Neurourol Urodyn, 2015. 34: 640.
https://www.ncbi.nlm.nih.gov/pubmed/25998310/
654.Parekh, D.J., et al. The use of radiography, urodynamic studies and cystoscopy in the evaluation of voiding dysfunction. J Urol, 2001. 165: 215.
https://www.ncbi.nlm.nih.gov/pubmed/11125409/
655.Bhandarkar, K., et al. Morbidity following suprapubic line insertion for videourodynamics in children. J Pediatr Urol, 2023. 19: 247.e1.
https://www.ncbi.nlm.nih.gov/pubmed/36804211/
656.Bachtel, H.A., et al. Intra-operative Urodynamics: Is the Test an Accurate Representation of the Lower Urinary Tract in Children? Urology, 2023. 175: 175.
https://www.ncbi.nlm.nih.gov/pubmed/36822242/
657.Nieuwhof-Leppink, A.J., et al. Definitions, indications and practice of urotherapy in children and adolescents: - A standardization document of the International Children’s Continence Society (ICCS). J Pediatr Urol, 2021. 17: 172.
https://www.ncbi.nlm.nih.gov/pubmed/33478902/
658.Knaus, M.E., et al. Improvement in bladder function in children with functional constipation after a bowel management program. Pediatr Surg Int, 2022. 38: 1473.
https://www.ncbi.nlm.nih.gov/pubmed/35930047/
659.Buckley, B.S., et al. Conservative interventions for treating functional daytime urinary incontinence in children. Cochrane Database Syst Rev, 2019. 9: CD012367.
https://www.ncbi.nlm.nih.gov/pubmed/31532563/
660.Hoebeke, P., et al. Assessment of lower urinary tract dysfunction in children with non-neuropathic bladder sphincter dysfunction. Eur Urol, 1999. 35: 57.
https://www.ncbi.nlm.nih.gov/pubmed/9933796/
661.Vijverberg, M.A., et al. Bladder rehabilitation, the effect of a cognitive training programme on urge incontinence. Eur Urol, 1997. 31: 68.
https://www.ncbi.nlm.nih.gov/pubmed/9032538/
662.Qi, W., et al. The effect of biofeedback treatment for children with non-neurogenic voiding dysfunction: A systematic review and meta-analysis. Neurourol Urodyn, 2022. 41: 868.
https://www.ncbi.nlm.nih.gov/pubmed/35191548/
663.Jacobsen, L.V., et al. The efficacy of physiotherapeutic intervention with biofeedback assisted pelvic floor muscle training in children with dysfunctional voiding. J Pediatr Urol, 2021. 17: 793.e1.
https://www.ncbi.nlm.nih.gov/pubmed/34635441/
664.Dossche, L., et al. The long-term added value of voiding school for children with refractory non-neurogenic overactive bladder: an inpatient bladder rehabilitation program. J Pediatr Urol, 2020. 16: 350.e1.
https://www.ncbi.nlm.nih.gov/pubmed/32147348/
665.Hussong, J., et al. Evaluation of a bladder and bowel training program for therapy-resistant children with incontinence. J Pediatr Urol, 2021. 17: 302.e1.
https://www.ncbi.nlm.nih.gov/pubmed/33593624/
666.Ramsay, S., et al. A randomized, crossover trial comparing the efficacy and safety of fesoterodine and extendedrelease oxybutynin in children with overactive bladder with 12-month extension on fesoterodine: The foxy study. Can Urol Ass J, 2020. 14: 192.
https://www.ncbi.nlm.nih.gov/pubmed/31977308/
667.Raman, G., et al. Safety and tolerability of solifenacin in children and adolescents with overactive bladder- a systematic review. J Pediatr Urol, 2023. 19: 19.e1.
https://www.ncbi.nlm.nih.gov/pubmed/36336627/
668.Nijman, R.J., et al. Tolterodine treatment for children with symptoms of urinary urge incontinence suggestive of detrusor overactivity: results from 2 randomized, placebo controlled trials. J Urol, 2005. 173: 1334.
https://www.ncbi.nlm.nih.gov/pubmed/15758796/
669.Marschall-Kehrel, D., et al. Treatment with propiverine in children suffering from nonneurogenic overactive bladder and urinary incontinence: results of a randomized placebo-controlled phase 3 clinical trial. Eur Urol, 2009. 55: 729.
https://www.ncbi.nlm.nih.gov/pubmed/18502028/
670.Newgreen, D., et al. Long-Term Safety and Efficacy of Solifenacin in Children and Adolescents with Overactive Bladder. J Urol, 2017. 198: 928.
https://www.ncbi.nlm.nih.gov/pubmed/28506854/
671.Kramer, S.A., et al. Double-blind placebo controlled study of alpha-adrenergic receptor antagonists (doxazosin) for treatment of voiding dysfunction in the pediatric population. J Urol, 2005. 173: 2121.
https://www.ncbi.nlm.nih.gov/pubmed/15879863/
672.Kim, J.K., et al. Beta3-Adrenoceptor Agonist for the Treatment of Bladder Dysfunction in Children: A Systematic Review and Meta-Analysis. J Urol, 2022. 207: 524.
https://www.ncbi.nlm.nih.gov/pubmed/34850638/
673.Tan, D.J.Y., et al. Mirabegron in Overactive Bladder and Its Role in Exit Strategy After Botulinum Toxin Treatment in Children. Front Pediatr, 2022. 9: 801517.
https://www.ncbi.nlm.nih.gov/pubmed/35252075/
674.Fryer, S., et al. Effectiveness and tolerability of mirabegron in children with overactive bladder: A retrospective pilot study. J Pediatr Surg, 2020. 55: 316.
https://www.ncbi.nlm.nih.gov/pubmed/31759655/
675.Soliman, M.G., et al. Mirabegron versus Solifenacin in Children with Overactive Bladder: Prospective Randomized Single-Blind Controlled Trial. Urol Int, 2021. 105: 1011.
https://www.ncbi.nlm.nih.gov/pubmed/34010843/
676.Nasution, R., et al. Efficacy and safety of mirabegron in pediatric population: A systematic review. Int J Surg Open, 2021. 37: 100412.
https://www.sciencedirect.com/science/article/pii/S2405857221001030
677.Kitta, T., et al. Urodynamic evaluation of the efficacy of vibegron, a new beta3-adrenergic receptor agonist, on lower urinary tract function in children and adolescents with overactive bladder. J Pediatr Urol, 2022. 18: 563.
https://www.ncbi.nlm.nih.gov/pubmed/35965225/
678.Hyuga, T., et al. Vibegron shows high efficacy in pediatric patients with refractory daytime urinary incontinence. Neurourol Urodyn, 2023. 42: 794.
https://www.ncbi.nlm.nih.gov/pubmed/36840745/
679.Cui, H., et al. Role of transcutaneous electrical nerve stimulation in treating children with overactive bladder from pooled analysis of 8 randomized controlled trials. Int Neurourol J, 2020. 24: 84.
https://www.ncbi.nlm.nih.gov/pubmed/32252190/
680.Casal-Beloy, I., et al. Transcutaneous sacral electrical stimulation versus oxibutynin for the treatment of overactive bladder in children. J Pediatr Urol, 2021. 17: 644.e1.
https://www.ncbi.nlm.nih.gov/pubmed/34176749/
681.Pedersen, N., et al. Transcutaneous electrical nerve stimulation as add-on therapy in children receiving anticholinergics and/or mirabegron for refractory daytime urinary incontinence: A retrospective cohort study. Neurourol Urodyn, 2022. 41: 275.
https://www.ncbi.nlm.nih.gov/pubmed/34618378/
682.O’Sullivan, H., et al. Comparing the outcomes of parasacral transcutaneous electrical nerve stimulation for the treatment of lower urinary tract dysfunction in children: A systematic review and meta-analysis of randomized controlled trials. Neurourol Urodyn, 2021. 40: 570.
https://www.ncbi.nlm.nih.gov/pubmed/33410536/
683.De Abreu, G.E., et al. Parasacral Transcutaneous Electrical Nerve Stimulation for the Treatment of Children and Adolescents with Bladder and Bowel Dysfunction: A Randomized Clinical Trial. J Urol, 2021. 205: 1785.
https://www.ncbi.nlm.nih.gov/pubmed/33525925/
684.De Wall, L.L., et al. Posterior Tibial Nerve Stimulation in Children with Lower Urinary Tract Dysfunction: A Mixed-Methods Analysis of Experiences, Quality of Life and Treatment Effect. Int J Environ Res Public Health, 2022. 19: 9062.
https://www.ncbi.nlm.nih.gov/pubmed/35897438/
685.Jafarov, R., et al. Efficacy of transcutaneous posterior tibial nerve stimulation in children with functional voiding disorders. Neurourol Urodyn, 2021. 40: 404.
https://www.ncbi.nlm.nih.gov/pubmed/33205852/
686.Bauer, A. Dysfunctional voiding: Update on evaluation and treatment. Curr Opin Pediatr, 2021. 33: 235.
https://www.ncbi.nlm.nih.gov/pubmed/33315690/
687.Johnston, A.W., et al. Pediatric Overactive Bladder and the Role of Sacral Neuromodulation. Curr Treat Opt Pediatr, 2022. 8: 412.
https://www.researchgate.net/publication/363638899/
688.van Geen, F.J., et al. The effect of meatal correction on daytime urinary incontinence in girls with an anterior deflected urinary stream. J Pediatr Urol, 2021. 17: 791.e1.
https://www.ncbi.nlm.nih.gov/pubmed/34538563/
689.Cancio Martins Bissaia Barreto, J.A., et al. The role of botulinum toxin in the management of nonneurogenic overactive bladder in children: Highlights for clinical practice. A systematic review. Curr Urol, 2024. 18: 1.
https://www.ncbi.nlm.nih.gov/pubmed/38505157/
690.Lambregts, A.P., et al. Intravesical botulinum-A toxin in children with refractory non-neurogenic overactive bladder. J Pediatr Urol, 2022. 18: 351.e1.
https://www.ncbi.nlm.nih.gov/pubmed/35283021/
691.Ringoir, A., et al. Intradetrusor onabotulinum-a toxin injections in children with therapy-resistant idiopathic detrusor overactivity. A retrospective study. J Pediatr Urol, 2020. 16: 181.e1.
https://www.ncbi.nlm.nih.gov/pubmed/31964616/
692.Hoelscher, S.A.A., et al. The effect of botulinum toxin A in children with non-neurogenic therapy-refractory dysfunctional voiding - A systematic review. J Pediatr Urol, 2023.
https://www.ncbi.nlm.nih.gov/pubmed/38135586/
693.Dos Santos, J., et al. Assessment of Needs in Children Suffering From Refractory Non-neurogenic Urinary and Fecal Incontinence and Their Caregivers’ Needs and Attitudes Toward Alternative Therapies (SNM, TENS). Front Pediatr, 2020. 8: 558.
https://www.ncbi.nlm.nih.gov/pubmed/33014941/
694.Kopru, B., et al. Does biofeedback therapy improve quality of life in children with lower urinary tract dysfunction: parents’ perspective. J Pediatr Urol, 2020. 16: 38.e1.
https://www.ncbi.nlm.nih.gov/pubmed/31928898/
695.Donmez, M.I., et al. Maintenance biofeedback therapy for dysfunctional voiding: Does every child need it? Int J Urol, 2023. 30: 83.
https://www.ncbi.nlm.nih.gov/pubmed/36305569/
696.de Wall, L.L., et al. Long-term functional and psychosocial outcome in adolescents and young adults treated for lower urinary tract dysfunction in childhood. J Pediatr Urol, 2021. 17: 759.e1.
https://www.ncbi.nlm.nih.gov/pubmed/34548249/
697.Selvi, I., et al. Which children are at risk of developing overactive bladder in early adulthood even if lower urinary tract symptoms improve during childhood? Int J Urol, 2022. 29: 136.
https://www.ncbi.nlm.nih.gov/pubmed/34758512/
698.Gordon, K., et al. Continence Problems and Mental Health in Adolescents from a UK Cohort. Eur Urol, 2023. 84: 463.
https://www.ncbi.nlm.nih.gov/pubmed/37248139/
699.Butler, R.J., et al. Nocturnal enuresis at 7.5 years old: prevalence and analysis of clinical signs. BJU Int, 2005. 96: 404.
https://www.ncbi.nlm.nih.gov/pubmed/16042739/
700.Lackgren, G., et al. Nocturnal enuresis: a suggestion for a European treatment strategy. Acta Paediatr, 1999. 88: 679.
https://www.ncbi.nlm.nih.gov/pubmed/10419258/
701.Neveus, T., et al. Enuresis--background and treatment. Scand J Urol Nephrol Suppl, 2000: 1.
https://www.ncbi.nlm.nih.gov/pubmed/11196246/
702.Ma, Y., et al. Functional constipation and bladder capacity and severity of enuresis in children: A correlation study. Int J Clin Exp Med 2018. 11: 806.
https://www.ncbi.nlm.nih.gov/pubmed/https://www.ijcem.com/files/ijcem0058710.pdf/
703.Rangel, R.A., et al. Quality of life in enuretic children. Int Braz J Urol, 2021. 47: 535.
https://www.ncbi.nlm.nih.gov/pubmed/33620999/
704.Iscan, B., et al. Evaluation of health-related quality of life and affecting factors in child with enuresis. J Pediatr Urol, 2020. 16: 195 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32008988/
705.Collis, D., et al. The impact of bowel and bladder problems on children’s quality of life and their parents: A scoping review. Child Care Health Dev, 2019. 45: 1.
https://www.ncbi.nlm.nih.gov/pubmed/30328126/
706.Jonson Ring, I., et al. Nocturnal enuresis impaired children’s quality of life and friendships. Acta Paediatr, 2017. 106: 806.
https://www.ncbi.nlm.nih.gov/pubmed/28199734/
707.Soster, L.A., et al. Non-REM Sleep Instability in Children With Primary Monosymptomatic Sleep Enuresis. J Clin Sleep Med, 2017. 13: 1163.
https://www.ncbi.nlm.nih.gov/pubmed/28859716/
708.Negoro, H., et al. Chronobiology of micturition: putative role of the circadian clock. J Urol, 2013. 190: 843.
https://www.ncbi.nlm.nih.gov/pubmed/23429068/
709.Wada, H., et al. Nocturnal enuresis and sleep disordered breathing in primary school children: Potential implications. Pediatr Pulmonol, 2018. 53: 1541.
https://www.ncbi.nlm.nih.gov/pubmed/30203928/
710.Martinez Cayuelas, L., et al. Evaluation of sleep hygiene and prevalence of sleep disorders in patients with monosymptomatic enuresis. Usefulness of the BEARS sleep screening tool. Actas Urol Esp (Engl Ed), 2020. 44: 477.
https://www.ncbi.nlm.nih.gov/pubmed/32600875/
711.Lehmann, K.J., et al. The role of adenotonsillectomy in the treatment of primary nocturnal enuresis in children: A systematic review. J Pediatr Urol, 2018. 14: 53 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28986091/
712.Ma, Y., et al. Association between enuresis and obesity in children with primary monosymptomatic nocturnal enuresis. Int Braz J Urol, 2019. 45: 790.
https://www.ncbi.nlm.nih.gov/pubmed/31184451/
713.Yilmaz-Durmus, S., et al. The association between monosymptomatic enuresis and allergic diseases in children. Turk J Pediatr, 2018. 60: 415.
https://www.ncbi.nlm.nih.gov/pubmed/30859766/
714.Lai, P.H., et al. Allergic rhinitis and the associated risk of nocturnal enuresis in children: a population-based cohort study. Int Forum Allergy Rhinol, 2018. 8: 1260.
https://www.ncbi.nlm.nih.gov/pubmed/30281945/
715.Tsai, J.D., et al. Association between allergic disease, sleep-disordered breathing, and childhood nocturnal enuresis: a population-based case-control study. Pediatr Nephrol, 2017. 32: 2293.
https://www.ncbi.nlm.nih.gov/pubmed/28735503/
716.de Sena Oliveira, A.C., et al. Attention deficit and hyperactivity disorder and nocturnal enuresis co-occurrence in the pediatric population: a systematic review and meta-analysis. Pediatr Nephrol, 2021. 36: 3547.
https://www.ncbi.nlm.nih.gov/pubmed/34009466/
717.Kessel, E.M., et al. Predictors and Outcomes of Childhood Primary Enuresis. J Am Acad Child Adolesc Psychiatry, 2017. 56: 250.
https://www.ncbi.nlm.nih.gov/pubmed/28219491/
718.Kovacevic, L., et al. Children with nocturnal enuresis and attention deficit hyperactivity disorder: A separate entity? J Pediatr Urol, 2018. 14: 47 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28867160/
719.Ma, Y., et al. Constipation in nocturnal enuresis may interfere desmopressin management success. J Pediatr Urol, 2019. 15: 177 e1.
https://www.ncbi.nlm.nih.gov/pubmed/30594475/
720.Jansson, E., et al. Rectal diameter assessment in enuretic children-exploring the association between constipation and bladder function. Ups J Med Sci, 2018. 123: 179.
https://www.ncbi.nlm.nih.gov/pubmed/30176757/
721.Hjalmas, K., et al. Nocturnal enuresis: an international evidence based management strategy. J Urol, 2004. 171: 2545.
https://www.ncbi.nlm.nih.gov/pubmed/15118418/
722.Dang, J., et al. Pathogenesis and brain functional imaging in nocturnal enuresis: A review. Exp Biol Med (Maywood), 2021. 246: 1483.
https://www.ncbi.nlm.nih.gov/pubmed/33715529/
723.Wang, M., et al. Morphometric Magnetic Resonance Imaging Study in Children With Primary Monosymptomatic Nocturnal Enuresis. Front Pediatr, 2018. 6: 103.
https://www.ncbi.nlm.nih.gov/pubmed/29707531/
724.Yilmaz, E.S., et al. Effect of education given to children with enuresis on quality of life. J Pediatr Urol, 2021. 17: 648 e1.
https://www.ncbi.nlm.nih.gov/pubmed/34518125/
725.Smith, E., et al. Telemedicine Versus Traditional for Follow-Up Evaluation of Enuresis. Telemed J E Health, 2021. 27: 213.
https://www.ncbi.nlm.nih.gov/pubmed/32539570/
726.Caldwell, P.H., et al. Simple behavioural interventions for nocturnal enuresis in children. Cochrane Database Syst Rev, 2013. 7: CD003637.
https://www.ncbi.nlm.nih.gov/pubmed/23881652/
727.Surmeli Doven, S. The effect of using entertainment and communication devices before sleep on nocturnal enuresis. Pediatr Int, 2020. 62: 492.
https://www.ncbi.nlm.nih.gov/pubmed/31860151/
728.Roccella, M., et al. Parental Stress and Parental Ratings of Behavioral Problems of Enuretic Children. Front Neurol, 2019. 10: 1054.
https://www.ncbi.nlm.nih.gov/pubmed/31681143/
729.Tai, T.T., et al. Parental perception and factors associated with treatment strategies for primary nocturnal enuresis. J Pediatr Urol, 2017. 13: 272 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28190701/
730.Durmaz, O., et al. Psychiatric dimensions in mothers of children with primary nocturnal enuresis: A controlled study. J Pediatr Urol, 2017. 13: 62 e1.
https://www.ncbi.nlm.nih.gov/pubmed/27665376/
731.Sa, C.A., et al. Psychological Intervention with Parents Improves Treatment Results and Reduces Punishment in Children with Enuresis: A Randomized Clinical Trial. J Urol, 2021. 205: 570.
https://www.ncbi.nlm.nih.gov/pubmed/32924749/
732.Caldwell, P.H., et al. Alarm interventions for nocturnal enuresis in children. Cochrane Database Syst Rev, 2020. 5: CD002911.
https://www.ncbi.nlm.nih.gov/pubmed/32364251/
733.Apos, E., et al. Enuresis Management in Children: Retrospective Clinical Audit of 2861 Cases Treated with Practitioner-Assisted Bell-and-Pad Alarm. J Pediatr, 2018. 193: 211.
https://www.ncbi.nlm.nih.gov/pubmed/29246468/
734.Kosilov, K.V., et al. The optimal duration of alarm therapy use in children with primary monosymptomatic nocturnal enuresis. J Pediatr Urol, 2018. 14: 447 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29773463/
735.Ferrara P, et al. Oral Desmopressin Lyophilisate Formulation (MELT): Efficacy and Safety in Children and Adults. Biomed Pharmacol J, 2018. 11.
https://www.researchgate.net/publication/324119711/
736.Neveus, T., et al. Management and treatment of nocturnal enuresis-an updated standardization document from the International Children’s Continence Society. J Pediatr Urol, 2020. 16: 10.
https://www.ncbi.nlm.nih.gov/pubmed/32278657/
737.Van Herzeele, C., et al. Predictive parameters of response to desmopressin in primary nocturnal enuresis. J Pediatr Urol, 2015. 11: 200 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26059526/
738.Liu, J., et al. Exploration of the Optimal Desmopressin Treatment in Children With Monosymptomatic Nocturnal Enuresis: Evidence From a Chinese Cohort. Front Pediatr, 2020. 8: 626083.
https://www.ncbi.nlm.nih.gov/pubmed/33569362/
739.Radojicic, Z., et al. Low compliance contribute to insufficient Desmopressin response of primary monosymptomatic nocturnal enuresis and the role of voiding school. BMC Pediatr, 2021. 21: 244.
https://www.ncbi.nlm.nih.gov/pubmed/34016082/
740.Chua, M.E., et al. Desmopressin Withdrawal Strategy for Pediatric Enuresis: A Meta-analysis. Pediatrics, 2016. 138.
https://www.ncbi.nlm.nih.gov/pubmed/27343233/
741.Issi, Y., et al. Does desmopressin withdrawal strategy affect relapse rates in monosymptomatic enuresis treatment? Eur J Pediatr, 2021. 180: 1453.
https://www.ncbi.nlm.nih.gov/pubmed/33389072/
742.Dehoorne, J.L., et al. Desmopressin toxicity due to prolonged half-life in 18 patients with nocturnal enuresis. J Urol, 2006. 176: 754.
https://www.ncbi.nlm.nih.gov/pubmed/16813936/
743.Shim, M., et al. Effect of desmopressin lyophilisate (MELT) plus anticholinergics combination on functional bladder capacity and therapeutic outcome as the first-line treatment for primary monosymptomatic nocturnal enuresis: A randomized clinical trial. Investig Clin Urol, 2021. 62: 331.
https://www.ncbi.nlm.nih.gov/pubmed/33834643/
744.Ghanavati, P.M., et al. A comparison of the efficacy and tolerability of treating primary nocturnal enuresis with Solifenacin Plus Desmopressin, Tolterodine Plus Desmopressin, and Desmopressin alone: a randomized controlled clinical trial. Int Braz J Urol, 2021. 47: 73.
https://www.ncbi.nlm.nih.gov/pubmed/32840337/
745.Kazi, A., et al. Comparative response of Desmopressin versus Combination Therapy (Desmopressin + Oxybutynin) in Children with Nocturnal Enuresis. Pak J Med Sci, 2020. 36: 1263.
https://www.ncbi.nlm.nih.gov/pubmed/32968391/
746.Song, P., et al. Comparison of desmopressin, alarm, desmopressin plus alarm, and desmopressin plus anticholinergic agents in the management of paediatric monosymptomatic nocturnal enuresis: a network meta-analysis. BJU Int, 2019. 123: 388.
https://www.ncbi.nlm.nih.gov/pubmed/30216627/
747.Borg, B., et al. Evidence of reduced bladder capacity during nighttime in children with monosymptomatic nocturnal enuresis. J Pediatr Urol, 2018. 14: 160 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29174376/
748.Yucel, S., et al. Anticholi2010530857nergics do not improve cure rate of alarm treatment of monosymptomatic nocturnal enuresis. Urology, 2011. 77: 721.
https://www.ncbi.nlm.nih.gov/pubmed/21215431/
749.Peng, C.C., et al. Systematic Review and Meta-analysis of Alarm versus Desmopressin Therapy for Pediatric Monosymptomatic Enuresis. Sci Rep, 2018. 8: 16755.
https://www.ncbi.nlm.nih.gov/pubmed/30425276/
750.Meyer, S.I.R., et al. Efficacy and safety of multimodal treatment in nocturnal enuresis - A retrospective cohort study. J Pediatr Urol, 2021. 17: 447 e1.
https://www.ncbi.nlm.nih.gov/pubmed/33820712/
751.Souza, T.M.P., et al. Electrical nerve stimulation therapy in refractory primary monosymtomatic enuresis - A sistematic review. J Pediatr Urol, 2021. 17: 295.
https://www.ncbi.nlm.nih.gov/pubmed/33712372/
752.Abdelhalim, N.M., et al. A comparative study of transcutaneous interferential electrical stimulation and transcutaneous electrical nerve stimulation on children with primary nocturnal enuresis: a randomized clinical trial. Int Urol Nephrol, 2020. 52: 409.
https://www.ncbi.nlm.nih.gov/pubmed/31758382/
753.Cui, H., et al. The efficacy of electrical stimulation in treating children with nocturnal enuresis: A systematic review and meta-analysis. Neurourol Urodyn, 2019. 38: 2288.
https://www.ncbi.nlm.nih.gov/pubmed/31397008/
754.Chua, M.E., et al. Neurostimulation Therapy for Pediatric Primary Enuresis: A Meta-analysis. Urology, 2017. 106: 183.
https://www.ncbi.nlm.nih.gov/pubmed/28476683/
755.Jorgensen, C.S., et al. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study. J Urol, 2017. 198: 687.
https://www.ncbi.nlm.nih.gov/pubmed/28747281/
756.Huang, T., et al. Complementary and miscellaneous interventions for nocturnal enuresis in children. Cochrane Database Syst Rev, 2011: CD005230.
https://www.ncbi.nlm.nih.gov/pubmed/22161390/
757.Kushnir, J., et al. Night diapers use and sleep in children with enuresis. Sleep Med, 2013. 14: 1013.
https://www.ncbi.nlm.nih.gov/pubmed/23890954/
758.Lebowitz, R.L., et al. Neonatal hydronephrosis: 146 cases. Radiol Clin North Am, 1977. 15: 49.
https://www.ncbi.nlm.nih.gov/pubmed/139634/
759.Brown, T., et al. Neonatal hydronephrosis in the era of sonography. AJR Am J Roentgenol, 1987. 148: 959.
https://www.ncbi.nlm.nih.gov/pubmed/3034009/
760.Koff, S.A. Problematic ureteropelvic junction obstruction. J Urol, 1987. 138: 390.
https://www.ncbi.nlm.nih.gov/pubmed/3599261/
761.Gunn, T.R., et al. Antenatal diagnosis of urinary tract abnormalities by ultrasonography after 28 weeks’ gestation: incidence and outcome. Am J Obstet Gynecol, 1995. 172: 479.
https://www.ncbi.nlm.nih.gov/pubmed/7856673/
762.Grignon, A., et al. Ureteropelvic junction stenosis: antenatal ultrasonographic diagnosis, postnatal investigation, and follow-up. Radiology, 1986. 160: 649.
https://www.ncbi.nlm.nih.gov/pubmed/3526403/
763.Flashner, S.C., et al., Ureteropelvic junction, in: Clinical Pediatric Urology. 1976, WB Saunders: Philadelphia.
764.Thomas, D.F. Prenatally detected uropathy: epidemiological considerations. Br J Urol, 1998. 81 Suppl 2: 8.
https://www.ncbi.nlm.nih.gov/pubmed/9602790/
765.Ebel, K.D. Uroradiology in the fetus and newborn: diagnosis and follow-up of congenital obstruction of the urinary tract. Pediatr Radiol, 1998. 28: 630.
https://www.ncbi.nlm.nih.gov/pubmed/9716640/
766.O’Reilly, P., et al. Consensus on diuresis renography for investigating the dilated upper urinary tract. Radionuclides in Nephrourology Group. Consensus Committee on Diuresis Renography. J Nucl Med, 1996. 37: 1872.
https://www.ncbi.nlm.nih.gov/pubmed/8917195/
767.Choong, K.K., et al. Volume expanded diuretic renography in the postnatal assessment of suspected uretero-pelvic junction obstruction. J Nucl Med, 1992. 33: 2094.
https://www.ncbi.nlm.nih.gov/pubmed/1460498/
768.Soygur, T., et al. The need for ureteric re-implantation during augmentation cystoplasty: video-urodynamic evaluation. BJU Int, 2010. 105: 530.
https://www.ncbi.nlm.nih.gov/pubmed/19583716/
769.Reddy, P.P., et al. Prenatal diagnosis. Therapeutic implications. Urol Clin North Am, 1998. 25: 171.
https://www.ncbi.nlm.nih.gov/pubmed/9633572/
770.Braga, L.H., et al. Pilot randomized, placebo controlled trial to investigate the effect of antibiotic prophylaxis on the rate of urinary tract infection in infants with prenatal hydronephrosis. J Urol, 2014. 191: 1501.
https://www.ncbi.nlm.nih.gov/pubmed/24679865/
771.Craig, J., et al. Long-term antibiotics to prevent urinary tract infection in children with isolated vesicoureteric reflux: a placebo-controlled randomized trial. 2002. J Am Soc Nephrol 13: 3A.
https://www.researchgate.net/publication/295439898/
772.Silay, M.S., et al. Role of antibiotic prophylaxis in antenatal hydronephrosis: A systematic review from the European Association of Urology/European Society for Paediatric Urology Guidelines Panel. J Pediatr Urol, 2017. 13: 306.
https://www.ncbi.nlm.nih.gov/pubmed/28462806/
773.Weitz, M., et al. Surgery versus non-surgical management for unilateral ureteric-pelvic junction obstruction in newborns and infants less than two years of age. Cochrane Database Syst Rev, 2016. 7: CD010716.
https://www.ncbi.nlm.nih.gov/pubmed/27416073/
774.Novick, A.C., et al., Surgery of the kidney, in: Campbell’s Urology. 1998, WB Saunders: Philadelphia.
775.Nasser, F.M., et al. Dismembered Pyeloplasty in Infants 6 Months Old or Younger With and Without External Trans-anastomotic Nephrostent: A Prospective Randomized Study. Urology, 2017. 101: 38.
https://www.ncbi.nlm.nih.gov/pubmed/27693478/
776.Fernbach, S.K., et al. Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol, 1993. 23: 478.
https://www.ncbi.nlm.nih.gov/pubmed/8255658/
777.Reddy, M.N., et al. The laparoscopic pyeloplasty: is there a role in the age of robotics? Urol Clin North Am, 2015. 42: 43.
https://www.ncbi.nlm.nih.gov/pubmed/25455171/
778.Tasian, G.E., et al. The robotic-assisted laparoscopic pyeloplasty: gateway to advanced reconstruction. Urol Clin North Am, 2015. 42: 89.
https://www.ncbi.nlm.nih.gov/pubmed/25455175/
779.Huang, Y., et al. An updated meta-analysis of laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children. Int J Clin Exp Med, 2015. 8: 4922.
https://www.ncbi.nlm.nih.gov/pubmed/26131065/
780.Alhazmi, H.H., Redo laparoscopic pyeloplasty among children: A systematic review and meta-analysis. Urol Ann, 2018. 10: 347.
https://www.ncbi.nlm.nih.gov/pubmed/30386084/
781.Cundy, T.P., et al. Meta-analysis of robot-assisted vs conventional laparoscopic and open pyeloplasty in children. BJU Int, 2014. 114: 582.
https://www.ncbi.nlm.nih.gov/pubmed/25383399/
782.Trevisani, L.F., et al. Current controversies in pediatric urologic robotic surgery. Curr Opin Urol, 2013. 23: 72.
https://www.ncbi.nlm.nih.gov/pubmed/23169150/
783.Silay, M.S., et al. Laparoscopy versus robotic-assisted pyeloplasty in children: preliminary results of a pilot prospective randomized controlled trial. World J Urol, 2020. 38: 1841.
https://www.ncbi.nlm.nih.gov/pubmed/31435732/
784.Arena, F., et al. Conservative treatment in primary neonatal megaureter. Eur J Pediatr Surg, 1998. 8: 347.
https://www.ncbi.nlm.nih.gov/pubmed/9926303/
785.Peters, C.A., et al. Congenital obstructed megaureters in early infancy: diagnosis and treatment. J Urol, 1989. 142: 641.
https://www.ncbi.nlm.nih.gov/pubmed/2746792/
786.Onen, A., et al. Long-term followup of prenatally detected severe bilateral newborn hydronephrosis initially managed nonoperatively. J Urol, 2002. 168: 1118.
https://www.ncbi.nlm.nih.gov/pubmed/12187248/
787.Shukla, A.R., et al. Prenatally detected primary megaureter: a role for extended followup. J Urol, 2005. 173: 1353.
https://www.ncbi.nlm.nih.gov/pubmed/15758800/
788.Sripathi, V., et al. Primary obstructive megaureter. J Pediatr Surg, 1991. 26: 826.
https://www.ncbi.nlm.nih.gov/pubmed/1895193/
789.Doudt, A.D., et al. Endoscopic Management of Primary Obstructive Megaureter: A Systematic Review. J Endourol, 2018. 32: 482.
https://www.ncbi.nlm.nih.gov/pubmed/29676162/
790.Lee, T., et al. Impact of Clinical Guidelines on Voiding Cystourethrogram Use and Vesicoureteral Reflux Incidence. J Urol, 2018. 199: 831.
https://www.ncbi.nlm.nih.gov/pubmed/28866466/
791.Fanos, V., et al. Antibiotics or surgery for vesicoureteric reflux in children. Lancet, 2004. 364: 1720.
https://www.ncbi.nlm.nih.gov/pubmed/15530633/
792.Liu, J.L., et al. Responsible genes in children with primary vesicoureteral reflux: findings from the Chinese Children Genetic Kidney Disease Database. World J Pediatr, 2021. 17: 409.
https://www.ncbi.nlm.nih.gov/pubmed/34059960/
793.Liang, D., et al. DNA copy number variations in children with vesicoureteral reflux and urinary tract infections. PLoS One, 2019. 14: e0220617.
https://www.ncbi.nlm.nih.gov/pubmed/31404082/
794.Shahrokhzadeh, S., et al. Association of Genetic Polymorphisms in GSTP1, GSTM1, and GSTT1 Genes with Vesicoureteral Reflux Susceptibility in the Children of Southeast Iran. Iran J Public Health, 2020. 49: 1364.
https://www.ncbi.nlm.nih.gov/pubmed/33083304/
795.Sargent, M.A. What is the normal prevalence of vesicoureteral reflux? Pediatr Radiol, 2000. 30: 587.
https://www.ncbi.nlm.nih.gov/pubmed/11009294/
796.Skoog, S.J., et al. Pediatric Vesicoureteral Reflux Guidelines Panel Summary Report: Clinical Practice Guidelines for Screening Siblings of Children With Vesicoureteral Reflux and Neonates/Infants With Prenatal Hydronephrosis. J Urol, 2010. 184: 1145.
https://www.ncbi.nlm.nih.gov/pubmed/20650494/
797.Schlomer, B.J., et al. Cumulative incidence of outcomes and urologic procedures after augmentation cystoplasty. J Pediatr Urol, 2014. 10: 1043.
https://www.ncbi.nlm.nih.gov/pubmed/24766857/
798.Estrada, C.R., Jr., et al. Nomograms for predicting annual resolution rate of primary vesicoureteral reflux: results from 2,462 children. J Urol, 2009. 182: 1535.
https://www.ncbi.nlm.nih.gov/pubmed/19683762/
799.Pirker, M.E., et al. Renal scarring in familial vesicoureteral reflux: is prevention possible? J Urol, 2006. 176: 1842.
https://www.ncbi.nlm.nih.gov/pubmed/16945668/
800.Alsaywid, B.S., et al. High grade primary vesicoureteral reflux in boys: long-term results of a prospective cohort study. J Urol, 2010. 184: 1598.
https://www.ncbi.nlm.nih.gov/pubmed/20728178/
801.Hannula, A., et al. Vesicoureteral reflux in children with suspected and proven urinary tract infection. Pediatr Nephrol, 2010. 25: 1463.
https://www.ncbi.nlm.nih.gov/pubmed/20467791/
802.Menezes, M., et al. Familial vesicoureteral reflux--is screening beneficial? J Urol, 2009. 182: 1673.
https://www.ncbi.nlm.nih.gov/pubmed/19692047/
803.Noe, H.N. The long-term results of prospective sibling reflux screening. J Urol, 1992. 148: 1739.
https://www.ncbi.nlm.nih.gov/pubmed/1433599/
804.Koff, S.A., et al. The relationship among dysfunctional elimination syndromes, primary vesicoureteral reflux and urinary tract infections in children. J Urol, 1998. 160: 1019.
https://www.ncbi.nlm.nih.gov/pubmed/9719268/
805.Ural, Z., et al. Bladder dynamics and vesicoureteral reflux: factors associated with idiopathic lower urinary tract dysfunction in children. J Urol, 2008. 179: 1564.
https://www.ncbi.nlm.nih.gov/pubmed/18295262/
806.Sillen, U., et al. The Swedish reflux trial in children: v. Bladder dysfunction. J Urol, 2010. 184: 298.
https://www.ncbi.nlm.nih.gov/pubmed/20488486/
807.Sarhan, O., et al. Critical analysis of the outcome of primary unilateral vesicoureteral reflux in a medium volume center. Afr J Urol, 2020. 26: 49.
https://www.ncbi.nlm.nih.gov/pubmed/https://www.researchgate.net/publication/346247587/
808.Esbjorner, E., et al. Management of children with dilating vesico-ureteric reflux in Sweden. Acta Paediatr, 2004. 93: 37.
https://www.ncbi.nlm.nih.gov/pubmed/14989437/
809.Sjostrom, S., et al. Spontaneous resolution of high grade infantile vesicoureteral reflux. J Urol, 2004. 172: 694.
https://www.ncbi.nlm.nih.gov/pubmed/15247764/
810.Knudson, M.J., et al. Predictive factors of early spontaneous resolution in children with primary vesicoureteral reflux. J Urol, 2007. 178: 1684.
https://www.ncbi.nlm.nih.gov/pubmed/17707023/
811.Sjostrom, S., et al. Predictive factors for resolution of congenital high grade vesicoureteral reflux in infants: results of univariate and multivariate analyses. J Urol, 2010. 183: 1177.
https://www.ncbi.nlm.nih.gov/pubmed/20096864/
812.Yeung, C.K., et al. Renal and bladder functional status at diagnosis as predictive factors for the outcome of primary vesicoureteral reflux in children. J Urol, 2006. 176: 1152.
https://www.ncbi.nlm.nih.gov/pubmed/16890714/
813.Mohanan, N., et al. Renal parenchymal damage in intermediate and high grade infantile vesicoureteral reflux. J Urol, 2008. 180: 1635.
https://www.ncbi.nlm.nih.gov/pubmed/18708232/
814.Olbing, H., et al. New renal scars in children with severe VUR: a 10-year study of randomized treatment. Pediatr Nephrol, 2003. 18: 1128.
https://www.ncbi.nlm.nih.gov/pubmed/14523634/
815.Peters, C., et al. Vesicoureteral reflux associated renal damage: congenital reflux nephropathy and acquired renal scarring. J Urol, 2010. 184: 265.
https://www.ncbi.nlm.nih.gov/pubmed/20483150/
816.Coplen, D.E., et al. Correlation of prenatal and postnatal ultrasound findings with the incidence of vesicoureteral reflux in children with fetal renal pelvic dilatation. J Urol, 2008. 180: 1631.
https://www.ncbi.nlm.nih.gov/pubmed/18718617/
817.Estrada, C.R., et al. Vesicoureteral reflux and urinary tract infection in children with a history of prenatal hydronephrosis--should voiding cystourethrography be performed in cases of postnatally persistent grade II hydronephrosis? J Urol, 2009. 181: 801.
https://www.ncbi.nlm.nih.gov/pubmed/19095265/
818.Lee, R.S., et al. Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics, 2006. 118: 586.
https://www.ncbi.nlm.nih.gov/pubmed/16882811/
819.Mallik, M., et al. Antenatally detected urinary tract abnormalities: more detection but less action. Pediatr Nephrol, 2008. 23: 897.
https://www.ncbi.nlm.nih.gov/pubmed/18278521/
820.Phan, V., et al. Vesicoureteral reflux in infants with isolated antenatal hydronephrosis. Pediatr Nephrol, 2003. 18: 1224.
https://www.ncbi.nlm.nih.gov/pubmed/14586679/
821.Ylinen, E., et al. Risk of renal scarring in vesicoureteral reflux detected either antenatally or during the neonatal period. Urology, 2003. 61: 1238.
https://www.ncbi.nlm.nih.gov/pubmed/12809909/
822.Leonardo, C.R., et al. Risk factors for renal scarring in children and adolescents with lower urinary tract dysfunction. Pediatr Nephrol, 2007. 22: 1891.
https://www.ncbi.nlm.nih.gov/pubmed/17874252/
823.Naseer, S.R., et al. New renal scars in children with urinary tract infections, vesicoureteral reflux and voiding dysfunction: a prospective evaluation. J Urol, 1997. 158: 566.
https://www.ncbi.nlm.nih.gov/pubmed/9224361/
824.Mathias, S., et al. Risk factors for renal scarring and clinical morbidity in children with high-grade and low-grade primary vesicoureteral reflux. J Pediatr Urol, 2022. 18: 225 e1.
https://www.ncbi.nlm.nih.gov/pubmed/35094942/
825.Naseri, M., et al. Diagnostic Values of Kidney Ultrasonography for Vesicoureteral Reflux (VUR) and High Grade VUR. Iran J Kidney Dis, 2021. 15: 328.
https://www.ncbi.nlm.nih.gov/pubmed/34582367/
826.Darge, K., et al. Current status of vesicoureteral reflux diagnosis. World J Urol, 2004. 22: 88.
https://www.ncbi.nlm.nih.gov/pubmed/15173954/
827.Lebowitz, R.L., et al. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol, 1985. 15: 105.
https://www.ncbi.nlm.nih.gov/pubmed/3975102/
828.Westwood, M.E., et al. Further investigation of confirmed urinary tract infection (UTI) in children under five years: a systematic review. BMC Pediatr, 2005. 5: 2.
https://www.ncbi.nlm.nih.gov/pubmed/15769296/
829.Snow, B.W., et al. Non-invasive vesicoureteral reflux imaging. J Pediatr Urol, 2010. 6: 543.
https://www.ncbi.nlm.nih.gov/pubmed/20488755/
830.Darge, K. Voiding urosonography with US contrast agents for the diagnosis of vesicoureteric reflux in children. II. Comparison with radiological examinations. Pediatr Radiol, 2008. 38: 54.
https://www.ncbi.nlm.nih.gov/pubmed/17639371/
831.Papadopoulou, F., et al. Harmonic voiding urosonography with a second-generation contrast agent for the diagnosis of vesicoureteral reflux. Pediatr Radiol, 2009. 39: 239.
https://www.ncbi.nlm.nih.gov/pubmed/19096835/
832.Takazakura, R., et al. Magnetic resonance voiding cystourethrography for vesicoureteral reflux. J Magn Reson Imaging, 2007. 25: 170.
https://www.ncbi.nlm.nih.gov/pubmed/17154372/
833.Murakami, N., et al. Ureteral dilatation detected in magnetic resonance imaging predicts vesicoureteral reflux in children with urinary tract infection. PLoS One, 2018. 13: e0209595.
https://www.ncbi.nlm.nih.gov/pubmed/30576373/
834.Duran, C., et al. Contrast-enhanced Voiding Urosonography for Vesicoureteral Reflux Diagnosis in Children. Radiographics, 2017. 37: 1854.
https://www.ncbi.nlm.nih.gov/pubmed/29019761/
835.Oh, S., et al. Contrast-enhanced voiding ultrasonography to detect intrarenal reflux in children: comparison with 99mTc-DMSA renal scans. Ultrasonography, 2022. 41: 502.
https://www.ncbi.nlm.nih.gov/pubmed/35295068/
836.Nalçacıoğlu, H., et al. Assessment of Positioned Instillation of Contrast Cystography in Children with Recurrent Urinary Tract Infections. J Urol Surg 2020. 7: 58.
https://www.ncbi.nlm.nih.gov/pubmed/https://www.researchgate.net/publication/339611760/
837.Schneider, K.O., et al. Intrarenal reflux, an overlooked entity - retrospective analysis of 1,166 voiding cysturethrographies in children. Pediatr Radiol, 2019. 49: 617.
https://www.ncbi.nlm.nih.gov/pubmed/30683961/
838.Simicic Majce, A., et al. Intrarenal Reflux in the Light of Contrast-Enhanced Voiding Urosonography. Front Pediatr, 2021. 9: 642077.
https://www.ncbi.nlm.nih.gov/pubmed/33738272/
839.Medical versus surgical treatment of primary vesicoureteral reflux: report of the International Reflux Study Committee. Pediatrics, 1981. 67: 392.
https://www.ncbi.nlm.nih.gov/pubmed/7017578/
840.Scherz, H.C., et al. The selective use of dimercaptosuccinic acid renal scans in children with vesicoureteral reflux. J Urol, 1994. 152: 628.
https://www.ncbi.nlm.nih.gov/pubmed/8021985/
841.Hoberman, A., et al. Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med, 2003. 348: 195.
https://www.ncbi.nlm.nih.gov/pubmed/12529459/
842.Hong, I.K., et al. Prediction of vesicoureteral reflux in children with febrile urinary tract infection using relative uptake and cortical defect in DMSA scan. Pediatr Neonatol, 2018. 59: 618.
https://www.ncbi.nlm.nih.gov/pubmed/29576374/
843.Grazioli, S., et al. Antenatal and postnatal ultrasound in the evaluation of the risk of vesicoureteral reflux. Pediatr Nephrol, 2010. 25: 1687.
https://www.ncbi.nlm.nih.gov/pubmed/20524012/
844.Lidefelt, K.J., et al. Antenatal hydronephrosis: infants with minor postnatal dilatation do not need prophylaxis. Pediatr Nephrol, 2008. 23: 2021.
https://www.ncbi.nlm.nih.gov/pubmed/18560902/
845.Hafez, A.T., et al. Analysis of trends on serial ultrasound for high grade neonatal hydronephrosis. J Urol, 2002. 168: 1518.
https://www.ncbi.nlm.nih.gov/pubmed/12352447/
846.Lee, J.H., et al. Nonrefluxing neonatal hydronephrosis and the risk of urinary tract infection. J Urol, 2008. 179: 1524.
https://www.ncbi.nlm.nih.gov/pubmed/18295269/
847.Sidhu, G., et al. Outcome of isolated antenatal hydronephrosis: a systematic review and meta-analysis. Pediatr Nephrol, 2006. 21: 218.
https://www.ncbi.nlm.nih.gov/pubmed/16362721/
848.Visuri, S., et al. Postnatal imaging of prenatally detected hydronephrosis-when is voiding cystourethrogram necessary? Pediatr Nephrol, 2018. 33: 1751.
https://www.ncbi.nlm.nih.gov/pubmed/29626243/
849.Houle, A.M., et al. Impact of early screening for reflux in siblings on the detection of renal damage. BJU Int, 2004. 94: 123.
https://www.ncbi.nlm.nih.gov/pubmed/15217445/
850.Puri, P., et al. Urinary tract infection and renal damage in sibling vesicoureteral reflux. J Urol, 1998. 160: 1028.
https://www.ncbi.nlm.nih.gov/pubmed/9719271/
851.Lertdumrongluk, K., et al. Predictive score for vesicoureteral reflux in children with a first febrile urinary tract infection. Int J Urol, 2021. 28: 573.
https://www.ncbi.nlm.nih.gov/pubmed/33745167/
852.Shaikh, N., et al. Identification of children and adolescents at risk for renal scarring after a first urinary tract infection: a meta-analysis with individual patient data. JAMA Pediatr, 2014. 168: 893.
https://www.ncbi.nlm.nih.gov/pubmed/25089634/
853.Hansson, S., et al. Dimercapto-succinic acid scintigraphy instead of voiding cystourethrography for infants with urinary tract infection. J Urol, 2004. 172: 1071.
https://www.ncbi.nlm.nih.gov/pubmed/15311040/
854.Herz, D., et al. 5-year prospective results of dimercapto-succinic acid imaging in children with febrile urinary tract infection: proof that the top-down approach works. J Urol, 2010. 184: 1703.
https://www.ncbi.nlm.nih.gov/pubmed/20728131/
855.Preda, I., et al. Normal dimercaptosuccinic acid scintigraphy makes voiding cystourethrography unnecessary after urinary tract infection. J Pediatr, 2007. 151: 581.
https://www.ncbi.nlm.nih.gov/pubmed/18035134/
856.Colen, J., et al. Dysfunctional elimination syndrome is a negative predictor for vesicoureteral reflux. J Pediatr Urol, 2006. 2: 312.
https://www.ncbi.nlm.nih.gov/pubmed/18947628/
857.Meena, J., et al. Prevalence of Bladder and Bowel Dysfunction in Toilet-Trained Children With Urinary Tract Infection and/or Primary Vesicoureteral Reflux: A Systematic Review and Meta-Analysis. Front Pediatr, 2020. 8: 84.
https://www.ncbi.nlm.nih.gov/pubmed/32300575/
858.Loukogeorgakis, S.P., et al. Renal scarring is the most significant predictor of breakthrough febrile urinary tract infection in patients with simplex and duplex primary vesico-ureteral reflux. J Pediatr Urol, 2020. 16: 189 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31953013/
859.Elder, J.S., et al. Pediatric Vesicoureteral Reflux Guidelines Panel summary report on the management of primary vesicoureteral reflux in children. J Urol, 1997. 157: 1846.
https://www.ncbi.nlm.nih.gov/pubmed/9112544/
860.Dias, C.S., et al. Risk factors for recurrent urinary tract infections in a cohort of patients with primary vesicoureteral reflux. Pediatr Infect Dis J, 2010. 29: 139.
https://www.ncbi.nlm.nih.gov/pubmed/20135833/
861.Wheeler, D.M., et al. Interventions for primary vesicoureteric reflux. Cochrane Database Syst Rev, 2004: CD001532.
https://www.ncbi.nlm.nih.gov/pubmed/15266449/
862.Williams, G.J., et al. Long-term antibiotics for preventing recurrent urinary tract infection in children. Cochrane Database Syst Rev, 2006: CD001534.
https://www.ncbi.nlm.nih.gov/pubmed/16855971/
863.Singh-Grewal, D., et al. Circumcision for the prevention of urinary tract infection in boys: a systematic review of randomised trials and observational studies. Arch Dis Child, 2005. 90: 853.
https://www.ncbi.nlm.nih.gov/pubmed/15890696/
864.Sjostrom, S., et al. A scoring system for predicting downgrading and resolution of high-grade infant vesicoureteral reflux. Acta Paediatr, 2021. 110: 347.
https://www.ncbi.nlm.nih.gov/pubmed/32511799/
865.Greenfield, S.P. Antibiotic prophylaxis in pediatric urology: an update. Curr Urol Rep, 2011. 12: 126.
https://www.ncbi.nlm.nih.gov/pubmed/21229337/
866.Greenfield, S.P., et al. Vesicoureteral reflux: the RIVUR study and the way forward. J Urol, 2008. 179: 405.
https://www.ncbi.nlm.nih.gov/pubmed/18076937/
867.Brandstrom, P., et al. The Swedish reflux trial in children: IV. Renal damage. J Urol, 2010. 184: 292.
https://www.ncbi.nlm.nih.gov/pubmed/20494369/
868.Su, D., et al. Risk factors for breakthrough urinary tract infection in children with vesicoureteral reflux receiving continuous antibiotic prophylaxis. Transl Pediatr, 2022. 11: 1.
https://www.ncbi.nlm.nih.gov/pubmed/35242647/
869.Garin, E.H., et al. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics, 2006. 117: 626.
https://www.ncbi.nlm.nih.gov/pubmed/16510640/
870.Montini, G., et al. Prophylaxis after first febrile urinary tract infection in children? A multicenter, randomized, controlled, noninferiority trial. Pediatrics, 2008. 122: 1064.
https://www.ncbi.nlm.nih.gov/pubmed/18977988/
871.Pennesi, M., et al. Is antibiotic prophylaxis in children with vesicoureteral reflux effective in preventing pyelonephritis and renal scars? A randomized, controlled trial. Pediatrics, 2008. 121: e1489.
https://www.ncbi.nlm.nih.gov/pubmed/18490378/
872.Roussey-Kesler, G., et al. Antibiotic prophylaxis for the prevention of recurrent urinary tract infection in children with low grade vesicoureteral reflux: results from a prospective randomized study. J Urol, 2008. 179: 674.
https://www.ncbi.nlm.nih.gov/pubmed/18082208/
873.Investigators, R.T., et al. Antimicrobial prophylaxis for children with vesicoureteral reflux. N Engl J Med, 2014. 370: 2367.
https://www.ncbi.nlm.nih.gov/pubmed/24795142/
874.Wang, H.H., et al. Efficacy of antibiotic prophylaxis in children with vesicoureteral reflux: systematic review and meta-analysis. J Urol, 2015. 193: 963.
https://www.ncbi.nlm.nih.gov/pubmed/25196653/
875.de Bessa, J., Jr., et al. Antibiotic prophylaxis for prevention of febrile urinary tract infections in children with vesicoureteral reflux: a meta-analysis of randomized, controlled trials comparing dilated to nondilated vesicoureteral reflux. J Urol, 2015. 193: 1772.
https://www.ncbi.nlm.nih.gov/pubmed/25817142/
876.Hidas, G., et al. Predicting the Risk of Breakthrough Urinary Tract Infections: Primary Vesicoureteral Reflux. J Urol, 2015. 194: 1396.
https://www.ncbi.nlm.nih.gov/pubmed/26066405/
877.Mathews, R., et al. The role of antimicrobial prophylaxis in the management of children with vesicoureteral reflux--the RIVUR study outcomes. Adv Chronic Kidney Dis, 2015. 22: 325.
https://www.ncbi.nlm.nih.gov/pubmed/26088078/
878.Wang, Z.T., et al. A Reanalysis of the RIVUR Trial Using a Risk Classification System. J Urol, 2018. 199: 1608.
https://www.ncbi.nlm.nih.gov/pubmed/29198997/
879.Xie, M., et al. Do Various Treatment Modalities of Vesicoureteral Reflux Have Any Adverse Effects in Pediatric Patients? A Meta-Analysis. Urol Int, 2021. 105: 1002.
https://www.ncbi.nlm.nih.gov/pubmed/34555831/
880.Anraku, T., et al. Retrospective Analysis to Determine the Optimal Timing to Discontinue Continuous Antibiotic Prophylaxis in Patients with Primary Vesicoureteral Reflux. Urol Int, 2019. 102: 462.
https://www.ncbi.nlm.nih.gov/pubmed/30917379/
881.Nadkarni, M.D., et al. Laboratory Findings After Urinary Tract Infection and Antimicrobial Prophylaxis in Children With Vesicoureteral Reflux. Clin Pediatr (Phila), 2020. 59: 259.
https://www.ncbi.nlm.nih.gov/pubmed/31888378/
882.Akagawa, Y., et al. Impact of Long-Term Low Dose Antibiotic Prophylaxis on Gut Microbiota in Children. J Urol, 2020. 204: 1320.
https://www.ncbi.nlm.nih.gov/pubmed/32614253/
883.Morello, W., et al. Low-Dose Antibiotic Prophylaxis Induces Rapid Modifications of the Gut Microbiota in Infants With Vesicoureteral Reflux. Front Pediatr, 2021. 9: 674716.
https://www.ncbi.nlm.nih.gov/pubmed/34222145/
884.Leigh, J., et al. Antibiotic prophylaxis for prevention of urinary tract infections in the first year of life in children with vesicoureteral reflux diagnosed in the workup of antenatal hydronephrosis: a systematic review. Pediatr Nephrol, 2020. 35: 1639.
https://www.ncbi.nlm.nih.gov/pubmed/32350666/
885.Han, D.S., et al. Reflux Timing Is a Predictor of Successful Endoscopic Treatment of Vesicoureteral Reflux. Urology, 2019. 124: 237.
https://www.ncbi.nlm.nih.gov/pubmed/30385258/
886.Dogan, H.S., et al. Factors affecting the success of endoscopic treatment of vesicoureteral reflux and comparison of two dextranomer based bulking agents: does bulking substance matter? J Pediatr Urol, 2015. 11: 90 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25791422/
887.Kocherov, S., et al. Multicenter survey of endoscopic treatment of vesicoureteral reflux using polyacrylate-polyalcohol bulking copolymer (Vantris). Urology, 2014. 84: 689.
https://www.ncbi.nlm.nih.gov/pubmed/25168553/
888.Puri, P., et al. Multicenter survey of endoscopic treatment of vesicoureteral reflux using polytetrafluoroethylene. J Urol, 1998. 160: 1007.
https://www.ncbi.nlm.nih.gov/pubmed/9719265/
889.Steyaert, H., et al. Migration of PTFE paste particles to the kidney after treatment for vesico-ureteric reflux. BJU Int, 2000. 85: 168.
https://www.ncbi.nlm.nih.gov/pubmed/10619969/
890.Elder, J.S., et al. Endoscopic therapy for vesicoureteral reflux: a meta-analysis. I. Reflux resolution and urinary tract infection. J Urol, 2006. 175: 716.
https://www.ncbi.nlm.nih.gov/pubmed/16407037/
891.Tekin, A., et al. Changing bulking agent may require change in injection volume for endoscopic treatment of vesicoureteral reflux. Int Braz J Urol, 2018. 44: 1194.
https://www.ncbi.nlm.nih.gov/pubmed/30325612/
892.Garcia-Aparicio, L., et al. Randomized clinical trial between polyacrylate-polyalcohol copolymer (PPC) and dextranomer-hyaluronic acid copolymer (Dx/HA) as bulking agents for endoscopic treatment of primary vesicoureteral reflux (VUR). World J Urol, 2018. 36: 1651.
https://www.ncbi.nlm.nih.gov/pubmed/29725806/
893.Payza, A.D., et al. Can distal ureteral diameter measurement predict primary vesicoureteral reflux clinical outcome and success of endoscopic injection? J Pediatr Urol, 2019. 15: 515 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31420285/
894.Ben-Meir, D., et al. Late-onset Uretero-vesical Junction Obstruction Following Endoscopic Injection of Bulking Material for the Treatment of Vesico-ureteral Reflux. Urology, 2017. 101: 60.
https://www.ncbi.nlm.nih.gov/pubmed/27993711/
895.Warchol, S., et al. Endoscopic correction of vesicoureteral reflux in children using polyacrylate-polyalcohol copolymer (Vantris): 5-years of prospective follow-up. Cent Eur J Urol, 2017. 70: 314.
https://www.ncbi.nlm.nih.gov/pubmed/29104797/
896.Okawada, M., et al. Incidence of ureterovesical obstruction and Cohen antireflux surgery after Deflux(R) treatment for vesicoureteric reflux. J Pediatr Surg, 2018. 53: 310.
https://www.ncbi.nlm.nih.gov/pubmed/29217322/
897.Babu, R., et al. A systematic review & meta-analysis comparing outcomes of endoscopic treatment of primary vesico ureteric reflux in children with polyacrylate poly alcohol copolymer versus dextranomer hyaluranic acid. J Pediatr Surg, 2022. 57: 683.
https://www.ncbi.nlm.nih.gov/pubmed/35197197/
898.Chertin, B., et al. What are the predictive factors leading to ureteral obstruction following endoscopic correction of VUR in the pediatric population? J Pediatr Urol, 2018. 14: 538 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29885870/
899.Holmdahl, G., et al. The Swedish reflux trial in children: II. Vesicoureteral reflux outcome. J Urol, 2010. 184: 280.
https://www.ncbi.nlm.nih.gov/pubmed/20488469/
900.Nordenstrom, J., et al. The Swedish Infant High-grade Reflux Trial - Bladder function. J Pediatr Urol, 2017. 13: 139.
https://www.ncbi.nlm.nih.gov/pubmed/27989639/
901.Al Hindi, S., et al. High-grade vesicoureteral reflux in infants: Our experience with endoscopic subureteric injections. Urologia, 2022. 89: 120.
https://www.ncbi.nlm.nih.gov/pubmed/33063631/
902.Duckett, J.W., et al. Surgical results: International Reflux Study in Children--United States branch. J Urol, 1992. 148: 1674.
https://www.ncbi.nlm.nih.gov/pubmed/1433586/
903.Lipski, B.A., et al. Voiding dysfunction after bilateral extravesical ureteral reimplantation. J Urol, 1998. 159: 1019.
https://www.ncbi.nlm.nih.gov/pubmed/9474222/
904.Kurtz, M.P., et al. Robotic versus open pediatric ureteral reimplantation: Costs and complications from a nationwide sample. J Pediatr Urol, 2016. 12: 408 e1.
https://www.ncbi.nlm.nih.gov/pubmed/27593917/
905.Esposito, C., et al. Robot-assisted extravesical ureteral reimplantation (revur) for unilateral vesico-ureteral reflux in children: results of a multicentric international survey. World J Urol, 2018. 36: 481.
https://www.ncbi.nlm.nih.gov/pubmed/29248949/
906.Deng, T., et al. Robot-assisted laparoscopic versus open ureteral reimplantation for pediatric vesicoureteral reflux: a systematic review and meta-analysis. World J Urol, 2018. 36: 819.
https://www.ncbi.nlm.nih.gov/pubmed/29374841/
907.Boysen, W.R., et al. Prospective multicenter study on robot-assisted laparoscopic extravesical ureteral reimplantation (RALUR-EV): Outcomes and complications. J Pediatr Urol, 2018. 14: 262 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29503220/
908.Austin, J.C., et al. Vesicoureteral reflux: who benefits from correction. Urol Clin North Am, 2010. 37: 243.
https://www.ncbi.nlm.nih.gov/pubmed/20569802/
909.Canon, S.J., et al. Vesicoscopic cross-trigonal ureteral reimplantation: a minimally invasive option for repair of vesicoureteral reflux. J Urol, 2007. 178: 269.
https://www.ncbi.nlm.nih.gov/pubmed/17499791/
910.Chung, P.H., et al. Comparing open and pneumovesical approach for ureteric reimplantation in pediatric patients--a preliminary review. J Pediatr Surg, 2008. 43: 2246.
https://www.ncbi.nlm.nih.gov/pubmed/19040945/
911.El-Ghoneimi, A. Paediatric laparoscopic surgery. Curr Opin Urol, 2003. 13: 329.
https://www.ncbi.nlm.nih.gov/pubmed/12811298/
912.Grimsby, G.M., et al. Multi-institutional review of outcomes of robot-assisted laparoscopic extravesical ureteral reimplantation. J Urol, 2015. 193: 1791.
https://www.ncbi.nlm.nih.gov/pubmed/25301094/
913.Janetschek, G., et al. Laparoscopic ureteral anti-reflux plasty reimplantation. First clinical experience. Ann Urol (Paris), 1995. 29: 101.
https://www.ncbi.nlm.nih.gov/pubmed/7645993/
914.Jayanthi, V., et al. Vesicoscopic ureteral reimplantation: a minimally invasive technique for the definitive repair of vesicoureteral reflux. Adv Urol, 2008. 2008: 973616.
https://www.ncbi.nlm.nih.gov/pubmed/19009038/
915.Marchini, G.S., et al. Robotic assisted laparoscopic ureteral reimplantation in children: case matched comparative study with open surgical approach. J Urol, 2011. 185: 1870.
https://www.ncbi.nlm.nih.gov/pubmed/21421223/
916.Riquelme, M., et al. Laparoscopic extravesical transperitoneal approach for vesicoureteral reflux. J Laparoendosc Adv Surg Tech A, 2006. 16: 312.
https://www.ncbi.nlm.nih.gov/pubmed/16796449/
917.Kim, E.J., et al. Does de novo hydronephrosis after pediatric robot-assisted laparoscopic ureteral re-implantation behave similarly to open re-implantation? J Pediatr Urol, 2019. 15: 604 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31506239/
918.Straub, M., et al. Diagnosis and metaphylaxis of stone disease. Consensus concept of the National Working Committee on Stone Disease for the upcoming German Urolithiasis Guideline. World J Urol, 2005. 23: 309.
https://www.ncbi.nlm.nih.gov/pubmed/16315051/
919.Zafar, M.N., et al. Composition of urinary calculi in infants: a report from an endemic country. Urolithiasis, 2018. 46: 445.
https://www.ncbi.nlm.nih.gov/pubmed/29101428/
920.Rahman, H.-U., et al. Frequency of Metabolic Abnormalities of Vesical Calculus in Children Younger than 10 Yrs of Age. Pakistan J Med Health Sci, 2021. 15: 1243.
https://pjmhsonline.com/2021/june/1243.pdf
921.Metcalfe, P.D., et al. What is the need for additional bladder surgery after bladder augmentation in childhood? J Urol, 2006. 176: 1801.
https://www.ncbi.nlm.nih.gov/pubmed/16945653/
922.Bush, N.C., et al. Hospitalizations for pediatric stone disease in United States, 2002-2007. J Urol, 2010. 183: 1151.
https://www.ncbi.nlm.nih.gov/pubmed/20096871/
923.Novak, T.E., et al. Sex prevalence of pediatric kidney stone disease in the United States: an epidemiologic investigation. Urology, 2009. 74: 104.
https://www.ncbi.nlm.nih.gov/pubmed/19428065/
924.Tasian, G.E., et al. Annual Incidence of Nephrolithiasis among Children and Adults in South Carolina from 1997 to 2012. Clin J Am Soc Nephrol, 2016. 11: 488.
https://www.ncbi.nlm.nih.gov/pubmed/26769765/
925.Sas, D.J., et al. Increasing incidence of kidney stones in children evaluated in the emergency department. J Pediatr, 2010. 157: 132.
https://www.ncbi.nlm.nih.gov/pubmed/20362300/
926.Kirejczyk, J.K., et al. An association between kidney stone composition and urinary metabolic disturbances in children. J Pediatr Urol, 2014. 10: 130.
https://www.ncbi.nlm.nih.gov/pubmed/23953243/
927.Ingvarsdottir, S.E., et al. Stone recurrence among childhood kidney stone formers: results of a nationwide study in Iceland. Urolithiasis, 2020. 48: 409.
https://www.ncbi.nlm.nih.gov/pubmed/32107578/
928.Tasian, G.E., et al. Kidney Stone Recurrence among Children and Adolescents. J Urol, 2017. 197: 246.
https://www.ncbi.nlm.nih.gov/pubmed/27521691/
929.Saitz, T.R., et al. 24 Hour urine metabolic differences between solitary and multiple stone formers: Results of the Collaboration on Urolithiasis in Pediatrics (CUP) working group. J Pediatr Urol, 2017. 13: 506 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28526618/
930.Kruse, K., et al. Reference values for urinary calcium excretion and screening for hypercalciuria in children and adolescents. Eur J Pediatr, 1984. 143: 25.
https://www.ncbi.nlm.nih.gov/pubmed/6510426/
931.Sargent, J.D., et al. Normal values for random urinary calcium to creatinine ratios in infancy. J Pediatr, 1993. 123: 393.
https://www.ncbi.nlm.nih.gov/pubmed/8355114/
932.Stapleton, F.B., et al. Urinary excretion of calcium following an oral calcium loading test in healthy children. Pediatrics, 1982. 69: 594.
https://www.ncbi.nlm.nih.gov/pubmed/7079015/
933.Borghi, L., et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med, 2002. 346: 77.
https://www.ncbi.nlm.nih.gov/pubmed/11784873/
934.Curhan, G.C., et al. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med, 1993. 328: 833.
https://www.ncbi.nlm.nih.gov/pubmed/8441427/
935.Bartosh, S.M. Medical management of pediatric stone disease. Urol Clin North Am, 2004. 31: 575.
https://www.ncbi.nlm.nih.gov/pubmed/15313066/
936.Choi, J.N., et al. Low-dose thiazide diuretics in children with idiopathic renal hypercalciuria. Acta Paediatr, 2011. 100: e71.
https://www.ncbi.nlm.nih.gov/pubmed/21284722/
937.Naseri, M., et al. Role of high-dose hydrochlorothiazide in idiopathic hypercalciuric urolithiasis of childhood. Iran J Kidney Dis, 2011. 5: 162.
https://www.ncbi.nlm.nih.gov/pubmed/21525575/
938.Preminger, G.M., et al. Eventual attenuation of hypocalciuric response to hydrochlorothiazide in absorptive hypercalciuria. J Urol, 1987. 137: 1104.
https://www.ncbi.nlm.nih.gov/pubmed/3586136/
939.Tekin, A., et al. Oral potassium citrate treatment for idiopathic hypocitruria in children with calcium urolithiasis. J Urol, 2002. 168: 2572.
https://www.ncbi.nlm.nih.gov/pubmed/12441986/
940.Hoppe, B., et al. Urinary calcium oxalate saturation in healthy infants and children. J Urol, 1997. 158: 557.
https://www.ncbi.nlm.nih.gov/pubmed/9224359/
941.Neuhaus, T.J., et al. Urinary oxalate excretion in urolithiasis and nephrocalcinosis. Arch Dis Child, 2000. 82: 322.
https://www.ncbi.nlm.nih.gov/pubmed/10735843/
942.Turudic, D., et al. Calcium oxalate urolithiasis in children: urinary promoters/inhibitors and role of their ratios. Eur J Pediatr, 2016. 175: 1959.
https://www.ncbi.nlm.nih.gov/pubmed/27730307/
943.Wang, X., et al. Primary Hyperoxaluria Type 1 Disease Manifestations and Healthcare Utilization: A Multi-Country, Online, Chart Review Study. Front Med (Lausanne), 2021. 8: 703305.
https://www.ncbi.nlm.nih.gov/pubmed/34616753/
944.Morgenstern, B.Z., et al. Urinary oxalate and glycolate excretion patterns in the first year of life: a longitudinal study. J Pediatr, 1993. 123: 248.
https://www.ncbi.nlm.nih.gov/pubmed/8345420/
945.Defoor, W., et al. Results of a prospective trial to compare normal urine supersaturation in children and adults. J Urol, 2005. 174: 1708.
https://www.ncbi.nlm.nih.gov/pubmed/16148687/
946.Kovacevic, L., et al. From hypercalciuria to hypocitraturia--a shifting trend in pediatric urolithiasis? J Urol, 2012. 188: 1623.
https://www.ncbi.nlm.nih.gov/pubmed/22910255/
947.Tekin, A., et al. A study of the etiology of idiopathic calcium urolithiasis in children: hypocitruria is the most important risk factor. J Urol, 2000. 164: 162.
https://www.ncbi.nlm.nih.gov/pubmed/10840454/
948.Celiksoy, M.H., et al. Metabolic disorders in Turkish children with urolithiasis. Urology, 2015. 85: 909.
https://www.ncbi.nlm.nih.gov/pubmed/25817115/
949.DeFoor, W., et al. Calcium-to-Citrate Ratio Distinguishes Solitary and Recurrent Urinary Stone Forming Children. J Urol, 2017. 198: 416.
https://www.ncbi.nlm.nih.gov/pubmed/28365270/
950.Zu’bi, F., et al. Stone growth patterns and risk for surgery among children presenting with hypercalciuria, hypocitraturia and cystinuria as underlying metabolic causes of urolithiasis. J Pediatr Urol, 2017. 13: 357 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28865885/
951.Tekin, A., et al. Cystine calculi in children: the results of a metabolic evaluation and response to medical therapy. J Urol, 2001. 165: 2328.
https://www.ncbi.nlm.nih.gov/pubmed/11371943/
952.Gabrielsen, J.S., et al. Pediatric urinary stone composition in the United States. J Urol, 2012. 187: 2182.
https://www.ncbi.nlm.nih.gov/pubmed/22503021/
953.Rellum, D.M., et al. Pediatric urolithiasis in a non-endemic country: a single center experience from The Netherlands. J Pediatr Urol, 2014. 10: 155.
https://www.ncbi.nlm.nih.gov/pubmed/23981680/
954.Bove, P., et al. Reexamining the value of hematuria testing in patients with acute flank pain. J Urol, 1999. 162: 685.
https://www.ncbi.nlm.nih.gov/pubmed/10458342/
955.Sternberg, K., et al. Pediatric stone disease: an evolving experience. J Urol, 2005. 174: 1711.
https://www.ncbi.nlm.nih.gov/pubmed/16148688/
956.Memarsadeghi, M., et al. Unenhanced multi-detector row CT in patients suspected of having urinary stone disease: effect of section width on diagnosis. Radiology, 2005. 235: 530.
https://www.ncbi.nlm.nih.gov/pubmed/15758192/
957.Oner, S., et al. Comparison of spiral CT and US in the evaluation of pediatric urolithiasis. JBR-BTR, 2004. 87: 219.
https://www.ncbi.nlm.nih.gov/pubmed/15587558/
958.Strouse, P.J., et al. Non-contrast thin-section helical CT of urinary tract calculi in children. Pediatr Radiol, 2002. 32: 326.
https://www.ncbi.nlm.nih.gov/pubmed/11956719/
959.Kwon, J.K., et al. Usefulness of low-dose nonenhanced computed tomography with iterative reconstruction for evaluation of urolithiasis: diagnostic performance and agreement between the urologist and the radiologist. Urology, 2015. 85: 531.
https://www.ncbi.nlm.nih.gov/pubmed/25733262/
960.Alpay, H., et al. Clinical and metabolic features of urolithiasis and microlithiasis in children. Pediatr Nephrol, 2009. 24: 2203.
https://www.ncbi.nlm.nih.gov/pubmed/19603196/
961.Skolarikos, A., et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol, 2015. 67: 750.
https://www.ncbi.nlm.nih.gov/pubmed/25454613/
962.Untan, I., et al. Metabolic risk factors and the role of prophylaxis in pediatric urolithiasis. J Pediatr Urol, 2021. 17: 215 e1.
https://www.ncbi.nlm.nih.gov/pubmed/33342680/
963.Chan, K.H., et al. The ability of a limited metabolic assessment to identify pediatric stone formers with metabolic abnormalities. J Pediatr Urol, 2018. 14: 331 e1.
https://www.ncbi.nlm.nih.gov/pubmed/30177386/
964.Chan, K.H., et al. Initial collection of an inadequate 24-hour urine sample in children does not predict subsequent inadequate collections. J Pediatr Urol, 2019. 15: 74 e1.
https://www.ncbi.nlm.nih.gov/pubmed/30467015/
965.Bastug, F., et al. Comparison of infants and children with urolithiasis: a large case series. Urolithiasis, 2022. 50: 411.
https://www.ncbi.nlm.nih.gov/pubmed/35482085/
966.Andrioli, V., et al. Infant nephrolithiasis and nephrocalcinosis: Natural history and predictors of surgical intervention. J Pediatr Urol, 2017. 13: 355 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28729176/
967.Camlar, S.A., et al. Characteristics of infant urolithiasis: A single center experience in western Turkey. J Pediatr Urol, 2020. 16: 463 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32571536/
968.Saygili, S.K., et al. Natural history of patients with infantile nephrolithiasis: what are the predictors of surgical intervention? Pediatr Nephrol, 2021. 36: 939.
https://www.ncbi.nlm.nih.gov/pubmed/33006651/
969.Asi, T., et al. Shockwave lithotripsy for kidney stones as a first-line therapy in children younger than 2 years. J Pediatr Urol, 2020. 16: 193 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32037146/
970.Ahmad T, M.N., Manan F. Safety and Efficacy of Minimally Invasive Percutaneous Nephrolithotomy for Kidney Stones in Infants in Pakistan. Med Forum, 2021. 32: 151.
https://www.ncbi.nlm.nih.gov/pubmed/https://doi.org/10.1186/s12894-023-01341-3/
971.Li, J., et al. Flexible ureteroscopic lithotripsy for the treatment of upper urinary tract calculi in infants. Exp Biol Med (Maywood), 2017. 242: 153.
https://www.ncbi.nlm.nih.gov/pubmed/27633576/
972.Raza, A., et al. Pediatric urolithiasis: 15 years of local experience with minimally invasive endourological management of pediatric calculi. J Urol, 2005. 174: 682.
https://www.ncbi.nlm.nih.gov/pubmed/16006948/
973.Rizvi, S.A., et al. Pediatric urolithiasis: developing nation perspectives. J Urol, 2002. 168: 1522.
https://www.ncbi.nlm.nih.gov/pubmed/12352448/
974.Elmaci, A.M., et al. What predicts spontaneous passage of </=11399746146cm ureteral stones in children? J Pediatr Surg, 2020. 55: 1373.
https://www.ncbi.nlm.nih.gov/pubmed/31155390/
975.Shahat, A., et al. Is Tamsulosin Effective after Shock Wave Lithotripsy for Pediatric Renal Stones? A Randomized, Controlled Study. J Urol, 2016. 195: 1284.
https://www.ncbi.nlm.nih.gov/pubmed/26926538/
976.Velazquez, N., et al. Medical expulsive therapy for pediatric urolithiasis: Systematic review and meta-analysis. J Pediatr Urol, 2015. 11: 321.
https://www.ncbi.nlm.nih.gov/pubmed/26165192/
977.Tuerxun, A., et al. Impaction and Prediction: Does Ureteral Wall Thickness Affect the Success of Medical Expulsive Therapy in Pediatric Ureteral Stones? Urol Int, 2017. 98: 436.
https://www.ncbi.nlm.nih.gov/pubmed/28052290/
978.Soliman, M.G., et al. Silodosin versus Tamsulosin as Medical Expulsive Therapy for Children with Lower-Third Ureteric Stones: Prospective Randomized Placebo-Controlled Study. Urol Int, 2021. 105: 568.
https://www.ncbi.nlm.nih.gov/pubmed/33524970/
979.Kern, A., et al. Medical and dietary interventions for preventing recurrent urinary stones in children. Cochrane Database Syst Rev, 2017. 11: CD011252.
https://www.ncbi.nlm.nih.gov/pubmed/29117629/
980.Dincel, N., et al. Are small residual stone fragments really insignificant in children? J Pediatr Surg, 2013. 48: 840.
https://www.ncbi.nlm.nih.gov/pubmed/23583144/
981.El-Assmy, A., et al. Clinically Insignificant Residual Fragments: Is It an Appropriate Term in Children? Urology, 2015. 86: 593.
https://www.ncbi.nlm.nih.gov/pubmed/26126693/
982.Akin, Y., et al. Long-term effects of pediatric extracorporeal shockwave lithotripsy on renal function. Res Rep Urol, 2014. 6: 21.
https://www.ncbi.nlm.nih.gov/pubmed/24892029/
983.Aksoy, Y., et al. Extracorporeal shock wave lithotripsy in children: experience using a mpl-9000 lithotriptor. World J Urol, 2004. 22: 115.
https://www.ncbi.nlm.nih.gov/pubmed/14740160/
984.Aldridge, R.D., et al. Anesthesia for pediatric lithotripsy. Paediatr Anaesth, 2006. 16: 236.
https://www.ncbi.nlm.nih.gov/pubmed/16490086/
985.McLorie, G.A., et al. Safety and efficacy of extracorporeal shock wave lithotripsy in infants. Can J Urol, 2003. 10: 2051.
https://www.ncbi.nlm.nih.gov/pubmed/14704109/
986.Reisiger, K., et al. Pediatric nephrolithiasis: does treatment affect renal growth? Urology, 2007. 69: 1190.
https://www.ncbi.nlm.nih.gov/pubmed/17572213/
987.Villanyi, K.K., et al. Short-term changes in renal function after extracorporeal shock wave lithotripsy in children. J Urol, 2001. 166: 222.
https://www.ncbi.nlm.nih.gov/pubmed/11435873/
988.Vlajkovic, M., et al. Long-term functional outcome of kidneys in children with urolithiasis after ESWL treatment. Eur J Pediatr Surg, 2002. 12: 118.
https://www.ncbi.nlm.nih.gov/pubmed/12015657/
989.Willis, L.R., et al. Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. J Am Soc Nephrol, 1999. 10: 1753.
https://www.ncbi.nlm.nih.gov/pubmed/10446943/
990.Kaygisiz, O., et al. Which frequency is better for pediatric shock wave lithotripsy? Intermediate or low: a prospective randomized study. World J Urol, 2021. 39: 3963.
https://www.ncbi.nlm.nih.gov/pubmed/33890144/
991.Tuncer, M., et al. What is the optimal frequency in shock wave lithotripsy for pediatric renal stones? A prospective randomized study. Urolithiasis, 2021. 49: 377.
https://www.ncbi.nlm.nih.gov/pubmed/33704540/
992.Ather, M.H., et al. Does size and site matter for renal stones up to 30-mm in size in children treated by extracorporeal lithotripsy? Urology, 2003. 61: 212.
https://www.ncbi.nlm.nih.gov/pubmed/12559298/
993.Muslumanoglu, A.Y., et al. Extracorporeal shock wave lithotripsy as first line treatment alternative for urinary tract stones in children: a large scale retrospective analysis. J Urol, 2003. 170: 2405.
https://www.ncbi.nlm.nih.gov/pubmed/14634438/
994.Ugur, G., et al. Anaesthetic/analgesic management of extracorporeal shock wave lithotripsy in paediatric patients. Paediatr Anaesth, 2003. 13: 85.
https://www.ncbi.nlm.nih.gov/pubmed/12535048/
995.Tuncer, M., et al. Extracorporeal Shock Wave Lithotripsy Management of Renal Stones in Children: Does Anesthesia Affect the Treatment Outcomes on an Age-based Manner? Urology, 2017. 107: 218.
https://www.ncbi.nlm.nih.gov/pubmed/28546088/
996.Afshar, K., et al. Outcome of small residual stone fragments following shock wave lithotripsy in children. J Urol, 2004. 172: 1600.
https://www.ncbi.nlm.nih.gov/pubmed/15371769/
997.Al-Busaidy, S.S., et al. Pediatric staghorn calculi: the role of extracorporeal shock wave lithotripsy monotherapy with special reference to ureteral stenting. J Urol, 2003. 169: 629.
https://www.ncbi.nlm.nih.gov/pubmed/12544330/
998.Lottmann, H.B., et al. Monotherapy extracorporeal shock wave lithotripsy for the treatment of staghorn calculi in children. J Urol, 2001. 165: 2324.
https://www.ncbi.nlm.nih.gov/pubmed/11371942/
999.Rodrigues Netto, N., Jr., et al. Extracorporeal shock wave lithotripsy in children. J Urol, 2002. 167: 2164.
https://www.ncbi.nlm.nih.gov/pubmed/11956471/
1000.Onal, B., et al. The impact of caliceal pelvic anatomy on stone clearance after shock wave lithotripsy for pediatric lower pole stones. J Urol, 2004. 172: 1082.
https://www.ncbi.nlm.nih.gov/pubmed/15311043/
1001.Kirli, E.A., et al. Does Previous Open Stone Surgery Affect the Outcome of Shock Wave Lithotripsy Treatment in Children? Urol Int, 2021. 105: 52.
https://www.ncbi.nlm.nih.gov/pubmed/32862182/
1002.Demirkesen, O., et al. Efficacy of extracorporeal shock wave lithotripsy for isolated lower caliceal stones in children compared with stones in other renal locations. Urology, 2006. 67: 170.
https://www.ncbi.nlm.nih.gov/pubmed/16413356/
1003.Ozgur Tan, M., et al. The impact of radiological anatomy in clearance of lower calyceal stones after shock wave lithotripsy in paediatric patients. Eur Urol, 2003. 43: 188.
https://www.ncbi.nlm.nih.gov/pubmed/12565778/
1004.Hochreiter, W.W., et al. Extracorporeal shock wave lithotripsy for distal ureteral calculi: what a powerful machine can achieve. J Urol, 2003. 169: 878.
https://www.ncbi.nlm.nih.gov/pubmed/12576804/
1005.Landau, E.H., et al. Extracorporeal shock wave lithotripsy is highly effective for ureteral calculi in children. J Urol, 2001. 165: 2316.
https://www.ncbi.nlm.nih.gov/pubmed/11371970/
1006.McAdams, S., et al. Preoperative stone attenuation value predicts success after shock wave lithotripsy in children. J Urol, 2010. 184: 1804.
https://www.ncbi.nlm.nih.gov/pubmed/20728112/
1007.Dogan, H.S., et al. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy. J Pediatr Urol, 2015. 11: 84 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25812469/
1008.Onal, B., et al. Nomogram and scoring system for predicting stone-free status after extracorporeal shock wave lithotripsy in children with urolithiasis. BJU Int, 2013. 111: 344.
https://www.ncbi.nlm.nih.gov/pubmed/22672514/
1009.Yanaral, F., et al. Shock-wave Lithotripsy for Pediatric Patients: Which Nomogram Can Better Predict Postoperative Outcomes? Urology, 2018. 117: 126.
https://www.ncbi.nlm.nih.gov/pubmed/29630952/
1010.Kailavasan, M., et al. A systematic review of nomograms used in urolithiasis practice to predict clinical outcomes in paediatric patients. J Pediatr Urol, 2022. 18: 448.
https://www.ncbi.nlm.nih.gov/pubmed/35676182/
1011.Ergin, G., et al. Shock wave lithotripsy or retrograde intrarenal surgery: which one is more effective for 10-20-mm renal stones in children. Ir J Med Sci, 2018. 187: 1121.
https://www.ncbi.nlm.nih.gov/pubmed/29502272/
1012.Marchetti, K.A., et al. Extracorporeal shock wave lithotripsy versus ureteroscopy for management of pediatric nephrolithiasis in upper urinary tract stones: multi-institutional outcomes of efficacy and morbidity. J Pediatr Urol, 2019. 15: 516 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31326329/
1013.Wu, H.Y., et al. Surgical management of children with urolithiasis. Urol Clin North Am, 2004. 31: 589.
https://www.ncbi.nlm.nih.gov/pubmed/15313067/
1014.ElSheemy, M.S., et al. Lower calyceal and renal pelvic stones in preschool children: A comparative study of mini-percutaneous nephrolithotomy versus extracorporeal shockwave lithotripsy. Int J Urol, 2016. 23: 564.
https://www.ncbi.nlm.nih.gov/pubmed/27173126/
1015.Jackman, S.V., et al. Percutaneous nephrolithotomy in infants and preschool age children: experience with a new technique. Urology, 1998. 52: 697.
https://www.ncbi.nlm.nih.gov/pubmed/9763096/
1016.Desai, M.R., et al. Percutaneous nephrolithotomy for complex pediatric renal calculus disease. J Endourol, 2004. 18: 23.
https://www.ncbi.nlm.nih.gov/pubmed/15006048/
1017.Badawy, H., et al. Percutaneous management of renal calculi: experience with percutaneous nephrolithotomy in 60 children. J Urol, 1999. 162: 1710.
https://www.ncbi.nlm.nih.gov/pubmed/10524919/
1018.Boormans, J.L., et al. Percutaneous nephrolithotomy for treating renal calculi in children. BJU Int, 2005. 95: 631.
https://www.ncbi.nlm.nih.gov/pubmed/15705093/
1019.Dawaba, M.S., et al. Percutaneous nephrolithotomy in children: early and late anatomical and functional results. J Urol, 2004. 172: 1078.
https://www.ncbi.nlm.nih.gov/pubmed/15311042/
1020.Sahin, A., et al. Percutaneous nephrolithotomy in older children. J Pediatr Surg, 2000. 35: 1336.
https://www.ncbi.nlm.nih.gov/pubmed/10999692/
1021.Shokeir, A.A., et al. Percutaneous nephrolithotomy in treatment of large stones within horseshoe kidneys. Urology, 2004. 64: 426.
https://www.ncbi.nlm.nih.gov/pubmed/15351557/
1022.Saber-Khalah, M., et al. The feasibility of one-day length of hospital stay after pediatric percutaneous nephrolithotomy. Urologia, 2022. 89: 126.
https://www.ncbi.nlm.nih.gov/pubmed/33550942/
1023.Farouk, A., et al. Is mini-percutaneous nephrolithotomy a safe alternative to extracorporeal shockwave lithotripsy in pediatric age group in borderline stones? a randomized prospective study. World J Urol, 2018. 36: 1139.
https://www.ncbi.nlm.nih.gov/pubmed/29450731/
1024.Karatag, T., et al. A Comparison of 2 Percutaneous Nephrolithotomy Techniques for the Treatment of Pediatric Kidney Stones of Sizes 10-20 mm: Microperc vs Miniperc. Urology, 2015. 85: 1015.
https://www.ncbi.nlm.nih.gov/pubmed/25917724/
1025.Nouralizadeh, A., et al. Fluoroscopy-free ultrasonography-guided percutaneous nephrolithotomy in pediatric patients: a single-center experience. World J Urol, 2018. 36: 667.
https://www.ncbi.nlm.nih.gov/pubmed/29349571/
1026.Ozden, E., et al. Modified Clavien classification in percutaneous nephrolithotomy: assessment of complications in children. J Urol, 2011. 185: 264.
https://www.ncbi.nlm.nih.gov/pubmed/21074805/
1027.Ozden, E., et al. Percutaneous renal surgery in children with complex stones. J Pediatr Urol, 2008. 4: 295.
https://www.ncbi.nlm.nih.gov/pubmed/18644533/
1028.Simayi, A., et al. Clinical application of super-mini PCNL (SMP) in the treatment of upper urinary tract stones under ultrasound guidance. World J Urol, 2019. 37: 943.
https://www.ncbi.nlm.nih.gov/pubmed/30167833/
1029.Unsal, A., et al. Safety and efficacy of percutaneous nephrolithotomy in infants, preschool age, and older children with different sizes of instruments. Urology, 2010. 76: 247.
https://www.ncbi.nlm.nih.gov/pubmed/20022089/
1030.Wang, W., et al. Comparing micropercutaneous nephrolithotomy and retrograde intrarenal surgery in treating 1-2 cm solitary renal stones in pediatric patients younger than 3 years. J Pediatr Urol, 2019. 15: 517 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31301976/
1031.Dogan, H.S., et al. Percutaneous nephrolithotomy in children: does age matter? World J Urol, 2011. 29: 725.
https://www.ncbi.nlm.nih.gov/pubmed/21590468/
1032.Guven, S., et al. Successful percutaneous nephrolithotomy in children: multicenter study on current status of its use, efficacy and complications using Clavien classification. J Urol, 2011. 185: 1419.
https://www.ncbi.nlm.nih.gov/pubmed/21334653/
1033.Khairy Salem, H., et al. Tubeless percutaneous nephrolithotomy in children. J Pediatr Urol, 2007. 3: 235.
https://www.ncbi.nlm.nih.gov/pubmed/18947742/
1034.Nouralizadeh, A., et al. Experience of percutaneous nephrolithotomy using adult-size instruments in children less than 5 years old. J Pediatr Urol, 2009. 5: 351.
https://www.ncbi.nlm.nih.gov/pubmed/19230776/
1035.Onal, B., et al. Factors affecting complication rates of percutaneous nephrolithotomy in children: results of a multi-institutional retrospective analysis by the Turkish pediatric urology society. J Urol, 2014. 191: 777.
https://www.ncbi.nlm.nih.gov/pubmed/24095906/
1036.Bilen, C.Y., et al. Percutaneous nephrolithotomy in children: lessons learned in 5 years at a single institution. J Urol, 2007. 177: 1867.
https://www.ncbi.nlm.nih.gov/pubmed/17437838/
1037.De Dominicis, M., et al. Retrograde ureteroscopy for distal ureteric stone removal in children. BJU Int, 2005. 95: 1049.
https://www.ncbi.nlm.nih.gov/pubmed/15839930/
1038.Raza, A., et al. Ureteroscopy in the management of pediatric urinary tract calculi. J Endourol, 2005. 19: 151.
https://www.ncbi.nlm.nih.gov/pubmed/15798409/
1039.Satar, N., et al. Rigid ureteroscopy for the treatment of ureteral calculi in children. J Urol, 2004. 172: 298.
https://www.ncbi.nlm.nih.gov/pubmed/15201799/
1040.Bujons, A., et al. Mini-percutaneous nephrolithotomy with high-power holmium YAG laser in pediatric patients with staghorn and complex calculi. J Pediatr Urol, 2016. 12: 253 e1.
https://www.ncbi.nlm.nih.gov/pubmed/27264051/
1041.Ellison, J.S., et al. A simulated model for fluid and tissue heating during pediatric laser lithotripsy. J Pediatr Urol, 2020. 16: 626 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32768343/
1042.Jackman, S.V., et al. The “mini-perc” technique: a less invasive alternative to percutaneous nephrolithotomy. World J Urol, 1998. 16: 371.
https://www.ncbi.nlm.nih.gov/pubmed/9870281/
1043.Dede, O., et al. Ultra-mini-percutaneous nephrolithotomy in pediatric nephrolithiasis: both low pressure and high efficiency. J Pediatr Urol, 2015. 11: 253 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25964199/
1044.Sarica, K., et al. Super-mini percutaneous nephrolithotomy for renal stone less than 25mm in pediatric patients: Could it be an alternative to shockwave lithotripsy? Actas Urol Esp (Engl Ed), 2018. 42: 406.
https://www.ncbi.nlm.nih.gov/pubmed/29273258/
1045.Yuan, D., et al. Super-Mini Percutaneous Nephrolithotomy Reduces the Incidence of Postoperative Adverse Events in Pediatric Patients: A Retrospective Cohort Study. Urol Int, 2019. 103: 81.
https://www.ncbi.nlm.nih.gov/pubmed/31039558/
1046.Liu, Y., et al. Comparison of super-mini PCNL (SMP) versus Miniperc for stones larger than 2 cm: a propensity score-matching study. World J Urol, 2018. 36: 955.
https://www.ncbi.nlm.nih.gov/pubmed/29387932/
1047.Desai, M.R., et al. Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol, 2011. 186: 140.
https://www.ncbi.nlm.nih.gov/pubmed/21575966/
1048.Hatipoglu, N.K., et al. Comparison of shockwave lithotripsy and microperc for treatment of kidney stones in children. J Endourol, 2013. 27: 1141.
https://www.ncbi.nlm.nih.gov/pubmed/23713511/
1049.Bilen, C.Y., et al. Tubeless mini percutaneous nephrolithotomy in infants and preschool children: a preliminary report. J Urol, 2010. 184: 2498.
https://www.ncbi.nlm.nih.gov/pubmed/20961572/
1050.Aghamir, S.M., et al. Feasibility of totally tubeless percutaneous nephrolithotomy under the age of 14 years: a randomized clinical trial. J Endourol, 2012. 26: 621.
https://www.ncbi.nlm.nih.gov/pubmed/22192104/
1051.Gamal, W., et al. Supine pediatric percutaneous nephrolithotomy (PCNL). J Pediatr Urol, 2015. 11: 78 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25819602/
1052.Emiliani, E., et al. Retrorenal colon in pediatric patients with urolithiasis: Is the supine position for PCNL advantageous? J Pediatr Urol, 2022. 18: 741 e1.
https://www.ncbi.nlm.nih.gov/pubmed/35985922/
1053.Desoky, E.A.E., et al. Ultra-Mini-Percutaneous Nephrolithotomy in Flank-Free Modified Supine Position vs Prone Position in Treatment of Pediatric Renal Pelvic and Lower Caliceal Stones. J Endourol, 2022. 36: 610.
https://www.ncbi.nlm.nih.gov/pubmed/34861776/
1054.Binil, K., et al. Intercostal Nerve Block and Peritubal Infiltration with Bupivacaine for Postoperative Analgesia after Percutaneous Nephrolithotomy: A Randomised Clinical Study. J Clin Diagn Res, 2021. 15: UC09.
1055.Gultekin, M.H., et al. Evaluation of the Efficacy of the Erector Spinae Plane Block for Postoperative Pain in Patients Undergoing Percutaneous Nephrolithotomy: A Randomized Controlled Trial. J Endourol, 2020. 34: 267.
https://www.ncbi.nlm.nih.gov/pubmed/31880963/
1056.Dogan, H.S., et al. Factors affecting complication rates of ureteroscopic lithotripsy in children: results of multi-institutional retrospective analysis by Pediatric Stone Disease Study Group of Turkish Pediatric Urology Society. J Urol, 2011. 186: 1035.
https://www.ncbi.nlm.nih.gov/pubmed/21784482/
1057.Schuster, T.G., et al. Ureteroscopy for the treatment of urolithiasis in children. J Urol, 2002. 167: 1813.
https://www.ncbi.nlm.nih.gov/pubmed/11912438/
1058.Dogan, H.S., et al. Use of the holmium:YAG laser for ureterolithotripsy in children. BJU Int, 2004. 94: 131.
https://www.ncbi.nlm.nih.gov/pubmed/15217447/
1059.Gokce, M.I., et al. Evaluation of Postoperative Hydronephrosis Following Ureteroscopy in Pediatric Population: Incidence and Predictors. Urology, 2016. 93: 164.
https://www.ncbi.nlm.nih.gov/pubmed/26972147/
1060.Citamak, B., et al. Semi-Rigid Ureteroscopy Should Not Be the First Option for Proximal Ureteral Stones in Children. J Endourol, 2018. 32: 1028.
https://www.ncbi.nlm.nih.gov/pubmed/30226405/
1061.Abu Ghazaleh, L.A., et al. Retrograde intrarenal lithotripsy for small renal stones in prepubertal children. Saudi J Kidney Dis Transpl, 2011. 22: 492.
https://www.ncbi.nlm.nih.gov/pubmed/21566306/
1062.Corcoran, A.T., et al. When is prior ureteral stent placement necessary to access the upper urinary tract in prepubertal children? J Urol, 2008. 180: 1861.
https://www.ncbi.nlm.nih.gov/pubmed/18721946/
1063.Dave, S., et al. Single-institutional study on role of ureteroscopy and retrograde intrarenal surgery in treatment of pediatric renal calculi. Urology, 2008. 72: 1018.
https://www.ncbi.nlm.nih.gov/pubmed/18585764/
1064.Kim, S.S., et al. Pediatric flexible ureteroscopic lithotripsy: the children’s hospital of Philadelphia experience. J Urol, 2008. 180: 2616.
https://www.ncbi.nlm.nih.gov/pubmed/18950810/
1065.Tanaka, S.T., et al. Pediatric ureteroscopic management of intrarenal calculi. J Urol, 2008. 180: 2150.
https://www.ncbi.nlm.nih.gov/pubmed/18804225/
1066.Li, J., et al. Application of flexible ureteroscopy combined with holmium laser lithotripsy and their therapeutic efficacy in the treatment of upper urinary stones in children and infants. Urol J, 2019. 16: 343.
https://www.ncbi.nlm.nih.gov/pubmed/30784036/
1067.Erkurt, B., et al. Treatment of renal stones with flexible ureteroscopy in preschool age children. Urolithiasis, 2014. 42: 241.
https://www.ncbi.nlm.nih.gov/pubmed/24374900/
1068.Lee, J.J., et al. Flat Panel Detector c-Arms Are Associated with Dramatically Reduced Radiation Exposure During Ureteroscopy and Produce Superior Images. J Endourol, 2021. 35: 789.
https://www.ncbi.nlm.nih.gov/pubmed/33528298/
1069.Mokhless, I.A., et al. Retrograde intrarenal surgery monotherapy versus shock wave lithotripsy for stones 10 to 20 mm in preschool children: a prospective, randomized study. J Urol, 2014. 191: 1496.
https://www.ncbi.nlm.nih.gov/pubmed/24679882/
1070.Alsagheer, G.A., et al. Extracorporeal shock wave lithotripsy (ESWL) versus flexible ureteroscopy (F-URS) for management of renal stone burden less than 21399746146cm in children: A randomized comparative study. Afr J Urol, 2018. 24: 120.
1071.Freton, L., et al. Extracorporeal Shockwave Lithotripsy Versus Flexible Ureteroscopy for the Management of Upper Tract Urinary Stones in Children. J Endourol, 2017. 31: 1.
https://www.ncbi.nlm.nih.gov/pubmed/27824261/
1072.Guler, Y., et al. Comparison of extracorporeal shockwave lithotripsy and retrograde intrarenal surgery in the treatment of renal pelvic and proximal ureteral stones </=2 cm in children. Indian J Urol, 2020. 36: 282.
https://www.ncbi.nlm.nih.gov/pubmed/33376264/
1073.Saad, K.S., et al. Percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Large Renal Stones in Pediatric Patients: A Randomized Controlled Trial. J Urol, 2015. 194: 1716.
https://www.ncbi.nlm.nih.gov/pubmed/26165587/
1074.Bas, O., et al. Comparison of Retrograde Intrarenal Surgery and Micro-Percutaneous Nephrolithotomy in Moderately Sized Pediatric Kidney Stones. J Endourol, 2016. 30: 765.
https://www.ncbi.nlm.nih.gov/pubmed/26983791/
1075.He, Q., et al. Which is the best treatment of pediatric upper urinary tract stones among extracorporeal shockwave lithotripsy, percutaneous nephrolithotomy and retrograde intrarenal surgery: a systematic review. BMC Urol, 2019. 19: 98.
https://www.ncbi.nlm.nih.gov/pubmed/31640693/
1076.Casale, P., et al. Transperitoneal laparoscopic pyelolithotomy after failed percutaneous access in the pediatric patient. J Urol, 2004. 172: 680.
https://www.ncbi.nlm.nih.gov/pubmed/15247760/
1077.Ghani, K.R., et al. Robotic nephrolithotomy and pyelolithotomy with utilization of the robotic ultrasound probe. Int Braz J Urol, 2014. 40: 125.
https://www.ncbi.nlm.nih.gov/pubmed/24642160/
1078.Lee, R.S., et al. Early results of robot assisted laparoscopic lithotomy in adolescents. J Urol, 2007. 177: 2306.
https://www.ncbi.nlm.nih.gov/pubmed/17509345/
1079.Srivastava, A., et al. Laparoscopic Ureterolithotomy in Children: With and Without Stent - Initial Tertiary Care Center Experience with More Than 1-Year Follow-Up. Eur J Pediatr Surg, 2017. 27: 150.
https://www.ncbi.nlm.nih.gov/pubmed/26878339/
1080.Shahat, A.A., et al. A randomised trial comparing transurethral to percutaneous cystolithotripsy in boys. BJU Int, 2022. 130: 254.
https://www.ncbi.nlm.nih.gov/pubmed/35044035/
1081.Uson, A.C., et al. Ureteroceles in infants and children: a report based on 44 cases. Pediatrics, 1961. 27: 971.
https://www.ncbi.nlm.nih.gov/pubmed/13779382/
1082.Prewitt, L.H., Jr., et al. The single ectopic ureter. AJR Am J Roentgenol, 1976. 127: 941.
https://www.ncbi.nlm.nih.gov/pubmed/998831/
1083.Ahmed, S., et al. Single-system ectopic ureters: a review of 12 cases. J Pediatr Surg, 1992. 27: 491.
https://www.ncbi.nlm.nih.gov/pubmed/1522464/
1084.Hecht, S., et al. Ectopic ureters in anorectal malformations. Pediatr Surg Int, 2019. 35: 1005.
https://www.ncbi.nlm.nih.gov/pubmed/31278478/
1085.Chwalla, R. The process of formation of cystic dilatation of the vesical end of the ureter and of diverticula at the ureteral ostium. Urol Cutan Ren 1927. 31: 499. [No abstract available].
1086.Stephens, D. Caecoureterocele and concepts on the embryology and aetiology of ureteroceles. Aust N Z J Surg, 1971. 40: 239.
https://www.ncbi.nlm.nih.gov/pubmed/5279434/
1087.Tokunaka, S., et al. Muscle dysplasia in megaureters. J Urol, 1984. 131: 383.
https://www.ncbi.nlm.nih.gov/pubmed/6699978/
1088.Zerin, J.M., et al. Single-system ureteroceles in infants and children: imaging features. Pediatr Radiol, 2000. 30: 139.
https://www.ncbi.nlm.nih.gov/pubmed/10755749/
1089.Monfort, G., et al. Surgical management of duplex ureteroceles. J Pediatr Surg, 1992. 27: 634.
https://www.ncbi.nlm.nih.gov/pubmed/1625138/
1090.Upadhyay, J., et al. Impact of prenatal diagnosis on the morbidity associated with ureterocele management. J Urol, 2002. 167: 2560.
https://www.ncbi.nlm.nih.gov/pubmed/11992089/
1091.Ellerker, A.G. The extravesical ectopic ureter. Br J Surg, 1958. 45: 344.
https://www.ncbi.nlm.nih.gov/pubmed/13536326/
1092.Pfister, C., et al. The value of endoscopic treatment for ureteroceles during the neonatal period. J Urol, 1998. 159: 1006.
https://www.ncbi.nlm.nih.gov/pubmed/9474217/
1093.Kwatra, N., et al. Scintigraphic features of duplex kidneys on DMSA renal cortical scans. Pediatr Radiol, 2013. 43: 1204.
https://www.ncbi.nlm.nih.gov/pubmed/23385361/
1094.Meneghesso, D., et al. Clinico-pathological correlation in duplex system ectopic ureters and ureteroceles: can preoperative work-up predict renal histology? Pediatr Surg Int, 2012. 28: 309.
https://www.ncbi.nlm.nih.gov/pubmed/22127487/
1095.Kocyigit, A., et al. Efficacy of magnetic resonance urography in detecting renal scars in children with vesicoureteral reflux. Pediatr Nephrol, 2014. 29: 1215.
https://www.ncbi.nlm.nih.gov/pubmed/24500707/
1096.Khrichenko, D., et al., Intra- and inter-observer variability of functional MR urography (fMRU) assessment in children, iPediatr Radiol. 2016. 46: 666.
https://www.ncbi.nlm.nih.gov/pubmed/26795619/
1097.Bellah, R.D., et al. Ureterocele eversion with vesicoureteral reflux in duplex kidneys: findings at voiding cystourethrography. AJR Am J Roentgenol, 1995. 165: 409.
https://www.ncbi.nlm.nih.gov/pubmed/7618568/
1098.Carrico, C., et al. Incontinence due to an infrasphincteric ectopic ureter: why the delay in diagnosis and what the radiologist can do about it. Pediatr Radiol, 1998. 28: 942.
https://www.ncbi.nlm.nih.gov/pubmed/9880638/
1099.Ehammer, T., et al. High resolution MR for evaluation of lower urogenital tract malformations in infants and children: feasibility and preliminary experiences. Eur J Radiol, 2011. 78: 388.
https://www.ncbi.nlm.nih.gov/pubmed/20138451/
1100.Sumfest, J.M., et al. Pseudoureterocele: potential for misdiagnosis of an ectopic ureter as a ureterocele. Br J Urol, 1995. 75: 401.
https://www.ncbi.nlm.nih.gov/pubmed/7735809/
1101.Figueroa, V.H., et al. Utility of MR urography in children suspected of having ectopic ureter. Pediatr Radiol, 2014. 44: 956.
https://www.ncbi.nlm.nih.gov/pubmed/24535117/
1102.Beganovic, A., et al. Ectopic ureterocele: long-term results of open surgical therapy in 54 patients. J Urol, 2007. 178: 251.
https://www.ncbi.nlm.nih.gov/pubmed/17499769/
1103.Byun, E., et al. A meta-analysis of surgical practice patterns in the endoscopic management of ureteroceles. J Urol, 2006. 176: 1871.
https://www.ncbi.nlm.nih.gov/pubmed/16945677/
1104.Chertin, B., et al. Endoscopic treatment of vesicoureteral reflux associated with ureterocele. J Urol, 2007. 178: 1594.
https://www.ncbi.nlm.nih.gov/pubmed/17707044/
1105.Decter, R.M., et al. Individualized treatment of ureteroceles. J Urol, 1989. 142: 535.
https://www.ncbi.nlm.nih.gov/pubmed/2746775/
1106.Husmann, D., et al. Management of ectopic ureterocele associated with renal duplication: a comparison of partial nephrectomy and endoscopic decompression. J Urol, 1999. 162: 1406.
https://www.ncbi.nlm.nih.gov/pubmed/10492225/
1107.Castagnetti, M., et al. Management of duplex system ureteroceles in neonates and infants. Nat Rev Urol, 2009. 6: 307.
https://www.ncbi.nlm.nih.gov/pubmed/19498409/
1108.Monfort, G., et al. [Simplified treatment of ureteroceles]. Chir Pediatr, 1985. 26: 26.
https://www.ncbi.nlm.nih.gov/pubmed/3995671/
1109.Sander, J.C., et al. Outcomes of endoscopic incision for the treatment of ureterocele in children at a single institution. J Urol, 2015. 193: 662.
https://www.ncbi.nlm.nih.gov/pubmed/25167992/
1110.Andrioli, V., et al. Active surveillance for antenatally detected ureteroceles: Predictors of success. J Pediatr Urol, 2018. 14: 243 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29580731/
1111.Han, M.Y., et al. Indications for nonoperative management of ureteroceles. J Urol, 2005. 174: 1652.
https://www.ncbi.nlm.nih.gov/pubmed/16148674/
1112.Mariyappa, B., et al. Management of duplex-system ureterocele. J Paediatr Child Health, 2014. 50: 96.
https://www.ncbi.nlm.nih.gov/pubmed/24372828/
1113.Adorisio, O., et al. Effectiveness of primary endoscopic incision in treatment of ectopic ureterocele associated with duplex system. Urology, 2011. 77: 191.
https://www.ncbi.nlm.nih.gov/pubmed/21168903/
1114.DeFoor, W., et al. Ectopic ureterocele: clinical application of classification based on renal unit jeopardy. J Urol, 2003. 169: 1092.
https://www.ncbi.nlm.nih.gov/pubmed/12576859/
1115.Jesus, L.E., et al. Clinical evolution of vesicoureteral reflux following endoscopic puncture in children with duplex system ureteroceles. J Urol, 2011. 186: 1455.
https://www.ncbi.nlm.nih.gov/pubmed/21862045/
1116.Husmann, D.A., et al. Ureterocele associated with ureteral duplication and a nonfunctioning upper pole segment: management by partial nephroureterectomy alone. J Urol, 1995. 154: 723.
https://www.ncbi.nlm.nih.gov/pubmed/7609163/
1117.Gran, C.D., et al. Primary lower urinary tract reconstruction for nonfunctioning renal moieties associated with obstructing ureteroceles. J Urol, 2005. 173: 198.
https://www.ncbi.nlm.nih.gov/pubmed/15592074/
1118.Gander, R., et al. Evaluation of the Initial Treatment of Ureteroceles. Urology, 2016. 89: 113.
https://www.ncbi.nlm.nih.gov/pubmed/26674749/
1119.Pohl, H.G. Recent advances in the management of ureteroceles in infants and children: Why less may be more. Current Opinion in Urology, 2011. 21: 322.
https://www.ncbi.nlm.nih.gov/pubmed/51386473/
1120.Villanueva, C.A. Open vs robotic infant ureteroureterostomy. J Pediatr Urol, 2019. 15: 390 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31151858/
1121.Herz, D., et al. Robot-assisted laparoscopic management of duplex renal anomaly: Comparison of surgical outcomes to traditional pure laparoscopic and open surgery. J Pediatr Urol, 2016. 12: 44 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26443241/
1122.Tan, A.H., et al. Results of shockwave lithotripsy for pediatric urolithiasis. J Endourol, 2004. 18: 527.
https://www.ncbi.nlm.nih.gov/pubmed/15333214/
1123.Biles, M.J., et al. Innovation in Robotics and Pediatric Urology: Robotic Ureteroureterostomy for Duplex Systems with Ureteral Ectopia. J Endourol, 2016. 30: 1041.
https://www.ncbi.nlm.nih.gov/pubmed/27542552/
1124.Castagnetti, M., et al. Dismembered extravesical reimplantation of dilated upper pole ectopic ureters in duplex systems. J Pediatr Surg, 2013. 48: 459.
https://www.ncbi.nlm.nih.gov/pubmed/23414887/
1125.Esposito, C., et al. A comparison between laparoscopic and retroperitoneoscopic approach for partial nephrectomy in children with duplex kidney: a multicentric survey. World J Urol, 2016. 34: 939.
https://www.ncbi.nlm.nih.gov/pubmed/26577623/
1126.Cohen, S.A., et al. Examining trends in the treatment of ureterocele yields no definitive solution. J Pediatr Urol, 2015. 11: 29.e1.
https://www.ncbi.nlm.nih.gov/pubmed/25459387/
1127.Roy Choudhury, S., et al. Spectrum of ectopic ureters in children. Pediatr Surg Int, 2008. 24: 819.
https://www.ncbi.nlm.nih.gov/pubmed/18463883/
1128.Lee, P.A., et al. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics, 2006. 118: e488.
https://www.ncbi.nlm.nih.gov/pubmed/16882788/
1129.Parliamentary Assembly. Promoting the human rights of and eliminating discrimination against intersex people. (35th Sitting) 2017.
https://assembly.coe.int/nw/xml/XRef/Xref-XML2HTML-en.asp?fileid=24230&lang=en
1130.Wolffenbuttel, K.P., et al. Gonadal dysgenesis in disorders of sex development: Diagnosis and surgical management. J Pediatr Urol, 2016. 12: 411.
https://www.ncbi.nlm.nih.gov/pubmed/27769830/
1131.Nowotny, H., et al. Prenatal dexamethasone treatment for classic 21-hydroxylase deficiency in Europe. Eur J Endocrinol, 2022. 186: K17.
https://www.ncbi.nlm.nih.gov/pubmed/35235536/
1132.Speiser, P.W., et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab, 2010. 95: 4133.
https://www.ncbi.nlm.nih.gov/pubmed/20823466/
1133.Maggi, M., et al. Standard operating procedures: pubertas tarda/delayed puberty--male. J Sex Med, 2013. 10: 285.
https://www.ncbi.nlm.nih.gov/pubmed/22376050/
1134.Wales, J.K. Disordered pubertal development. Arch Dis Child Educ Pract Ed, 2012. 97: 9.
https://www.ncbi.nlm.nih.gov/pubmed/21278425/
1135.Cools, M., et al. Caring for individuals with a difference of sex development (DSD): a Consensus Statement. Nat Rev Endocrinol, 2018. 14: 415.
https://www.ncbi.nlm.nih.gov/pubmed/29769693/
1136.Ahmed, S.F., et al. Society for Endocrinology UK Guidance on the initial evaluation of a suspected difference or disorder of sex development (Revised 2021). Clin Endocrinol (Oxf), 2021. 95: 818.
https://www.ncbi.nlm.nih.gov/pubmed/34031907/
1137.Avni, F.E., et al. Plea for a standardized imaging approach to disorders of sex development in neonates: consensus proposal from European Society of Paediatric Radiology task force. Pediatr Radiol, 2019. 49: 1240.
https://www.ncbi.nlm.nih.gov/pubmed/31123767/
1138.Romao, R.L.P., et al. Pediatric Urologists of Canada (PUC) 2021 position statement: Differences of sex development (AKA disorders of sex development). Can Urol Assoc J, 2021. 15: 395.
https://www.ncbi.nlm.nih.gov/pubmed/34847345/
1139.Lee, P.A., et al. Global Disorders of Sex Development Update since 2006: Perceptions, Approach and Care. Horm Res Paediatr, 2016. 85: 158.
https://www.ncbi.nlm.nih.gov/pubmed/26820577/
1140.Feldman, K.W., et al. Fetal phallic growth and penile standards for newborn male infants. J Pediatr, 1975. 86: 395.
https://www.ncbi.nlm.nih.gov/pubmed/1113226/
1141.Creighton, S., et al. Medical photography: ethics, consent and the intersex patient. BJU Int, 2002. 89: 67.
https://www.ncbi.nlm.nih.gov/pubmed/11849163/
1142.Biswas, K., et al. Imaging in intersex disorders. J Pediatr Endocrinol Metab, 2004. 17: 841.
https://www.ncbi.nlm.nih.gov/pubmed/15270401/
1143.Wright, N.B., et al. Imaging children with ambiguous genitalia and intersex states. Clin Radiol, 1995. 50: 823.
https://www.ncbi.nlm.nih.gov/pubmed/8536391/
1144.Chertin, B., et al. The use of laparoscopy in intersex patients. Pediatr Surg Int, 2006. 22: 405.
https://www.ncbi.nlm.nih.gov/pubmed/16521001/
1145.Denes, F.T., et al. Laparoscopic management of intersexual states. Urol Clin North Am, 2001. 28: 31.
https://www.ncbi.nlm.nih.gov/pubmed/11277066/
1146.Bever, Y.V., et al. Under-reported aspects of diagnosis and treatment addressed in the Dutch-Flemish guideline for comprehensive diagnostics in disorders/differences of sex development. J Med Genet, 2020. 57: 581.
https://www.ncbi.nlm.nih.gov/pubmed/32303604/
1147.Timing of elective surgery on the genitalia of male children with particular reference to the risks, benefits, and psychological effects of surgery and anesthesia. American Academy of Pediatrics. Pediatrics, 1996. 97: 590.
https://www.ncbi.nlm.nih.gov/pubmed/8632952/
1148.Mouriquand, P., et al. The ESPU/SPU standpoint on the surgical management of Disorders of Sex Development (DSD). J Pediatr Urol, 2014. 10: 8.
https://www.ncbi.nlm.nih.gov/pubmed/24528671/
1149.Wolffenbuttel, K.P., et al. Open letter to the Council of Europe. J Pediatr Urol, 2018. 14: 4.
https://www.ncbi.nlm.nih.gov/pubmed/29548361/
1150.Bennecke, E., et al. Early Genital Surgery in Disorders/Differences of Sex Development: Patients’ Perspectives. Arch Sex Behav, 2021. 50: 913.
https://www.ncbi.nlm.nih.gov/pubmed/33712989/
1151.Rapp, M., et al. Self- and proxy-reported outcomes after surgery in people with disorders/differences of sex development (DSD) in Europe (dsd-LIFE). J Pediatr Urol, 2021. 17: 353.
https://www.ncbi.nlm.nih.gov/pubmed/33358555/
1152.van der Zwan, Y.G., et al. Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur Urol, 2015. 67: 692.
https://www.ncbi.nlm.nih.gov/pubmed/25240975/
1153.Piazza, M.J., et al. Germ Cell Tumors in Dysgenetic Gonads. Clinics (Sao Paulo), 2019. 74: e408.
https://www.ncbi.nlm.nih.gov/pubmed/31721911/
1154.Slowikowska-Hilczer, J., et al. Risk of gonadal neoplasia in patients with disorders/differences of sex development. Cancer Epidemiol, 2020. 69: 101800.
https://www.ncbi.nlm.nih.gov/pubmed/32905884/
1155.Cools, M., et al. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr Rev, 2006. 27: 468.
https://www.ncbi.nlm.nih.gov/pubmed/16735607/
1156.Chaudhry, S., et al. Frequency of gonadal tumours in complete androgen insensitivity syndrome (CAIS): A retrospective case-series analysis. J Pediatr Urol, 2017. 13: 498 e1.
https://www.ncbi.nlm.nih.gov/pubmed/28351649/
1157.Weidler, E.M., et al. Evolving indications for surgical intervention in patients with differences/disorders of sex development: Implications of deferred reconstruction. Semin Pediatr Surg, 2020. 29: 150929.
https://www.ncbi.nlm.nih.gov/pubmed/32571514/
1158.Looijenga, L.H., et al. Tumor risk in disorders of sex development (DSD). Best Pract Res Clin Endocrinol Metab, 2007. 21: 480.
https://www.ncbi.nlm.nih.gov/pubmed/17875493/
1159.Falhammar, H., et al. Health status in 1040 adults with disorders of sex development (DSD): a European multicenter study. Endocr Connect, 2018. 7: 466.
https://www.ncbi.nlm.nih.gov/pubmed/29490934/
1160.Rapp, M., et al. Multicentre cross-sectional clinical evaluation study about quality of life in adults with disorders/differences of sex development (DSD) compared to country specific reference populations (dsd-LIFE). Health Qual Life Outcomes, 2018. 16: 54.
https://www.ncbi.nlm.nih.gov/pubmed/29615040/
1161.Kreukels, B.P.C., et al. Sexuality in Adults with Differences/Disorders of Sex Development (DSD): Findings from the dsd-LIFE Study. J Sex Marital Ther, 2019. 45: 688.
https://www.ncbi.nlm.nih.gov/pubmed/31034334/
1162.Bennecke, E., et al. Health-related quality of life and psychological well-being in adults with differences/disorders of sex development. Clin Endocrinol (Oxf), 2017. 86: 634.
https://www.ncbi.nlm.nih.gov/pubmed/28005277/
1163.de Vries, A.L.C., et al. Mental Health of a Large Group of Adults With Disorders of Sex Development in Six European Countries. Psychosom Med, 2019. 81: 629.
https://www.ncbi.nlm.nih.gov/pubmed/31232913/
1164.Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA. 2013.
https://psycnet.apa.org/record/2013-14907-000//
1165.Babu, R., et al. Gender identity disorder (GID) in adolescents and adults with differences of sex development (DSD): A systematic review and meta-analysis. J Pediatr Urol, 2021. 17: 39.
https://www.ncbi.nlm.nih.gov/pubmed/33246831/
1166.Kreukels, B.P.C., et al. Gender Dysphoria and Gender Change in Disorders of Sex Development/Intersex Conditions: Results From the dsd-LIFE Study. J Sex Med, 2018. 15: 777.
https://www.ncbi.nlm.nih.gov/pubmed/29606626/
1167.Callens, N., et al. Recalled and current gender role behavior, gender identity and sexual orientation in adults with Disorders/Differences of Sex Development. Horm Behav, 2016. 86: 8.
https://www.ncbi.nlm.nih.gov/pubmed/27576114/
1168.Capone, V., et al. Definition, diagnosis and management of fetal lower urinary tract obstruction: consensus of the ERKNet CAKUT-Obstructive Uropathy Work Group. Nat Rev Urol, 2022. 19: 295.
https://www.ncbi.nlm.nih.gov/pubmed/35136187/
1169.Fontanella, F., et al. Fetal megacystis: a lot more than LUTO. Ultrasound Obstet Gynecol, 2019. 53: 779.
https://www.ncbi.nlm.nih.gov/pubmed/30043466/
1170.Taghavi, K., et al. Fetal megacystis: A systematic review. J Pediatr Urol, 2017. 13: 7.
https://www.ncbi.nlm.nih.gov/pubmed/27889224/
1171.Hennus, P.M., et al. A systematic review on the accuracy of diagnostic procedures for infravesical obstruction in boys. PLoS One, 2014. 9: e85474.
https://www.ncbi.nlm.nih.gov/pubmed/24586242/
1172.Hodges, S.J., et al. Posterior urethral valves. SciWorldJ, 2009. 9: 1119.
https://www.ncbi.nlm.nih.gov/pubmed/19838598/
1173.Malin, G., et al. Congenital lower urinary tract obstruction: a population-based epidemiological study. BJOG, 2012. 119: 1455.
https://www.ncbi.nlm.nih.gov/pubmed/22925164/
1174.Thakkar, D., et al. Epidemiology and demography of recently diagnosed cases of posterior urethral valves. Pediatr Res, 2014. 76: 560.
https://www.ncbi.nlm.nih.gov/pubmed/25198372/
1175.Churchill, B.M., et al. Emergency treatment and long-term follow-up of posterior urethral valves. Urol Clin North Am, 1990. 17: 343.
https://www.ncbi.nlm.nih.gov/pubmed/2186540/
1176.Hoover, D.L., et al. Posterior urethral valves, unilateral reflux and renal dysplasia: a syndrome. J Urol, 1982. 128: 994.
https://www.ncbi.nlm.nih.gov/pubmed/7176067/
1177.Rittenberg, M.H., et al. Protective factors in posterior urethral valves. J Urol, 1988. 140: 993.
https://www.ncbi.nlm.nih.gov/pubmed/3139895/
1178.Delefortrie, T., et al. Evaluating the impact of pop-off mechanisms in boys with posterior urethral valves. Front Pediatr, 2022. 10: 1014422.
https://www.ncbi.nlm.nih.gov/pubmed/36330367/
1179.Massaguer, C., et al. Pop-off mechanisms as protective factors against chronic renal disease in children with posterior urethral valves. Cir Pediatr, 2022. 35: 180.
https://www.ncbi.nlm.nih.gov/pubmed/36217788/
1180.Cuckow, P.M., et al. Long-term renal function in the posterior urethral valves, unilateral reflux and renal dysplasia syndrome. J Urol, 1997. 158: 1004.
https://www.ncbi.nlm.nih.gov/pubmed/9258130/
1181.Kleppe, S., et al. Impact of prenatal urinomas in patients with posterior urethral valves and postnatal renal function. J Perinat Med, 2006. 34: 425.
https://www.ncbi.nlm.nih.gov/pubmed/16965232/
1182.D’Oro, A., et al. Are pressure pop-offs beneficial to the bladder in boys with posterior urethral valves? J Pediatr Urol, 2020. 16: 488 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32605875/
1183.Young, H.H., et al. Congenital obstruction of the posterior urethra. J Urol, 3: 289-365, 1919. J Urol, 2002. 167: 265.
https://www.ncbi.nlm.nih.gov/pubmed/11743334/
1184.Roy, S., et al. [Contribution of ultrasound signs for the prenatal diagnosis of posterior urethral valves: Experience of 3years at the maternity of the Bicetre Hospital]. J Gynecol Obstet Biol Reprod (Paris), 2016. 45: 478.
https://www.ncbi.nlm.nih.gov/pubmed/25980903/
1185.Cheung, K.W., et al. Congenital urinary tract obstruction. Best Pract Res Clin Obstet Gynaecol, 2019. 58: 78.
https://www.ncbi.nlm.nih.gov/pubmed/30819578/
1186.Kajbafzadeh, A.M., et al. Comparison of magnetic resonance urography with ultrasound studies in detection of fetal urogenital anomalies. J Pediatr Urol, 2008. 4: 32.
https://www.ncbi.nlm.nih.gov/pubmed/18631889/
1187.Calvo-Garcia, M.A. Imaging Evaluation of Fetal Megacystis: How Can Magnetic Resonance Imaging Help? Semin Ultrasound CT MR, 2015. 36: 537.
https://www.ncbi.nlm.nih.gov/pubmed/26614135/
1188.Heikkila, J., et al. Posterior Urethral Valves are Often Associated With Cryptorchidism and Inguinal Hernias. J Urol, 2008. 180: 715.
https://www.ncbi.nlm.nih.gov/pubmed/18554641/
1189.Wong, J., et al. Why do undescended testes and posterior urethral valve occur together? Pediatr Surg Int, 2016. 32: 509.
https://www.ncbi.nlm.nih.gov/pubmed/27072813/
1190.Wu, C.Q., et al. Posterior urethral morphology on initial voiding cystourethrogram correlates to early renal outcomes in infants with posterior urethral valves. J Pediatr Urol, 2022. 18: 813.
https://www.ncbi.nlm.nih.gov/pubmed/35840456/
1191.Johnson, M.P., et al. Natural History of Fetal Lower Urinary Tract Obstruction with Normal Amniotic Fluid Volume at Initial Diagnosis. Fetal Diagn Ther, 2018. 44: 10.
https://www.ncbi.nlm.nih.gov/pubmed/28700992/
1192.Ruano, R., et al. Lower urinary tract obstruction: fetal intervention based on prenatal staging. Pediatr Nephrol, 2017. 32: 1871.
https://www.ncbi.nlm.nih.gov/pubmed/28730376/
1193.Freedman, A.L., et al. Fetal therapy for obstructive uropathy: past, present.future? Pediatr Nephrol, 2000. 14: 167.
https://www.ncbi.nlm.nih.gov/pubmed/10684370/
1194.Ibirogba, E.R., et al. Fetal lower urinary tract obstruction: What should we tell the prospective parents? Prenat Diagn, 2020. 40: 661.
https://www.ncbi.nlm.nih.gov/pubmed/32065667/
1195.Debska, M., et al. Early vesico-amniotic shunting - does it change the prognosis in fetal lower urinary tract obstruction diagnosed in the first trimester? Ginekol Pol, 2017. 88: 486.
https://www.ncbi.nlm.nih.gov/pubmed/29057434/
1196.Saccone, G., et al. Antenatal intervention for congenital fetal lower urinary tract obstruction (LUTO): a systematic review and meta-analysis. J Matern Fetal Neonatal Med, 2020. 33: 2664.
https://www.ncbi.nlm.nih.gov/pubmed/30501534/
1197.Kohl, T., et al. Vesico-amniotic shunt insertion prior to the completion of 16 weeks results in improved preservation of renal function in surviving fetuses with isolated severe lower urinary tract obstruction (LUTO). J Pediatr Urol, 2022. 18: 116.
https://www.ncbi.nlm.nih.gov/pubmed/35123910/
1198.Strizek, B., et al. Vesicoamniotic Shunting before 17 + 0 Weeks in Fetuses with Lower Urinary Tract Obstruction (LUTO): Comparison of Somatex vs. Harrison Shunt Systems. J Clin Med, 2022. 11.
https://www.ncbi.nlm.nih.gov/pubmed/35566484/
1199.Gottschalk, I., et al. Single-center outcome analysis of 46 fetuses with megacystis after intrauterine vesico-amniotic shunting with the Somatex(R)intrauterine shunt. Arch Gynecol Obstet, 2024. 309: 145.
https://www.ncbi.nlm.nih.gov/pubmed/36604332/
1200.Abdennadher, W., et al. Fetal urine biochemistry at 13-23 weeks of gestation in lower urinary tract obstruction: criteria for in-utero treatment. Ultrasound Obstet Gynecol, 2015. 46: 306.
https://www.ncbi.nlm.nih.gov/pubmed/25412852/
1201.Koch, A., et al. Evaluation of Sequential Urine Analysis when Selecting Candidates for Vesicoamniotic Shunting in Lower Urinary Tract Obstruction. Fetal Diagn Ther, 2021. 48: 265.
https://www.ncbi.nlm.nih.gov/pubmed/33756463/
1202.Morris, R.K., et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet, 2013. 382: 1496.
https://www.ncbi.nlm.nih.gov/pubmed/23953766/
1203.Nassr, A.A., et al. Effectiveness of vesicoamniotic shunt in fetuses with congenital lower urinary tract obstruction: an updated systematic review and meta-analysis. Ultrasound Obstet Gynecol, 2017. 49: 696.
https://www.ncbi.nlm.nih.gov/pubmed/27270578/
1204.Sananes, N., et al. Urological fistulas after fetal cystoscopic laser ablation of posterior urethral valves: surgical technical aspects. Ultrasound Obstet Gynecol, 2015. 45: 183.
https://www.ncbi.nlm.nih.gov/pubmed/24817027/
1205.Debska, M., et al. Urethroplasty with balloon catheterization in fetal lower urinary tract obstruction: observational study of 10 fetuses. Ultrasound Obstet Gynecol, 2020. 56: 916.
https://www.ncbi.nlm.nih.gov/pubmed/31763721/
1206.Sarhan, O., et al. Surgical complications of posterior urethral valve ablation: 20 years experience. J Pediatr Surg, 2010. 45: 2222.
https://www.ncbi.nlm.nih.gov/pubmed/21034948/
1207.Babu, R., et al. Early outcome following diathermy versus cold knife ablation of posterior urethral valves. J Pediatr Urol, 2013. 9: 7.
https://www.ncbi.nlm.nih.gov/pubmed/22417679/
1208.Pellegrino, C., et al. Posterior urethral valves: Role of prenatal diagnosis and long-term management of bladder function; a single center point of view and review of literature. Front Pediatr, 2022. 10: 1057092.
https://www.ncbi.nlm.nih.gov/pubmed/36683802/
1209.Smeulders, N., et al. The predictive value of a repeat micturating cystourethrogram for remnant leaflets after primary endoscopic ablation of posterior urethral valves. J Pediatr Urol, 2011. 7: 203.
https://www.ncbi.nlm.nih.gov/pubmed/20537589/
1210.Shirazi, M., et al. Which patients are at higher risk for residual valves after posterior urethral valve ablation? Korean J Urol, 2014. 55: 64.
https://www.ncbi.nlm.nih.gov/pubmed/24466400/
1211.Nawaz, G., et al. Justification For Re-Look Cystoscopy After Posterior Urethral Valve Fulguration. J Ayub Med Coll Abbottabad, 2017. 29: 30.
https://www.ncbi.nlm.nih.gov/pubmed/28712168/
1212.Abdelhalim, A., et al. Effect of Early Oxybutynin Treatment on Posterior Urethral Valve Outcomes in Infants: A Randomized Controlled Trial. J Urol, 2020. 203: 826.
https://www.ncbi.nlm.nih.gov/pubmed/31821098/
1213.Sharifiaghdas, F., et al. Can transient resting of the bladder with vesicostomy reduce the need for a major surgery in some patients? J Pediatr Urol, 2019. 15: 379 e1.
https://www.ncbi.nlm.nih.gov/pubmed/31060966/
1214.Duckett, J.W., Jr. Cutaneous vesicostomy in childhood. The Blocksom technique. Urol Clin North Am, 1974. 1: 485.
https://www.ncbi.nlm.nih.gov/pubmed/4610950/
1215.Williams, D.I., et al. Ring ureterostomy. Br J Urol, 1975. 47: 789.
https://www.ncbi.nlm.nih.gov/pubmed/1222345/
1216.Novak, M.E., et al. Single-stage reconstruction of urinary tract after loop cutaneous ureterostomy. Urology, 1978. 11: 134.
https://www.ncbi.nlm.nih.gov/pubmed/628990/
1217.Ghanem, M.A., et al. Long-term followup of bilateral high (sober) urinary diversion in patients with posterior urethral valves and its effect on bladder function. J Urol, 2005. 173: 1721.
https://www.ncbi.nlm.nih.gov/pubmed/15821568/
1218.Chua, M.E., et al. Impact of Adjuvant Urinary Diversion versus Valve Ablation Alone on Progression from Chronic to End Stage Renal Disease in Posterior Urethral Valves: A Single Institution 15-Year Time-to-Event Analysis. J Urol, 2018. 199: 824.
https://www.ncbi.nlm.nih.gov/pubmed/29061539/
1219.Scott, J.E. Management of congenital posterior urethral valves. Br J Urol, 1985. 57: 71.
https://www.ncbi.nlm.nih.gov/pubmed/3971107/
1220.Harper, L., et al. Circumcision and Risk of Febrile Urinary Tract Infection in Boys with Posterior Urethral Valves: Result of the CIRCUP Randomized Trial. Eur Urol, 2022. 81: 64.
https://www.ncbi.nlm.nih.gov/pubmed/34563412/
1221.Casey, J.T., et al. Early administration of oxybutynin improves bladder function and clinical outcomes in newborns with posterior urethral valves. J Urol, 2012. 188: 1516.
https://www.ncbi.nlm.nih.gov/pubmed/22910256/
1222.Koff, S.A., et al. The valve bladder syndrome: pathophysiology and treatment with nocturnal bladder emptying. J Urol, 2002. 167: 291.
https://www.ncbi.nlm.nih.gov/pubmed/11743343/
1223.Nguyen, M.T., et al. Overnight catheter drainage in children with poorly compliant bladders improves post-obstructive diuresis and urinary incontinence. J Urol, 2005. 174: 1633.
https://www.ncbi.nlm.nih.gov/pubmed/16148670/
1224.Neel, K.F. Feasibility and outcome of clean intermittent catheterization for children with sensate urethra. Can Urol Assoc J, 2010. 4: 403.
https://www.ncbi.nlm.nih.gov/pubmed/21191500/
1225.King, T., et al. Mitrofanoff for valve bladder syndrome: effect on urinary tract and renal function. J Urol, 2014. 191: 1517.
https://www.ncbi.nlm.nih.gov/pubmed/24679888/
1226.Rickard, M., et al. Comparative outcome analysis of pediatric kidney transplant in posterior urethral valves children with or without pretransplant Mitrofanoff procedure. Pediatr Transplant, 2020. 24: e13798.
https://www.ncbi.nlm.nih.gov/pubmed/32741040/
1227.Amesty, M.V., et al. Long-Term Renal Transplant Outcome in Patients With Posterior Urethral Valves. Prognostic Factors Related to Bladder Dysfunction Management. Front Pediatr, 2021. 9: 646923.
https://www.ncbi.nlm.nih.gov/pubmed/34046373/
1228.Akdogan, B., et al. Significance of age-specific creatinine levels at presentation in posterior urethral valve patients. J Pediatr Urol, 2006. 2: 446.
https://www.ncbi.nlm.nih.gov/pubmed/18947654/
1229.Sarhan, O., et al. Prognostic value of serum creatinine levels in children with posterior urethral valves treated by primary valve ablation. J Pediatr Urol, 2010. 6: 11.
https://www.ncbi.nlm.nih.gov/pubmed/19581129/
1230.Coleman, R., et al. Nadir creatinine in posterior urethral valves: How high is low enough? J Pediatr Urol, 2015. 11: 356 e1.
https://www.ncbi.nlm.nih.gov/pubmed/26292912/
1231.Lemmens, A.S., et al. Population-specific serum creatinine centiles in neonates with posterior urethral valves already predict long-term renal outcome. J Matern Fetal Neonatal Med, 2015. 28: 1026.
https://www.ncbi.nlm.nih.gov/pubmed/25000449/
1232.Odeh, R., et al. Predicting Risk of Chronic Kidney Disease in Infants and Young Children at Diagnosis of Posterior Urethral Valves: Initial Ultrasound Kidney Characteristics and Validation of Parenchymal Area as Forecasters of Renal Reserve. J Urol, 2016. 196: 862.
https://www.ncbi.nlm.nih.gov/pubmed/27017936/
1233.Jalkanen, J., et al. Controlled Outcomes for Achievement of Urinary Continence among Boys Treated for Posterior Urethral Valves. J Urol, 2016. 196: 213.
https://www.ncbi.nlm.nih.gov/pubmed/26964916/
1234.Capitanucci, M.L., et al. Long-term bladder function followup in boys with posterior urethral valves: comparison of noninvasive vs invasive urodynamic studies. J Urol, 2012. 188: 953.
https://www.ncbi.nlm.nih.gov/pubmed/22819111/
1235.Concodora, C.W., et al. The Role of Video Urodynamics in the Management of the Valve Bladder. Curr Urol Rep, 2017. 18: 24.
https://www.ncbi.nlm.nih.gov/pubmed/28233231/
1236.Skenazy, J., et al. 1618 Alpha Adrenergic Blockade in Neonates with Posterior Urethral Valves. J Urol, 2012. 187: e654.
1237.Bajpai, M., et al. Postablation and α-1 blocker therapy in children with congenital obstructing posterior urethral membrane. Formosan J , 2021. 54: 7.
https://www.ncbi.nlm.nih.gov/pubmed/https://doi.org/10.4103/fjs.fjs_97_20/
1238.Bain, A., et al. Renal outcomes of children born with posterior urethral valves at a tertiary center: A 15-year retrospective review. Can Urol Assoc J, 2023. 17: 111.
https://www.ncbi.nlm.nih.gov/pubmed/36486177/
1239.Fine, M.S., et al. Posterior urethral valve treatments and outcomes in children receiving kidney transplants. J Urol, 2011. 185: 2507.
https://www.ncbi.nlm.nih.gov/pubmed/21527196/
1240.Kamal, M.M., et al. Impact of posterior urethral valves on pediatric renal transplantation: a single-center comparative study of 297 cases. Pediatr Transplant, 2011. 15: 482.
https://www.ncbi.nlm.nih.gov/pubmed/21599816/
1241.Taskinen, S., et al. Effects of posterior urethral valves on long-term bladder and sexual function. Nat Rev Urol, 2012. 9: 699.
https://www.ncbi.nlm.nih.gov/pubmed/23147930/
1242.Cetin, B., et al. Renal, Bladder and Sexual Outcomes in Adult Men with History of Posterior Urethral Valves Treated in Childhood. Urology, 2021. 153: 301.
https://www.ncbi.nlm.nih.gov/pubmed/33188791/
1243.Arena, S., et al. Anterior urethral valves in children: an uncommon multipathogenic cause of obstructive uropathy. Pediatr Surg Int, 2009. 25: 613.
https://www.ncbi.nlm.nih.gov/pubmed/19517125/
1244.Firlit, R.S., et al. Obstructing anterior urethral valves in children. J Urol, 1978. 119: 819.
https://www.ncbi.nlm.nih.gov/pubmed/566334/
1245.Zia-ul-Miraj, M. Anterior urethral valves: a rare cause of infravesical obstruction in children. J Pediatr Surg, 2000. 35: 556.
https://www.ncbi.nlm.nih.gov/pubmed/10770380/
1246.Routh, J.C., et al. Predicting renal outcomes in children with anterior urethral valves: a systematic review. J Urol, 2010. 184: 1615.
https://www.ncbi.nlm.nih.gov/pubmed/20728183/
1247.Adam, A., et al. Congenital anterior urethral diverticulum: antenatal diagnosis with subsequent neonatal endoscopic management. Urology, 2015. 85: 914.
https://www.ncbi.nlm.nih.gov/pubmed/25704997/
1248.Gupta, D.K., et al. Congenital anterior urethral diverticulum in children. Pediatr Surg Int, 2000. 16: 565.
https://www.ncbi.nlm.nih.gov/pubmed/11149395/
1249.Rawat, J., et al. Congenital anterior urethral valves and diverticula: diagnosis and management in six cases. Afr J Paediatr Surg, 2009. 6: 102.
https://www.ncbi.nlm.nih.gov/pubmed/19661640/
1250.Quoraishi, S.H., et al. Congenital anterior urethral diverticulum in a male teenager: a case report and review of the literature. Case Rep Urol, 2011. 2011: 738638.
https://www.ncbi.nlm.nih.gov/pubmed/22606624/
1251.Cruz-Diaz, O., et al. Anterior urethral valves: not such a benign condition. Front Pediatr, 2013. 1: 35.
https://www.ncbi.nlm.nih.gov/pubmed/24400281/
1252.Maizels, M., et al. Cowper’s syringocele: a classification of dilatations of Cowper’s gland duct based upon clinical characteristics of 8 boys. J Urol, 1983. 129: 111.
https://www.ncbi.nlm.nih.gov/pubmed/6827661/
1253.Melquist, J., et al. Current diagnosis and management of syringocele: a review. Int Braz J Urol, 2010. 36: 3.
https://www.ncbi.nlm.nih.gov/pubmed/20202229/
1254.Bevers, R.F., et al. Cowper’s syringocele: symptoms, classification and treatment of an unappreciated problem. J Urol, 2000. 163: 782.
https://www.ncbi.nlm.nih.gov/pubmed/10687976/
1255.Dewan, P.A., et al. Congenital urethral obstruction: Cobb’s collar or prolapsed congenital obstructive posterior urethral membrane (COPUM). Br J Urol, 1994. 73: 91.
https://www.ncbi.nlm.nih.gov/pubmed/8298906/
1256.Nonomura, K., et al. Impact of congenital narrowing of the bulbar urethra (Cobb’s collar) and its transurethral incision in children. Eur Urol, 1999. 36: 144.
https://www.ncbi.nlm.nih.gov/pubmed/10420036/
1257.Gonzalez, R., et al. Urethral atresia: long-term outcome in 6 children who survived the neonatal period. J Urol, 2001. 165: 2241.
https://www.ncbi.nlm.nih.gov/pubmed/11371953/
1258.Passerini-Glazel, G., et al. The P.A.D.U.A. (progressive augmentation by dilating the urethra anterior) procedure for the treatment of severe urethral hypoplasia. J Urol, 1988. 140: 1247.
https://www.ncbi.nlm.nih.gov/pubmed/2972844/
1259.Freedman, A.L., et al. Long-term outcome in children after antenatal intervention for obstructive uropathies. Lancet, 1999. 354: 374.
https://www.ncbi.nlm.nih.gov/pubmed/10437866/
1260.Downs, R.A. Congenital polyps of the prostatic urethra. A review of the literature and report of two cases. Br J Urol, 1970. 42: 76.
https://www.ncbi.nlm.nih.gov/pubmed/5435705/
1261.Natsheh, A., et al. Fibroepithelial polyp of the bladder neck in children. Pediatr Surg Int, 2008. 24: 613.
https://www.ncbi.nlm.nih.gov/pubmed/18097674/
1262.Akbarzadeh, A., et al. Congenital urethral polyps in children: report of 18 patients and review of literature. J Pediatr Surg, 2014. 49: 835.
https://www.ncbi.nlm.nih.gov/pubmed/24851781/
1263.Parrott, T.S., et al., The bladder and urethra, in: Embryology for surgeons : the embryological basis for the treatment of congenital anomalies 2nd ed., J.E. Skandalakis & S.W. Gray, Editors. 1994, Williams & Wilkins: Baltimore.
1264.Atala, A., et al. in: Patent urachus and urachal cysts. Gellis & Kagan’s current pediatric therapy. Philadelphia: WB Saunders, 1993: 386.
1265.Gearhart JP, J.R., Urachal abnormalities, in: Campbell’s urology 7th edn., P.C. Walsh., A.B. Retik & E.D. Vaughan, Editors. 1998, WB Saunders: Philadelphia.
1266.Moore, K.L., The urogenital system, in: The Developing Human 3rd edn., K.L. Moore, Editor. 1982, Elsevier Health Sciences: Philadelphia.
1267.Berman, S.M., et al. Urachal remnants in adults. Urology, 1988. 31: 17.
https://www.ncbi.nlm.nih.gov/pubmed/3122397/
1268.Metwalli, Z.A., et al. Imaging features of intravesical urachal cysts in children. Pediatr Radiol, 2013. 43: 978.
https://www.ncbi.nlm.nih.gov/pubmed/23370693/
1269.Zenitani, M., et al. Prevalence of urachal remnants in children according to age and their anatomic variants. Pediatr Surg Int, 2022. 38: 1495.
https://www.ncbi.nlm.nih.gov/pubmed/35879470/
1270.Keceli, A.M., et al. Are urachal remnants really rare in children? An observational study. Eur J Pediatr, 2021. 180: 1987.
https://www.ncbi.nlm.nih.gov/pubmed/33492442/
1271.Holten, I., et al. The ultrasonic diagnosis of urachal anomalies. Australas Radiol, 1996. 40: 2.
https://www.ncbi.nlm.nih.gov/pubmed/8838878/
1272.Copp, H.L., et al. Clinical presentation and urachal remnant pathology: implications for treatment. J Urol, 2009. 182: 1921.
https://www.ncbi.nlm.nih.gov/pubmed/19695622/
1273.Galati, V., et al. Management of urachal remnants in early childhood. J Urol, 2008. 180: 1824.
https://www.ncbi.nlm.nih.gov/pubmed/18721938/
1274.Lipskar, A.M., et al. Nonoperative management of symptomatic urachal anomalies. J Pediatr Surg, 2010. 45: 1016.
https://www.ncbi.nlm.nih.gov/pubmed/20438945/
1275.Dethlefs, C.R., et al. Conservative management of urachal anomalies. J Pediatr Surg, 2019. 54: 1054.
https://www.ncbi.nlm.nih.gov/pubmed/30867097/
1276.McCollum, M.O., et al. Surgical implications of urachal remnants: Presentation and management. J Pediatr Surg, 2003. 38: 798.
https://www.ncbi.nlm.nih.gov/pubmed/12720197/
1277.Yiee, J.H., et al. A diagnostic algorithm for urachal anomalies. J Pediatr Urol, 2007. 3: 500.
https://www.ncbi.nlm.nih.gov/pubmed/18947803/
1278.Naiditch, J.A., et al. Current diagnosis and management of urachal remnants. J Pediatr Surg, 2013. 48: 2148.
https://www.ncbi.nlm.nih.gov/pubmed/24094971/
1279.Ashley, R.A., et al. Urachal anomalies: a longitudinal study of urachal remnants in children and adults. J Urol, 2007. 178: 1615.
https://www.ncbi.nlm.nih.gov/pubmed/17707039/
1280.Robert, Y., et al. Urachal remnants: sonographic assessment. J Clin Ultrasound, 1996. 24: 339.
https://www.ncbi.nlm.nih.gov/pubmed/8873855/
1281.Olthof, D.C., et al. Diagnostic accuracy of abdominal ultrasound to detect pathology that needs surgical exploration in children with umbilical discharge. J Pediatr Surg, 2021. 56: 1436.
https://www.ncbi.nlm.nih.gov/pubmed/32951887/
1282.Little, D.C., et al. Urachal anomalies in children: the vanishing relevance of the preoperative voiding cystourethrogram. J Pediatr Surg, 2005. 40: 1874.
https://www.ncbi.nlm.nih.gov/pubmed/16338309/
1283.Nogueras-Ocaña, M., et al. Urachal anomalies in children: surgical or conservative treatment? J Pediatr Urol, 2014. 10: 522.
https://www.ncbi.nlm.nih.gov/pubmed/24321777/
1284.Zieger, B., et al. Sonomorphology and involution of the normal urachus in asymptomatic newborns. Pediatr Radiol, 1998. 28: 156.
https://www.ncbi.nlm.nih.gov/pubmed/9561533/
1285.Herr, H.W., et al. Urachal carcinoma: contemporary surgical outcomes. J Urol, 2007. 178: 74.
https://www.ncbi.nlm.nih.gov/pubmed/17499279/
1286.Sato, H., et al. The current strategy for urachal remnants. Pediatr Surg Int, 2015. 31: 581.
https://www.ncbi.nlm.nih.gov/pubmed/25896294/
1287.Gregory, G.C., et al. Laparoscopic management of urachal cyst associated with umbilical hernia. Hernia, 2011. 15: 93.
https://www.ncbi.nlm.nih.gov/pubmed/20069440/
1288.Osumah, T.S., et al. Robot-Assisted Laparoscopic Urachal Excision Using Hidden Incision Endoscopic Surgery Technique in Pediatric Patients. J Endourol, 2021. 35: 937.
https://www.ncbi.nlm.nih.gov/pubmed/32013581/
1289.Aylward, P., et al. Operative management of urachal remnants: An NSQIP based study of postoperative complications. J Pediatr Surg, 2020. 55: 873.
https://www.ncbi.nlm.nih.gov/pubmed/32145974/
1290.Nissen, M., et al. Pediatric Urachal Anomalies: Monocentric Experience and Mini-Review of Literature. Children, 2022. 9: 72.
https://www.ncbi.nlm.nih.gov/pubmed/35053696/
1291.Gleason, J.M., et al. A comprehensive review of pediatric urachal anomalies and predictive analysis for adult urachal adenocarcinoma. J Urol, 2015. 193: 632.
https://www.ncbi.nlm.nih.gov/pubmed/25219697/
1292.Hager, T., et al. Urachal Cancer in Germany and the USA: An RKI/SEER Population-Based Comparison Study. Urol Int, 2020. 104: 803.
https://www.ncbi.nlm.nih.gov/pubmed/32784300/
1293.Ueno, T., et al. Urachal anomalies: ultrasonography and management. J Pediatr Surg, 2003. 38: 1203.
https://www.ncbi.nlm.nih.gov/pubmed/12891493/
1294.Molina, J.R., et al. Predictors of survival from urachal cancer: a Mayo Clinic study of 49 cases. Cancer, 2007. 110: 2434.
https://www.ncbi.nlm.nih.gov/pubmed/17932892/
1295.Arora, H., et al. Diagnosis and Management of Urachal Anomalies in Children. Curr Bladder Dysf Rep, 2015. 10: 256.
https://link.springer.com/article/10.1007/s11884-015-0310-y
1296.Saltsman, J.A., et al. Urothelial neoplasms in pediatric and young adult patients: A large single-center series. J Pediatr Surg, 2018. 53: 306.
https://www.ncbi.nlm.nih.gov/pubmed/29221636/
1297.Chu, S., et al. Transitional Cell Carcinoma in the Pediatric Patient: A Review of the Literature. Urology, 2016. 91: 175.
https://www.ncbi.nlm.nih.gov/pubmed/26802795/
1298.Caione, P., et al. Nonmuscular Invasive Urothelial Carcinoma of the Bladder in Pediatric and Young Adult Patients: Age-related Outcomes. Urology, 2017. 99: 215.
https://www.ncbi.nlm.nih.gov/pubmed/27450943/
1299.Hoenig, D.M., et al. Transitional cell carcinoma of the bladder in the pediatric patient. J Urol, 1996. 156: 203.
https://www.ncbi.nlm.nih.gov/pubmed/8648805/
1300.Kutarski, P.W., et al. Transitional cell carcinoma of the bladder in young adults. Br J Urol, 1993. 72: 749.
https://www.ncbi.nlm.nih.gov/pubmed/8281408/
1301.Jaworski, D., et al. Diagnostic difficulties in cases of papillary urothelial neoplasm of low malignant potential, urothelial proliferation of uncertain malignant potential, urothelial dysplasia and urothelial papilloma: A review of current literature. Ann Diagn Pathol, 2019. 40: 182.
https://www.ncbi.nlm.nih.gov/pubmed/29395466/
1302.Song, D., et al. Inflammatory myofibroblastic tumor of urinary bladder with severe hematuria: A Case report and literature review. Medicine (Baltimore), 2019. 98: e13987.
https://www.ncbi.nlm.nih.gov/pubmed/30608442/
1303.Teoh, J.Y., et al. Inflammatory myofibroblastic tumors of the urinary bladder: a systematic review. Urology, 2014. 84: 503.
https://www.ncbi.nlm.nih.gov/pubmed/25168523/
1304.Collin, M., et al. Inflammatory myofibroblastic tumour of the bladder in children: a review. J Pediatr Urol, 2015. 11: 239.
https://www.ncbi.nlm.nih.gov/pubmed/25982020/
1305.Wang, X., et al. Malignant Inflammatory Myofibroblastic Tumor of the Urinary Bladder in a 14-Year-Old Boy. J Pediatr Hematol Oncol, 2015. 37: e402.
https://www.ncbi.nlm.nih.gov/pubmed/26207771/
1306.Houben, C.H., et al. Inflammatory myofibroblastic tumor of the bladder in children: what can be expected? Pediatr Surg Int, 2007. 23: 815.
https://www.ncbi.nlm.nih.gov/pubmed/17443333/
1307.Alezra, E., et al. [Complete resolution of inflammatory myofibroblastic tumor of the bladder after antibiotic therapy]. Arch Pediatr, 2016. 23: 612.
https://www.ncbi.nlm.nih.gov/pubmed/27102996/
1308.Sparks, S., et al. Eosinophilic cystitis in the pediatric population: a case series and review of the literature. J Pediatr Urol, 2013. 9: 738.
https://www.ncbi.nlm.nih.gov/pubmed/23391564/
1309.Kopf, A., et al. [Eosinophilic cystitis of allergic origin]. Presse Med, 1984. 13: 83.
https://www.ncbi.nlm.nih.gov/pubmed/6229734/
1310.Tsakiri, A., et al. Eosinophilic cystitis induced by penicillin. Int Urol Nephrol, 2004. 36: 159.
https://www.ncbi.nlm.nih.gov/pubmed/15368685/
1311.Zhou, A.G., et al. Mass Forming Eosinophilic Cystitis in Pediatric Patients. Urology, 2017. 101: 139.
https://www.ncbi.nlm.nih.gov/pubmed/27840250/
1312.Thompson, R.H., et al. Clinical manifestations and functional outcomes in children with eosinophilic cystitis. J Urol, 2005. 174: 2347.
https://www.ncbi.nlm.nih.gov/pubmed/16280840/
1313.Claps, A., et al. How should eosinophilic cystitis be treated in patients with chronic granulomatous disease? Pediatr Nephrol, 2014. 29: 2229.
https://www.ncbi.nlm.nih.gov/pubmed/25037864/
1314.Heidenreich, A., et al. Nephrogenic adenoma: A rare bladder tumor in children. Eur Urol, 1999. 36: 348.
https://www.ncbi.nlm.nih.gov/pubmed/10473997/
1315.Kao, C.S., et al. Nephrogenic adenomas in pediatric patients: a morphologic and immunohistochemical study of 21 cases. Pediatr Dev Pathol, 2013. 16: 80.
https://www.ncbi.nlm.nih.gov/pubmed/23597251/
1316.Franke, E.I., et al. Nephrogenic adenoma in the augmented bladder. J Urol, 2011. 186: 1586.
https://www.ncbi.nlm.nih.gov/pubmed/21862049/
1317.Papali, A.C., et al. A review of pediatric glans malformations: a handy clinical reference. J Urol, 2008. 180: 1737.
https://www.ncbi.nlm.nih.gov/pubmed/18721953/
1318.Eisner, B.H., et al. Pediatric penile tumors of mesenchymal origin. Urology, 2006. 68: 1327.
https://www.ncbi.nlm.nih.gov/pubmed/17169655/
1319.Ealai, P.A., et al. Penile epidermal inclusion cyst: a rare location. BMJ Case Rep, 2015. 2015.
https://www.ncbi.nlm.nih.gov/pubmed/26290567/
1320.De Mendonca, R.R., et al. Mucoid cyst of the penis: Case report and literature review. Can Urol Assoc J, 2010. 4: E155.
https://www.ncbi.nlm.nih.gov/pubmed/21749810/
1321.Syed, M.M.A., et al. Median raphe cyst of the penis: a case report and review of the literature. J Med Case Rep, 2019. 13: 214.
https://www.ncbi.nlm.nih.gov/pubmed/31301740/
1322.Shao, I.H., et al. Male median raphe cysts: serial retrospective analysis and histopathological classification. Diagn Pathol, 2012. 7: 121.
https://www.ncbi.nlm.nih.gov/pubmed/22978603/
1323.Sonthalia, S., et al. Smegma Pearls in Young Uncircumcised Boys. Pediatr Dermatol, 2016. 33: e186.
https://www.ncbi.nlm.nih.gov/pubmed/27071486/
1324.Ramos, L.M., et al. Venous malformation of the glans penis: efficacy of treatment with neodymium:yttruim-aluminum-garnet laser. Urology, 1999. 53: 779.
https://www.ncbi.nlm.nih.gov/pubmed/10197856/
1325.Shah, S.D., et al. Rebound Growth of Infantile Hemangiomas After Propranolol Therapy. Pediatrics, 2016. 137.
https://www.ncbi.nlm.nih.gov/pubmed/26952504/
1326.Dagur, G., et al. Unusual Glomus Tumor of the Penis. Curr Urol, 2016. 9: 113.
https://www.ncbi.nlm.nih.gov/pubmed/27867327/
1327.Saito, T. Glomus tumor of the penis. Int J Urol, 2000. 7: 115.
https://www.ncbi.nlm.nih.gov/pubmed/10750892/
1328.Dwosh, J., et al. Neurofibroma involving the penis in a child. J Urol, 1984. 132: 988.
https://www.ncbi.nlm.nih.gov/pubmed/6436512/
1329.Taib, F., et al. Infantile fibrosarcoma of the penis in a 2-year-old boy. Urology, 2012. 80: 931.
https://www.ncbi.nlm.nih.gov/pubmed/22854139/
1330.Hu, J., et al. Congenital primary penile teratoma in a child. Urology, 2014. 83: 1404.
https://www.ncbi.nlm.nih.gov/pubmed/24767514/
1331.Smeltzer, D.M., et al. Primary lymphedema in children and adolescents: a follow-up study and review. Pediatrics, 1985. 76: 206.
https://www.ncbi.nlm.nih.gov/pubmed/4022694/
1332.Brorson, H. Adipose tissue in lymphedema: the ignorance of adipose tissue in lymphedema. Lymphology, 2004. 37: 175.
https://www.ncbi.nlm.nih.gov/pubmed/15693531/
1333.Schook, C.C., et al. Male genital lymphedema: clinical features and management in 25 pediatric patients. J Pediatr Surg, 2014. 49: 1647.
https://www.ncbi.nlm.nih.gov/pubmed/25475811/
1334.Vricella, G.J., et al. Granulomatous lymphangitis. J Urol, 2013. 190: 1052.
https://www.ncbi.nlm.nih.gov/pubmed/23773564/
1335.Sackett, D.D., et al. Isolated penile lymphedema in an adolescent male: a case of metastatic Crohn’s disease. J Pediatr Urol, 2012. 8: e55.
https://www.ncbi.nlm.nih.gov/pubmed/22507210/
1336.Bolt, R.J., et al. Congenital lymphoedema of the genitalia. Eur J Pediatr, 1998. 157: 943.
https://www.ncbi.nlm.nih.gov/pubmed/9835443/
1337.Dandapat, M.C., et al. Elephantiasis of the penis and scrotum. A review of 350 cases. Am J Surg, 1985. 149: 686.
https://www.ncbi.nlm.nih.gov/pubmed/3993854/
1338.Donaldson, J.F., et al. Priapism in children: a comprehensive review and clinical guideline. J Pediatr Urol, 2014. 10: 11.
https://www.ncbi.nlm.nih.gov/pubmed/24135215/
1339.Jesus, L.E., et al. Priapism in children: review of pathophysiology and treatment. J Pediatr (Rio J), 2009. 85: 194.
https://www.ncbi.nlm.nih.gov/pubmed/19455267/
1340.Spycher, M.A., et al. The ultrastructure of the erectile tissue in priapism. J Urol, 1986. 135: 142.
https://www.ncbi.nlm.nih.gov/pubmed/3941454/
1341.Adeyoju, A.B., et al. Priapism in sickle-cell disease; incidence, risk factors and complications - an international multicentre study. BJU Int, 2002. 90: 898.
https://www.ncbi.nlm.nih.gov/pubmed/12460353/
1342.Mockford, K., et al. Management of high-flow priapism in paediatric patients: a case report and review of the literature. J Pediatr Urol, 2007. 3: 404.
https://www.ncbi.nlm.nih.gov/pubmed/18947783/
1343.Guner, E., et al. Analysis of the Causes of Newborn Priapism: A Retrospective Clinical Study. Prague Med Rep, 2023. 124: 58.
https://www.ncbi.nlm.nih.gov/pubmed/36763832/
1344.Broderick, G.A., et al. Priapism: pathogenesis, epidemiology, and management. J Sex Med, 2010. 7: 476.
https://www.ncbi.nlm.nih.gov/pubmed/20092449/
1345.Hakim, L.S., et al. Evolving concepts in the diagnosis and treatment of arterial high flow priapism. J Urol, 1996. 155: 541.
https://www.ncbi.nlm.nih.gov/pubmed/8558656/
1346.von Stempel, C., et al. Mean velocity and peak systolic velocity can help determine ischaemic and non-ischaemic priapism. Clin Radiol, 2017. 72: 611 e9.
https://www.ncbi.nlm.nih.gov/pubmed/28351471/
1347.EAU Guidelines on Sexual and Reproductive Health. Edn. presented at the EAU Annual Congress Milan 2023. ISBN 978-94-92671-19-6.
https://uroweb.org/guidelines/archive/sexual-and-reproductive-health
1348.Maples, B.L., et al. Treatment of priapism in pediatric patients with sickle cell disease. Am J Health Syst Pharm, 2004. 61: 355.
https://www.ncbi.nlm.nih.gov/pubmed/15011763/
1349.Marchant, W.A., et al. Anaesthetic management of the child with sickle cell disease. Paediatr Anaesth, 2003. 13: 473.
https://www.ncbi.nlm.nih.gov/pubmed/12846703/
1350.McLaughlin, C., et al. Timing of mortality in pediatric trauma patients: A National Trauma Data Bank analysis. J Pediatr Surg, 2018. 53: 344.
https://www.ncbi.nlm.nih.gov/pubmed/29111081/
1351.Grimsby, G.M., et al. Demographics of pediatric renal trauma. J Urol, 2014. 192: 1498.
https://www.ncbi.nlm.nih.gov/pubmed/24907442/
1352.McAninch, J.W., et al. Renal reconstruction after injury. J Urol, 1991. 145: 932.
https://www.ncbi.nlm.nih.gov/pubmed/2016804/
1353.Stein, J.P., et al. Blunt renal trauma in the pediatric population: indications for radiographic evaluation. Urology, 1994. 44: 406.
https://www.ncbi.nlm.nih.gov/pubmed/8073555/
1354.Stalker, H.P., et al. The significance of hematuria in children after blunt abdominal trauma. AJR Am J Roentgenol, 1990. 154: 569.
https://www.ncbi.nlm.nih.gov/pubmed/2106223/
1355.Mee, S.L., et al. Radiographic assessment of renal trauma: a 10-year prospective study of patient selection. J Urol, 1989. 141: 1095.
https://www.ncbi.nlm.nih.gov/pubmed/2709493/
1356.Brown, S.L., et al. Are pediatric patients more susceptible to major renal injury from blunt trauma? A comparative study. J Urol, 1998. 160: 138.
https://www.ncbi.nlm.nih.gov/pubmed/9628634/
1357.Redmond, E.J., et al. Contemporary management of pediatric high grade renal trauma: 10 year experience at a level 1 trauma centre. J Pediatr Urol, 2020. 16: 656 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32800481/
1358.Kozar, R.A., et al. Organ injury scaling 2018 update: Spleen, liver, and kidney. J Trauma Acute Care Surg, 2018. 85: 1119.
https://www.ncbi.nlm.nih.gov/pubmed/30462622/
1359.Coley, B.D., et al. Focused abdominal sonography for trauma (FAST) in children with blunt abdominal trauma. J Trauma, 2000. 48: 902.
https://www.ncbi.nlm.nih.gov/pubmed/10823534/
1360.Heller, M.T., et al. MDCT of renal trauma: correlation to AAST organ injury scale. Clin Imaging, 2014. 38: 410.
https://www.ncbi.nlm.nih.gov/pubmed/24667041/
1361.Trinci, M., et al. Contrast-enhanced ultrasound (CEUS) in pediatric blunt abdominal trauma. J Ultrasound, 2019. 22: 27.
https://www.ncbi.nlm.nih.gov/pubmed/30536214/
1362.Schmidt, J., et al. Routine repeat imaging may be avoidable for asymptomatic pediatric patients with renal trauma. J Pediatr Urol, 2022. 18: 76 e1.
https://www.ncbi.nlm.nih.gov/pubmed/34872844/
1363.Hagedorn, J.C., et al. Pediatric blunt renal trauma practice management guidelines: Collaboration between the Eastern Association for the Surgery of Trauma and the Pediatric Trauma Society. J Trauma Acute Care Surg, 2019. 86: 916.
https://www.ncbi.nlm.nih.gov/pubmed/30741880/
1364.Ghani, M.O.A., et al. Urine leaks in children sustaining blunt renal trauma. J Trauma Acute Care Surg, 2022. 93: 376.
https://www.ncbi.nlm.nih.gov/pubmed/34991128/
1365.Chebbi, A., et al. Observation vs. early drainage for grade IV blunt renal trauma: a multicenter study. World J Urol, 2021. 39: 963.
https://www.ncbi.nlm.nih.gov/pubmed/32447442/
1366.LeeVan, E., et al. Management of pediatric blunt renal trauma: A systematic review. J Trauma Acute Care Surg, 2016. 80: 519.
https://www.ncbi.nlm.nih.gov/pubmed/26713980/
1367.Liguori, G., et al. The role of angioembolization in the management of blunt renal injuries: a systematic review. BMC Urol, 2021. 21: 104.
https://www.ncbi.nlm.nih.gov/pubmed/34362352/
1368.Radmayr, C., et al. Blunt renal trauma in children: 26 years clinical experience in an alpine region. Eur Urol, 2002. 42: 297.
https://www.ncbi.nlm.nih.gov/pubmed/12234516/
1369.Marcou, M., et al. Blunt renal trauma-induced hypertension in pediatric patients: a single-center experience. J Pediatr Urol, 2021. 17: 737 e1.
https://www.ncbi.nlm.nih.gov/pubmed/34274236/
1370.Presti, J.C., Jr., et al. Ureteral and renal pelvic injuries from external trauma: diagnosis and management. J Trauma, 1989. 29: 370.
https://www.ncbi.nlm.nih.gov/pubmed/2926851/
1371.Mulligan, J.M., et al. Ureteropelvic junction disruption secondary to blunt trauma: excretory phase imaging (delayed films) should help prevent a missed diagnosis. J Urol, 1998. 159: 67.
https://www.ncbi.nlm.nih.gov/pubmed/9400439/
1372.al-Ali, M., et al. The late treatment of 63 overlooked or complicated ureteral missile injuries: the promise of nephrostomy and role of autotransplantation. J Urol, 1996. 156: 1918.
https://www.ncbi.nlm.nih.gov/pubmed/8911355/
1373.Fernandez Fernandez, A., et al. Blunt traumatic rupture of the high right ureter, repaired with appendix interposition. Urol Int, 1994. 53: 97.
https://www.ncbi.nlm.nih.gov/pubmed/7801425/
1374.Sivit, C.J., et al. CT diagnosis and localization of rupture of the bladder in children with blunt abdominal trauma: significance of contrast material extravasation in the pelvis. AJR Am J Roentgenol, 1995. 164: 1243.
https://www.ncbi.nlm.nih.gov/pubmed/7717239/
1375.Hochberg, E., et al. Bladder rupture associated with pelvic fracture due to blunt trauma. Urology, 1993. 41: 531.
https://www.ncbi.nlm.nih.gov/pubmed/8516988/
1376.Haas, C.A., et al. Limitations of routine spiral computerized tomography in the evaluation of bladder trauma. J Urol, 1999. 162: 51.
https://www.ncbi.nlm.nih.gov/pubmed/10379738/
1377.Volpe, M.A., et al. Is there a difference in outcome when treating traumatic intraperitoneal bladder rupture with or without a suprapubic tube? J Urol, 1999. 161: 1103.
https://www.ncbi.nlm.nih.gov/pubmed/10081847/
1378.Richardson, J.R., Jr., et al. Non-operative treatment of the ruptured bladder. J Urol, 1975. 114: 213.
https://www.ncbi.nlm.nih.gov/pubmed/1159910/
1379.Cass, A.S., et al. Urethral injury due to external trauma. Urology, 1978. 11: 607.
https://www.ncbi.nlm.nih.gov/pubmed/675928/
1380.Pokorny, M., et al. Urological injuries associated with pelvic trauma. J Urol, 1979. 121: 455.
https://www.ncbi.nlm.nih.gov/pubmed/439217/
1381.Bjurlin, M.A., et al. Clinical characteristics and surgical outcomes of penetrating external genital injuries. J Trauma Acute Care Surg, 2013. 74: 839.
https://www.ncbi.nlm.nih.gov/pubmed/23425745/
1382.Kunkle, D.A., et al. Evaluation and management of gunshot wounds of the penis: 20-year experience at an urban trauma center. J Trauma, 2008. 64: 1038.
https://www.ncbi.nlm.nih.gov/pubmed/18404072/
1383.Zhang, Y., et al. Emergency treatment of male blunt urethral trauma in China: Outcome of different methods in comparison with other countries. Asian J Urol, 2018. 5: 78.
https://www.ncbi.nlm.nih.gov/pubmed/29736369/
1384.Peng, X., et al. Straddle injuries to the bulbar urethra: What is the best choice for immediate management? J Trauma Acute Care Surg, 2019. 87: 892.
https://www.ncbi.nlm.nih.gov/pubmed/31205218/
1385.Koraitim, M.M. Posttraumatic posterior urethral strictures in children: a 20-year experience. J Urol, 1997. 157: 641.
https://www.ncbi.nlm.nih.gov/pubmed/8996388/
1386.Baradaran, N., et al. Long-term follow-up of urethral reconstruction for blunt urethral injury at a young age: urinary and sexual quality of life outcomes. J Pediatr Urol, 2019. 15: 224 e1.
https://www.ncbi.nlm.nih.gov/pubmed/30967356/
1387.Joshi, P.M., et al. Management of pelvic fracture urethral injuries in the developing world. World J Urol, 2020. 38: 3027.
https://www.ncbi.nlm.nih.gov/pubmed/31468131/
1388.Wani, S.A., et al. Early primary endoscopic realignment in children with posterior urethral and bladder neck injury. J Pediatr Endo Surg, 2020. 2: 201.
https://www.researchgate.net/publication/342930983
1389.Sreeranga, Y.L., et al. Comprehensive analysis of paediatric pelvic fracture urethral injury: a reconstructive centre experience. BJU Int, 2022. 130: 114.
https://www.ncbi.nlm.nih.gov/pubmed/35044050/
1390.Waterloos, M., et al. Urethroplasty for urethral injuries and trauma-related strictures in children and adolescents: a single-institution experience. J Pediatr Urol, 2019. 15: 176 e1.
https://www.ncbi.nlm.nih.gov/pubmed/30581060/
1391.Garg, G., et al. Outcome of patients with failed pelvic fracture-associated urethral injury repair: A single centre 10-year experience. Turk J Urol, 2019. 45: 139.
https://www.ncbi.nlm.nih.gov/pubmed/30475700/
1392.Nair, S.G., et al. Perioperative fluid and electrolyte management in pediatric patients. Indian J Anaesth, 2004. 48: 355.
1393.Imura, K., et al. Perioperative nutrition and metabolism in pediatric patients. World J Surg, 2000. 24: 1498.
https://www.ncbi.nlm.nih.gov/pubmed/11193714/
1394.Ward Platt, M.P., et al. The effects of anesthesia and surgery on metabolic homeostasis in infancy and childhood. J Pediatr Surg, 1990. 25: 472.
https://www.ncbi.nlm.nih.gov/pubmed/2191106/
1395.Andersson, H., et al. Introducing the 6-4-0 fasting regimen and the incidence of prolonged preoperative fasting in children. Paediatr Anaesth, 2018. 28: 46.
https://www.ncbi.nlm.nih.gov/pubmed/29168341/
1396.Frykholm, P., et al. Preoperative fasting in children: review of existing guidelines and recent developments. Br J Anaesth, 2018. 120: 469.
https://www.ncbi.nlm.nih.gov/pubmed/29452803/
1397.Andersson, H., et al. Low incidence of pulmonary aspiration in children allowed intake of clear fluids until called to the operating suite. Paediatr Anaesth, 2015. 25: 770.
https://www.ncbi.nlm.nih.gov/pubmed/25940831/
1398.Fawcett, W.J., et al. Pre-operative fasting in adults and children: clinical practice and guidelines. Anaesthesia, 2019. 74: 83.
https://www.ncbi.nlm.nih.gov/pubmed/30500064/
1399.Rove, K.O., et al. Enhanced recovery after surgery in children: Promising, evidence-based multidisciplinary care. Paediatr Anaesth, 2018. 28: 482.
https://www.ncbi.nlm.nih.gov/pubmed/29752858/
1400.Frykholm, P., et al. Pre-operative fasting in children: A guideline from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol, 2022. 39: 4.
https://www.ncbi.nlm.nih.gov/pubmed/34857683/
1401.Martin, L.D., et al. Perioperative Management of Pediatric Patients With Type 1 Diabetes Mellitus, Updated Recommendations for Anesthesiologists. Anesth Analg, 2020. 130: 821.
https://www.ncbi.nlm.nih.gov/pubmed/31688079/
1402.Pedraza Bermeo, A.M., et al. Risk factors for postobstructive diuresis in pediatric patients with ureteropelvic junction obstruction, following open pyeloplasty in three high complexity institutions. J Pediatr Urol, 2018. 14: 260 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29501380/
1403.Cheng, W., et al. Electrogastrographic changes in children who undergo day-surgery anesthesia. J Pediatr Surg, 1999. 34: 1336.
https://www.ncbi.nlm.nih.gov/pubmed/10507424/
1404.Chauvin, C., et al. Early postoperative oral fluid intake in paediatric day case surgery influences the need for opioids and postoperative vomiting: a controlled randomized trialdagger. Br J Anaesth, 2017. 118: 407.
https://www.ncbi.nlm.nih.gov/pubmed/28203729/
1405.Ekingen, G., et al. Early enteral feeding in newborn surgical patients. Nutrition, 2005. 21: 142.
https://www.ncbi.nlm.nih.gov/pubmed/15723741/
1406.Cavusoglu, Y.H., et al. Does gum chewing reduce postoperative ileus after intestinal resection in children? A prospective randomized controlled trial. Eur J Pediatr Surg, 2009. 19: 171.
https://www.ncbi.nlm.nih.gov/pubmed/19360548/
1407.Fung, A.C., et al. Enhanced recovery after surgery in pediatric urology: Current evidence and future practice. J Pediatr Urol, 2023. 19: 98.
https://www.ncbi.nlm.nih.gov/pubmed/35995660/
1408.Arena, S., et al. Enhanced Recovery After Gastrointestinal Surgery (ERAS) in Pediatric Patients: a Systematic Review and Meta-analysis. J Gastrointest Surg, 2021. 25: 2976.
https://www.ncbi.nlm.nih.gov/pubmed/34244952/
1409.Ivani, G., et al. Postoperative analgesia in infants and children: new developments. Minerva Anestesiol, 2004. 70: 399.
https://www.ncbi.nlm.nih.gov/pubmed/15181422/
1410.Stapelkamp, C., et al. Assessment of acute pain in children: development of evidence-based guidelines. Int J Evid Based Healthc, 2011. 9: 39.
https://www.ncbi.nlm.nih.gov/pubmed/21332662/
1411.Zielinski, J., et al. Pain assessment and management in children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children. Adv Clin Exp Med, 2020. 29: 365.
https://www.ncbi.nlm.nih.gov/pubmed/32129952/
1412.Cravero, J.P., et al. The Society for Pediatric Anesthesia recommendations for the use of opioids in children during the perioperative period. Paediatr Anaesth, 2019. 29: 547.
https://www.ncbi.nlm.nih.gov/pubmed/30929307/
1413.Jonas, D.A. Parent’s management of their child’s pain in the home following day surgery. J Child Health Care, 2003. 7: 150.
https://www.ncbi.nlm.nih.gov/pubmed/14516009/
1414.Woolf, C.J., et al. Preemptive analgesia--treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg, 1993. 77: 362.
https://www.ncbi.nlm.nih.gov/pubmed/8346839/
1415.W.H.O., Cancer Pain Relief and Palliative Care in Children. 1998, World Health Organization: Geneva.
https://iris.who.int/bitstream/handle/10665/42001/9241545127.pdf
1416.Kelley-Quon, L.I., et al. Guidelines for Opioid Prescribing in Children and Adolescents After Surgery: An Expert Panel Opinion. JAMA Surg, 2021. 156: 76.
https://www.ncbi.nlm.nih.gov/pubmed/33175130/
1417.Wong, I., et al. Opioid-sparing effects of perioperative paracetamol and nonsteroidal anti-inflammatory drugs (NSAIDs) in children. Paediatr Anaesth, 2013. 23: 475.
https://www.ncbi.nlm.nih.gov/pubmed/23570544/
1418.Cooney, M.F. Pain Management in Children: NSAID Use in the Perioperative and Emergency Department Settings. Paediatr Drugs, 2021. 23: 361.
https://www.ncbi.nlm.nih.gov/pubmed/34046854/
1419.Paix, B.R., et al. Circumcision of neonates and children without appropriate anaesthesia is unacceptable practice. Anaesth Intensive Care, 2012. 40: 511.
https://www.ncbi.nlm.nih.gov/pubmed/22577918/
1420.Vittinghoff, M., et al. Postoperative pain management in children: Guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Paediatr Anaesth, 2018. 28: 493.
https://www.ncbi.nlm.nih.gov/pubmed/29635764/
1421.Cyna, A.M., et al. Caudal epidural block versus other methods of postoperative pain relief for circumcision in boys. Cochrane Database Syst Rev, 2008. 2008: CD003005.
https://www.ncbi.nlm.nih.gov/pubmed/18843636/
1422.Hung, T.Y., et al. Analgesic Effects of Regional Analgesic Techniques in Pediatric Inguinal Surgeries: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Anesth Analg, 2024. 138: 108.
https://www.ncbi.nlm.nih.gov/pubmed/36571797/
1423.Wang, Y., et al. Clonidine as an Additive to Local Anesthetics in Caudal Block for Postoperative Analgesia in Pediatric Surgery: A Systematic Review and Meta-Analysis. Front Med (Lausanne), 2021. 8: 723191.
https://www.ncbi.nlm.nih.gov/pubmed/34595191/
1424.Shah, U.J., et al. Efficacy and safety of caudal dexmedetomidine in pediatric infra-umbilical surgery: a meta-analysis and trial-sequential analysis of randomized controlled trials. Reg Anesth Pain Med, 2021. 46: 422.
https://www.ncbi.nlm.nih.gov/pubmed/33452203/
1425.Hermansson, O., et al. Local delivery of bupivacaine in the wound reduces opioid requirements after intraabdominal surgery in children. Pediatr Surg Int, 2013. 29: 451.
https://www.ncbi.nlm.nih.gov/pubmed/23483343/
1426.Hidas, G., et al. Application of continuous incisional infusion of local anesthetic after major pediatric urological surgery: prospective randomized controlled trial. J Pediatr Surg, 2015. 50: 481.
https://www.ncbi.nlm.nih.gov/pubmed/25746712/
1427.Chalmers, D.J., et al. Continuous local anesthetic infusion for children with spina bifida undergoing major reconstruction of the lower urinary tract. J Pediatr Urol, 2015. 11: 72 e1.
https://www.ncbi.nlm.nih.gov/pubmed/25819374/
1428.Hong, J.Y., et al. Fentanyl-sparing effect of acetaminophen as a mixture of fentanyl in intravenous parent-/nurse-controlled analgesia after pediatric ureteroneocystostomy. Anesthesiology, 2010. 113: 672.
https://www.ncbi.nlm.nih.gov/pubmed/20693884/
1429.Mittal, S., et al. Trends in opioid and nonsteroidal anti-inflammatory (NSAID) usage in children undergoing common urinary tract reconstruction: A large, single-institutional analysis. J Pediatr Urol, 2022. 18: 501 e1.
https://www.ncbi.nlm.nih.gov/pubmed/35803865/
1430.Kumar, R., et al. Dorsal lumbotomy incision for pediatric pyeloplasty--a good alternative. Pediatr Surg Int, 1999. 15: 562.
https://www.ncbi.nlm.nih.gov/pubmed/10631734/
1431.Hamill, J.K., et al. Rectus sheath and transversus abdominis plane blocks in children: a systematic review and meta-analysis of randomized trials. Paediatr Anaesth, 2016. 26: 363.
https://www.ncbi.nlm.nih.gov/pubmed/26846889/
1432.Narasimhan, P., et al. Comparison of caudal epidural block with paravertebral block for renal surgeries in pediatric patients: A prospective randomised, blinded clinical trial. J Clin Anesth, 2019. 52: 105.
https://www.ncbi.nlm.nih.gov/pubmed/30243061/
1433.Martin, L.D., et al. Comparison between epidural and opioid analgesia for infants undergoing major abdominal surgery. Paediatr Anaesth, 2019. 29: 835.
https://www.ncbi.nlm.nih.gov/pubmed/31140664/
1434.Snyder, E., et al. Inclusion of surgical antibiotic regimens in pediatric urology publications: A systematic review. J Pediatr Urol, 2020. 16: 595 e1.
https://www.ncbi.nlm.nih.gov/pubmed/32641230/
1435.Kim, J.K., et al. Practice variation on use of antibiotics: An international survey among pediatric urologists. J Pediatr Urol, 2018. 14: 520.
https://www.ncbi.nlm.nih.gov/pubmed/29843954/
1436.Akinci, A., et al. Effect of continuous antibiotic prophylaxis in children with postoperative JJ stents: A prospective randomized study. J Pediatr Urol, 2021. 17: 89.
https://www.ncbi.nlm.nih.gov/pubmed/33097422/
1437.Klaassen, I.L.M., et al. Are low-molecular-weight heparins safe and effective in children? A systematic review. Blood Rev, 2019. 33: 33.
https://www.ncbi.nlm.nih.gov/pubmed/30041977/
1438.Chalmers, E., et al. Guideline on the investigation, management and prevention of venous thrombosis in children. Br J Haematol, 2011. 154: 196.
https://www.ncbi.nlm.nih.gov/pubmed/21595646/
1439.Takemoto, C.M., et al. Hospital-associated venous thromboembolism in children: incidence and clinical characteristics. J Pediatr, 2014. 164: 332.
https://www.ncbi.nlm.nih.gov/pubmed/24332452/
1440.Ahn, J.J., et al. Incidence and risk factors associated with 30-day post-operative venous thromboembolism: A NSQIP-pediatric analysis. J Pediatr Urol, 2018. 14: 335 e1.
https://www.ncbi.nlm.nih.gov/pubmed/29784455/
1441.Journeycake, J.M., et al. Thrombosis during infancy and childhood: what we know and what we do not know. Hematol Oncol Clin North Am, 2004. 18: 1315.
https://www.ncbi.nlm.nih.gov/pubmed/15511618/
1442.Morgan, J., et al. Prevention of perioperative venous thromboembolism in pediatric patients: Guidelines from the Association of Paediatric Anaesthetists of Great Britain and Ireland (APAGBI). Paediatr Anaesth, 2018. 28: 382.
https://www.ncbi.nlm.nih.gov/pubmed/29700892/
1443.Sutor, A.H., et al. Low-molecular-weight heparin in pediatric patients. Semin Thromb Hemost, 2004. 30 Suppl 1: 31.
https://www.ncbi.nlm.nih.gov/pubmed/15085464/
1444.Sharma, M., et al. Thromboprophylaxis in a pediatric hospital. Curr Probl Pediatr Adolesc Health Care, 2013. 43: 178.
https://www.ncbi.nlm.nih.gov/pubmed/23890025/
1445.Pagowska-Klimek, I. Perioperative thromboembolism prophylaxis in children - is it necessary? Anaesthesiol Intensive Ther, 2020. 52: 316.
https://www.ncbi.nlm.nih.gov/pubmed/36851806/
1446.Sharathkumar, A.A., et al. Epidemiology and outcomes of clinically unsuspected venous thromboembolism in children: A systematic review. J Thromb Haemost, 2020. 18: 1100.
https://www.ncbi.nlm.nih.gov/pubmed/31984669/
1447.Getahun, A.B., et al. Magnitude and Factors Associated with Preoperative Anxiety Among Pediatric Patients: Cross-Sectional Study. Pediatric Health Med Ther, 2020. 11: 485.
https://www.ncbi.nlm.nih.gov/pubmed/33364873/
1448.Kain, Z.N., et al. Preoperative anxiety, postoperative pain, and behavioral recovery in young children undergoing surgery. Pediatrics, 2006. 118: 651.
https://www.ncbi.nlm.nih.gov/pubmed/16882820/
1449.Dave, N.M. Premedication and Induction of Anaesthesia in paediatric patients. Indian J Anaesth, 2019. 63: 713.
https://www.ncbi.nlm.nih.gov/pubmed/31571684/
1450.Richards, H.W., et al. Trends in robotic surgery utilization across tertiary children’s hospitals in the United States. Surg Endosc, 2021. 35: 6066.
https://www.ncbi.nlm.nih.gov/pubmed/33112985/
1451.Ransford, G.A., et al. Predictive factors for early discharge (</=24 hours) and re-admission following robotic-assisted laparoscopic pyeloplasty in children. Can Urol Assoc J, 2021. 15: E603.
https://www.ncbi.nlm.nih.gov/pubmed/33999802/
1452.Miyano, G., et al. Recovery of bowel function after transperitoneal or retroperitoneal laparoscopic pyeloplasty. A multi-center study. Pediatr Surg Int, 2021. 37: 1791.
https://www.ncbi.nlm.nih.gov/pubmed/34498175/
1453.Spinelli, G., et al. Pediatric anesthesia for minimally invasive surgery in pediatric urology. Transl Pediatr, 2016. 5: 214.
https://www.ncbi.nlm.nih.gov/pubmed/27867842/
1454.Menes, T., et al. Laparoscopy: searching for the proper insufflation gas. Surg Endosc, 2000. 14: 1050.
https://www.ncbi.nlm.nih.gov/pubmed/11116418/
1455.McHoney, M., et al. Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg, 2003. 38: 105.
https://www.ncbi.nlm.nih.gov/pubmed/12592630/
1456.Peters, C.A. Complications in pediatric urological laparoscopy: results of a survey. J Urol, 1996. 155: 1070.
https://www.ncbi.nlm.nih.gov/pubmed/8583567/
1457.Passerotti, C.C., et al. Patterns and predictors of laparoscopic complications in pediatric urology: the role of ongoing surgical volume and access techniques. J Urol, 2008. 180: 681.
https://www.ncbi.nlm.nih.gov/pubmed/18554647/
1458.Zhou, R., et al. Abdominal wall elasticity of children during pneumoperitoneum. J Pediatr Surg, 2020. 55: 742.
https://www.ncbi.nlm.nih.gov/pubmed/31307782/
1459.Sureka, S.K., et al. Safe and optimal pneumoperitoneal pressure for transperitoneal laparoscopic renal surgery in infant less than 10 kg, looked beyond intraoperative period: A prospective randomized study. J Pediatr Urol, 2016. 12: 281 e1.
https://www.ncbi.nlm.nih.gov/pubmed/27751832/
1460.Streich, B., et al. Increased carbon dioxide absorption during retroperitoneal laparoscopy. Br J Anaesth, 2003. 91: 793.
https://www.ncbi.nlm.nih.gov/pubmed/14633746/
1461.Kalfa, N., et al. Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics, 2005. 116: e785.
https://www.ncbi.nlm.nih.gov/pubmed/16322135/
1462.Ansari, M.S., et al. Risk factors for progression to end-stage renal disease in children with posterior urethral valves. J Pediatr Urol, 2010. 6: 261.
https://www.ncbi.nlm.nih.gov/pubmed/19833558/
1463.Meininger, D., et al. Effects of posture and prolonged pneumoperitoneum on hemodynamic parameters during laparoscopy. World J Surg, 2008. 32: 1400.
https://www.ncbi.nlm.nih.gov/pubmed/18224479/
1464.Gueugniaud, P.Y., et al. The hemodynamic effects of pneumoperitoneum during laparoscopic surgery in healthy infants: assessment by continuous esophageal aortic blood flow echo-Doppler. Anesth Analg, 1998. 86: 290.
https://www.ncbi.nlm.nih.gov/pubmed/9459234/
1465.Sakka, S.G., et al. Transoesophageal echocardiographic assessment of haemodynamic changes during laparoscopic herniorrhaphy in small children. Br J Anaesth, 2000. 84: 330.
https://www.ncbi.nlm.nih.gov/pubmed/10793591/
1466.De Waal, E.E., et al. Haemodynamic changes during low-pressure carbon dioxide pneumoperitoneum in young children. Paediatr Anaesth, 2003. 13: 18.
https://www.ncbi.nlm.nih.gov/pubmed/12535034/
1467.Caliskan, E., et al. Evaluation of renal oxygenization in laparoscopic pediatric surgery by near infrared spectroscopy. Pediatr Surg Int, 2020. 36: 1077.
https://www.ncbi.nlm.nih.gov/pubmed/32651617/
1468.Demyttenaere, S., et al. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc, 2007. 21: 152.
https://www.ncbi.nlm.nih.gov/pubmed/17160650/
1469.Gomez Dammeier, B.H., et al. Anuria during pneumoperitoneum in infants and children: a prospective study. J Pediatr Surg, 2005. 40: 1454.
https://www.ncbi.nlm.nih.gov/pubmed/16150348/
1470.Halverson, A., et al. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc, 1998. 12: 266.
https://www.ncbi.nlm.nih.gov/pubmed/9502709/
1471.Mobbs, R.J., et al. The dangers of diagnostic laparoscopy in the head injured patient. J Clin Neurosci, 2002. 9: 592.
https://www.ncbi.nlm.nih.gov/pubmed/12383425/
1472.Al-Mufarrej, F., et al. Laparoscopic procedures in adults with ventriculoperitoneal shunts. Surg Laparosc Endosc Percutan Tech, 2005. 15: 28.
https://www.ncbi.nlm.nih.gov/pubmed/15714153/
1473.Andolfi, C., et al. Robot-assisted laparoscopic pyeloplasty in infants and children: is it superior to conventional laparoscopy? World J Urol, 2020. 38: 1827.
https://www.ncbi.nlm.nih.gov/pubmed/31506749/
1474.Gonzalez, S.T., et al. Multicenter comparative study of open, laparoscopic, and robotic pyeloplasty in the pediatric population for the treatment of ureteropelvic junction obstruction (UPJO). Int Braz J Urol, 2022. 48: 961.
https://www.ncbi.nlm.nih.gov/pubmed/36083265/
1475.Chandrasekharam, V.V.S., et al. A systematic review and meta-analysis of conventional laparoscopic versus robot-assisted laparoscopic pyeloplasty in infants. J Pediatr Urol, 2021. 17: 502.
https://www.ncbi.nlm.nih.gov/pubmed/33812779/
1476.Peycelon, M., et al. The basics of transition in congenital lifelong urology. World J Urol, 2021. 39: 993.
https://www.ncbi.nlm.nih.gov/pubmed/32076821/
1477.Wood, D., et al. Lifelong Congenital Urology: The Challenges for Patients and Surgeons. Eur Urol, 2019. 75: 1001.
https://www.ncbi.nlm.nih.gov/pubmed/30935758/
1478.Claeys, W., et al. Barriers in transitioning urologic patients from pediatric to adult care. J Pediatr Urol, 2021. 17: 144.
https://www.ncbi.nlm.nih.gov/pubmed/33414041/
1479.Lambert, S.M. Transitional care in pediatric urology. Semin Pediatr Surg, 2015. 24: 73.
https://www.ncbi.nlm.nih.gov/pubmed/25770367/
1480.Kovell, R.C., et al. Transitional Urology. Urol Clin North Am, 2018. 45: 601.
https://www.ncbi.nlm.nih.gov/pubmed/30316314/
1481.Fremion, E., et al. 2023 updates to the spina bifida transition to adult care guidelines. J Pediatr Rehabil Med, 2023. 16: 583.
https://www.ncbi.nlm.nih.gov/pubmed/38160373/
1482.Wood, D. Adolescent urology: developing lifelong care for congenital anomalies. Nat Rev Urol, 2014. 11: 289.
https://www.ncbi.nlm.nih.gov/pubmed/24709966/
1483.Gupta, A.D., et al. Transitional Urology: an Evolving Paradigm for Care of the Aging Adolescent. Curr Bladder Dysf Rep, 2014. 9: 209.
https://link.springer.com/article/10.1007/s11884-014-0252-9
1484.Woodhouse, C.R., et al. Adult care of children from pediatric urology. J Urol, 2012. 187: 1164.
https://www.ncbi.nlm.nih.gov/pubmed/22335866/
1485.Oakeshott, P., et al. Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study. Dev Med Child Neurol, 2010. 52: 749.
https://www.ncbi.nlm.nih.gov/pubmed/20015251/
1486.Loftus, C.J., et al. Congenital causes of neurogenic bladder and the transition to adult care. Transl Androl Urol, 2016. 5: 39.
https://www.ncbi.nlm.nih.gov/pubmed/26904411/
1487.Hoen, L., et al. Long-term effectiveness and complication rates of bladder augmentation in patients with neurogenic bladder dysfunction: A systematic review. Neurourol Urodyn, 2017. 36: 1685.
https://www.ncbi.nlm.nih.gov/pubmed/28169459/
1488.Summers, S.J., et al. Urologic problems in spina bifida patients transitioning to adult care. Urology, 2014. 84: 440.
https://www.ncbi.nlm.nih.gov/pubmed/25065990/
1489.Chan, R., et al. The fate of transitional urology patients referred to a tertiary transitional care center. Urology, 2014. 84: 1544.
https://www.ncbi.nlm.nih.gov/pubmed/25432854/
1490.Wajchendler, A., et al. The transition process of spina bifida patients to adult-centred care: An assessment of the Canadian urology landscape. Can Urol Assoc J, 2017. 11: S88.
https://www.ncbi.nlm.nih.gov/pubmed/28265329/
1491.Stephany, H.A., et al. Transition of urologic patients from pediatric to adult care: a preliminary assessment of readiness in spina bifida patients. Urology, 2015. 85: 959.
https://www.ncbi.nlm.nih.gov/pubmed/25817124/
1492.Sawyer, S.M., et al. Sexual and reproductive health in young people with spina bifida. Dev Med Child Neurol, 1999. 41: 671.
https://www.ncbi.nlm.nih.gov/pubmed/10587043/
1493.Wood, D., et al. Transition Readiness Assessment Questionnaire Spina Bifida (TRAQ-SB) specific module and its association with clinical outcomes among youth and young adults with spina bifida. J Pediatr Rehabil Med, 2019. 12: 405.
https://www.ncbi.nlm.nih.gov/pubmed/31744032/
1494.Rague, J.T., et al. Assessment of Health Literacy and Self-reported Readiness for Transition to Adult Care Among Adolescents and Young Adults With Spina Bifida. JAMA Netw Open, 2021. 4: e2127034.
https://www.ncbi.nlm.nih.gov/pubmed/34581795/
1495.Chua, M.E., et al. Scoping review of neurogenic bladder patient-reported readiness and experience following care in a transitional urology clinic. Neurourol Urodyn, 2022. 41: 1650.
https://www.ncbi.nlm.nih.gov/pubmed/35916108/
1496.Roth, J.D., et al. Factors impacting transition readiness in young adults with neuropathic bladder. J Pediatr Urol, 2020. 16: 45.e1.
https://www.ncbi.nlm.nih.gov/pubmed/31761696/
1497.Duplisea, J.J., et al. Urological Follow-up in Adult Spina Bifida Patients: Is There an Ideal Interval? Urology, 2016. 97: 269.
https://www.ncbi.nlm.nih.gov/pubmed/27364867/
1498.Roth, J.D., et al. Transitioning young adults with neurogenic bladder-Are providers asking too much? J Pediatr Urol, 2019. 15: 384.e1.
https://www.ncbi.nlm.nih.gov/pubmed/31109884/
1499.Grimsby, G.M., et al. Barriers to transition in young adults with neurogenic bladder. J Pediatr Urol, 2016. 12: 258.e1.
https://www.ncbi.nlm.nih.gov/pubmed/27270070/
1500.Manohar, S., et al. The impact of a health care transition clinic on spina bifida condition management and transition planning. Disabil Health J, 2023. 16: 101508.
https://www.ncbi.nlm.nih.gov/pubmed/37541929/
1501.Shepard, C.L., et al. Ambulatory Care Use among Patients with Spina Bifida: Change in Care from Childhood to Adulthood. J Urol, 2018. 199: 1050.
https://www.ncbi.nlm.nih.gov/pubmed/29113842/
1502.Szymanski, K.M., et al. How successful is the transition to adult urology care in spina bifida? A single center 7-year experience. J Pediatr Urol, 2017. 13: 40.e1.
https://www.ncbi.nlm.nih.gov/pubmed/27979598/
1503.Blubaum, A., et al. 9-Year Evaluation of a Transitional Care Program for Congenital Neurogenic Bladder Patients. Urology, 2023. 180: 285.
https://www.ncbi.nlm.nih.gov/pubmed/37451365/
1504.Harhuis, A., et al. 5 years after introduction of a transition protocol: An evaluation of transition care for patients with chronic bladder conditions. J Pediatr Urol, 2018. 14: 150.e1.
https://www.ncbi.nlm.nih.gov/pubmed/29170077/
1505.Matta, R., et al. Healthcare utilization during transition to adult care in patients with spina bifida A population-based, longitudinal study in Ontario, Canada. Can Urol Assoc J, 2023. 17: 191.
https://www.ncbi.nlm.nih.gov/pubmed/36952301/
1506.Keays, M.A., et al. All grown up: A transitional care perspective on the patient with posterior urethral valves. Can Urol Assoc J, 2018. 12: S10.
https://www.ncbi.nlm.nih.gov/pubmed/29681268/
1507.Rourke, K., et al. Transitioning patients with hypospadias and other penile abnormalities to adulthood: What to expect? Can Urol Assoc J, 2018. 12: S27.
https://www.ncbi.nlm.nih.gov/pubmed/29681271/
1508.Harris, K.T., et al. The exstrophy experience: A national survey assessing urinary continence, bladder management, and oncologic outcomes in adults. J Pediatr Urol, 2023. 19: 178.e1.
https://www.ncbi.nlm.nih.gov/pubmed/36456414/
1509.O’Kelly, F., et al. Contemporary issues relating to transitional care in bladder exstrophy. Can Urol Assoc J, 2018. 12: S15.
https://www.ncbi.nlm.nih.gov/pubmed/29681269/
1510.Arkani, S., et al. Urinary Bladder Cancer in Bladder Exstrophy and Epispadias Complex: A Swedish Register Study and a Systematic Review of the Literature. JU Open Plus, 2023. 1: e00012.
https://www.researchgate.net/publication/369370457/
1511.Smeulders, N., et al. Neoplasia in adult exstrophy patients. BJU Int, 2001. 87: 623.
https://www.ncbi.nlm.nih.gov/pubmed/11350401/
1512.Crouch, N.S., et al. Transition of care for adolescents with disorders of sex development. Nat Rev Endocrinol, 2014. 10: 436.
https://www.ncbi.nlm.nih.gov/pubmed/24840319/
1513.Gleeson, H., et al. Working with adolescents and young adults to support transition. Endocr Dev, 2014. 27: 128.
https://www.ncbi.nlm.nih.gov/pubmed/25247650/
1514.Chawla, R., et al. Care of the adolescent patient with congenital adrenal hyperplasia: Special considerations, shared decision making, and transition. Semin Pediatr Surg, 2019. 28: 150845.
https://www.ncbi.nlm.nih.gov/pubmed/31668292/
1515.Ekbom, K., et al. Transition Readiness in Adolescents and Young Adults Living With Congenital Adrenal Hyperplasia. Endocr Pract, 2023. 29: 266.